
NEW INSIGHTS ON ARCHITECTURAL
CONNECTORS∗

Roberto Bruni 1, José Luiz Fiadeiro 2, Ivan Lanese 1, Antónia Lopes 3 and Ugo
Montanari 1

1 Computer Science Department, University of Pisa, Italy.

{bruni,lanese,ugo}@di.unipi.it

2 Department of Computer Science, University of Leicester, UK.

jose@fiadeiro.org

3 Department of Informatics, Faculty of Sciences, University of Lisbon, Portugal.

mal@di.fc.ul.pt

Abstract This work is a first step toward the reconciliation of the two main approaches to
composition in system modeling, namely the categorical one and the algebraic
one. In particular, we present a mapping from CommUnity, which uses the
categorical approach based on colimits, into the Tile Model, which uses algeb-
raic operators for composition. Our results include a standard decomposition
for CommUnity programs. We also establish a strong link between the colimit
computation of the categorical approach and the abstract semantics of configur-
ations in the algebraic approach by proving that the encoding of a CommUnity
diagram is behaviorally equivalent to the encoding of its colimit.

Introduction

In this paper, we report on new insights on architectural connectors raised by
the analysis of mobility aspects within software architectures for Global Com-
puting. Since there is no single formalism that can best address these aspects
we study the relationships between two different approaches: CommUnity [6]
and the Tile Model [7]. The former is a prototype architectural description
language that was developed to formalize the conceptual distinction between
computation and coordination in communicating distributed systems. The lat-
ter is an operational model designed for concurrent systems. It is suited for
behavioral semantics that deal uniformly with closed and open systems.

∗Research supported by the FET-GC Project IST-2001-32747 Agile.

These two frameworks can be seen as “canonical” representatives of two
general approaches to the study of complex system structures: the categorical
approach (for CommUnity) and the algebraic approach (for the Tile Model).

The Categorical Approach, which can be traced back to [8], is based on the
definition of a category whose objects model system components and whose
morphisms represent how systems are superposed, simulated, refined, etc.
Complex systems can be modeled as diagrams in the category. Composition is
achieved via universal constructions like taking the colimit, which encapsulates
components and interactions in a single object. Different diagrams have the
same colimit, which thus defines some sort of denotational semantics. The cat-
egorical approach is best suited for modeling systems based on shared resources
(e.g., memory, channels, actions), sharing being expressed through morphisms.
The main contribution of CommUnity has been to show how the categorical
approach can be applied to program designs, formalizing architectural aspects.

The Algebraic Approach, initiated in [9, 13], is based on signatures whose
constants are the basic processes and whose operations capture composition.
The initial algebra of the signature defines the class of admissible systems.
Typically, systems are equipped with an operational semantics based on labeled
transition systems in the sos style [14]. Abstract semantics can then be obtained
by collapsing systems that are equivalent w.r.t. some observational semantics.
The algebraic approach is best suited for message passing calculi. The main
contribution of the Tile Model has been the support for two different dimensions
of composition to co-exist, namely Computation and Distribution.

On the one hand, we are interested in capturing the “physiological” structure
of architectural connectors, i.e. what they are made of and what mechanisms
they put in place to coordinate required interactions, which is addressed through
CommUnity. This is essential, for instance, to provide support for more ab-
stract levels of modeling. On the other hand, we are interested in the “social”
structures in which these connectors live, i.e. the laws that regulate the way
they can be composed and superposed to interconnect components, as can be
captured in the Tile Model. This step is essential for supporting the transition
between the declarative and operational aspects of architectural configurations.

We are even more interested in relating the two approaches. In particular,
the technical contribution of this paper is three-fold:

1 we define a standard decomposition for CommUnity diagrams in terms
of elementary programs;

2 we define a translation from CommUnity diagrams into the Tile Model;

3 we establish a strong link between the denotational semantics of the
categorical approach and the abstract semantics yielded by the algebraic
approach by proving that the encoding of a CommUnity diagram is
behaviorally equivalent to the encoding of its colimit.

design P is
in in(V)
out out(V)
do []g∈Γ g: G(g) → R(g)

Figure 1. CommUnity designs.

design counter is
in x:nat
out y:int
do inc: true → y := y+ x
[] dec: y > MIN → y := y− x

Figure 2. The “counter” design.

This work has been developed in the context of FET-FP5 Project AGILE [2]
on “Architectures for Mobility”, that brings together different approaches to the
modeling of architectural aspects of systems with the aim of complementing
each other and of extending them to cope with Global Computing.

Structure of the paper. In § 1 we survey CommUnity and the Tile Model. In
§ 2 we define the standard decomposition of CommUnity diagrams and prove
colimit preservation. In § 3 we define the tile system associated to CommUnity
while in § 4 we sketch the encoding and the bisimilarity result (Theorem 9).
Conclusions and directions for future work are given in § 5.

1. Background

1.1 CommUnity

In this section we give a brief account of CommUnity, while referring the
interested reader to [5] for full details.

CommUnity is a parallel program design language in the style of Unity [3]
but based on action sharing. It was initially proposed in [6] to show how pro-
grams fit into Goguen’s categorical approach to General Systems Theory [8].
Since then, it has evolved into an architectural description language, capitaliz-
ing on the fact that CommUnity takes to an extreme the separation between
“computation” and “coordination” concerns.

The individual components of a system can be defined in terms of channels
and actions organized in designs. In this paper, we consider a special class
of CommUnity designs (see Figure 1), called programs, which are particular
instances of the more general form in [5].

Channels. A design P is based on a set of (input and output) channels V .
Input channels are read-only and are controlled by the environment while output
channels are controlled locally by the component. Each channel v is typed with
a sort sort(v) which is part of a fixed many-sorted data algebra.

Actions. A design P exploits a pointed set of actions Γ⊥. Actions represent
possible interactions between the component and the environment. For each
action name g, G(g) is the enabling condition of g (a predicate on V), and R(g)

design counter is
in
out
do

x: nat
y: int
inc: true y:=y+x

[] dec: y>MIN y:=y−x

design monitor is
in
out
do

val: nat
num: nat
chgc: val>VAL num:=num+1

[] chg: val<=VAL skip

design link is
in i: nat
do ac: true skip

x i val
inc ac chg,chgc

(a)

(b)

design colimit is
in
out
do

x: nat
y: int, num:nat
incc: val>VAL y:=y+x || num:=num+1

[] inc: val<=VAL y:=y+x
[] dec: y>MIN y:=y−x

Figure 3. The “counter with monitor” diagram and its colimit.

is a multiple assignment, assigning to output channels expressions on input and
output channels. The empty assignment is denoted by skip.

As an example, consider the design in Figure 2. It models a component that
calculates and stores an integer value. It can decrease or increment this value
of x units through the execution of actions inc and dec, but decreasing is only
allowed when a minimum value MIN has not been reached.

A program with a non-empty set of input channels is open in the sense that its
execution is only meaningful in a configuration in which these inputs have been
instantiated with channels controlled by other components. A closed program
behaves as follows: at each step, one of the actions whose enabling condition
holds is selected, and its assignments are executed atomically.

Diagrams. The interaction between programs is based on action synchron-
ization and interconnection of input and output channels. Name bindings are
established through diagrams of the form in Figure 3(a) in a category c-DSGN
with morphisms as follows. We may consider that the design in the middle is
a program whose actions are all true → skip, called a cable [5].

Definition 1 A morphism of designs σ : P1 → P2 consists of a total function
σvar : V1 → V2 that preserves sorts and never maps an output channel to an
input channel together with a pointed mapping σac : Γ2⊥ → Γ1⊥ that maps a
conditional multiple assignment G(g) → R(g) to another one with stronger
condition and a superset of the assignments (up-to renamings of channels).

Example 2 The diagram in Figure 3(a) defines a system with two compon-
ents: a counter and a monitor. The monitor counts the executions of an action
when channel val has a value greater than a fixed value VAL. In that case action
chgc takes place, action chg is executed in the other cases. In this configuration,
chgc and chg monitor the execution of action inc and the value of channel x, as
shown by the interconnection of channels x of counter and val of monitor and
the synchronization of action inc with both chg or chgc. Here dec is (implicitly)
mapped to the ⊥ action of link and thus not synchronized.

Ci

iRole

C1

1Role nRole

Cn

Glue

Figure 4. Star-shaped configurations.

x s

a α

initial input interface

y
b

initial output interface

z
t

final input interface

w
final output interface

Figure 5. A generic tile α.

The colimit construction internalizes the interactions described in a diagram
dia and returns a program colim(dia) for the system as a whole. Colimits in
c-DSGN capture a generalized notion of parallel composition in which inter-
connections are explicit. The colimit of the diagram in Figure 3(a) returns, up
to isomorphism, the program in Figure 3(b). Only diagrams where no output
channels are connected make sense. These are called configuration diagrams.

To conclude this overview of CommUnity, we mention star-shaped configur-
ations (see Figure 4) which play an important role in the process of structuring
systems. They can be used to represent architectural connectors as defined
in [1]: the program in the center is the glue and the programs in the vertices are
the roles. Each role Rolei is connected to the glue by one cable Ci. The glue of
the connector defines how the activities of the role instances are coordinated.

1.2 Tile Model

The tile model [7] relies on rewrite rules with side effects, called basic tiles,
which are reminiscent of sos rules and context systems [10], collecting ideas
from structured transition systems [4] and rewriting logic [12].

A tile α : s
a
−→
b

t has the graphical representation in Figure 5, stating that the

initial configuration s can evolve to the final configuration t via α, producing
the effect b; but the step is allowed only if the ‘arguments’ of s can contribute by
producing a, which acts as trigger. Triggers and effects are called observations.
Configurations and observations are represented by arrows to show that they
can be composed via their interfaces.

Definition 3 A tile system is a tuple R = (H ,V ,N,R) where H and V are
monoidal categories with the same set of objects OH = OV , N is a set of rule
names and R : N → H ×V ×V ×H is a function such that for all α ∈ N, if
R(α) = 〈s,a,b, t〉, then the arrows s,a,b, t can form a tile like in Figure 5.

The Tile Model is designed for systems that are compositional in space and
in time: tiles can be composed horizontally, in parallel, and vertically to gener-
ate larger steps. Horizontal composition coordinates the evolution of the initial
configuration of α with the evolution of the environment yielding the ‘synchron-
ization’ of the two rewrites. The parallel composition builds concurrent steps.

R(α) = 〈s,a,b,t〉

s a

b
t

(bas)

s
a

b
t h

b
c

f

s;h
a
c

t; f
(hor)

t : x → y ∈ H

t
idx

idy
t

(vid)

s a

b
t h

c

d
f

s⊗h
a⊗c

b⊗d
t ⊗ f

(par)

s a

b
t t

c

d
h

s
a;c

b;d
h

(ver) a : x → z ∈ V

idx
a
a

idz

(hid)

Figure 6. Inference rules for tile logic.

Vertical composition is sequential composition of computations. Moreover,
we always have the horizontal and vertical identities as auxiliary tiles (vertical
identities model idle components, while horizontal identities propagate effects
through identity substitutions). All this is defined in Figure 6.

Depending on the chosen tile format, H and V must satisfy certain con-
straints and some other auxiliary tiles are added and composed with basic tiles
and identities. The set of resulting tiles defines the tile logic associated with R
and we write R ` s

a
−→
b

t if the tile is derivable.

By taking 〈trigger,effect〉 pairs as labels one can see tiles as a labeled trans-
ition system. The resulting notion of bisimilarity is called tile bisimilarity.

Definition 4 Let R = (H ,V ,N,R) be a tile system. A symmetric relation
∼ on configurations is called tile bisimulation if whenever s∼ t and R ` s

a
−→
b

s′,

then t ′ exists such that R ` t
a
−→
b

t ′ and s′ ∼ t ′. The maximal tile bisimulation is

denoted by ', and two configurations s and t are tile bisimilar iff s ' t.

We focus on tile systems where H and V are categories of substitutions.
Substitutions over a signature Σ and their composition ; form a cartesian cat-
egory for which there is an alternative presentation given by Lawvere’s algebraic
theories [11]. In Lawvere’s theories cartesianity is expressed by a symmetric
monoidal structure (⊗,0,γ) enriched with two natural transformations, a du-
plicator ∇ = {∇n : n → 2n}n and a discharger ! = {!n : n → 0}n. The result is a
freely generated cartesian category Th[Σ] whose objects are underlined natural
numbers and whose arrows from m to n are in a one-to-one correspondence with
n-tuples of terms of the free Σ-algebra over m variables. In particular, arrows
from 0 to 1 are in bijective correspondence with the closed terms over Σ. We
assume the standard naming x1, ...,xm of the m input variables. For example,
f ∈ Σ2 defines an arrow f (x1,x2) : 2 → 1 in Th[Σ]. We denote the identity
arrow 〈x1, ...,xn〉 for the object n as idn and the empty substitution as id0.

In this work we deal with substitutions on multi-sorted terms, thus instead
of natural numbers we have monoids on the set of sorts. For instance, if a and
b are sorts we have γa,b : a⊗b → b⊗a and ∇a⊗b : a⊗b → a⊗b⊗a⊗b.

2. Standard decomposition of CommUnity programs

In this section we present an original decomposition for CommUnity pro-
grams, which is the first step towards the definition of the mapping from Com-
mUnity to the Tile Model. This decomposition transforms a complex program
in a star-shaped configuration with simpler components. Given a CommUnity
program D we decompose it in a diagram with four kinds of components:

a glue, which has as many actions as the number of actions in D , but
each action in the glue has the form true → skip. The glue has one input
channel for each input/output channel of D;

one channel manager for each output channel in D . The channel manager
for channel x has exactly one action for each action in D , with true as
guard and as body the assignment (if any) in the action that assigns x.
The channel manager has exactly one output channel x and all the input
channels needed by the assignments to x;

one guard manager for each action in D . The guard manager has exactly
one action in the form p→ skip where p is the guard of the corresponding
action in D . The guard manager has exactly the channels needed for
evaluating its guard, all as input channels;

cables to connect each channel manager and each guard manager to the
glue. Each cable has one action/input channel for each action/channel of
the corresponding role, mapped to that action/channel and to the corres-
ponding action/channel in the glue.

Roughly, letting n and m be respectively the number of output channels and
of actions in D , then the standard decomposition DS(D) of D is a diagram with
n channel managers, m guard managers, n+m cables and one glue.

Figure 7 shows a sample decomposition. In the figure we have not explicitly
represented the details of morphisms, but we have just used the same name in
different programs for corresponding actions and corresponding channels.

We can also define the standard decomposition of a diagram dia, which is
a diagram obtained by substituting each role with its standard decomposition.
The morphisms entering a program become morphisms entering the glue of its
standard decomposition.

The correctness of the decomposition is given by the following theorem,
where ∼= denotes the isomorphism relation in c-DSGN.

Theorem 5 For each design D we have colim(DS(D)) ∼= D . Moreover, for
each diagram dia we have colim(DS(dia)) ∼= colim(dia).

design counter is
in
out
do

x: nat
y: int
inc: true y:=y+x

[] dec: y>MIN y:=y−x

design glue
in x: nat, y: int
do inc: true skip
[] dec: true skip

is

design cbcmy
in x: nat, y: int

is

do inc: true skip
[] dec: true skip

design cmy
in
out
do

x: nat
y: int
inc: true y:=y+x

[] dec: true y:=y−x

is

design cbgmdec
in y: int
do dec: true skip

is

do inc: true skip
design cbgminc is

do inc: true skip
design gminc is

BECOMES

design gmdec
in y: int
do dec: y>MIN skip

is

Figure 7. Standard decomposition of a CommUnity program.

3. Mapping CommUnity into the Tile Model

In this section we define the operational and abstract semantics of Com-
mUnity by exploiting the Tile Model. The encoding maps a diagram into a tile
system together with a fixed initial configuration. We consider both anchored
systems (systems with state) and unanchored systems.

In order to have a clear separation between functionalities and state, each
configuration is the composition of two parts: one that corresponds to the state,
and the other one that corresponds to the unanchored system.

Tile objects. The typed interfaces of the tile system are tuples that contain
the following elements:

channels: these are specified by a type (boolean, integer, . . .) and a
modality (input or output) exactly as in CommUnity;

a special boolean object b that is attached to the evaluation of guards;

placeholders for actions, which play the role of synchronization objects.

We denote tuples of channels and special boolean objects with chs with an
optional subscript to denote their cardinality and/or types, furthermore we write
ins to specify that all channels in the tuple are input channels (or possibly special
boolean objects) and similarly outs for outputs. We denote a synchronization
object with 1 and a tuple of n synchronization objects with n.

Tile configurations. We take as horizontal category the symmetric strict
monoidal category freely generated by the basic arrows below. Note that sym-
metries allow for rearranging the order of the objects in the interfaces.

...

State

fusion

Channel Action

synchronization

Role

Role
or glue

or glue

Figure 8. Initial configuration for a CommUnity program.

state[val : typ] : 0 → chs models a state where val is a tuple of values
of types typ and chs a tuple of channels with these types; arrows of this
form model the actual states of anchored configurations;

cm[〈 fi〉i=1...n] : out ⊗ ins⊗ b → n models a channel manager where f is
are functions on channels in out⊗ ins to the output channel out;

gm[p] : ins⊗ b → 1 models a guard manager with predicate p that uses
channels in ins;

∇chs,ins⊗chs : chs → ins⊗ chs which are data synchronization connectors
(where ins and chs have the same number of elements and the same type);

!ins : ins → 0; which are hiding connectors;

∇· n : n → 2n and !n : n → 0 which are mutual exclusion and hiding con-
nectors respectively;

∇n : n → 2n and

∇

n : 2n → n which are synchronization connectors;

1 : 0 → 1 which is a connector that forces some actions to be performed.

The structure of the anchored configuration obtained as the translation of
a generic CommUnity diagram is shown in Figure 8, using the wire-and-box
notation, where arrows are represented as boxes and their composition as wiring
between their interfaces.

Given a well-formed connected diagram on which we have applied the stand-
ard decomposition we want to build such an arrow in a compositional way. In
order to do that we must first fix a total ordering over the programs in the dia-
gram and we translate each of them separately. Then we use as basic operation
to build up the system the “parallel composition through one cable”. Thanks
to the hypothesis that the CommUnity diagram is well-formed, a sequence of
operations of this kind allows to translate the whole diagram. At the end we
may add the state. A main result ensures that the behavior of the resulting tile
system is independent from the choice of the ordering (Proposition 8).

During the translation we have to remember which are the channels that
correspond to each channel object and which is the action that corresponds to
each synchronization object.

∆
∆

∆

∆
∆

∆

∆
∆

∆
∆

∆
∆

∆

∆

∆

∆

∆

∆

!

!

!

!

!

!

Figure 9. Connecting actions.

!

!

!

!

∆

∆

∆

...

...

...

...

i

i

i

b

1

Figure 10. A glue as an arrow.

The translation of a channel manager is a basic arrow cm[〈 f i〉i=1...n] :
chs⊗b→ n where chs contains the channels used by the channel manager
and f i is the function that is computed during the i-th action. The i-th
action corresponds to the i-th synchronization object in the interface.

The translation of a guard manager is a basic arrow gm[p] : ins⊗b → 1
where p is the guard of the only action of the guard manager.

The translation of a glue with n actions is a tree composed by ∇· connectors
with n leaves and with a 1 connector as root together with the ! for all its
channels (plus one for a special boolean object), see e. g. Figure 10.

Note that we have a bijective correspondence between channels in a program
and channel objects in the left interface of its translation and between actions
of a program and synchronization objects in the right interface.

We show now how the operation of “parallel composition through one cable”
is performed. Suppose we have a cable with channels x1, . . . ,xn and actions
a1, . . . ,an. Each channel is mapped through morphisms to two groups of chan-
nels, one for each of the diagrams to be composed. Each action is the image of
zero or more actions from the diagrams to be composed.

The resulting arrow is obtained by taking the parallel composition of the
translations of the two components. On the left we merge, using trees of ∇
connectors (and possibly some permutations), the two special boolean objects
and all the channels that are mapped to the same channel in the cable.

On the right we have to synchronize tuples of actions that are mapped to the
same action in the cable. In order to synchronize a tuple t 1 of n actions with a
tuple t2 of m actions we have to duplicate each of them. Then we create using

2y = x + 12

y = x > 3 1 2
and x < 43
and x 1 and x

y = x < 41 2

1

and x
y = x > 3 1 2

1

2y = x + 12

b

1 2 3y

x o i i o

2 211

b b

Figure 11. A sample tile for data handling.

∇· connectors n links to each object in t 2 and m links to each object in t1. Then
we merge using

∇

connectors each action in the first group with each action
in the second group and we close the resulting objects using ! connectors. See
Figure 9 for an example (groups of two and three actions respectively).

The left interface of the resulting arrow has all the channels modulo equival-
ence while the right interface has all the actions in the components.

When the whole diagram has been mapped we also need to close all the
synchronization objects in the output interface using ! connectors. If we want
an anchored configuration, we can add the state to the left.

Tile observations. The observations of our tile system are of two kinds:
in the action part we have tuples of tick : 1 → 1 and untick : 1 → 1 operators,
which express that the action associated with the initial interface is either taking
place or it is inhibited, respectively.

In the channel part we have as observations conditional multiple assign-
ments where the condition is associated to the special boolean object and the
assignments to the output channels (note that names are immaterial). This
kind of observations can be formalized as arrows of Th[Σ] where Σ contains
the data-signature, all predicate symbols, logical conjunction and also a ∗ un-
ary operator standing for a guess on the update of input channels, on which
components have no control. Graphically, observations are conveniently rep-
resented as boxes decorated with predicates and assignments over the variables
in the initial and final interfaces, denoted by the x’s and y’s, respectively. Three
sample observations are in Figure 11.

Tiles. The rules defining the behavior of the configurations in terms of allowed
observations are the following. Since the structure of diagrams is fixed, we have
tiles with equal initial and final configurations, except for the values in the state.

state[val : typ]
id0−−−→

Term
state[val ′ : typ] where Term is a conditional multiple

assignment whose condition is satisfied by val such that val′ is obtained

evaluating the assignments on val (the arrow Term involves a guess ∗
attached to each input variable);

there are several auxiliary tiles for value handling that guarantee the con-
sistency of distributed assignments and assumptions on shared channels
(an example of tile for value handling is in Figure 11);

there are n possible tiles for each channel manager with n actions, of the

form cm[〈 fi〉i=1...n]
true→ fi

−−−−−−−−−−−−−−→
untick

i−1⊗tick⊗untick
n−i

cm[〈 fi〉i=1...n] where untick
i−1

denotes the monoidal product of i− 1 instances of untick, and the term
true → fi assigns fi to the output channel and has true as condition;

there are two possible tiles for each guard manager:

gm[p]
p→skip
−−−−→

tick

gm[p] gm[p]
true→skip
−−−−−→

untick

gm[p]

tiles for action connectors are as follows. They define the allowed com-
binations of tick and untick actions at the interfaces.

∇·
tick

−−−−−−→
tick⊗untick

∇· ∇·
tick

−−−−−−→
untick⊗tick

∇· ∇·
untick

−−−−−−−−→
untick⊗untick

∇·

∇1
tick

−−−−−→
tick⊗tick

∇1

∇

1
tick⊗tick
−−−−−→

tick

∇

1 !1
tick
−−→
id0

!1 1
id0−−→
tick

1

∇1
untick

−−−−−−−−→
untick⊗untick

∇1

∇

1
untick⊗untick
−−−−−−−−→

untick

∇

1 !1
untick
−−−→

id0

!1

4. The encoding and its properties

The tile system for CommUnity allows for many ill-formed configurations
that have no correspondence with CommUnity diagrams, so we restrict our
attention to configurations that are images of configuration diagrams as defined
in § 1.1.

The operational semantics is then given by taking as transitions the tiles
whose initial configuration is the image of such a diagram. The abstract se-
mantics is given by tile bisimilarity.

Although the details of the encoding are omitted because of space limit-
ations, the formal definition is given inductively on the size of the diagram.
Let dia be a CommUnity configuration diagram, let DS(dia) be its standard
decomposition, let ≤ be a total ordering on the programs in DS(dia), and let
val denote the initial state; then we denote by TS(dia,≤,val) the resulting
initial anchored configuration where synchronization objects have been closed
using ! connectors. We denote by TS(dia,≤) the corresponding unanchored
configuration.

Note that the configuration TS(dia,≤,val) has empty input and output in-
terfaces, while the input interface of TS(dia,≤) has the form chs⊗ b, for chs
the list of typed channels in colim(dia). When DS(dia) is a single program,
the total order is fixed and we denote it with •.

Proposition 6 If a tile has initial configuration TS(dia,≤,val), then there
exists an assignment of values val ′ such that the final configuration takes the
form TS(dia,≤,val ′).

We state the correctness result of our encoding w.r.t. the intended behavior
of the program obtained as colimit of the diagram.

Theorem 7 We have a tile with TS(dia,≤,val)
id0−→
id0

TS(dia,≤,val ′) iff there

exists a sequence of (enabled) actions of colim(dia) starting from a state with
values val to a state with values val ′.

It follows that the ordering considered in the encoding is immaterial.

Proposition 8 Let dia be a configuration diagram, let ≤, ≤′ be total or-
derings on the programs in DS(dia), and let val denote the initial state. Then,
TS(dia,≤,val) ' TS(dia,≤′,val). Moreover, there exists a symmetry ρ such
that TS(dia,≤) ' (ρ⊗ idb);TS(dia,≤′).

The symmetry ρ is needed to rearrange the input interface of TS(dia,≤′) so
that channel objects that are associated to the same channel in colim(dia) have
the same position in TS(dia,≤) and (ρ⊗ idb);TS(dia,≤′)

Proposition 8 is also instrumental in proving the main result below.

Theorem 9 TS(dia,≤,val) ' TS(colim(dia),•,val). Moreover, there ex-
ists a symmetry ρ such that TS(dia,≤) ' (ρ⊗ idb);TS(colim(dia),•).

5. Concluding remarks

In this paper, we have reported on our research aimed to establish connections
between CommUnity and the Tile Model in the way they address architectural
concerns in the development of distributed and mobile software systems.

The main results of our investigation are:

we have identified a standard decomposition for CommUnity programs,
which separates the key aspects involved: channel managers, guard man-
agers, coordination;

the encoding into tiles gives an operational semantics to CommUnity
programs and an abstract semantics correct w.r.t. the colimit construction;

the separation of concerns has been exported from CommUnity to the
Tile Model by separating the state from functionalities in the latter.

As already mentioned, the two frameworks are being investigated as rep-
resentatives of two more general approaches to the study of complex system
structures in general, and of their architectural aspects in particular: the cat-
egorical approach and the algebraic approach. It is clear that both views allow
for separating components from coordinators.

In CommUnity the elementary components are channel managers and guard
managers, which are boxes in the Tile Model, while coordination is expressed
by cables, glues and morphisms which are connectors in the Tile Model.

As future work, we plan to extend our investigation by taking into account
locality and mobility aspects and dynamic diagram reconfigurations. Further-
more we want to find a suitable axiomatization of ours connectors such that the
translation of a diagram and of its colimit are equal up-to the axioms.

References

[1] R. Allen and D. Garlan. A formal basis for architectural connectors. ACM Transactions
on Software Engineering and Methodology, 6(3):213–249, 1997.

[2] L. Andrade et al. AGILE: Software architecture for mobility. Proc. of WADT 2002, LNCS
2755, pp. 1–33. Springer Verlag, 2003.

[3] K. Chandy and J. Misra. Parallel program design: a foundation. Addison-Wesley, 1988.

[4] A. Corradini and U. Montanari. An algebraic semantics for structured transition systems
and its application to logic programs. Theoret. Comput. Sci., 103:51–106, 1992.

[5] J.L. Fiadeiro, A. Lopes, and M. Wermelinger. A mathematical semantics for architectural
connectors. Generic Programming, LNCS 2793, pp. 190–234. Springer Verlag, 2003.

[6] J.L. Fiadeiro and T. Maibaum. Categorical semantics of parallel program design. Science
of Computer Programming, 28:111–138, 1997.

[7] F. Gadducci and U. Montanari. The tile model. Proof, Language and Interaction: Essays
in Honour of Robin Milner, pp. 133–166. MIT Press, 2000.

[8] J. Goguen. Categorical foundations for general systems theory. Advances in Cybernetics
and Systems Research, pp. 121–130. Transcripta Books, 1973.

[9] C.A.R. Hoare. Communicating Sequential Processes. International Series in Computer
Science. Prentice-Hall, 1985.

[10] K.G. Larsen and L. Xinxin. Compositionality through an operational semantics of con-
texts. Proc. of ICALP’90, LNCS 443, pp. 526–539. Springer Verlag, 1990.

[11] F.W. Lawvere. Functorial semantics of algebraic theories. Proc. National Academy of
Sciences, 50:869–872, 1963.

[12] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoret.
Comput. Sci., 96:73–155, 1992.

[13] R. Milner. A calculus of communicating systems. LNCS 92. Springer Verlag, 1989.

[14] G. D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI
FN-19, Aarhus University, 1981.

