
On the Expressiveness and Decidability of Higher-Order Process Calculi ∗

Ivan Lanese Jorge A. Pérez Davide Sangiorgi
University of Bologna, Italy

{lanese, perez, davide.sangiorgi}@cs.unibo.it

Alan Schmitt
INRIA Rhône-Alpes, France

alan.schmitt@inrialpes.fr

Abstract

In higher-order process calculi the values exchanged in
communications may contain processes. A core calculus
of higher-order concurrency is studied; it has only the op-
erators necessary to express higher-order communications:
input prefix, process output, and parallel composition. By
exhibiting a nearly deterministic encoding of Minsky ma-
chines, the calculus is shown to be Turing complete and
therefore its termination problem is undecidable. Strong
bisimilarity, however, is shown to be decidable. Further,
the main forms of strong bisimilarity for higher-order pro-
cesses (higher-order bisimilarity, context bisimilarity, nor-
mal bisimilarity, barbed congruence) coincide. They also
coincide with their asynchronous versions. A sound and
complete axiomatization of bisimilarity is given. Finally,
bisimilarity is shown to become undecidable if at least four
static (i.e., top-level) restrictions are added to the calculus.

1. Introduction

Higher-order process calculi are calculi in which pro-
cesses (more generally, values containing processes) can
be communicated. Higher-order process calculi have been
put forward in the early 90s, with CHOCS [22] and Plain
CHOCS [24], the Higher-Order π-calculus [15], and oth-
ers. The basic operators are usually those of CCS: parallel
composition, input and output prefix, and restriction. Repli-
cation and recursion are often omitted as they can be en-
coded. However, the possibility of exchanging processes
has strong consequences on semantics: ordinary definitions
of bisimulation and behavioral equivalences become unsat-
isfactory, and labelled transition systems must deal with
higher-order substitutions and scope extrusion. Higher-
order, or process-passing, concurrency is often presented as

∗Research partially supported by European Project FET-GC II IST-
2005-16004 SENSORIA, Italian MIUR Project n. 2005015785, “Logical
Foundations of Distributed Systems and Mobile Code”, and French ANR
project “CHOCO”.

an alternative paradigm to the first order, or name-passing,
concurrency of the π-calculus for the description of mobile
systems. Higher-order calculi are formally closer to, and
are inspired by, the λ-calculus, whose basic computational
step — β-reduction — involves term instantiation. As in
the λ-calculus, a computational step in higher-order calculi
results in the instantiation of a variable with a term, which
is then copied as many times as there are occurrences of the
variable, resulting in potentially larger terms.

The expressiveness of higher-order communication has
received little attention in the literature. Higher-order cal-
culi (both sequential and concurrent) have been compared
with first-order calculi, but mainly as a way of investigating
the expressiveness of π-calculus and similar formalisms.
Thomsen [23] and Xu [25] have proposed encodings of π-
calculus into Plain CHOCS. These encodings make essen-
tial use of the relabeling operator of Plain CHOCS. San-
giorgi and Walker’s encoding of a variant of π-calculus
into Higher-Order π-calculus [19] relies on the abstrac-
tion mechanism of the Higher-Order π-calculus (it needs ω-
order abstractions). Another strand of work on expressive-
ness (see, e.g., [13]) has looked at calculi for distributed sys-
tems and compared different primitives for migration and
movement of processes (or entire locations), which can be
seen as higher-order constructs.

The goal of this paper is to contribute to the under-
standing of expressiveness and behavioral equivalence in
higher-order process calculi. We consider a core calculus
of Higher-Order processes (briefly HOcore), whose gram-
mar is:

P ::= a(x).P | a〈P 〉 | P ‖ P | x | 0

An input prefixed process a(x).P can receive on name (or
channel) a a process that will be substituted in the place of
x in the body P ; an output message a〈P 〉 can send P on a;
parallel composition allows processes to interact. We can
view the calculus as a kind of concurrent λ-calculus, where
a(x).P is a function, with formal parameter x and body P ,
located at a; and a〈P 〉 is the argument for a function lo-
cated at a. HOcore is minimal, in that only the operators
strictly necessary to obtain higher-order communications

23rd Annual IEEE Symposium on Logic in Computer Science

1043-6871/08 $25.00 © 2008 IEEE
DOI 10.1109/LICS.2008.8

145

are retained. For instance, continuations following output
messages have been left out. More importantly, HOcore
has no restriction operator. Thus all channels are global,
and dynamic creation of new channels is forbidden. This
makes also the absence of recursion relevant, as known en-
codings of fixed-point combinators in higher-order process
calculi require the restriction operator.

Even though HOcore is minimal, it remains non-trivial:
in Section 3 we show that it is Turing complete, and there-
fore its termination problem is undecidable, by exhibiting
a nearly deterministic encoding of Minsky machines. The
cornerstone of the encoding, counters that may be tested
for zero, consist of nested higher-order outputs. Each reg-
ister is made of two mutually recursive behaviors capable
of spawning processes incrementing and decrementing its
counter.

We then turn to the question of definability and decid-
ability of bisimilarity. As hinted at above, the definition of
a satisfactory notion of bisimilarity is a hard problem for a
higher-order process language, and the “term-copying” fea-
ture inherited from the λ-calculus can make it hard to prove
that bisimilarity is a congruence. In ordinary bisimilarity,
as in CCS, two processes are bisimilar if any action by one
of them can be matched by an equal action from the other in
such a way that the resulting derivatives are again bisimilar.
The two matching actions must be syntactically identical.
This condition is unacceptable in higher-order concurrency;
for instance it breaks fundamental algebraic laws such as the
commutativity of parallel composition. Alternative propos-
als of labelled bisimilarity for higher-order processes have
been put forward. In higher-order bisimilarity [23, 15] one
requires bisimilarity, rather than identity, of the processes
emitted in a higher-order output action. This weakening is
natural for higher-order calculi and the bisimulation checks
involved are simple. However, higher-order bisimilarity is
often over-discriminating as a behavioral equivalence [15],
and basic properties, such as congruence, may be very hard
to establish. Context bisimilarity [15, 8] avoids the separa-
tion between the argument and the continuation of an output
action, this continuation being either explicit or consisting
of other processes running in parallel, by explicitly taking
into account the context in which the emitted process is sup-
posed to go. Context bisimilarity yields more satisfactory
process equalities, and it coincides with contextual equiva-
lence (i.e., barbed congruence). A drawback is the universal
quantification over contexts in the clause for output actions,
which can make it difficult, in practice, to check equiva-
lences. Normal bisimilarity [15, 8, 1] is a simplification
of context bisimilarity without universal quantifications in
the output clause. The input clause is simpler too: normal
bisimilarity can indeed be viewed as a form of open bisim-
ilarity [16], where the formal parameter of an input is not
substituted in the input clause, and free variables of terms

are observable during the bisimulation game. However, the
definition of the bisimilarity may depend on the operators
in the calculus, and the correspondence with context bisim-
ilarity may be hard to prove.

In Sections 4 and 5 we show that HOcore has a
unique reasonable relation of strong bisimilarity: all above
forms (higher-order bisimilarity, context bisimilarity, nor-
mal bisimilarity, barbed congruence) coincide; and they
also coincide with their asynchronous versions. Further, we
show that such a bisimilarity relation is decidable.

We find, in the concurrency literature, examples of for-
malisms that are not Turing complete and where neverthe-
less (strong) bisimilarity is undecidable (e.g., Petri nets [7],
lossy channel systems [20]). We are not aware however of
examples of the opposite situation; that is, formalisms that,
as HOcore, are Turing complete but at the same time main-
tain decidability of bisimilarity. The situation in HOcore
may indeed seem surprising, if not even contradictory: one
is able to tell whether two processes are bisimilar, but in
general one cannot tell whether the processes will termi-
nate or even whether the sets of their τ -derivatives (the pro-
cesses obtained via reductions) are finite or not. The crux to
obtaining decidability is a further characterization of bisim-
ilarity in HOcore, as a form of open bisimilarity, called IO
bisimilarity, in which τ -transitions are ignored.

For an upper bound to the complexity of the bisimilar-
ity problem, we can adapt Dovier et al.’s algorithm [3] to
infer that bisimilarity is decidable in time which is linear in
the size of the (open and higher-order) transition system un-
derlying IO bisimilarity. In general however this transition
system is exponential with respect to the size of the root pro-
cess. We show in Section 6 that bisimilarity in HOcore can
actually be decided in time that is polynomial with respect
to the size of the initial pair of processes. We obtain this
through an axiomatization of bisimilarity, where we adapt
to a higher-order setting both Moller and Milner’s unique
decomposition of processes [11] and Hirschkoff and Pous’
axioms for a fragment of (finite) CCS [4].

The decidability result for bisimilarity breaks down with
the addition of restriction, as full recursion can then be
faithfully encoded (the resulting calculus subsumes, e.g.,
CCS without relabeling). This however requires the ability
of generating unboundedly many new names (for instance,
when a process that contains restrictions is communicated
and copied several times). In Section 7, we consider the ad-
dition of static restrictions to HOcore. Intuitively this means
allowing restrictions only as the outermost constructs, so
that processes take the form νa1 . . .νan P where the inner
process P is restriction-free. Via an encoding of the Post
correspondence problem we show that the addition of four
static restrictions is sufficient to produce undecidability. We
do not know what happens with fewer restrictions.

In the final part of the paper we examine the impact of

146

some extensions to HOcore on our decidability results (Sec-
tion 8) and give some concluding remarks (Section 9).

Due to a lack of space, most proofs are only sketched or
ommited; they are included in the extended version of this
paper [10].

2. The calculus

We now introduce HOcore, the core of calculi for higher-
order concurrency such as CHOCS [22], Plain CHOCS
[24], and Higher-Order π-calculus [15, 17]. We use a, b, c
to range over names (also called channels), and x, y, z to
range over variables; the sets of names and variables are
disjoint.

P, Q ::= a〈P 〉 output

| a(x).P input prefix

| x process variable

| P ‖ Q parallel composition

| 0 nil

An input a(x).P binds the free occurrences of x in P . We
write fv(P) for the set of free variables in P , and bv(P) for
the bound variables. We identify processes up to a renaming
of bound variables. A process is closed if it does not have
free variables. In a statement, a name is fresh if it is not
among the names of the objects (processes, actions, etc.) of
the statement. We abbreviate a(x).P , with x 6∈ fv(P), as
a.P , a〈0〉 as a, and P1 ‖ . . . ‖ Pk as

∏k
i=1 Pi.

The Labelled Transition System of HOcore is defined on
open processes. There are three forms of transitions: τ tran-

sitions P
τ−→ P ′; input transitions P

a(x)−−−→ P ′, meaning
that P can receive at a a process that will replace x in the

continuation P ′; and output transitions P
a〈P ′〉−−−−→ P ′′ mean-

ing that P emits P ′ at a, and in doing so it evolves to P ′′.
We use α to indicate a generic label of a transition.

INP a(x).P
a(x)−−−→ P OUT a〈P 〉 a〈P 〉−−−→ 0

ACT1
P1

α−→ P ′
1 bv(α) ∩ fv(P2) = ∅

P1 ‖ P2
α−→ P ′

1 ‖ P2

TAU1
P1

a〈P 〉−−−→ P ′
1 P2

a(x)−−−→ P ′
2

P1 ‖ P2
τ−→ P ′

1 ‖ P ′
2{P/x}

(We have omitted ACT2 and TAU2, the symmetric counter-
part of the last two rules.)

Definition 2.1. The structural congruence relation is the
smallest congruence generated by the following laws:
P ‖ 0 ≡ P , P1 ‖ P2 ≡ P2 ‖ P1,
P1 ‖ (P2 ‖ P3) ≡ (P1 ‖ P2) ‖ P3.

Reductions P −→ P ′ are defined as P ≡ τ−→≡ P ′.

M-INC
i : INC(rj) m′

j = mj + 1 m′
1−j = m1−j

(i,m0,m1) −→M (i + 1,m′
0,m

′
1)

M-DEC

i : DECJ(rj , k)
mj 6= 0 m′

j = mj − 1 m′
1−j = m1−j

(i,m0,m1) −→M (i + 1,m′
0,m

′
1)

M-JMP
i : DECJ(rj , k) mj = 0

(i,m0,m1) −→M (k, m0,m1)

Figure 1. Reduction of Minsky machines

3. HOcore is Turing complete

We present in this section an encoding of Minsky ma-
chines [12] into HOcore. The encoding shows that HOcore
is Turing complete and, as the encoding preserves termina-
tion, it also shows that termination in HOcore is undecid-
able. The only form of non-determinism in the encoding
is due to possible unfoldings of (the encoding of) recursive
definitions after they have been used; otherwise, at any step,
in the encoding any process has at most one reduction.

3.1. Minsky machines

A Minsky machine is a Turing complete model com-
posed of a set of sequential, labeled instructions, and two
registers. Registers rj (j ∈ {0, 1}) can hold arbitrarily large
natural numbers. Instructions (1 : I1), . . . , (n : In) can be
of two kinds: INC(rj) adds 1 to register rj and proceeds to
the next instruction; DECJ(rj , k) jumps to instruction k if rj

is zero, otherwise it decreases register rj by 1 and proceeds
to the next instruction.

A Minsky machine includes a program counter p indi-
cating the label of the instruction being executed. In its ini-
tial state, the machine has both registers set to 0 and the
program counter p set to the first instruction. The Minsky
machine stops whenever the program counter is set to a non-
existent instruction, i.e. p > n.

A configuration of a Minsky machine is a tuple
(i,m0,m1); it consists of the current program counter and
the values of the registers. Formally, the reduction relation
over configurations of a Minsky machine, denoted −→M, is
defined in Figure 1.

3.2. Minsky machines in HOcore

The encoding of a Minsky machine into HOcore is de-
noted as [[·]]M. We first present an encoding of a simple form
of guarded choice and guarded replication. We then show

147

how to count and test for zero in HOcore and present the
main encoding, depicted in Table 1.

Guarded choice. We extend the HOcore syntax with a
simple form of guarded choice to choose between different
behaviors. Assume, for instance, that ai should trigger Pi,
for i ∈ {1, 2}. We write this as a1.P1 + a2.P2, and we
write the choice of the behavior Pi as âi. We then have, for
each i, the reduction (a1.P1 + a2.P2) ‖ âi −→ Pi. We
encode a1.P1 + a2.P2 as

[[a1.P1 + a2.P2]]+ = a1〈[[P1]]+〉 ‖ a2〈[[P2]]+〉

the choice [[â1]]+ as a2(x2). a1(x1).x1, and the choice
[[â2]]+ as a1(x1). a2(x2).x2. This way, [[âi]]+ for i ∈ {1, 2}
is a process that consumes both Pi’s and spawns the one
chosen. The translation is an homomorphism on the other
operators. This encoding is correct as long as all guards
used in the choices are different and there is at most one
message at a guard, â1 or â2 in the previous example, en-
abled at any given time. The encoding introduces an extra
communication for every guarded choice.

Input-guarded replication. We follow the standard en-
coding of replication in higher-order process calculi, adapt-
ing it to input-guarded replication so to make sure that di-
verging behaviors are not introduced. As there is no re-
striction in HOcore, the encoding is not compositional and
replications cannot be nested.

Definition 3.1. Assume a fresh name c. The encoding of
input-guarded replication is as follows:

[[!a(z).P]]i! = a(z). (Qc ‖ P) ‖ c〈a(z). (Qc ‖ P)〉

where Qc = c(x). (x ‖ c〈x〉), P contains no replications
(nested replications are forbidden), and [[·]]i! is an homo-
morphism on the other process constructs in HOcore.

This encoding preserves termination.

Counting in HOcore. The cornerstone of our encoding is
the definition of counters that may be tested for zero. Num-
bers are represented as nested higher-order processes: the
encoding of a number k+1 in register j, denoted (| k+1 |)j ,
is the parallel composition of two processes: rS

j 〈(| k |)j〉 (the
successor of (| k |)j) and a flag n̂j indicating the number is
not zero. The encoding of zero comprises the message r0

j

and a flag ẑj indicating it is zero. As an example, (| 2 |)j

is rS
j 〈rS

j 〈r0
j ‖ ẑj〉 ‖ n̂j〉 ‖ n̂j . To increment (| 2 |)j , one

puts it as the argument of a message on rS
j along with the

n̂j choice. To decrement it, one triggers the behavior asso-
ciated to the n̂j choice and consumes the message on rS

j ,
spawning its contents.

INSTRUCTIONS (i : Ii)

[[(i : INC(rj))]]M = !pi. (dincj ‖ ack. pi+1)

[[(i : DECJ(rj , k))]]M = !pi. (ddecj ‖ ack. (zj . pk + nj . pi+1)

REGISTERS rj

[[rj = 0]]M = (incj . (rS
j 〈(| 1 |)j〉 ‖ ack) +

decj . ((| 0 |)j ‖ ack)) ‖ REGj

[[rj = m]]M = (incj . (rS
j 〈(| m |)j〉 ‖ ack) +

decj . ((| m − 1 |)j ‖ ack)) ‖ REGj

where:
REGj = !r0

j . (incj . (rS
j 〈(| 1 |)j〉 ‖ ack) +

decj . ((| 0 |)j ‖ ack)) ‖
!rS

j (Y). (incj . (rS
j 〈rS

j 〈Y 〉 ‖ cnj〉 ‖ ack) +

decj . (Y ‖ ack))

(| k |)j =

(
r0

j ‖ bzj if k = 0

rS
j 〈(| k − 1 |)j〉 ‖ cnj if k > 0.

Table 1. Encoding of Minsky machines

Registers. Registers are counters that may be incre-
mented and decremented. We distinguish registers whose
current value is zero as their value should remain zero after
a decrement, as specified by the Msemantics. A register j
consists of two mutually recursive behaviors, triggered re-
spectively by messages on r0

j and rS
j . Each of them spawns

a process waiting for an increment or a decrement choice.
In case of an increment, a new process is spawned using a
message on rS

j containing the successor of the current reg-
ister value, along with an acknowledgment. In case of a
decrement of a non-zero register, the current encoding of
the number is spawned, resulting in the recreation of the
register process with the decremented value and the spawn-
ing of a non-zero flag n̂j . In case of the decrement of a zero
register, the zero register is recreated and a zero flag ẑj is
spawned. In both cases an acknowledgment is sent.

Instructions. The encoding of instructions goes hand in
hand with the encoding of registers. Each instruction (i : Ii)
is a replicated process guarded by pi, which represents the
program counter when p = i. Once pi is consumed, the
instruction is active and an interaction with a register oc-
curs. In case of an increment instruction, the corresponding
choice is sent to the relevant register and, upon reception
of the acknowledgment, the next instruction is spawned. In
case of a decrement, the corresponding choice is sent to the
register, then an acknowledgment is received followed by a
choice depending on whether the register was zero, result-
ing in a jump to the specified instruction, or the spawning
the next instruction otherwise.

The encoding of a configuration of a Minsky machine
thus requires a finite number of fresh names (linear on n,
the number of instructions).

148

Definition 3.2. Let N be a Minsky machine with registers
r0 = m0, r1 = m1 and instructions (1 : I1), . . . , (n : In).
Suppose fresh, pairwise different names r0

j , rS
j , p1, . . . , pn,

incj , decj , ack (for j ∈ {0, 1}). Given the encodings in
Table 1, a configuration (i,m0,m1) of N is encoded as

pi ‖ [[r0 = m0]]M ‖ [[r1 = m1]]M ‖
n∏

i=1

[[(i : Ii)]]M .

In HOcore, we write −→∗ for the reflexive and transi-
tive closure of −→, and P ⇑ if P has an infinite sequence
of reductions. Similarly, in Minsky machines −→∗

M is the
reflexive and transitive closure of −→M, and N ⇑M means
that N has an infinite sequence of reductions.

Lemma 3.3. Let N be a Minsky machine. We have:

1. N −→∗
M N ′ iff [[N]]M −→∗ [[N ′]]M;

2. if [[N]]M −→∗ P1 and [[N]]M −→∗ P2, then there exists
N ′ such that P1 −→∗ [[N ′]]M and P2 −→∗ [[N ′]]M;

3. N ⇑M iff [[N]]M ⇑.

Proof. We show there is a tight relationship between the
execution of N and an invariant structure of its encoding,
the only non-determinism coming from choosing when to
unfold recursive processes after their use. One can then
show that every finite computation of the Minsky machine
is mimicked by a finite computation of the encoding.

The results above guarantee that HOcore is Turing com-
plete, and since the encoding preserves termination, it en-
tails the following corollary.

Corollary 3.4. Termination in HOcore is undecidable.

4. Bisimilarity in HOcore

In this section we prove that the main forms of strong
bisimilarity for higher-order process calculi coincide in HO-
core, and that such a relation is decidable. As a key ingre-
dient for our results, we introduce open Input/Output (IO)
bisimulation in which the variable of input prefixes is never
instantiated and τ -transitions are not observed. We define
different kinds of bisimulations by appropriate combina-
tions of the clauses below.

Definition 4.1 (HOcore bisimulation clauses, open pro-
cesses). A symmetric relation R on HOcore processes is

1. a τ -bisimulation if P R Q and P
τ−→ P ′ imply that

there is Q′ s.t. Q
τ−→ Q′ and P ′ R Q′;

2. a higher-order output bisimulation if P R Q and

P
a〈P ′′〉−−−−→ P ′ imply that there are Q′, Q′′ s.t.

Q
a〈Q′′〉−−−−→ Q′ with P ′ R Q′ and P ′′ R Q′′;

3. an output normal bisimulation if P R Q and

P
a〈P ′′〉−−−−→ P ′ imply that there are Q′, Q′′ s.t.

Q
a〈Q′′〉−−−−→ Q′ with m.P ′′ ‖ P ′ R m.Q′′ ‖ Q′, where

m is fresh.

4. an open bisimulation if whenever P R Q:

• P
a(x)−−−→ P ′ implies that there is Q′ s.t. Q

a(x)−−−→
Q′ and P ′ R Q′,

• P ≡ x ‖ P ′ implies that there is Q′ s.t. Q ≡ x ‖
Q′ and P ′ R Q′.

Definition 4.2 (HOcore bisimulation clauses, closed pro-
cesses). A symmetric relation R on closed HOcore pro-
cesses is

1. an output context bisimulation if P R Q and

P
a〈P ′′〉−−−−→ P ′ imply that there are Q′, Q′′ s.t.

Q
a〈Q′′〉−−−−→ Q′ and for all S with fv(S) ⊆ x, it holds

that S{P ′′
/x} ‖ P ′ R S{Q′′

/x} ‖ Q′;

2. an input normal bisimulation if P R Q and P
a(x)−−−→

P ′ imply that there is Q′ s.t. Q
a(x)−−−→ Q′ and

P ′{m〈0〉/x} R Q′{m〈0〉/x}, where m is fresh;

3. closed if P R Q and P
a(x)−−−→ P ′ imply that there is

Q′ s.t. Q
a(x)−−−→ Q′ and for all closed R, it holds that

P ′{R/x} R Q′{R/x}.

A combination of the bisimulation clauses in Defini-
tions 4.1 and 4.2 is complete if it includes exactly one clause
for input and output transitions (in contrast, it need not in-
clude a clause for τ -transitions).1 We will show that all
complete combinations coincide. We only give a name to
those combinations that represent known forms of bisimu-
lation for higher-order processes or that are needed in our
proofs. In each case, as usual, a bisimilarity is the union of
all bisimulations, and is itself a bisimulation (the functions
from relations to relations that represent the bisimulation
clauses in Definitions 4.1 and 4.2 are all monotonic).

Definition 4.3. Higher-order bisimilarity, written ∼HO, is
the largest relation on closed HOcore processes that is a
τ -bisimulation, a higher-order output bisimulation, and is
closed.

Context bisimilarity, written ∼CON, is the largest rela-
tion on closed HOcore processes that is a τ -bisimulation,
an output context bisimulation, and is closed.

Normal bisimilarity, written ∼NOR, is the largest relation
on closed HOcore processes that is a τ -bisimulation, an

1The clauses of Definition 4.2 are however tailored to closed processes,
therefore combining them with the open clause of Definition 4.1(4) has
little interest.

149

output normal bisimulation, and an input normal bisimu-
lation.

IO bisimilarity, written ∼o
IO, is the largest relation on

HOcore processes that is a higher-order output bisimula-
tion and is open.

Open normal bisimilarity, written ∼o
NOR, is the largest re-

lation on HOcore processes that is a τ -bisimulation, an out-
put normal bisimulation, and is open.

Given a bisimilarity R on closed processes, its extension
to open processes is defined by

{(P,Q) : a(x1). · · · . a(xn).P R a(x1). · · · . a(xn).Q}

with fv(P) ∪ fv(Q) = {x1, . . . , xn}, and a fresh in P,Q.
Environmental bisimilarity [18], a recent proposal of

bisimilarity for higher-order calculi, in HOcore roughly cor-
responds to (and indeed coincides with) the complete com-
bination that is a τ -bisimulation, an output normal bisimu-
lation, and is closed.

Remark 4.4. The input clause of Definition 4.2(3) is in the
late style. It is known [15] that in calculi of pure higher-
order concurrency early and late clauses are equivalent.

Remark 4.5. In contrast with ordinary normal bisimulation
[15, 8], our clause for output normal bisimulation does not
use a replication in front of the fresh name introduced. Such
a replication would be needed in extensions of the calculus
(e.g., with recursion or restriction).

The simplest complete form of bisimilarity is ∼o
IO. Not

only ∼o
IO is the less demanding for proofs; it also has a

straightforward proof of congruence. This is significant be-
cause congruence is notoriously a hard problem in bisimi-
larities for higher-order calculi.

Lemma 4.6. ∼o
IO is a congruence relation.

Proof (Sketch). By showing that ∼o
IO is preserved by each

operator of the calculus. All cases are easy. For paral-
lel composition, it is essential that ∼o

IO does not require to
match τ actions in the bisimulation game.

Lemma 4.7. ∼o
IO is preserved by substitutions: i.e., if

P ∼o
IO Q then for all x and R, also P{R/x} ∼o

IO Q{R/x}.

Proof (Sketch). We take the relation on HOcore with all
pairs of the form

(P ′{R/x} ‖ L, Q′{R/x} ‖ L)

where P ′, Q′ are guarded (i.e., free variables occur only in
sub-expressions of the form π.S, where π is a prefix) and
P ′ ∼o

IO Q′, and show that this is an open IO bisimulation
up to ≡ (this simple form of “up-to technique” is common
for bisimilarities). The proof makes use of lemmas showing
the effect of process substitutions on the behaviors of open
processes, and of a few simple algebraic manipulations.

The most striking property of ∼o
IO is its decidability. In

contrast with the other bisimilarities, in ∼o
IO the size of pro-

cesses always decreases during the bisimulation game. This
is because∼o

IO is an open relation and does not have a clause
for τ transitions. Hence process copying never occurs.

Lemma 4.8. Relation ∼o
IO is decidable.

Next we show that∼o
IO is also τ -preserving. This will al-

low us to prove that ∼o
IO coincides with other bisimilarities,

and to transfer to them its properties, in particular congru-
ence and decidability.

Lemma 4.9. Relation ∼o
IO is a τ -bisimulation.

Proof (Sketch). Suppose P ∼o
IO Q and P

τ−→ P ′. We have
to find a matching transition from Q. We can decompose

P ’s transition into an output P
a〈R〉−−−→ P1 followed by an

input P1
a(x)−−−→ P2, with P ′ = P2{R/x}. By definition

of ∼o
IO, Q is capable of matching these transitions, and the

final derivative is a process Q2 with Q2 ∼o
IO P2. Further, as

HOcore has no output prefixes (i.e., it is an asynchronous
calculus) the two transitions from Q can be combined into a
τ -transition, which matches the initial τ -transition from P .
We conclude using Lemmas 4.6 and 4.7.

Corollary 4.10. ∼HO and ∼o
IO coincide.

Proof (Sketch). The hard implication is the one right to left.
One shows that ∼o

IO, restricted to closed processes, is a
higher-order bisimulation. The clause for output actions is
trivial (they are the same); for inputs, we apply Lemma 4.7;
for τ we apply Lemma 4.9.

We thus infer that ∼HO is a congruence relation. A di-
rect proof of this result (by exhibiting an appropriate bisim-
ulation), in particular congruence for parallel composition,
would have been harder. Congruence of higher-order bisim-
ilarity is usually proved by appealing to, and adapting,
Howe’s method for the λ-calculus [6].

For the remaining characterizations we first establish a
few properties of normal bisimulation.

Lemma 4.11. If m.P1 ‖ P2 ∼o
NOR m.Q1 ‖ Q2 with m

fresh for Pi, Qi (i = 1, 2), then we have Pi ∼o
NOR Qi (i =

1, 2).

Proof (Sketch). We get P2 ∼o
NOR Q2 by maintaining the pre-

fix at m, and thus preventing runs of processes P1 and Q1.
We can also consume entirely the processes P2 and Q2

(by observing only their inputs or outputs), then consume
prefix m; we are thus left with P1 and Q1, which should
therefore be bisimilar.

Lemma 4.12. Relations ∼HO, ∼o
NOR and ∼CON coincide on

HOcore.

150

Proof (Sketch). One shows the following implications (on
open processes): ∼HO implies ∼CON (this is essentially
a consequence of the congruence of ∼HO); ∼CON implies
∼NOR; ∼NOR implies ∼o

NOR; ∼o
NOR implies ∼o

IO (here we use
Lemma 4.11); ∼o

IO implies ∼HO (Corollary 4.10).

We then extend the result to all complete combinations of
the HOcore bisimulation clauses (Definitions 4.1 and 4.2).

Theorem 4.13. All complete combinations of the HOcore
bisimulation clauses coincide, and are decidable.

Proof (Sketch). In Lemma 4.12 we have proved that the
least demanding combination (∼o

IO) coincides with the most
demanding ones (∼HO and ∼CON). Decidability then follows
from Lemma 4.8.

5. Barbed congruence and asynchronous
equivalences

We now show that the labeled bisimilarities of Section 4
coincide with barbed congruence, the form of contextual
equivalence used in concurrency to justify bisimulation-like
relations. Below we use reduction-closed barbed congru-
ence [5, 19], as this makes some technical details simpler;
however the results also hold for ordinary barbed congru-
ence. More importantly, we consider the asynchronous ver-
sion of barbed congruence, where barbs are only produced
by output messages; in synchronous barbed congruence in-
puts may also contribute. We use the asynchronous version
for two reasons. First, asynchronous barbed congruence is a
weaker relation, which makes the results stronger (they im-
ply the corresponding results for the synchronous relation).
Second, asynchronous barbed congruence is more natural
in HOcore because it is asynchronous — it has no output
prefix.

Note also that the labeled bisimilarities of Section 4 have
been defined in the synchronous style. In an asynchronous
labeled bisimilarity the input clause is weakened so to al-
low, in certain conditions, an input action to be matched
also by a τ -action. For instance, input normal bisimulation
(Definition 4.2(2)) would become:

• if P
a(x)−−−→ P ′ then

1. either Q
a(x)−−−→ Q′ and P ′{m〈0〉/x} R

Q′{m〈0〉/x}, where m is fresh;

2. or Q
τ−→ Q′ and P ′ R Q′ ‖ a〈m〈0〉〉.

We write P ↓a (resp. P ↓a) if P can perform an output
(resp. input) transition at a.

Definition 5.1. Asynchronous barbed congruence, ', is the
largest relation on closed processes that is symmetric, is a

τ -bisimulation (Definition 4.1(1)), context-closed (i.e., P '
Q implies C[P] ' C[Q], for all closed contexts C[·]), and
barb preserving (i.e., if P ' Q and P ↓a, then also Q ↓a).

Lemma 5.2. Asynchronous barbed congruence coincides
with normal bisimilarity.

Proof (Sketch). As we are comparing a synchronous rela-
tion against an asynchronous one, some details of the proof
differ from proofs in the literature involving barbed con-
gruences. Specifically, we have to show that two asyn-
chronous barbed congruent processes P and Q satisfy
the synchronous clause for input transitions as by Defini-
tion 4.2(2). To this end, for every message a〈R〉 that ap-
pears at top level in P or Q, we add a process a(y). b〈y〉
that renames this message to message b〈R〉, where b is some
fresh channel. The resulting processes P ‖ T and Q ‖ T
are still asynchronous barbed congruent, and as the chan-
nels b are fresh, any τ action generated by the renaming of
one message is matched by a τ action from a similar re-
naming by the other process, yielding eventually two asyn-
chronous barbed congruent processes P ′ and Q′ that cannot
immediately perform any τ -transitions. Therefore on these
processes the τ -transitions that appear in the input clause
of asynchronous bisimilarity (and which make the differ-
ence w.r.t. synchronous bisimilarity) are impossible. Thus
we can show that, on such special asynchronous processes,
any input from P ′ is matched by an input from Q′ and con-
versely, as in synchronous bisimilarities. Finally, reverting
the renaming we are able to derive an analogous match on
inputs for P and Q.

Remark 5.3. The proof relies on the fact that HOcore has
no operators of recursion, choice, and restriction. The
higher-orderness of HOcore does not really play a role. The
proof could indeed be adapted to CCS-like, or π-calculus-
like, languages in which the same operators are missing.

In synchronous barbed congruence, input barbs P ↓a are
also observable (in the “barb preserving” condition).

Corollary 5.4. In HOcore asynchronous and synchronous
barbed congruence coincide, and they also coincide with all
complete combinations of the HOcore bisimulation clauses
of Theorem 4.13.

Further, Corollary 5.4 can be extended to include the
asynchronous versions of the labeled bisimilarities in Sec-
tion 4 (precisely, the complete asynchronous combinations
of the HOcore bisimulation clauses; that is, complete com-
binations that make use of an asynchronous input clause as
outlined before Definition 5.1). This holds because: (i)
all proofs of Section 4 can be easily adapted to the cor-
responding asynchronous labeled bisimilarities; (ii) using
standard reasoning for barbed congruences, one can show

151

that asynchronous normal bisimilarity coincides with asyn-
chronous barbed congruence; (iii) via Corollary 5.4 one can
then relate the asynchronous labeled bisimilarities to the
synchronous ones.

6. Axiomatization and Complexity

We have shown in the previous section that in HOcore
the main forms of bisimilarity for higher-order process cal-
culi coincide. We therefore simply call bisimilarity such a
relation, and indicate it as ∼. Here we present a sound and
complete axiomatization of bisimilarity. We then exploit it
to derive complexity bounds for bisimilarity checking.

The size of a process P , written #(P), is inductively
defined as:

#(0) = 0 #(P ‖ Q) = #(P) + #(Q) #(x) = 1
#(a〈P 〉) = 1 + #(P) #(a(x).P) = 1 + #(P)

Lemma 6.1. P ∼ Q implies #(P) = #(Q).

Following [11] we prove a result of unique prime decom-
position of processes and a derived cancellation property.

Definition 6.2 (Prime decomposition). A process P is
prime if P 6∼ 0 and P ∼ P1 ‖ P2 imply P1 ∼ 0 or
P2 ∼ 0. When P ∼

∏n
i=1 Pi where each Pi is prime,

we call
∏n

i=1 Pi a prime decomposition of P .

Proposition 6.3 (Unique decomposition). Any process P
admits a prime decomposition

∏n
i=1 Pi which is unique up

to bisimilarity and permutation of indices (i.e., given two
prime decompositions

∏n
i=1 Pi and

∏n
i=1 P ′

i there is a per-
mutation σ of {1, . . . , n} such that Pi ∼ P ′

σ(i) for each
i ∈ {1, . . . , n}).

Corollary 6.4 (Cancellation). For all P , Q, and R, if P ‖
R ∼ Q ‖ R then also P ∼ Q.

The key law for the axiomatization, and the following re-
sults, are inspired by similar results by Hirschkoff and Pous
[4] for pure CCS. Using their terminology, we call distri-
bution law, briefly (DIS), the axiom schema below (

∏k
1 Q

denotes the parallel composition of k copies of Q.)

a(x). (P ‖
∏k−1

1 a(x).P) =
∏k

1 a(x).P (DIS)

We then call extended structural congruence, written≡E,
the extension of the structural congruence relation (≡, Def-
inition 2.1) with the axiom schema (DIS). Below we prove
that ≡E gives us an algebraic characterization of ∼ in HO-
core. Establishing the soundness of ≡E is easy; below we
discuss completeness.

A process P is in normal form if it cannot be further
simplified in the system ≡E by applications of law (DIS)

from left to right. Formally, there are no processes P ′ and
Q′ such that P ≡ P ′, and Q′ is obtained from the rewriting
of a subterm of P ′ using law (DIS) from left to right. Any
process P has a normal form that is unique up to ≡, and
which will be denoted by n(P). Below A and B range over
normal forms, and a process is said to be non-trivial if its
size is different from 0.

Lemma 6.5. If a(x).P ∼ Q ‖ Q′ with Q,Q′ 6∼ 0, then
a(x).P ∼

∏k
1 a(x).A, where k > 1 and a(x).A is in

normal form.

The proof of Lemma 6.5 exploits Proposition 6.3 and
Corollary 6.4.

Lemma 6.6. For A,B in normal form, if A ∼ B then A ≡
B.

The proof of Lemma 6.6 is similar to the one in [4], with
some extra cases. The theorem below follows.

Theorem 6.7. For any processes P and Q, we have P ∼ Q
iff n(P) ≡ n(Q).

Corollary 6.8. ≡E is a sound and complete axiomatization
of bisimilarity in HOcore.

To analyze the complexity of deciding whether two pro-
cesses are bisimilar, one could apply the technique from [3],
and derive that bisimilarity is decidable in time which is lin-
ear in the size of the LTS for ∼o

IO (which, e.g., avoids τ
transitions). However the LTS is exponential in the size of
the process. A more efficient solution exploits the axiom-
atization above: one can normalize processes and reduce
bisimilarity to syntactic equivalence of normal forms.

For simplicity, we assume a process is represented as an
ordered tree (but we will transform it into a DAG during
normalization), with variables represented by De Bruijn in-
dices. The tree has nodes for 0, variables in De Bruijn no-
tation, input prefixes (with the continuation as only child),
output (with the argument as only child), and parallel com-
position. In particular, each node for parallel composition
has m leaves, where m is the number of parallel compo-
nents (none of them containing top-level parallel composi-
tions).

The first step of normalization is the following.

Normalization step 1. Remove all 0 nodes that are chil-
dren of a parallel composition node. Subsequently, if the
parallel composition has 0 child, replace it with 0, if it has
1 child, replace it with the child.

After this first step, the tree is traversed bottom-up, ap-
plying the following normalization steps.

Normalization step 2. If the node is a parallel composi-
tion, sort all the children lexicographically. If n children
are equal, leave just one and make n references to it.

152

Normalization step 3. If the node is an input prefix, apply
DIS from left to right if possible.

Lemma 6.9. Let P,Q be processes and TP , TQ their tree
representations normalized according to steps 1, 2 and 3.
Then P ∼ Q iff TP = TQ.

Theorem 6.10. P ∼ Q can be decided in O(n2 log m)
where n is the maximum between the number of nodes in the
tree representations of P and of Q, and m is the maximum
branching factor (i.e., the number of parallel components)
in them.

Proof. The most expensive part of the bisimilarity check is
normalization step 2. In particular, O(n) nodes may re-
quire to apply normalization step 2, which requires time
O(n log m) (considering that the cost of a comparison is
linear in the minimum size of the compared subtrees).

7. Bisimilarity is undecidable with four static
restrictions

If the restriction operator is added to HOcore, as in Plain
CHOCS or Higher-Order π-calculus, then recursion can be
encoded [23, 19] and most of the results in Sections 4-6
would break. In particular, higher-order and context bisim-
ilarities are different and both undecidable [15, 17].

We discuss here the addition of a limited form of restric-
tion, which we call static restriction. These restrictions may
not appear inside output messages: in any output a〈P 〉, P is
restriction-free. This limitation is important: it prevents for
instance the above-mentioned encoding of recursion from
being written. Static restrictions could also be defined as
top-level restrictions since, by means of standard structural
congruence laws, any static restriction can be pulled out
at the top-level. Thus the processes would take the form
νa1 . . .νan P , where νai indicates the restriction on the
name ai, and where restriction cannot appear inside P it-
self. (The operational semantics—LTS and bisimilarities—
are extended as expected; we omit them.)

We show that four static restrictions are enough to make
undecidable any bisimilarity that has little more than a
clause for τ -actions. For this, we reduce the Post corre-
spondence problem (PCP) [14, 21] to such a problem. We
call complete τ -bisimilarity any complete combination of
the HOcore bisimulation clauses (as defined in Section 4)
that includes the clause for τ actions (Definition 4.1(1)); the
bisimilarity can even be asynchronous (Section 5).

Definition 7.1 (PCP). An instance of the problem consists
of an alphabet A containing at least two symbols, and a
finite list T1, . . . , Tn of tiles, where each tile is a pair of
words over A. We use Ti = (ui, li) to denote a tile Ti

with upper word ui and lower word li. A solution to this

instance is a non-empty sequence of indices i1, . . . , ik, 1 ≤
ij ≤ n (j ∈ 1 · · · k), such that ui1 · · ·uik

= li1 · · · lik
.

The decision problem is then to determine whether such a
solution exists or not.

Having (static) restrictions, we refine the encoding of
non-nested replications (Definition 3.1) and define it in the
unguarded case:

[[!P]]! = νc (Qc ‖ c〈Qc〉)

where Qc = c(x). (x ‖ c〈x〉 ‖ P) and P is a HOcore
process (i.e., it is restriction-free).

Now, [[!0]]! is a purely divergent process, as it can only
make τ -transitions, indefinitely; it is written using only one
static restriction. Given an instance of PCP we build a set
of processes P1, . . . , Pn, one for each tile T1, . . . , Tn, and
show that, for each i, Pi is bisimilar to [[!0]]! iff the instance
of PCP has no solution ending with Ti. Thus PCP is solv-
able iff there exists j such that Pj is not bisimilar to [[!0]]!.

The processes P1, . . . , Pn execute in two distinct phases:
first they build a possible solution of PCP, then non-
deterministically they stop building the solution and exe-
cute it. If the chosen composition is a solution then a signal
on a free channel success is sent, thus performing a visible
action, which breaks bisimilarity with [[!0]]!.

The precise encoding of PCP into HOcore is shown in
Table 2, and described below. We consider an alphabet of
two letters, a1 and a2. The upper and lower words of a tile
are treated as separate strings, which are encoded letter by
letter. The encoding of a letter is then a process whose con-
tinuation encodes the rest of the string, and varies depend-
ing on whether the letter occurs in the upper or in the lower
word. We use a single channel to encode both letters: for
the upper word, a1 is encoded as a.P and a2 as a.P , where
P is the continuation; for the lower word the encodings are
switched. In Table 2, [[ai, P]]w denotes the encoding of the
letter ai with continuation P , with w = u if the encoding is
on the upper word, w = l otherwise. Hence, given a string
s = ai · s′, its encoding [[s, P]]w is [[ai, [[s′, P]]w]]w, i.e.,
the first letter with the encoding of the rest as continuation.
Notice that the encoding of an ai in the upper word can syn-
chronize only with the encoding of ai for the lower word.
This scheme requires output prefix, but it can be adapted to
the asynchronous syntax of HOcore.

The whole system Pj is composed by a creator Ci for
each tile Ti, a starter Su,l that launches the building of
a tile composition ending with (u, l), and an executor E.
The starter makes the computation begin; creators are called
deterministically to add their tile to the beginning of the
composition. The executor non-deterministically blocks the
building of the composition and starts its execution. This
proceeds if no difference is found: if both strings end at
the same character, then synchronization on channel b can

153

LETTERS [[a1, P]]u = [[a2, P]]l = a〈P 〉
[[a2, P]]u = [[a1, P]]l = a(x). (x ‖ P)

STRINGS [[ai · s, P]]w = [[ai, [[s, P]]w]]w
[[ε, P]]w = P (ε is the empty word)

CREATORS Ci = up(x). low(y).

(up〈[[ui, x]]u〉 ‖ low〈[[li, y]]l〉)
STARTERS Su,l = up〈[[u, b]]u〉 ‖ low〈[[l, b. success]]l〉
EXECUTOR E = up(x). low(y). (x ‖ y)
SYSTEM Pj = νup νlow νa νb (Suj ,lj ‖ !

Q
i Ci ‖ E)

Table 2. Encoding of PCP

be performed, which in turn, makes action success visi-
ble. Notice that without synchronizing on b, action success
could be visible even for two strings containing differences.

The encoding of replication requires another restriction,
thus Pj has five restrictions. However, names low and a are
used in different phases; thus choosing low = a does not
create interferences, and four restrictions are sufficient.

Theorem 7.2. Given an instance of PCP and one of its tiles
Tj , Pj is bisimilar to [[!0]]! according to any complete τ -
bisimilarity iff there is no solution of the instance of PCP
ending with Tj .

Proof (Sketch). Note that all computations are infinite, and
the only possible observable action is success. One can
show that for each n ≥ 1 and each tile composition
(u1 · · ·un, l1 · · · ln) with Tj = (un, ln) there is a compu-
tation whose transitions have label τ leading to:

P ′
m′ = νup, low, a, b. !

∏
i Ci ‖

∏
k Cik

‖
[[u1 · · ·un, b]]u ‖ [[l1 · · · ln, b. success]]l

(1)

where ik are values in {1, . . . , n} (not necessarily distinct).
The proof is concluded by showing that each process of
the form above has a computation containing an output at
success iff u1 · · ·un = l1 · · · ln.

Corollary 7.3. Barbed congruence and any complete τ -
bisimilarity are undecidable in HOcore with four static re-
strictions.

Theorem 7.2 actually shows that even asynchronous
barbed bisimilarity (defined as the largest τ -bisimilarity
that is output-barb preserving, and used in the definition of
ordinary—as opposed to reduction-closed—barbed congru-
ence) is undecidable. The corollary above then follows from
the fact that all the relations there mentioned are at least as
demanding as asynchronous barbed bisimilarity.

8. Other extensions

We now examine the impact on decidability of bisimi-
larity of some extensions of HOcore. We omit the details,
including precise statements of the results.

Abstractions. An abstraction is a parametrized process of
the form (x)P that has a functional type T → T ′. Apply-
ing an abstraction (x)P to an argument W yields the pro-
cess P{W/x}. Since W can itself be an abstraction, the
order of an abstraction —the level of arrow nesting in its
type— can be arbitrarily high (even ω, if there are recur-
sive types). Allowing the exchange of abstractions, as in
the Higher-Order π-calculus, requires an application con-
struct, as a destructor for abstractions. By setting bounds
on the order of abstractions, one can define a hierarchy of
subcalculi of the Higher-Order π-calculus [19]; and when
this bound is ω, one obtains a calculus able to represent the
π-calculus (all operators of the Higher-Order π-calculus are
needed, including full restriction).

We have proved that extending HOcore with abstractions
of order smaller than ω maintains the decidability of bisim-
ilarity. Decidability then fails if the ω bound is removed,
intuitively because in this case it is possible to simulate the
λ-calculus.

Choice. Decidability remains with the addition of a
choice operator to HOcore. The proofs require little mod-
ifications. The addition of both choice and output prefix is
harder. It might be possible to extend the decidability proof
for output prefix mentioned above so to accommodate also
choice, but the details become much more complex.

Recursion. We do not know whether decidability is main-
tained by the addition of recursion (or similar operators such
as replication).

9. Concluding Remarks

Process calculi are usually Turing complete and have an
undecidable bisimilarity (and barbed congruence). Subcal-
culi have been studied where bisimilarity becomes decid-
able but then one loses Turing completeness. Examples
are BPA and BPP (see, e.g., [9]) and CCS without restric-
tion and relabeling [2]. In this paper we have identified a
Turing complete formalism, HOcore, for which bisimilar-
ity is decidable. We do not know other concurrency for-
malisms where the same happens. Other peculiarities of
HOcore are: (1) it is higher-order, and contextual bisimilar-
ities (barbed congruence) coincide with higher-order bisim-
ilarity (as well as with others, such as context and normal
bisimilarity); and (2) it is asynchronous (in that there is no
continuation underneath an output), yet asynchronous and
synchronous bisimilarities coincide. We do not know other
non-trivial formalisms in which property (1) or (2) holds (of
course (1) makes sense only on higher-order models).

We have also given an axiomatization for bisimilarity.
From this we have derived polynomial upper bounds to the

154

decidability of bisimilarity. The axiomatization also intu-
itively explains why results such as decidability, and the
collapse of many forms of bisimilarity, are possible even
though HOcore is Turing complete: the bisimilarity relation
is very discriminating.

We have used encodings of Minsky machines and of the
Post correspondence problem (PCP) for our undecidability
results. The encodings are tailored to analyzing different
problems: undecidability of termination, and undecidability
of bisimilarity with static restrictions. The PCP encoding is
always divergent, and therefore cannot be used to reason
about termination. On the other hand, the encoding of Min-
sky machines would require at least one restriction for each
instruction of the machine, and therefore would have given
us a (much) worst result for static restrictions. We find both
encodings interesting: they show different ways to exploit
higher-order communications for modeling.

We have shown that bisimilarity becomes undecidable
with the addition of four static restrictions. We do not know
what happens with one, two, or three static restrictions.
We also do not know whether the results presented would
hold when one abstracts from τ -actions and moves to weak
equivalences. The problem seems much harder; it reminds
us of the situation for BPA and BPP, where strong bisimi-
larity is decidable but the decidability of weak bisimilarity
is a long-standing open problem.

Acknowledgments. This research was initiated by some
remarks and email exchange with Naoki Kobayashi. We
also benefited from exchanges with Cinzia Di Giusto, Mau-
rizio Gabbrielli, Antonı́n Kučera, and Gianluigi Zavattaro,
and from feedback from the users of the Moca and Concur-
rency mailing lists. We are also grateful to the anonymous
reviewers for their remarks and suggestions.

References

[1] Z. Cao. More on bisimulations for higher order pi-calculus.
In Proc. of FoSSaCS’06, volume 3921 of LNCS, pages 63–
78. Springer, 2006.

[2] S. Christensen, Y. Hirshfeld, and F. Moller. Decidable sub-
sets of CCS. Comput. J., 37(4):233–242, 1994.

[3] A. Dovier, C. Piazza, and A. Policriti. An efficient algo-
rithm for computing bisimulation equivalence. Theor. Com-
put. Sci., 311(1-3):221–256, 2004.

[4] D. Hirschkoff and D. Pous. A distribution law for CCS and
a new congruence result for the pi-calculus. In Proc. of FoS-
SaCS’07, volume 4423 of LNCS, pages 228–242. Springer,
2007.

[5] K. Honda and N. Yoshida. On reduction-based process se-
mantics. Theor. Comput. Sci., 151(2):437–486, 1995.

[6] D. J. Howe. Proving congruence of bisimulation in func-
tional programming languages. Inf. Comput., 124(2):103–
112, 1996.

[7] P. Jančar. Undecidability of bisimilarity for Petri nets and
some related problems. Theor. Comput. Sci., 148(2):281–
301, 1995.

[8] A. Jeffrey and J. Rathke. Contextual equivalence for higher-
order pi-calculus revisited. Log. Meth. Comput. Sci., 1(1):1–
22, 2005.

[9] A. Kučera and P. Jančar. Equivalence-checking on infinite-
state systems: Techniques and results. TPLP, 6(3):227–264,
2006.

[10] I. Lanese, J. A. Pérez, D. Sangiorgi, and A. Schmitt. On
the Expressiveness and Decidability of Higher-Order Pro-
cess Calculi (Extended Version), 2008. http://www.
cs.unibo.it/∼perez/hocore.

[11] R. Milner and F. Moller. Unique decomposition of pro-
cesses. Theor. Comput. Sci., 107(2):357–363, 1993.

[12] M. Minsky. Computation: Finite and Infinite Machines.
Prentice-Hall, 1967.

[13] I. Phillips and M. G. Vigliotti. Symmetric electoral systems
for ambient calculi. Inf. Comput., 206(1):34–72, 2008.

[14] E. L. Post. A variant of a recursively unsolvable problem.
Bull. of the Am. Math. Soc, 52:264–268, 1946.

[15] D. Sangiorgi. Expressing Mobility in Process Algebras:
First-Order and Higher-Order Paradigms. PhD thesis CST–
99–93, Edinburgh Univ., Dept. of Comp. Sci., 1992.

[16] D. Sangiorgi. The lazy lambda calculus in a concurrency
scenario. Inf. Comput., 111(1):120–153, 1994.

[17] D. Sangiorgi. Bisimulation for Higher-Order Process Cal-
culi. Inf. Comput., 131(2):141–178, 1996.

[18] D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmen-
tal bisimulations for higher-order languages. In Proc. of
LICS’07, pages 293–302. IEEE Computer Society, 2007.

[19] D. Sangiorgi and D. Walker. The π-calculus: a Theory of
Mobile Processes. Cambridge University Press, 2001.

[20] P. Schnoebelen. Bisimulation and other undecidable equiva-
lences for lossy channel systems. In Proc. of TACS’01, vol-
ume 2215 of LNCS, pages 385–399. Springer, 2001.

[21] M. Sipser. Introduction to the Theory of Computation. PWS
Publishing Company, 2005.

[22] B. Thomsen. A calculus of higher order communicating sys-
tems. In Proc. of POPL’89, pages 143–154. ACM Press,
1989.

[23] B. Thomsen. Calculi for Higher Order Communicating Sys-
tems. PhD thesis, Imperial College, 1990.

[24] B. Thomsen. Plain CHOCS: A second generation calculus
for higher order processes. Acta Inf., 30(1):1–59, 1993.

[25] X. Xu. On the Bisimulation Theory and Axiomatization of
Higher-order Process Calculi. PhD thesis, Shanghai Jiao
Tong University, 2007.

155

