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Abstract

Modern software systems have frequently to face unexpected events, reacting so
to reach a consistent state. In the field of concurrent and mobile systems (e.g.,
in the case of web services) the problem is usually tackled using long running
transactions and compensations. A long running transaction is a computation
that either successfully terminates, or it aborts. In case of abort, a compensation
is executed to take the system to a consistent state.

We compare the expressive power of different approaches to the specification
of those compensations. We consider (i) static recovery, where the compensation
is statically defined together with the transaction, (ii) parallel recovery, where
the compensation is dynamically built as parallel composition of compensation
items and (iii) general dynamic recovery, where more refined ways of composing
compensation items are provided. We define an encoding of parallel recovery
into static recovery enjoying nice compositionality properties, showing that the
two approaches have the same expressive power. We also show that no such
encoding of general dynamic recovery into static recovery is possible, i.e. general
dynamic recovery is strictly more expressive. We prove the two results both in
a synchronous and in an asynchronous setting.
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1. Introduction

Modern software systems are complex and composed by different interacting
components, commonly developed and managed separately. Also, they usually
rely on communication infrastructures, such as the Internet or wireless net-
works, that are unreliable. Thus unexpected events can frequently arise during
the execution of such applications: received data items may not have the de-
sired structure, communication partners may disconnect, results arising from
computations may be outside the desired range of values, etc. Nevertheless, ap-
plications should provide to users reliable results. In this context it is important
to use suitable error handling techniques allowing the whole system to reach a
correct state even if some of its components have failed.

In the field of concurrent and mobile systems (e.g., in the case of web ser-
vices [1]), this problem is usually tackled using the concept of long running
transaction. A long running transaction is a computation that either succeeds,
or it aborts. In case of abort a compensation is executed taking the system
to a consistent state, possibly different from the one in which the transaction
started. This weakens the constraints of ACID transactions (atomicity, consis-
tency, isolation, durability) from database theory [2]. This is needed since it
is difficult to guarantee ACID properties when transactions can last for a long
time (e.g., if human interaction is involved), and when some actions cannot be
undone (e.g., the sending of an e-mail).

In the literature there are different proposals of primitives for specifying and
programming long running transactions, from the Java try P catch e Q1, where
code Q is in charge of managing exception e raised inside code P , to the complex
mechanisms of WS-BPEL [3] (the Oasis standard for web services composition),
exploiting fault, termination and compensation handlers to deal with different
error handling issues.

However, the relationships between the different proposals are not clear, and
work trying to formally compare the expressive power of the proposed mecha-
nisms just started. This problem is made hard by the fact that different prim-
itives for long running transactions are provided on top of different underlying
languages. Thus the different expressive power of the error handling primitives
is hidden because of other differences between the underlying languages. Under-
standing the expressive power of different primitives is important for language
design: primitives that do not add expressive power can be left out from the
core language and implemented as macros when needed, or made available via
dedicated libraries; primitives that add expressive power should be implemented
in the core language.

This paper tackles this problem, by presenting a formal comparison of differ-
ent approaches to long running transactions in a concurrent and mobile setting.
To this end we add primitives for error handling, distilled from approaches in

1Actually, Java try-catch is designed for exception handling, but can be used also for
programming long running transactions.
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the literature, to the same underlying language, so to have a clearer compari-
son. We have chosen the simplest possible underlying language able to model
concurrent and mobile systems: the π-calculus [4]. Most of our results can also
be stated in CCS [5], but we preferred the π-calculus since it is the common
core of many existing approaches. Also, it is easier to transfer the results from
π-calculus to CCS than the other way around. Anyway, further work is required
to apply the results to more complex calculi and real languages (see Section 6).

The approaches to error handling are far too many to be compared here,
thus we concentrate on a main feature: whether the compensation code for a
transaction is statically defined, or it is dynamically generated. Static recovery
is, for instance, the approach of Java try-catch since the compensation code
following the catch is fixed (clearly, changes in the state may allow to obtain
different behaviors). Static recovery is also the classic approach of interaction-
based models [6, 7, 8, 9]. For dynamic recovery we consider two different possi-
bilities: in parallel recovery the compensation is incrementally built as parallel
composition of simpler compensation items, while in general dynamic recovery
compensations can be both updated and replaced. Parallel recovery is com-
monly used [10, 11, 3] to execute compensations of subtransactions when a
transaction aborts, and it is the mechanism dcπ [12] and ATc [13] are based
upon. Most of the compensable flow approaches [14, 10, 11], where compensa-
tions of complex activities are built as compositions of compensations of their
constituting activities, execute compensations of sequential activities in back-
ward order. Compensations are always executed in backward order in backward
recovery [15]. Backward recovery has also been applied to Java in [16]. Back-
ward recovery is the main instance of general dynamic recovery, which has been
proposed in [17].

This paper compares the expressive power of static recovery, parallel recovery
and general dynamic recovery in the context of π-calculus. We consider both
synchronous [4] and asynchronous [18] π-calculus. Our main results are:

• a compositional encoding of parallel recovery into static recovery, appli-
cable both in the synchronous and in the asynchronous case;

• separation results showing that no similar encoding exists from general
dynamic recovery (neither from backward recovery) to static recovery.

We also compare compensable processes, our calculus with general dynamic re-
covery, with other calculi in the literature, discussing how the results above can
be applied to them.

This paper is an extended version of [19]. With respect to [19], we have
simplified the semantics of our calculus by considering a local priority for com-
pensation update instead of a global one. This also makes the calculus more
suitable for a distributed setting (even if we do not consider distribution in the
present paper). We consider here three semantics for transaction nesting, called
aborting (nested failure in [19]), preserving (non-nested failure in [19]) and dis-
carding (not considered in [19]). Also, here there are full proofs for all the
results. Furthermore, the separation result in the asynchronous case is stated
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π ::= π-calculus prefixes
| a〈~v〉 (Output prefix)
| a(~x) (Input prefix)

P,Q ::= (Synchronous) π-calculus processes
0 (Inaction)

| ∑

i∈I πi.Pi (Guarded choice)
| !π.P (Guarded replication)
| P |Q (Parallel composition)
| (ν x) P (Restriction)

Figure 1: (Synchronous) π-calculus processes.

and proved using weaker hypotheses thanks to a new proof technique. Besides
this, the whole paper has been thoroughly revised and improved.

Structure of the work. Section 2 introduces the primitives for long running
transactions and compensations we use, defining also their formal semantics.
Section 3 discusses the conditions that an encoding has to satisfy to be consid-
ered a good means for language comparison. Sections 4 and 5 present the main
technical results: the encoding of parallel recovery into static recovery, and the
impossibility of encoding general dynamic recovery into static recovery. Finally,
Section 6 discusses how to apply the results to other calculi in the literature and
draws some conclusions.

2. Primitives for Compensations

2.1. Syntax

In this section we formalize in the framework of (synchronous and asyn-
chronous) π-calculus [4, 18] some primitives for static, parallel and general dy-
namic recovery. The relationships between these primitives and other primitives
in the literature are discussed in Section 6.

To simplify the understanding and the comparisons, we define the three
calculi corresponding to static, parallel and general dynamic recovery in an
incremental way. We also define their asynchronous fragments. The syntax of
all our calculi relies on a countable set of names N , ranged over by lower case
letters. We use ~x to denote a tuple x1, · · · , xn of such names, for some n ≥ 0,
and {~x} denotes the set of elements in the tuple. We use {~v/~x} for denoting
the substitution of names in ~v for names in ~x, and we use a similar notation for
substitutions of processes for process variables (introduced later). As already
said, our calculi are built on top of π-calculus (if nothing is said, we refer to the
synchronous one), whose syntax is in Fig. 1.

Prefixes in π-calculus can be either outputs a〈~v〉 of a tuple of names ~v on a
channel named a, or corresponding inputs a(~x), receiving a tuple of names ~v on
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P,Q ::= Asynchronous π-calculus processes
0 (Inaction)
a〈~v〉 (Output message)

| ∑

i∈I ai(~xi).Pi (Input guarded choice)
| !a(~x).P (Input guarded replication)
| P |Q (Parallel composition)
| (ν x) P (Restriction)

Figure 2: Asynchronous π-calculus processes.

P,Q ::= Static recovery processes
. . . (π-calculus processes)

| t[P,Q] (Transaction scope)
| 〈P 〉 (Protected block)

Figure 3: Static recovery processes.

a channel named a and replacing them for names in ~x. The π-calculus syntax
includes the inactive process 0, guarded choice

∑

i∈I πi.Pi, guarded replication
!π.P , parallel composition P |Q of processes P and Q, and restriction (ν x)P of
name x inside P . We write a for a〈~v〉 when ~v is empty, and a for a(~x) when ~x
is empty. We also write (ν ~x) for (ν x1) · · · (ν xn) when ~x = x1, . . . , xn. When
I is a singleton,

∑

i∈I πi.Pi is shortened into πi.Pi. We may also drop trailing
0s, writing e.g. a〈~v〉 instead of a〈~v〉.0.

Asynchronous π-calculus [18] is simply defined as the fragment of (syn-
chronous) π-calculus obtained by removing the continuation after output. In
other words, instead of guarded choice

∑

i∈I πi.Pi, in asynchronous π-calculus
only input guarded choice

∑

i∈I ai(~xi).Pi is allowed, and similarly for repli-
cation. Output prefixes, called messages in the asynchronous case, can only
occur as parallel terms. The syntax of asynchronous π-calculus is summarized
in Fig. 2.

The formal description of the semantics will be given in Section 2.2 (see
also [4]), after having presented the syntax of the extensions dealing with error
recovery.

The first, and simpler, extension that we consider corresponds to static re-
covery. Its syntax is described in Fig. 3. The extension can be applied to both
synchronous and asynchronous π-calculus.

Static recovery can be programmed by adding just two constructs to stan-
dard π-calculus: transaction scope and protected block. A transaction scope
t[P,Q] behaves as process P until an error is notified to it by an output t on the
name t of the transaction scope. When such a notification is received the trans-
action aborts: the body P of the transaction scope is killed and compensation
Q is executed. Q is executed inside a protected block. In this way it will not be
influenced by successive external errors. Error notifications may be generated
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P,Q ::= Compensable processes
. . . (Static recovery processes)

| X (Process variable)
| inst⌊λX.Q⌋.P (Compensation update)

Figure 4: Compensable processes.

both from the body P of the transaction scope and from external processes.
Error notifications are simply output messages (without parameters). Thus one
may have nondeterminism, since the same output may be caught either by an
input or by a transaction scope. If such a behavior is not desired, it can be
avoided by using a sorting system similar, e.g., to the one in [20]. We will not
consider this issue any more. Protected block 〈P 〉 behaves as process P , but it
is not killed in case of failure of a transaction scope enclosing it. Note that a
transaction scope t[P,Q] is similar to a Java-like block try P catch t Q where
an output t on t raises the exception. However in the case of transactions the
fault can be directed to any transaction scope, while for try-catch it is always
directed to the nearest enclosing one.

Compensable processes, which realize general dynamic recovery, extend stat-
ic recovery processes. The main difference is that in compensable processes the
body P of transaction scope t[P,Q] can update the compensation Q. Com-
pensation update is performed by an additional operator inst⌊λX.Q′⌋.P ′, where
function λX.Q′ is the compensation update (X can occur inside Q′). Applying
such a compensation update to compensation Q produces a new compensation
Q′{Q/X}. Note that Q may not occur at all in the resulting compensation,
and it may also occur more than once. For instance, λX.0 deletes the current
compensation. The syntax of compensable processes extends the one of static
recovery processes with the compensation update operator and process variables
(see Fig. 4). We use X to range over process variables.

We define for compensable processes the usual notions of free and bound
names. Names in ~x are bound in a(~x).P , while x is bound in (ν x)P . Other
names are free. We denote with fn(•), bn(•) and n(•) the functions computing
the sets of free, bound and all the names respectively. Also, variable X is bound
in λX.Q. Bound names and variables can be α-converted as usual. We consider
only processes with no free variables.

Static recovery processes are compensable processes where the compensation
update operator is never used. Also, if a compensation update has the form
λX.Q | X where X does not occur in Q, then Q is added in parallel to the
existing compensation. Thus parallel recovery can be seen as a particular case
of compensable processes too. When speaking about parallel recovery we may
write a compensation update λX.Q |X simply as Q.

Definition 1 (Classes of processes). Compensable processes CP are defined
by the syntax in Fig. 4. Parallel recovery processes PP are compensable pro-
cesses where all the compensation updates have the form λX.Q |X where Q is
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a process without free variables. Static recovery processes SP are compensable
processes where the compensation update operator is never used. We define the
corresponding asynchronous classes, asynchronous compensable processes ACP,
asynchronous parallel recovery processes APP, and asynchronous static recovery
processes ASP , by extending asynchronous π-calculus instead of synchronous
π-calculus.

The main question that this paper wants to answer is whether the three
classes of processes CP, PP and SP have the same expressive power or not,
and similarly for the corresponding asynchronous classes. In order to formally
answer these questions we first need to define the semantics of compensable
processes.

2.2. Operational Semantics

In this section we define the operational semantics of compensable processes.
We need however some auxiliary definitions. First, when a transaction scope
t[P,Q] is killed, part of its body P may be preserved, in particular the part
composed of protected blocks.

The definition of function extr(P ) computing the part of process P to be
preserved depends on the meaning of nesting of transaction scopes. In the liter-
ature, three main approaches are considered2. When the enclosing transaction
scope is killed, its subtransactions may be aborted, preserved or discarded. The
aborting semantics is used by SAGAs calculi [11], WS-BPEL [3], and others.
The preserving semantics is for instance the approach of Webπ [8]. Finally,
the discarding semantics has been proposed by ATc [13] and TransCCS [21].
We consider all the three possibilities, since they just differ in the definition
of function extr(•). Our results hold in all the cases. One can simulate the
preserving semantics using the two others by protecting each transaction scope
using a protected block, while it is not clear whether the opposite simulations
are possible. Also, the relationships between aborting and discarding semantics
are not clear. Clarifying these points is left for future work.

Definition 2 (Extraction function). We denote the functions correspond-
ing to aborting, preserving, and discarding semantics for transaction nesting
respectively as extra(•), extrp(•) and extrd(•). The function extra(•) is defined
in Fig. 5. The definition of function extrp(•) is the same but for the clause for
transaction scope, which is replaced by the clause extrp(t [P,Q]) = t [P,Q]. The
definition of function extrd(•) instead is obtained by replacing the clause for
transaction scope by the clause extrd(t [P,Q]) = 0.

There is no need to define extra(X), extrp(X) or extrd(X) since we only
consider processes without free variables, thus X can occur only inside the
compensation update primitive.

2The πt-calculus [6] has yet another approach: it will be discussed in the related work
section.
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extra(0) = 0
extra(

∑

i∈I πi.Pi) = 0
extra(!π.P ) = 0

extra(inst⌊λX.Q⌋.P ) = 0

extra(〈P 〉) = 〈P 〉
extra(t [P,Q]) = extra(P ) | 〈Q〉
extra(P |Q) = extra(P ) | extra(Q)

extra((ν x)P ) = (ν x) extra(P )

Figure 5: Extraction function with nested failure.

noComp(0)
noComp(

∑

i∈I πi.Pi)
noComp(!π.P )

noComp(〈P 〉) if noComp(P )
noComp(t [P,Q]) if noComp(P )
noComp(P |Q) if noComp(P ) and noComp(Q)

noComp((ν x)P ) if noComp(P )

Figure 6: No pending compensation update predicate.

We also need an auxiliary predicate noComp(P ) which is true iff process
P has no pending compensation update. This is needed since a compensation
update is performed to reflect in the compensation some change in the state of
the executing process, and it should never happen that the state has changed
and the compensation update has not been performed. In other words, com-
pensation update should have priority w.r.t. other transitions. The interested
reader is referred to [22] for a detailed discussion on this topic. Here we con-
sider just a local form of priority: compensation update has priority w.r.t. other
transitions involving the same transaction scope, but not w.r.t. transitions in
other transaction scopes. On one side, this approach is easier to implement in
a distributed setting than the one in [22, 19], on the other side, it offers the
same guarantees that only up-to-date compensations are executed. Priority of
compensation update is obtained by ensuring in the semantics that when an
action (different from a compensation update) is performed, no compensation
update is pending inside the same transaction scope.

Definition 3 (noComp(•) predicate). The predicate noComp(P ) that verifies
that there are no pending compensation updates inside process P is true in the
cases specified in Fig. 6 and false otherwise.

In particular, noComp(P ) is false if P is a compensation update primitive.
The operational semantics of compensable processes and, implicitly, of static

recovery and parallel recovery processes, is defined below. We exploit to this
end a labeled transition system (LTS). LTSs are defined as follows.

Definition 4 (Labeled transition system). A labeled transition system is
a triple (P ,Λ,→) where P is a set of processes, Λ is a set of labels and →⊆
P ×Λ×P is the transition relation. If P,Q ∈ P and α ∈ Λ, then (P, α,Q) ∈→
is written as P

α−→ Q.

In the case of compensable processes, we use a(~v), (~w)a〈~v〉, τ and (~w)λX.Q
as labels. The first three forms of labels are as in π-calculus: a(~v) is the input
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of a tuple of values ~v on channel a, (~w)a〈~v〉 the corresponding output, where
names in vector ~w are extruded, and τ is an internal action. However, an output
label without parameters can also be used for error notification, and an input
without parameters for receiving the notification. The last label, (~w)λX.Q, is
peculiar of compensable processes and corresponds to compensation update.
Again, vector ~w contains the extruded names. Extruded names form a vector
so to fix the order the names will be reintroduced in the term by closure rules
such as (L-Close), but this order will become irrelevant after we introduce
structural congruence in Definition 21. For this reason we consider labels that
differ only on the order of extruded names as equal.

We write a for a(~v) and a for a〈~v〉 if ~v is empty. We may use t instead of a to
emphasize that the name is used for error notification. Names in ~w are bound
in (~w)a〈~v〉 and (~w)λX.Q. Other names are free. Functions fn(•), bn(•) and
n(•) are extended to labels accordingly. We drop the vector of bound names
(~w) from labels if it is empty.

Definition 5 (Operational semantics). The operational semantics of com-
pensable processes CP with aborting semantics for transaction nesting is the
minimum LTS closed under the rules in Fig. 7 (symmetric rules are considered
for (L-Par) and (L-Close)). The operational semantics of compensable pro-
cesses CP with preserving semantics (resp. discarding semantics) for transaction
nesting is the minimum LTS closed under the rules in Fig. 7 (symmetric rules
are considered for (L-Par) and (L-Close)), but where function extra(•) in rules
(L-Recover-out) and (L-Recover-in) is replaced by function extrp(•) (resp.
extrd(•)).

The first eight rules are standard π-calculus rules [4], the others define the
behavior of transactions, compensations and protected blocks.

Auxiliary rules (P-Out) and (P-In) execute output and input prefixes re-
spectively. The input rule guesses the received values ~v in the early style. Rules
(L-Choice) and (L-Rep) deal with guarded choice and replication respectively.
Rule (L-Par) allows one of the components of parallel composition to progress
while the other one stays idle. Rule (L-Res) is the classic rule for restriction,
allowing to propagate label α provided that the restricted name x does not oc-
cur inside α. Rule (L-Open) allows to extrude bound name z. Rule (L-Close)
performs communication, synchronizing an input x(~v) and a corresponding out-
put (~z)x〈~v〉. If the vector ~z of extruded names is not empty, restrictions for
these names are reintroduced.

Rule (L-Scope-out) allows the body P of a transaction scope to progress,
provided that the performed action is not a compensation update and that
there is no pending compensation update to be executed. Rule (L-Recover-
out) allows external processes to abort a transaction scope via an output t.
The resulting process is composed by two parts: the first one extracted from
the body P of the transaction scope, and the second one corresponding to
compensation Q, which will be executed inside a protected block. The condition
noComp(P ) ensures that there are no pending compensation updates in P . Rule
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(P-Out)

a〈~v〉.P a〈~v〉−−−→ P

(P-In)

a(~x).P
a(~v)−−−→ P{~v/~x}

(L-Choice)

πj .Pj
α−→ P ′

j j ∈ I
∑

i∈I

πi.Pi
α−→ P ′

j

(L-Rep)

π.P
α−→ P ′

!π.P
α−→ P ′|!π.P

(L-Par)

P
α−→ P ′ bn(α) ∩ fn(Q) = ∅

P |Q α−→ P ′ |Q

(L-Res)

P
α−→ P ′ x /∈ n(α)

(ν x)P
α−→ (ν x)P ′

(L-Open)

P
(~w)x〈~v〉−−−−−→ P ′ z 6= x z ∈ {~v} \ {~w}

(ν z)P
(z ~w)x〈~v〉−−−−−−→ P ′

(L-Close)

P
x(~v)−−−→ P ′ Q

(~z)x〈~v〉−−−−→ Q′ {~z} ∩ fn(P ) = ∅
P |Q τ−→ (ν ~z) (P ′ |Q′)

(L-Scope-out)

P
α−→ P ′ α 6= (~z)λX.Q noComp(P ) bn(α) ∩ (fn(Q) ∪ {t}) = ∅

t[P,Q]
α−→ t[P ′, Q]

(L-Recover-out)

noComp(P )

t[P,Q]
t−→ extra(P ) | 〈Q〉

(L-Recover-in)

P
t−→ P ′ noComp(P )

t[P,Q]
τ−→ extra(P

′) | 〈Q〉

(L-Inst)

inst⌊λX.Q⌋.P λX.Q−−−→ P

(L-Open-inst)

P
(~w)λX.Q−−−−−−→ P ′ z ∈ fn(Q) \ {~w}

(ν z)P
(z ~w)λX.Q−−−−−−→ P ′

(L-Scope-close)

P
(~z)λX.R−−−−−→ P ′ {~z} ∩ (fn(Q) ∪ {t}) = ∅

t[P,Q]
τ−→ (ν ~z) t[P ′, R{Q/X}]

(L-Block)

P
α−→ P ′

〈P 〉 α−→ 〈P ′〉

Figure 7: LTS for compensable processes.

(L-Recover-in) is similar to (L-Recover-out), but now the error notification
comes from the body P of the transaction scope. Rule (L-Inst) requires to
perform a compensation update while rule (L-Open-inst) allows to extrude
bound names occurring in a compensation update. Rule (L-Scope-close)
updates the compensation of a transaction scope. If the vector ~z of extruded
names is not empty, restrictions for these names are reintroduced, similarly
to what rule (L-Close) does. Finally, rule (L-Block) defines the behavior
of protected blocks. The property of protected blocks of being unaffected by
external aborts is enforced by the definition of function extr(•).
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Example 1. We give here a few examples of transitions3.

• Transaction scopes can compute:
a〈b〉 | t[a(x).x.0, Q]

τ−→ 0 | t[b.0, Q]

• Transaction scopes can be killed:
t | t[a.0, Q]

τ−→ 〈Q〉

• Transaction scopes can commit suicide:
t[ t.0 | a.0, Q]

τ−→ 〈Q〉

• Protected blocks survive after kill:
t[ t.0 | 〈a.0〉, Q]

τ−→ 〈a.0〉 | 〈Q〉

• New compensation items can be added in parallel:
t[inst⌊λX.P |X⌋.a.0, Q]

τ−→ t[a.0, P |Q]

• New compensation items can be added at the beginning:
t[inst⌊λX.b.X⌋.a.0, Q]

τ−→ t[a.0, b.Q]

• Compensations can be deleted:
t[inst⌊λX.0⌋.a.0, Q]

τ−→ t[a.0, 0]

Note that none of the last three transaction scopes can be killed, since there is
a pending compensation update which has priority over the kill action.

We can now formalize the idea of Definition 1, taking into account also the
semantics of processes.

Definition 6 (Subcalculus). A calculus is defined by its labeled transition
system (P ,Λ,→).

Let (P1,Λ1,→1) be a calculus. A calculus (P2,Λ2,→2) is a subcalculus of

(P1,Λ1,→1) if P2 ⊆ P1, Λ2 ⊆ Λ1 and →2⊆→1. Furthermore, for each P
α−→1 Q,

if P ∈ P2 then P
α−→2 Q.

We will drop the references to the set of labels Λ and the transition relation
→ when they are understood. Given a calculus (P1,Λ1,→1), one can define a
subcalculus (P2,Λ2,→2) of (P1,Λ1,→1) just by specifying the set of processes
P2 and considering the induced transition relation and set of labels. One only
has to check that the set of processes P2 is closed under the transition relation.

Proposition 1. Static recovery processes SP are a subcalculus of parallel re-
covery processes PP. Parallel recovery processes PP are a subcalculus of com-
pensable processes CP.

3To simplify the presentation we discard some garbage. This can be done using the notion
of structural congruence in Definition 21.
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Asynchronous static recovery processes ASP are a subcalculus of asynchro-
nous parallel recovery processes APP. Asynchronous parallel recovery processes
APP are a subcalculus of asynchronous compensable processes ACP.

Asynchronous static recovery processes ASP are a subcalculus of static re-
covery processes SP . Asynchronous parallel recovery processes APP are a sub-
calculus of parallel recovery processes PP. Asynchronous compensable processes
ACP are a subcalculus of compensable processes CP.

Proof. By induction on the labeled transition system. 2

3. Conditions for Good Encodings

When discussing encodability/separation results, a main point is to de-
cide which conditions an encoding has to satisfy in order to be considered
a good means for language comparison. In the literature there are different
proposals of such conditions. The ones that had more influence on our work
are [23, 24, 25, 26, 27]. The choice of the conditions determines the level of
abstraction used when comparing the different languages, and is fundamental
to decide when an encoding can be safely used. For instance, some conditions
allow to use the encoded process in any context in the target language, while
others allow only to use it inside contexts which are in the image of the encoding.
Also, some encodings can be applied independently to different components of
the system, and the encoded components can then be composed, while other
encodings have to be applied to the whole system at once. Thus the choice of the
conditions depends on the aim of the encoding, and there are no universally good
sets of conditions. Another main point is that encodability results are stronger
if stated at the low level of abstraction, i.e. with more strict conditions, while
separation results are more general when proved at the high level of abstraction,
i.e. under weaker conditions. However, it is also important that related results
are proved under the same conditions, thus defining a coherent picture of the
expressiveness at the chosen level of abstraction. For these reasons we discuss
below the conditions that we use throughout the paper, thus fixing our level
of abstraction. We will consider stricter conditions too when proving encod-
ability results, thus strengthening them. We will also exploit slightly different
conditions for adapting our results to asynchronous compensable processes.

The aim of this work is to understand whether some primitives for long
running transactions, namely transactions with dynamic compensation update,
can be defined as macros on top of a more basic language, or they need to be
defined as part of the core language. For these reasons, we choose conditions
ensuring the following intuitive properties:

1. macros can be replaced in place, without changing the rest of the program;

2. the behavior of the program after macros have been replaced by their
definitions matches the expected behavior of the original program.

These two requirements match the two kinds of conditions proposed in [27]:

1. syntactic conditions on the form of the encoding;
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2. semantic conditions specifying the kind of behavior that the encoding
should preserve.

Our framework is however different from the one of [27], where encodings
between arbitrary languages are considered, since we always analyze encodings
of a calculus into one of its subcalculi, and we always consider calculi which are
subcalculi of compensable processes.

For these reasons, we define an encoding as follows.

Definition 7 (Encoding). For us an encoding is a function J•K : P1 → P2

from a subcalculus P1 of compensable processes to a subcalculus P2 of P1.
Given a process P1 ∈ P1 we may refer to JP1K as its translation.

We will now define syntactic and semantic conditions ensuring that encod-
ings satisfy the intuitive requirements above. For stating the syntactic condi-
tions we need to define contexts.

Definition 8 (Context). An n-ary context C[•1, . . . , •n] is obtained by re-
placing in a process n occurrences of 0 with placeholders •1, . . . , •n. Process
C[P1, . . . , Pn] is obtained by replacing inside C[•1, . . . , •n] each •i with Pi.

An encoding is compositional if it respects the syntactic conditions below.

Definition 9 (Compositional encoding). An encoding J•K : P1 → P2 is
compositional if:

1. for each P,Q ∈ P1, JP |QK = JP K | JQK;

2. for each name substitution σ there is a name substitution σ′ such that,
for each P ∈ P1, JPσK = JP Kσ′;

3. for each P,Q ∈ P1 and each name t, Jt [P,Q]K = Ct[JP K, JQK], where
Ct[•1, •2] is a fixed binary context with parameter t.

We will now discuss the semantic conditions. First of all, an encoding should
not introduce divergence, which is defined as below.

Definition 10 (Divergence). Process P diverges if there is an infinite se-

quence of processes Pi for i ∈ N such that P = P0 and Pi
τ−→ Pi+1 for each

i ∈ N.

Definition 11 (Divergence reflecting encoding).
An encoding J•K : P1 → P2 is divergence reflecting if for each P ∈ P1, JP K
diverges implies P diverges.

The behavior of a program and of its encoding should be indistinguishable
with respect to some notion of observational equivalence. We define below
the notions of observational equivalence that we use. Since we consider weak
equivalences, we start by defining weak transitions.
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wf(0)
wf(a〈~v〉.P ) if wf(P )
wf(a(~x).P ) if wf(P )
wf((ν x)P ) if wf(P )
wf(P |Q) if wf(P ) ∧ wf(Q)
wf(〈P 〉) if wf(P )

wf(t[P,Q]) if wc(P ) ∧ wf(Q)
wf(X)

wc(0)
wc(a〈~v〉.P ) if wc(P )
wc(a(~x).P ) if wc(P )

wc(inst⌊λX.R⌋.P ) if wf(R) ∧ wc(P )
wc((ν x)P ) if wc(P )
wc(P |Q) if wc(P ) ∧ wc(Q)
wc(〈P 〉) if wf(P )

wc(t[P,Q]) if wc(P ) ∧ wf(Q)
wc(X)

Figure 8: Well formedness predicates.

Definition 12 (Weak transitions). Weak transitions ==⇒ and
α

==⇒ are de-

fined as follows: ==⇒ is the reflexive and transitive closure of
τ−→, while

α
==⇒ is

==⇒ α−→==⇒ if α 6= τ , ==⇒ otherwise.

We base our separation results on should testing [28]. We consider should
testing instead of must testing [29] since it is more suited for dealing with
processes that may diverge, and since its relations with weak bisimilarity [30]
and may testing [29] (other equivalences that we use, defined later) are more
straightforward. Should testing has been used in the framework of long running
transactions in [31]. Anyway our results can be stated also using must testing
and may testing instead of should testing.

Definition 13 (Should testing). Let P and O be processes and
√

a special
name occurring in O but not in P . We call O an observer. P should O iff for

each P ′ such that P | O ==⇒ P ′ we have P ′
√
==⇒. Two processes P and Q are

should testing equivalent, written P ≃shd Q, if, for each observer O, P should O
iff Q should O.

We will require preservation of should testing equivalence as correctness
condition for an encoding, however we have to restrict the set of processes the
condition is applied to. In fact, we are interested in how compensation update
can be realized, but compensation update is only meaningful inside transaction
scopes. Thus we have to restrict our attention to processes that will never feature
a compensation update outside a transaction scope. A syntactic characterization
of this class of processes is given by the definition of well formed processes below.

Definition 14 (Well formed processes). Predicates wf(•) and wc(•) char-
acterizing well formed processes and processes with well formed compensations
respectively are defined by mutual induction. They are true in the cases speci-
fied in Fig. 8 and false otherwise.

The correctness of the characterization is given by the two lemmas below: the
first one shows that well formed processes are closed under arbitrary transitions,
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the second one shows that a well formed process never asks the environment to
perform a compensation update.

Lemma 1. Let P be a well formed process. If P
α−→ P ′ then P ′ is well formed.

Lemma 2. Let P be a well formed process. If P
α−→ P ′ then α is not of the

form (~z)λX.R.

We defer the proofs of those lemmas to Section 4. See Lemma 14 and
Lemma 13 respectively.

We can now state the correctness requirement that we impose on encodings.

Definition 15 (Correct encoding). An encoding J•K : P1 → P2 is correct if
for each well formed process P ∈ P1, P is should testing equivalent to JP K.

We will restrict our attention to good encodings, defined below.

Definition 16 (Conditions for good encodings). An encoding is good if it
is compositional, correct and divergence reflecting.

The conditions for good encodings have been inspired by [23, 24, 25, 26, 27],
and tailored to our case. In particular, condition 1 and condition 2 for com-
positional encoding are taken from the definition of uniform encoding in [24]
(actually, condition 2 is less strict than the one in [24], thus generalizing our
separation result). Condition 3 is referred to as compositionality in [23], and a
slightly more general condition has been proposed in [26]. In those two works,
the condition is required for each operator, while for our separation result we
need it only for transaction scope. Anyway, our encoding will satisfy the con-
dition for all the operators. Moving to the semantic conditions, divergence
reflection is required for instance by [26], and can be seen as a particular in-
stance of preservation of observables as defined in [23], where divergence is the
chosen observable. Our notion of correctness can also be seen as a form of
preservation of observables, where the chosen observable is the result of should
tests. This is also related to the notions of operational correspondence and suc-
cess sensitiveness from [26]. However the relation between the two notions is
not immediate, since the framework in [26] allows to compare processes from
unrelated languages, thus there is the need to encode also the test processes,
while this is not the case for us.

As we already said, we will show that our encoding satisfies stricter condi-
tions than the ones required for proving our separation results, thus making the
result stronger. In particular, we will add to the notion of correctness based
on should testing equivalence a stronger form of preservation of the observable
behavior based on weak bisimilarity.

Weak bisimilarity for compensable processes extends weak early π-calculus
bisimilarity [32] with features from higher-order bisimilarity [33], since compen-
sation update is a (limited) form of higher-order communication.
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Definition 17 (Weak bisimulation). A weak bisimulation is a symmetric bi-
nary relation R such that PRQ implies:

• if P
α−→ P ′ with α 6= (~z)λX.R and bn(α)∩ fn(Q) = ∅, then there is Q′ such

that Q
α

==⇒ Q′ and P ′RQ′;

• if P
(~z)λX.R−−−−−→ P ′ and {~z} ∩ fn(Q) = ∅ then there are S, Q′ such that

Q
(~z)λX.S
=====⇒ Q′, P ′RQ′ and R{T/X}RS{T/X} for all processes T with no

free variables;

• extr(P )R extr(Q).

The extraction function extr(•) in the last condition should be instantiated
to extra(•), extrp(•) or extrd(•) according to the semantics for transaction nesting
used in the LTS. Closure under the extraction function is required for having a
compositional semantics. The interested reader is referred to [34] for a discussion
of the topic in the framework of the calculus webπ∞.

Definition 18. Weak bisimilarity ≈ is the largest weak bisimulation.

We will use the notion below as stronger form of correctness.

Definition 19. Let R be an equivalence relation. An encoding J•K : P1 → P2

is R-preserving if for each well formed process P ∈ P1, P R JP K.

We call bisimilarity preserving an encoding which is ≈-preserving. The
proposition below proves that a bisimilarity preserving encoding is correct.

Proposition 2. Let P and Q be processes. If P ≈Q then P ≃shd Q.

Proof. The main point to prove is that weak bisimilarity is preserved by par-
allel composition. The proof is similar to the one for π-calculus [32]. Note that
there is no need to use higher-order techniques, since labels for compensation
update are just propagated by parallel composition4.

Then, from P ≈ Q one can infer that, for each observer O, P | O ≈ Q | O.
The thesis follows easily. 2

A similar result for must testing would require some additional condition,
since, in general, weak bisimilarity does not imply must testing equivalence [28].

4Proving that weak bisimilarity is preserved by transaction scope would be far more diffi-
cult, since this requires higher-order techniques.
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4. Parallel Recovery Can Be Implemented Using Static Recovery

In this section we compare the expressive power of parallel recovery and
static recovery, considering the three possible semantics for nested transactions:
aborting, preserving and discarding. We present an encoding from parallel re-
covery to static recovery, showing that static recovery is as expressive as parallel
recovery. The same encoding can be used with all the semantics for nested trans-
actions. The encoding respects the conditions of Definition 16. Even more, it
preserves (for well formed processes) also weak bisimilarity. Thus the encoding
is a good, bisimilarity preserving encoding.

The encoding associates to each transaction scope t[P,Q] a fresh name r,
to be used for activating compensation items installed by P . Compensation
items to be installed are left in the body of the transaction scope, enclosed
by a protected block (so that they are not deleted by abortion) and guarded
by an input on r (so that they are not enabled before abortion). When the
transaction scope aborts, an output on r, included in the static compensation
Q, becomes enabled and can interact with the inputs on r guarding the stored
compensation items, enabling them. Also, each of them regenerates the output
on r so to enable further compensation items.

Definition 20 (From parallel to static recovery). Let r be a fixed fresh
name. The encoding J•Kp2s from parallel recovery processes to static recovery
processes is defined as:

Jt [P,Q]Kp2s = (ν r) t [JP Kp2s, JQKp2s | r]
Jinst⌊λX.Q |X⌋.P Kp2s = JP Kp2s | 〈r.(JQKp2s | r)〉

All the remaining operators are homomorphically mapped to themselves.

Name r will be α-converted to different names inside different transaction
scopes.

Example 2. We show here how the encoding can be applied to a simple ex-
ample. Consider a transaction which books some hotel and then pays for it.
In case of abort, the booking should be undone by sending a message unbook,
and the payment refunded by sending a message refund. For simplicity, we do
not consider the contents of the messages (e.g., data of the booking, credit card
details for paying), adding them is however immediate. The transaction can be
modeled using parallel recovery processes as

t[book. inst⌊unbook⌋.pay. inst⌊refund⌋, 0]

Figure 9 shows a sample execution5. The transition labels show how the trans-
action scope may interact with the environment. In line 1 the hotel is booked,

5To simplify the presentation we discard some garbage. This can be done using the notion
of structural congruence in Definition 21.
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t[book. inst⌊unbook⌋.pay. inst⌊refund⌋, 0] book−−−→ (1)

t[inst⌊unbook⌋.pay. inst⌊refund⌋, 0] τ−→ (2)

t[pay. inst⌊refund⌋, 0 | unbook] pay−−→ (3)

t[inst⌊refund⌋, 0 | unbook] τ−→ (4)

t[0, 0 | unbook | refund] t−→ (5)

0 | 〈0 | unbook | refund〉 unbook−−−−→ (6)

0 | 〈0 | refund〉 refund−−−−−→ (7)

0 | 〈0〉 (8)

Figure 9: Parallel recovery process: sample execution.

and in line 2 the corresponding compensation item is installed. Similarly, in
line 3 the hotel is paid, and in line 4 the corresponding compensation item is in-
stalled. In line 5 the transaction scope is aborted because of an external request.
In lines 6-7 the two compensation items are executed.

The translation of the transaction above is:

(ν r) t[book.(〈r.(unbook|r)〉 | pay.〈r.(refund|r)〉), 0 | r]

Figure 10 shows a sample execution, corresponding to the one in Figure 9. In
lines 1-2 the hotel is booked and paid, and compensation items are installed. In
line 3 the transaction scope is aborted because of an external request. In lines 4-5
the static compensation r interacts with the stored compensation items enabling
them. Finally, in lines 6-7 the two compensation items are executed. With
respect to the original parallel recovery process, there are no explicit steps for
compensation update, while some steps are needed to enable the compensation
items before executing them.

It is easy to see that the encoding is compositional. Even more, it maps all
the operators but transaction scope and compensation update homomorphically
to themselves.

Remark 1. We have presented the encoding in the framework of synchronous
π-calculus. The same encoding however can be used for CCS [5] and asyn-
chronous π-calculus [18], extended with the primitives for transactions and
compensations. In fact, the encoding does not exploit name communication nor
synchrony. We have presented it in the most general setting since it is easier to
restrict the approach to CCS or asynchronous π-calculus than to generalize an
approach from CCS or asynchronous π-calculus to synchronous π-calculus.

The rest of this section is devoted to prove that J•Kp2s is a good, bisimilarity
preserving encoding (see Definitions 16 and 19). We describe in detail the case
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(ν r) t
[

book.(〈r.(unbook|r)〉 | pay.〈r.(refund|r)〉), 0 | r
] book−−−→ (1)

(ν r) t
[

〈r.(unbook|r)〉 | pay.〈r.(refund|r)〉, 0 | r
] pay−−→ (2)

(ν r) t
[

〈r.(unbook|r)〉 | 〈r.(refund|r)〉, 0 | r
] t−→ (3)

(ν r) 〈r.(unbook|r)〉 | 〈r.(refund|r)〉 | 〈r〉 τ−→ (4)

(ν r) 〈r.(unbook|r)〉 | 〈(refund|r)〉 τ−→ (5)

(ν r) 〈unbook|r〉 | 〈refund〉 unbook−−−−→ (6)

(ν r) 〈r〉 | 〈refund〉 refund−−−−−→ (7)

(ν r) 〈r〉 | 〈0〉 (8)

Figure 10: Translation: sample execution.

of aborting semantics for transaction nesting, for dealing with preserving and
discarding semantics minimum changes are required. In order to show that the
encoding is correct we prove that it is bisimilarity preserving.

Remark 2. If we drop the requirement of well formedness, bisimilarity preser-
vation is no more satisfied, e.g. since

Jinst⌊λX.Q |X⌋.P Kp2s = JP Kp2s | 〈r.(JQKp2s | r)〉 r−→

while inst⌊λX.Q |X⌋.P has no corresponding transition. The difference can be
spotted also with testing equivalence, using e.g. context r.

√
.

Alternatively, one may require that actions on fresh names introduced by the
encoding, such as r here, are not observed by the behavioral equivalence. We
have chosen the approach based on well formedness since it matches the intuition
that compensation update is not meaningful outside a transaction scope.

While weak bisimilarity is preserved only for well formed processes, a strict
relationship holds also between the behavior of a general process P and of its
translation JP Kp2s, as will be shown by Lemma 7 and Lemma 9. Roughly, the

translation P̃ of a process P such that P
α−→ P ′ evolves to some process P̃ ′

which is the translation of P ′. However, this relationship holds only up to some
transformations deleting the garbage produced by the encoding. We formalize
these transformations using a structural congruence and an auxiliary reduction
relation.

Definition 21 (Structural congruence). Structural congruence ≡ on com-
pensable processes is the minimum congruence closed under the rules in Fig. 11.

The first three rows in the definition of structural congruence contain stan-
dard rules from π-calculus: associativity, commutativity and neutral element
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(P |Q) | R≡P | (Q |R) P |Q≡Q | P 0 | P ≡P

(ν x)0≡ 0 (ν x) (ν y) P ≡(ν y) (ν x)P

P | (ν x) Q ≡ (ν x) (P |Q) if x /∈ fn(P )

t [(ν x) P,Q] ≡ (ν x) t [P,Q] if t 6= x, x /∈ fn(Q)

〈(ν x)P 〉≡(ν x) 〈P 〉 〈〈P 〉〉≡ 〈P 〉
〈P |Q〉≡ 〈P 〉 | 〈Q〉 〈0〉≡ 0 (ν x)x≡0

Figure 11: Structural congruence relation.

for parallel composition, garbage collection of useless restrictions, swapping of
restrictions and scope extrusion. The two following rules define scope extrusion
for transaction scope and protected block. Then there are three rules defining
basic properties of protected blocks. Finally, we consider the simple garbage
collection rule (ν x)x≡ 0, since it simplifies our proofs.

The following lemma shows that structural congruent processes have the
same transitions.

Lemma 3. Let P , Q be processes such that P ≡Q. Then P
α−→ P ′ iff Q

α−→ Q′6

with P ′ ≡Q′.

Proof. By induction on the derivation of P ≡Q, with a case analysis on the
used axiom. 2

The auxiliary reduction relation below catches the fact that stored compen-
sation items have to be activated before becoming enabled.

Definition 22 (Auxiliary reduction relation). The auxiliary reduction re-
lation 7→ is the minimum congruence generated by the following rule:

(ν r) 〈r〉|
∏

i∈{1,...,n}
〈r.(Qi|r)〉 7→ (ν r) 〈r〉 |

∏

i∈{1,...,n}
〈Qi〉

if, for each i ∈ {1, . . . , n}, r /∈ fn(Qi).

The auxiliary reduction relation is included in ==⇒.

Lemma 4. Let P be a process. If P 7→ P ′ then P ==⇒ P ′.

Proof. Trivial. 2

6The two labels denoted by α may actually differ on the order of extruded names, but, as
discussed before, this difference can be disregarded.
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The definition below introduces possible translations, which generalize the
concept of translation. The idea is that each process in the set of possible
translations of P behaves as P . However, differently from what happens for
translations, if P evolves to P ′ then each possible translation of P evolves to a
possible translation of P ′, and this allows to build coinductive proofs. Roughly,
possible translations account for the different shapes that a dynamically created
compensation can have, according to how it has been built as a composition of
compensation items.

Definition 23 (Possible translations). Let r be a fixed fresh name. Given a
parallel recovery process P the set of its possible translations {|P |}p2s is defined
by structural induction on P and then closed under the structural congruence
and the auxiliary reduction relation. More precisely:

• if P = t[R,Q] for each decompositionQ≡∏

i∈{0,...,n} Qi, each R̃ ∈ {|R|}p2s
and Q̃i ∈ {|Qi|}p2s, we have that (ν r) t

[

R̃ |∏i∈{1,...,n}〈r.(Q̃i | r)〉, Q̃0 | r
]

∈
{|P |}p2s;

• if P = inst⌊λX.Q |X⌋.R for each Q̃ ∈ {|Q|}p2s and each R̃ ∈ {|R|}p2s, we
have that R̃ | 〈r.(Q̃ | r)〉 ∈ {|P |}p2s;

• for each other n-ary operator op, if P = op(Q1, . . . , Qn) for each Q̃i ∈
{|Qi|}p2s we have that op(Q̃1, . . . , Q̃n) ∈ {|P |}p2s.

Furthermore:

• if P̃ ∈ {|P |}p2s and P̃ ′ ≡ P̃ then P̃ ′ ∈ {|P |}p2s;

• if P̃ ∈ {|P |}p2s and P̃ ′ 7→ P̃ then P̃ ′ ∈ {|P |}p2s.

Possible translations are well behaved w.r.t. name substitutions.

Lemma 5. Let σ be a name substitution such that r (the fixed fresh name
used in the possible translation) does not occur in σ. Then P̃ ∈ {|P |}p2s iff

P̃ σ ∈ {|Pσ|}p2s.

Proof. By induction on the derivation of P̃ ∈ {|P |}p2s. 2

The lemma below relates the possible translations of P and of extra(P ).

Lemma 6. Let P be a parallel recovery process and P̃ ∈ {|P |}p2s one of its

possible translations. Then extra(P̃ ) ∈ {|extra(P )|}p2s.

Proof. The proof is composed of two parts: the first one is by structural in-
duction on P , the second one considers closures under the structural congruence
and the auxiliary reduction relation. For the first part the only non trivial case is

P = t[P ′, Q]. In this case P̃ = (ν r) t
[

P̃ ′ |∏i∈{1...,n}〈r.(Q̃i | r)〉, Q̃0 | r
]

for some
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P̃ ′ ∈ {|P ′|}p2s and Q̃i ∈ {|Qi|}p2s for each i ∈ {0 . . . , n} with Q≡∏

i∈{0...,n} Qi.

Also, extra(t[P ′, Q]) = extra(P ′) | 〈Q〉.
We have extra(P̃ ) = (ν r) extra(P̃ ′ |∏i∈{1,...,n}〈r.(Q̃i | r)〉)|〈Q̃0|r〉≡ extra(P̃ ′)|

(ν r) (
∏

i∈{1,...,n}〈r.(Q̃i | r)〉 | 〈r〉) | 〈Q̃0〉 7→ extra(P̃ ′) | (ν r) (∏i∈{0,...,n}〈Q̃i〉 |
〈r〉). Since r does not occur in Q̃i we have extra(P̃ ′) | (ν r) (∏i∈{0,...,n}〈Q̃i〉 |
〈r〉)≡ extra(P̃ ′) |∏i∈{0,...,n}〈Q̃i〉. This concludes the first part of the proof since
by inductive hypothesis extra(P̃

′) ∈ {|extra(P ′)|}p2s and
∏

i∈{0,...,n}〈Q̃i〉≡〈Q̃〉
for some Q̃ ∈ {|Q|}p2s.

For the second part, the case of closure under structural congruence is trivial.
Closure under the auxiliary reduction relation is trivial too, since extra(•) is the
identity on both the sides of the rule. 2

Lemma 7 and Lemma 9 below relate the behavior of a process to the one of
its possible translations. Remember that we may write a compensation update
λX.Q |X simply as Q.

Lemma 7. Let P be a parallel recovery process and P̃ ∈ {|P |}p2s one of its

possible translations. If P
α−→ P ′ then one of the following holds:

1. α 6= (~z)Q and P̃
α

==⇒ P̃ ′ with P̃ ′ ∈ {|P ′|}p2s;
2. α = (~z)Q and P̃ ==⇒ ≡ (ν ~z) (P̃ ′ | 〈r.(Q̃ | r)〉) where P̃ ′ ∈ {|P ′|}p2s and

Q̃ ∈ {|Q|}p2s.

Proof. The proof is by structural induction on P , using a case analysis on the
last applied rule. In the analysis of the possible translations we have no need to
consider the closure under the structural congruence and the auxiliary reduction
relation since they can be taken into account using Lemma 3 and Lemma 4.

• Case 0) Trivial.

• Case a(~x).R) The only applicable rule is rule (P-In), allowing a(~x).R
a(~v)−−−→

R{~v/~x}. From the definition of possible translations P̃ has the form a(~x).R̃
where R̃ ∈ {|R|}p2s. Applying rule (P-In) to the possible translation P̃ we

get a(~x).R̃
a(~v)−−−→ R̃{~v/~x} as desired (using Lemma 5).

• Case a〈~v〉.R) Simpler than the previous one.

• Case inst⌊Q⌋.R) The only applicable rule is (L-Inst), which allows to

derive inst⌊Q⌋.R Q−→ R. From the definition of possible translations P̃ has
the form R̃ |〈r.(Q̃ |r)〉 where R̃ ∈ {|R|}p2s and Q̃ ∈ {|Q|}p2s. This is already
the desired form.

• Case
∑

i∈I πi.Pi) The only applicable rule is (L-Choice), which allows to

derive
∑

i∈I πi.Pi
α−→ P ′

j if πj .Pj
α−→ P ′

j . From the definition of possible

translations P̃ has the form
∑

i∈I πi.P̃i where P̃i ∈ {|Pi|}p2s. Note that α
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cannot have the form (~z)Q. By inductive hypothesis πj .P̃j
α

==⇒ P̃ ′
j with

P̃ ′
j ∈ {|P ′

j |}p2s. Applying rule (L-Choice) to the possible translation we

get
∑

i∈I πi.P̃i
α

==⇒ P̃ ′
j as desired.

• Case !πi.R) Similar to the case above.

• Case R | S) We have a case analysis on the applied rule.

Let us consider rule (L-Close). From the premises we know R
x(~v)−−−→ R′

and S
(~z)x〈~v〉−−−−→ S′. From the definition of possible translations, P̃ has the

form R̃ | S̃ where R̃ ∈ {|R|}p2s and S̃ ∈ {|S|}p2s. By inductive hypothesis

R
x(~v)
===⇒ R′ and S

(~z)x〈~v〉
=====⇒ S′. Steps with label τ can be propagated to

R̃ | S̃ using rule (L-Par). Then the input and the output actions can be
combined into a τ step using rule (L-Close). Steps with label τ after the
synchronization can again be propagated using rule (L-Par), followed by
rule (L-Res) to take into account the restrictions possibly introduced by
rule (L-Close).

If the applied rule is (L-Par) then the thesis follows again by inductive
hypothesis. If the label has the form (~z)Q then structural congruence can
be used to pull out restrictions corresponding to names in ~z.

• Case (ν x)R) We have again a case analysis on the used rule. If the used
rule is (L-Res) then inductive hypothesis can be applied, using structural
congruence to pull out restrictions corresponding to names in ~z if the label
is (~z)Q. The case of rule (L-Open) follows by inductive hypothesis, using
rule (L-Res) to propagate τ actions.

Let us consider rule (L-Open-inst). We know that R
(~w)Q−−−→ R′. From

inductive hypothesis given R̃ ∈ {|R|}p2s we have R̃ ==⇒ (ν ~w) (R̃′|〈r.(Q̃|r)〉)
where R̃′ ∈ {|R′|}p2s and Q̃ ∈ {|Q|}p2s. We can apply rule (L-Res) to all

transitions to get (ν x) R̃ ==⇒ (ν x) (ν ~w) (R̃′ | 〈r.(Q̃ | r)〉) as desired (up to
structural congruence).

• Case t[R,S]) Consider a decomposition S≡∏

i∈{0,...,n} Si and a corre-
sponding possible translation

(ν r) t
[

R̃ |∏i∈{1,...,n}〈r.(S̃i | r)〉, S̃0 | r
]

of t[R,S], where R̃ ∈ {|R|}p2s and S̃i ∈ {|Si|}p2s for each i ∈ {0, . . . , n}.
Let us consider rule (L-Recover-out). We know that t[R,S]

t−→ extra(R)|
〈S〉 and we have to show a corresponding transition from the possible
translation. We can derive

(ν r) t
[

R̃ |∏i∈{1,...,n}〈r.(S̃i | r)〉, S̃0 | r
]

t−→
(ν r) extra(R̃ |∏i∈{1,...,n}〈r.(S̃i | r)〉) | 〈S̃0 | r〉

From the definition of function extra(•) this is equal to:
(ν r) extra(R̃) |∏i∈{1,...,n}〈r.(S̃i | r)〉 | 〈S̃0 | r〉
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Using structural congruence and the auxiliary reduction relation this re-
duces to:
(ν r) extra(R̃) |∏i∈{0,...,n}〈S̃i〉 | 〈r〉≡ extra(R̃) | 〈S̃〉
The thesis follows from Lemma 6 and from the definition of possible trans-
lation.

Let us consider rule (L-Recover-in). We have t[R,S]
τ−→ extra(R′) | 〈S〉

and we have to show a corresponding transition from the possible trans-

lation. We know that R
t−→ R′. By inductive hypothesis R̃

t
==⇒ R̃′ where

R̃′ ∈ {|R′|}p2s. Thus we have (ν r) t
[

R̃ |∏i∈{1,...,n}〈r.(S̃i | r)〉, S̃0 | r
]

==⇒
(ν r) extra(R̃

′ |∏i∈{1,...,n}〈r.(S̃i | r)〉) | 〈S̃0 | r〉 where we applied rules (L-

Par), (L-Scope-out) and (L-Res) for τ actions before action t, rules
(L-Par), (L-Recover-in) and (L-Res) for t, and rules (L-Par) and (L-
Res) for τ actions after action t. From the definition of function extra(•)
this is equal to
(ν r) extra(R̃′) |∏i∈{1,...,n}〈r.(S̃i | r)〉 | 〈S̃0 | r〉≡
extra(R̃′) | (ν r) (∏i∈{1,...,n}〈r.(S̃i | r)〉 | 〈r〉) | 〈S̃0〉 7→
extra(R̃

′) | (ν r) (∏i∈{0,...,n}〈S̃i〉 | 〈r〉)≡
extra(R̃′) | 〈S̃〉 | (ν r) 〈r〉≡ extra(R̃′) | 〈S̃〉

The thesis follows from Lemma 6 and from the definition of possible trans-
lation.

Let us consider the case of rule (L-Scope-close). We have t[R,S]
τ−→

(ν ~z) t[R′, (Q | X){S/X}] = (ν ~z) t[R′, Q | S] and we have to show a corre-

sponding transition from the possible translation. We know that R
(~z)Q−−−→

R′. By inductive hypothesis R̃ ==⇒ (ν ~z) R̃′ | 〈r.(Q̃ | r)〉 with R̃′ ∈ {|R′|}p2s
and Q̃ ∈ {|Q|}p2s. Thus we can derive

(ν r) t
[

R̃ |∏i∈{1,...,n}〈r.(S̃i | r)〉, S̃0 | r
]

==⇒
(ν r) t

[

(ν ~z) (R̃′ | 〈r.(Q̃ | r)〉) |∏i∈{1,...,n}〈r.(S̃i | r)〉, S̃0 | r
]

where we applied rules (L-Par), (L-res) and (L-Scope-out).

By choosing S̃n+1 = Q̃ the process above can be written as

(ν r) t
[

(ν ~z) (R̃′ |∏i∈{1,...,n+1}〈r.(S̃i | r)〉), S̃0 | r
]

.

This is structural congruent to

(ν r) (ν ~z) t
[

R̃′ |∏i∈{1,...,n+1}〈r.(S̃i | r)〉, S̃0 | r
]

as desired. Note, in fact, that
∏

i∈{0,...,n+1} S̃i is a possible decomposition

of Q̃ | S̃.
The case of rule (L-Scope-out) is simpler than the previous one.

• Case 〈R〉) By inductive hypothesis. 2

We have discussed how possible translations can mimic the behavior of the
original process, in order to discuss the other direction of the relation we need
a result about the auxiliary reduction relation 7→.
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Lemma 8. Let P be a process. If P
α−→ P ′ and P 7→ Q then

• either Q
α−→ Q′ and P ′ 7→ Q′;

• or α = τ and P ′ ≡Q;

• or α = τ and P ′ 7→ Q.

Proof. We have P = C[R] where R is the left-hand side of the axiom defining
7→, i.e. C[R] 7→ C[R′]. Note that it is not possible for the transition with label α
to involve both process R and context C[•], since R has no possible interaction
with external processes. Thus the transition with label α may be either of the
form C[R]

α−→ C′[R] for some C′ (even kill preserves R, since R is composed by

protected blocks), or of the form C[R]
α−→ C[R′] for some R′.

In the first case C′[R] 7→ C′[R′] and C[R′]
α−→ C′[R′] as desired (first item of

the statement).
In the second case the only possibiliy is that α is a τ step for enabling one

of the compensation items. If it is the last remaining compensation item then
P ′ ≡Q (second item in the statement). Otherwise also P ′ 7→ Q (third item in
the statement) by enabling the remaining compensation items. 2

Lemma 9. Let P be a parallel recovery process such that noComp(P ) and let

P̃ ∈ {|P |}p2s be one of its possible translations. If P̃
α−→ P̃ ′ with α 6= r then

P
α

==⇒ P ′ with P̃ ′ ∈ {|P ′|}p2s.

Proof. The proof is by induction on the derivation of P̃ ∈ {|P |}p2s. For the
first three cases, the case analysis is similar to the one in Lemma 7. We
consider as an example just the case where P = t[R,Q]. In this case P̃ =

(ν r) t
[

R̃ |∏i∈{1...,n}〈r.(Q̃i | r)〉, Q̃0 | r
]

. Let us consider the transition

(ν r) t
[

R̃ |∏i∈{1...,n}〈r.(Q̃i | r)〉, Q̃0 | r
]

α−→
(ν r) t

[

R̃′ |∏i∈{1...,n}〈r.(Q̃i | r)〉, Q̃0 | r
]

This transition is derived from R̃
α−→ R̃′ by applying rules (L-Par), (L-Scope-

out) and (L-Res). By inductive hypothesis R
α

==⇒ R′ with R̃′ ∈ {|R′|}p2s.
Then t[R,Q]

α
==⇒ t[R′, Q]. The thesis follows from the definition of possible

translation. The other cases are similar.
The case for structural congruence follows from Lemma 3.
Let us consider the case for the auxiliary reduction relation. There exists Q̃

such that P̃ 7→ Q̃ and Q̃ ∈ {|P |}p2s. We know that P̃
α−→ P̃ ′. We can now apply

Lemma 8. Let us consider the possible cases.
If we have that Q̃

α−→ Q̃′ and P̃ ′ 7→ Q̃′ then by applying inductive hypothesis
to Q̃

α−→ Q̃′ we have P
α

==⇒ P ′ with Q̃′ ∈ {|P ′|}p2s. Thanks to the definition of

auxiliary reduction relation also P̃ ′ ∈ {|P ′|}p2s as desired.

If α = τ and P̃ ′ ≡ Q̃ then also P̃ ′ ∈ {|P |}p2s and the empty computation
from P satisfies the thesis.

If α = τ and P̃ ′ 7→ Q̃ then also P̃ ′ ∈ {|P |}p2s and again the empty computa-
tion from P satisfies the thesis. 2
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The following lemmas prove properties of well formed processes and processes
with well formed compensations necessary for proving that the encoding J•Kp2s
is bisimilarity preserving.

Lemma 10. Let P be a well formed process. Then P has well formed compen-
sations.

Proof. By induction on the definition of well formed process. 2

Lemma 11. Let P be a process with well formed compensations. If P
(~z)Q−−−→ P ′

then Q is well formed.

Proof. By induction on the definition of process with well formed compensa-
tions. 2

Lemma 12. Let P be a process with well formed compensations. Then extra(P )
is well formed.

Proof. By induction on the definition of process with well formed compensa-
tions. 2

Lemma 13. Let P be a well formed process. If P
α−→ P ′ then α is not of the

form (~z)λX.R.

Proof. By induction on the definition of well formed process. 2

Lemma 14. Let P be a process. If P
α−→ P ′ then:

• if P is well formed then P ′ is well formed;

• if P has well formed compensations then P ′ has well formed compensa-
tions.

Proof. By structural induction on P . The most difficult case is P = t[R,Q].
Let us consider the applicable rules.

For rule (L-recover-out) t[R,Q]
t−→ extra(R) | 〈Q〉. Assume P well formed.

Then Q is well formed and R has well formed compensations. Thanks to
Lemma 12 extra(R) is well formed. Then also extra(R) | 〈Q〉 is well formed
as required. Now assume P has well formed compensations. Then R has well
formed compensations and Q is well formed. Thanks to Lemma 12 extra(R) is
well formed and thanks to Lemma 10 it has also well formed compensations.
Since Q is well formed then 〈Q〉 has well formed compensations. The thesis fol-
lows. The case of rule (L-recover-in) is similar, but it also exploits inductive
hypothesis.

Let us consider the case of rule (L-Scope-close). We have t[R,Q]
τ−→

(ν ~z) t[R′, S{Q/X}] with hypothesis R
(~z)λX.S−−−−−→ R′. Assume t[R,Q] well formed.

Then R has well formed compensations and Q is well formed. Since R
(~z)λX.S−−−−−→
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R′ then by inductive hypothesis also R′ has well formed compensations. Thanks
to Lemma 11 also S is well formed. Then S{Q/X} is well formed too. The thesis
follows from the definition of well formedness. Assume now that t[R,Q] has well
formed compensations. Then R has well formed compensations and Q is well
formed. By inductive hypothesis also R′ has well formed compensations. Also,
S is well formed thanks to Lemma 11. Then S{Q/X} is well formed. The thesis
follows from the definition of process with well formed compensations. The case
of rule (L-Scope-out) is simpler. 2

Lemma 15. Let P be a well formed process and P̃ ∈ {|P |}p2s. If P̃
α−→ P̃ ′ then

α 6= r.

Proof. The proof is by induction on the derivation of wf(P ). 2

Next lemma proves that a process P can always evolve to some process P ′

such that noComp(P ′) by performing all the enabled compensation updates.

Lemma 16. Let P be a parallel recovery process. Then P
α1−→ · · · αn−−→ P ′ with

noComp(P ′) and with each αi of the form τ or (~w)Q. Also, if the label is τ ,
then the transition has been derived using axiom (L-Inst) as only premise.

Proof. By structural induction on P . 2

The following lemma proves that compensation update corresponds to an
empty computation in the translation.

Lemma 17. Let P be a parallel recovery process. If P
τ−→ P ′ and the transition

has been derived using axiom (L-Inst) as only premise then {|P |}p2s = {|P ′|}p2s.

Proof. By induction on the derivation of P
τ−→ P ′, using a stronger inductive

hypothesis, requiring also that if P
(~z)Q−−−→ P ′ then P̃ ∈ {|P |}p2s iff P̃ ≡(ν ~z) (P̃ ′ |

〈r.(Q̃ | r)〉) with P̃ ′ ∈ {|P ′|}p2s and Q̃ ∈ {|Q|}p2s . 2

We can finally prove our main result, showing that J•Kp2s is bisimilarity
preserving.

Theorem 1. Let P be a well formed parallel recovery process. Then P≈JP Kp2s.

Proof. First note that JP Kp2s ∈ {|P |}p2s. The proof is by coinduction. We have

to show that the relation R = {(P, P̃ )|wf(P )∧ P̃ ∈ {|P |}p2s} is a weak bisimula-
tion. The condition on extraction function is satisfied thanks to Lemma 6. The
extracted process is well formed thanks to Lemma 10 and Lemma 12. Assume
a transition P

α−→ P ′. Thanks to Lemma 13, α has not the form (z̃)λX.R. Thus

thanks to Lemma 7 P̃
α

==⇒ P̃ ′ with P̃ ′ ∈ {|P ′|}p2s. Thanks to Lemma 14 also P ′

is well formed, thus (P ′, P̃ ′) is in R.

Now, assume a transition P̃
α−→ P̃ ′. Thanks to Lemma 16 P

α1−→ · · · αn−−→ Pn

with noComp(Pn) and with each αi of the form τ or (~w)Q. The proof is by
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induction on n. For the base case n = 0 from Lemma 9 (since α 6= r thanks

to Lemma 15) P
α

==⇒ P ′ with P̃ ′ ∈ {|P ′|}p2s. Since P ′ is well formed thanks to
Lemma 14, the thesis follows. Let us consider the inductive case. We know that
P

α1−→ P1. However, thanks to Lemma 13, α1 should be τ and should be derived
using axiom (L-Inst) as only premise (from Lemma 16). Thanks to Lemma 17

P̃ ∈ {|P1|}p2s. From inductive hypothesis P1
α

==⇒ P ′
1 with P̃ ′ ∈ {|P ′

1|}p2s. Thus

also P
α

==⇒ P ′
1. Thanks to Lemma 14 also P ′

1 is well formed. The thesis follows.
2

Corollary 1. J•Kp2s is a good encoding.

Proof. It is easy to see that J•Kp2s is compositional. Thanks to Theorem 1
and Proposition 2 it is also correct. Finally, it is divergence reflecting since the
only additional transitions are the consumptions of the outputs r, which are a
finite number in the starting process, and which are created in a finite number
at each step. Also, they are never created by the consumption steps themselves.
2

The results in this section have been proved for the aborting semantics for
transaction nesting, however the same proofs can be used for the preserving and
the discarding semantics.

This result proves that parallel recovery can be implemented on top of static
recovery, thus there is no need to implement it in the core language, but it can
be provided as a derived construct.

5. General Dynamic Recovery Is More Expressive Than Static Re-
covery

In this section we compare the expressive power of general dynamic recovery
and static recovery, showing that the former is more powerful. We also adapt our
results to show that backward recovery is more powerful than static recovery.

The main idea is that with general dynamic recovery it is possible to check
the order of execution of parallel actions by observing the compensation items
that they install, while this is not possible with static recovery. For instance,
process t[a. inst⌊λX.a′.0⌋ | b. inst⌊λX.b′.0⌋,0] can perform a computation per-
forming a sequence of inputs on names a, b, t, b′ but no computation with a
sequence of inputs on names b, a, t, b′, i.e. whether b′ is available or not de-
pends on the order of execution of the parallel actions a and b. The proof of the
separation result in Theorem 2 exploits similar arguments. The proof is based
on the fact that the order of installation of compensation items is not known
statically because of the nondeterminism in the scheduling of parallel processes.

Before proving the theorem we need a few auxiliary notions and results.

Definition 24 (Enabling contexts). Enabling contexts E[•1] are unary con-
texts generated by:
E[•1] ::= •1 | P |E[•1] | E[•1]|P | (ν x)E[•1] | t[E[•1], Q] | 〈E[•1]〉
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In the proof of the separation result, we will use as auxiliary equivalence
may testing [29].

Definition 25 (May testing). Let P and O be processes and
√

a special

name occurring in O but not in P . We call O an observer. P may O iff P |O
√
==⇒.

Two processes P and Q are may testing equivalent, written P ≃may Q, if, for
each observer O, P may O iff Q may O.

The following proposition, taken from [35], shows that should testing implies
may testing.

Proposition 3. Let P and Q be processes. If P ≃shd Q then P ≃may Q.

Proof. The proof in [35, Proposition 11] can be applied to compensable proces-
ses. 2

Next definition introduces two measures on the complexity of processes.

Definition 26. Given a process P the maximum choice degree mcd(P ) of P
is the maximum number of alternatives in a nondeterministic choice inside P .
The maximum transaction nesting degree mtd(P ) of P is the maximum level of
nesting of transaction scopes inside P (two transaction scopes are nested if one
is inside the body of the other).

Next lemma shows that the maximum choice degree and the maximum trans-
action nesting degree of a process never increase during computations.

Lemma 18. Let P be a process. If P
α−→ P ′ then mcd(P ′) ≤ mcd(P ) and

mtd(P ′) ≤ mtd(P ).

Proof. The proof is by induction on the derivation of P
α−→ P ′. 2

Next lemma exploits the definition above to determine structural properties
of processes from their behavior.

Lemma 19. Let P be a static recovery process. Assume that P
ai−→ P ′

i for each
i ∈ {1, . . . , n}. Assume that n > c + t where c is the maximum choice degree
of P and t is the maximum transaction nesting degree of P . Then there are
an enabling context E[•1], processes Q1 and Q2 and indexes j and k such that

P = E[Q1|Q2] with Q1
aj−→ Q′

1 and Q2
ak−→ Q′

2.

Proof. The proof is by structural induction on P . We detail here the most
interesting cases, the others are trivial or follow by inductive hypothesis.

P =
∑

i∈I πi.Pi) Let m be the size of I. This is also the maximum number n
of enabled actions in P . Since by hypothesis n > c+ t ≥ m+ t ≥ m = n
we have a contradiction. Thus this case cannot happen.
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P = t[R,S]) There are two cases: either t = aj for some j or not. In the
first case, R must be able to perform all the other actions. Note that
mtd(R) = mtd(P )− 1. Thus we can apply the inductive hypothesis to R
and the remaining actions. The other case is simpler.

P = R | S) If there are j and k such that R
aj−→ R′ and S

ak−→ S′ then E[•] = •
satisfies the thesis. Otherwise, either R or S must be able to perform all
the actions, and the thesis follows by inductive hypothesis. 2

We can finally prove the desired separation result.

Theorem 2. There is no good encoding J•Kg2s of compensable processes into
static recovery processes.

Proof. Suppose by contradiction that such an encoding exists. For each i let
Pi = ai. inst⌊λYi.bi.0⌋.0. Consider the process P = t[

∏

i∈{1,...,n} Pi,0]. Because

of conditions 1 and 3 of compositional encodings, its translation JP Kg2s should

be of the form Ct[
∏

i∈{1,...,n}JPiKg2s, J0Kg2s]. We will denote it as P̃ . P is well

formed, thus P ≃shd P̃ and, from Proposition 3, also P ≃may P̃ . Let us consider

the observers Oj,k = aj .ak.t.bk.
√

and O′
j,k = aj .ak.t.bj .

√
. For each j, k note

that P should Oj,k, while P may not O′
j,k. Also, given Oj = aj .

√
, P should Oj

for each j. Thanks to correctness, P̃ has to pass the same tests. Test Oj can

succeed only if P̃
aj

==⇒. Also, no τ action should compromise the possibility of
performing aj for each j, thanks to the definition of should testing equivalence.

We show now by contradiction that P̃ ==⇒ Q for some Q such that Q
ai−→ Q′

i

for each i ∈ {1, . . . , n}. We assume that such a Q does not exist and build
an infinite computation composed by transitions with label τ , contradicting
divergence reflection. Since we assume Q does not exist, in particular, for some

ai there is no transition P̃
ai−→. Thus since P̃

ai==⇒ we have P̃
τ−→+

Q1
ai−→

where
τ−→+

denotes a non empty sequence of transitions with label τ . Also, Q1

must still satisfy the tests. Since Q does not exist, there is also some aj such

that there is no transition of the form Q1
aj−→. Thus we can further extend

the computation. By iterating the procedure we get an infinite sequence of
transitions with label τ . Since P does not diverge, and the encoding has to be
divergence reflecting, we have a contradiction.

Now observe that thanks to condition 2 of compositional encoding all JPiKg2s
are equal up to name substitution and thus have the same maximum choice
degree and maximum transaction nesting degree. Thus the maximum choice
degree c and maximum transaction nesting degree t of P̃ do not depend on
n. In particular, we can choose n > c + t. Thanks to Lemma 18 the same
relation holds also for Q. Thus we can apply Lemma 19 to prove that Q =

E[Q1|Q2] with Q1
aj−→ Q′

1 and Q2
ak−→ Q′

2 for some enabling context E[•]. We

have E[Q1|Q2]
aj−→ E[Q′

1|Q2]
ak−→ E[Q′

1|Q′
2] and E[Q1|Q2]

ak−→ E[Q1|Q′
2]

aj−→
E[Q′

1|Q′
2]. The final process E[Q′

1|Q′
2] is the same in both the cases.
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These computations can be observed using observers Oj,k = aj.ak.t.bk.
√

and O′
k,j = ak.aj .t.bk.

√
above. P̃ | O ==⇒ E[Q′

1|Q′
2] | t.bk.

√
for both O = Oj,k

and O = O′
k,j . From P̃ should Oj,k we deduce E[Q′

1|Q′
2] | t.bk.

√ √
==⇒, while from

P̃ may not O′
k,j we deduce that this computation cannot exist.

This is a contradiction, thus the encoding J•Kg2s does not exist. 2

The theorem above holds for aborting, preserving and discarding semantics
for transaction nesting.

Remark 3. We have presented this separation result in the framework of syn-
chronous π-calculus. The same result however can be proved for CCS [5], ex-
tended with the primitives for transactions and compensations. In fact the used
processes and observers are all CCS processes.

We can adapt the proof above to the case of asynchronous compensable
processes. Remember that in asynchronous compensable processes there is no
continuation after the output prefix. In particular, there is no compensation
update after outputs.

The main difficulty is that only asynchronous contexts can be used, and this
makes much more difficult to check the order in which input actions are executed.
First, we show that there is no good encoding preserving weak asynchronous
bisimilarity [36], which is defined in our context as follows.

Definition 27 (Weak asynchronous bisimulation). A weak asynchronous
bisimulation is a symmetric binary relation R such that PRQ implies:

• if P
α−→ P ′ with α 6= (~z)λX.R, α 6= a(~v) and bn(α)∩ fn(Q) = ∅, then there

is Q′ such that Q
α

==⇒ Q′ and P ′RQ′;

• if P
(~z)λX.R−−−−−→ P ′ and {~z} ∩ fn(Q) = ∅ then there are S, Q′ such that

Q
(~z)λX.S
=====⇒ Q′, P ′RQ′ and R{T/X}RS{T/X} for all processes T with no

free variables;

• if P
a(~v)−−−→ P ′, then

1. either there is Q′ such that Q
a(~v)
===⇒ Q′ and P ′RQ′

2. or there is Q′ such that Q
τ

==⇒ Q′ and P ′RQ′ | a〈~v〉.

• extr(P )R extr(Q).

The extraction function extr(•) in the last condition should be instantiated
to extra(•), extrp(•) or extrd(•) according to the semantics for transaction nesting
used in the LTS.

Definition 28. Weak asynchronous bisimilarity ≈a is the largest weak asyn-
chronous bisimulation.

31



We can exploit asynchronous bisimilarity as a form of observation of pro-
cess behavior. We call an encoding asynchronous bisimilarity preserving if it
is ≈a-preserving. Requiring asynchronous bisimilarity preservation is not only
more natural for an asynchronous calculus than requiring bisimilarity preserva-
tion, but it also makes the result stronger since bisimilarity preservation implies
asynchronous bisimilarity preservation.

We can now prove a first separation result for the asynchronous case.

Theorem 3. There is no good, asynchronous bisimilarity preserving encoding
J•Kg2s−a of asynchronous compensable processes into asynchronous static recov-
ery processes.

Proof. The proof adapts the technique used in the proof of Theorem 2. Sup-
pose by contradiction that such an encoding exists. As in Theorem 2, for each
i let Pi = ai. inst⌊λYi.bi.0⌋.0. Consider the process P = t[

∏

i∈{1,...,n} Pi,0]. Be-

cause of conditions 1 and 3 of compositional encodings, its translation JP Kg2s−a

should be of the form Ct[
∏

i∈{1,...,n}JPiKg2s−a, J0Kg2s−a], which we will denote as

P̃ . Thanks to preservation of asynchronous bisimilarity P ≈a P̃ . First, P
ai−→ Pi

for each i, thus P̃
ai==⇒ P̃i for each i. Note, in fact, that P̃ cannot match the

input action with a τ action, since otherwise we would need Pi ≈a P̃i | ai. This
is however impossible since Pi would not be able to match the execution of the
output ai.

Following the proof of Theorem 2, one can show that P̃ ==⇒ Q for some Q
such that Q

ai−→ Q′
i for each i ∈ {1, . . . , n}. The proof technique is essentially

the same, just note that all the processes obtained from P̃ via τ transitions
should be bisimilar to P , since P cannot perform τ transitions.

Let us consider this process Q, which is again bisimilar to P . We can apply

now Lemma 19 to prove that Q = E[Q1|Q2] with Q1
aj−→ Q′

1 and Q2
ak−→ Q′

2

for some enabling context E[•]. We have E[Q1|Q2]
aj−→ E[Q′

1|Q2]
ak−→ E[Q′

1|Q′
2]

and E[Q1|Q2]
ak−→ E[Q1|Q′

2]
aj−→ E[Q′

1|Q′
2]. The final process E[Q′

1|Q′
2] is the

same in both the cases.
Let us consider how P can match those transitions. The only possibility is

to match
E[Q1|Q2]

aj−→ E[Q′
1|Q2]

ak−→ E[Q′
1|Q′

2]

with

t[
∏

i∈{1,...,n}
Pi,0]

aj−→ τ−→ ak−→ τ−→ t[
∏

i∈{1,...,n}\{j,k}
Pi, bk.bj .0] = Pj,k

and
E[Q1|Q2]

ak−→ E[Q1|Q′
2]

aj−→ E[Q′
1|Q′

2]

with

t[
∏

i∈{1,...,n}
Pi,0]

ak−→ τ−→ aj−→ τ−→ t[
∏

i∈{1,...,n}\{j,k}
Pi, bj .bk.0] = Pk,j
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Note, in fact, that the first τ action corresponding to compensation update has
to be executed so to make the following input enabled. We can also assume that
the second compensation update is executed, since its execution will be needed
anyway before executing any other observable action.

Thus we have Pj,k ≈a E[Q′
1|Q′

2] ≈a Pk,j , and, by transitivity, Pj,k ≈a Pk,j .
This is a contradiction, since Pj,k has a computation with labels t, bk which
cannot be matched by Pk,j . Thus the encoding cannot exist. 2

We now prove an even stronger result, based on testing. However, we have
not been able to prove the result below using should testing as for the syn-
chronous case, but we need a stronger form of observation, able to relate two
special actions (while should testing considers just one). We call guarded should
testing this form of testing equivalence, and define it below.

Definition 29 (Guarded should testing). Let P and O be processes and√
g and

√
two special names occurring in O but not in P . We call O a guarded

observer. P guarded should O iff for each P ′ such that P | O
√

g

==⇒ P ′ we have

P ′
√
==⇒. Two processes P and Q are guarded should testing equivalent, written

P ≃gshdQ, if, for each observer O, P guarded should O iff Q guarded should O.

Guarded should testing is stronger than should testing, but weaker than
asynchronous weak bisimilarity.

Lemma 20. Let P and Q be processes. P ≃gshd Q implies P ≃shd Q.

Proof. Assume P ≃gshd Q. We have to prove that P ≃shd Q. Let us consider

an observer O. P should O iff P guarded should
√

g | O, and the same for Q.
The thesis follows. 2

Lemma 21. Let P and Q be asynchronous processes. P≈aQ implies P≃gshdQ.

Proof. The proof is similar to the one of Proposition 2. 2

We call an encoding guarded should testing preserving if it is ≃gshd-preser-
ving. The theorem below exploits this notion to prove a result stronger than
the one in Theorem 3.

Theorem 4. There is no good, guarded should testing preserving encoding
J•Kg2s−a of asynchronous compensable processes into asynchronous static re-
covery processes.

Proof. Suppose by contradiction that such an encoding exists. For each i
let Pi = ai(x).(x | inst⌊λYi.bi.(ci | Yi)⌋.0). Let us consider the process P =
t[
∏

i∈{1,...,n} Pi,0]. Because of conditions 1 and 3 of compositional encodings,

its translation JP Kg2s−a should be of the form Ct[
∏

i∈{1,...,n}JPiKg2s−a, J0Kg2s−a],

which we will denote as P̃ . Note that P is well formed, thus P ≃gshd P̃ . From

Lemma 20 P ≃shd P̃ , and from Proposition 3 P ≃may P̃ .
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Let us consider the guarded observers Oj,k = (ν t1, t2, e) t1 | t1[aj〈e〉, t2 |
t2[ak〈e〉, t]]|e.e.

√
g |bk|ck.bj |cj .

√
andO′

j,k = (ν t1, t2, e) t1|t1[aj〈e〉, t2|t2[ak〈e〉, t]]|
e.e.

√
g | bj | cj.bk | ck.

√
The two guarded observers always perform an output on t, possibly preceded

by an output on aj or ak, or an output on aj followed by an output on ak. It
is not possible instead to have an output on ak followed by an output on aj .

By interacting with any of the guarded observers Oj,k and O′
k,j , the tested

process may install the following compensations: 0, bj .(cj | 0), bk.(ck | 0) and
bk.(ck | bj .(cj | 0)) (corresponding to the cases above). The second part of the

testing process Oj,k can interact with the last compensation producing
√
. The

last compensation is installed iff both the inputs on aj and ak are executed, and
this is the only case where two outputs on e become available, thus the only
case in which

√
g can be performed. Thus P guarded should Oj,k. Instead, O

′
k,j

can produce
√

g, but never
√
. Thus P may not O′

k,j (note that any guarded
observer is also an observer).

Given Oj = (ν e) aj〈e〉 | e.ok, P should Oj for each j. Thanks to correctness,

P̃ has to pass the same tests. Test Oj can succeed only if P̃
aj(e)
===⇒. Also, no

action τ should compromise the possibility of performing aj for each j, since we
are using should testing equivalence.

One can show by contradiction that P̃ ==⇒ Q for some Q such that Q
ai(e)−−−→

Q′
i for each i ∈ {1, . . . , n}. The proof follows the steps of the one in Theorem 2.
Observe that thanks to condition 2 of compositional encoding all JPiKg2s−a

are equal up to name substitution and thus have the same maximum choice
degree and maximum transaction nesting degree. Thus the maximum choice
degree c and maximum transaction nesting degree t of P̃ do not depend on n.
In particular, we can choose n > c+ t. Thanks to Lemma 18 the same relation
holds also for Q. Thus we can apply Lemma 19 to prove that Q = E[Q1|Q2]

with Q1
aj(e)−−−→ Q′

1 and Q2
ak(e)−−−→ Q′

2 for some enabling context E[•]. We have

E[Q1|Q2]
aj(e)−−−→ E[Q′

1|Q2]
ak(e)−−−→ E[Q′

1|Q′
2] and E[Q1|Q2]

ak(e)−−−→ E[Q1|Q′
2]

aj(e)−−−→
E[Q′

1|Q′
2]. The final process E[Q′

1|Q′
2] is the same in both the cases.

Consider now the interactions of P̃ with the guarded observers Oj,k and
O′

k,j . For the first one we have:

P̃ |Oj,k ==⇒ E[Q1 |Q2] |Oj,k ==⇒ E[Q′
1 |Q′

2] | 〈t〉 | e.e.
√

g | bk | ck.bj | cj .
√

For the second one we have:

P̃ | O′
k,j ==⇒ E[Q1 |Q2] |Oj,k ==⇒ E[Q′

1 |Q′
2] | 〈t〉 | e.e.

√
g | bk | ck.bj | cj .

√

The final process is the same in both the cases.
Consider now observer O′′

j,k = (ν e) aj〈e〉 | ak〈e〉 | e.e.
√
. P should O′′

j,k for

each j, k, thus the same should hold for P̃ . This means that in the case above

E[Q′
1 | Q′

2] | 〈t〉 | e.e.
√

g | bk | ck.bj | cj .
√

==⇒ Q′ | 〈t〉 | okg | bk | ck.bj | cj .
√ √

g−−→
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Q′ | bk | ck.bj | cj .
√
. Since P̃ guarded should Oj,k we have Q′ | bk | ck.bj | cj .

√ √
==⇒.

However from P̃ may not O′
k,j we have that such a computation cannot exist.

This is a contradiction, thus the encoding J•Kg2s−a does not exist. 2

We have not been able to prove the result above requiring ≃shd-preservation
instead of ≃gshd-preservation. This would be a stronger result.

Many approaches in the literature, such as [26], use as observers in the target
language the translation of the observers in the source language. This is needed
if the source and the target calculus are unrelated: in our case we can use
the same observers since the target calculus is a subcalculus of the source one.
We can restate our results using the approach in [26], but we need some more
conditions ensuring that the encoding preserves the behavior of the observers.

The theorems above concern general dynamic recovery, however similar re-
sults can be obtained for backward recovery. Backward recovery is easily defined
in a calculus with sequential composition by requiring all the compensation up-
dates to have the form λX.P ;X where ; is sequential composition and X does
not occur in P . Compensable processes however are based on π-calculus, thus
they exploit prefixing instead of sequential composition. Separation results cor-
responding to Theorem 2 and Theorem 3 can be easily proved considering just a
very constrained form of backward recovery, where P is a single prefix, instead
of general dynamic recovery.

Corollary 2. There is no good encoding J•Kb2s of backward recovery processes
into static recovery processes.

Proof. It is enough to consider Pi = ai. inst⌊λYi.bi.Yi⌋.0 instead of the process
Pi = ai. inst⌊λYi.bi.0⌋.0 in the proof of Theorem 2. 2

Corollary 3. There is no good, asynchronous bisimilarity preserving encoding
J•Kb2s−a of asynchronous backward recovery processes into asynchronous static
recovery processes.

Proof. It is enough to consider Pi = ai. inst⌊λYi.bi.Yi⌋.0 instead of the process
Pi = ai. inst⌊λYi.bi.0⌋.0 in the proof of Theorem 3. 2

The compensation update used in the proof of Theorem 4 is slightly more
complex than λYi.bi.Yi. It contains, in fact, also an output message. However,
since the calculus is asynchronous, such a compensation update would be al-
lowed by backward recovery. For instance, using sequential composition such
an observer can be written as λYi.bi; ci;Yi where the fact that the output is
asynchronous is modeled by using a two-steps semantics for output as done, for
instance, in [37].

Corollary 4. There is no good, guarded should testing preserving encoding
J•Kg2s−a of asynchronous backward recovery processes into asynchronous static
recovery processes.
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Proof. The proof is the same of Theorem 4, observing that the used compen-
sation updates are valid backward recovery compensation updates. 2

Combining the results of Section 4 with the results in this section we also
deduce that general dynamic recovery and backward recovery are both more
expressive than parallel recovery. We state here the result that corresponds to
Theorem 2. All the results in this section can be generalized in a similar way.

Corollary 5. There is no good encoding J•Kg2p of compensable processes into
parallel recovery processes.

Proof. The proof is by contradiction. Assume that such an encoding exists.
Since the composition of two good encodings is a good encoding, one could
compose J•Kg2p and the encoding J•Kp2s from parallel recovery processes to static
recovery processes described in Section 4 to have an encoding from compensable
processes into static recovery processes. However such an encoding cannot exist
thanks to Theorem 2. This is a contradiction. 2

All the results of this section hold under aborting, preserving and discarding
semantics for transaction nesting.

6. Applications and Related Works

We discuss here how to apply the results in sections 4 and 5 to other calculi
and languages in the literature. The calculi more related to ours are the so-
called interaction-based calculi [6, 7, 8, 34, 12, 13, 21], which are obtained by
adding primitives for compensation handling on top of concurrent calculi such
as π-calculus [4] or Join [38]. These calculi differ on many design choices. The
main differences are summarized in Table 1 and their impact on our results
discussed below.

The meaning of the different columns is as follows:

communication mechanism: which is the communication mechanism used
in the calculus: the one of CCS [5], of π-calculus [4], of asynchronous π-
calculus [18], of Join calculus [38], or communication based on correlation
sets;

compensation definition: whether compensations are defined using static re-
covery, parallel recovery or general dynamic recovery;

nested transactions: which is the semantics used for nested transactions:
they can be aborted, preserved, discarded, or their termination can be
waited for;

protection operator: whether the calculus provides or not a protection op-
erator; “implem.” here means that the calculus has no native protection
operator, but it can be implemented using the available operators;
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communic. compens. nested protection encoding separation
mechanism definition transactions operator applicable applicable

webπ [8] asynch. π static preserved implem. no Th. 6
webπ∞ [34] asynch. π static preserved implem. yes Th. 6
dcπ [12] asynch. π parallel aborted yes yes Th. 3, 4
πt [6] asynch. π static waited no no Th. 3

ATc [13] π parallel discarded no yes a Th. 2
TransCCS [21] CCS static discarded no yes a Th. 2

c-join [7] join static aborted no yes a no
SOCK [17] correlation dynamic aborted implem. yes no
COWS [39] correlation static aborted yes yes no
Jolie [40] correlation dynamic aborted implem. yes no

WS-BPEL [3] correlation static aborted implem. yes no

aIf a protection operator is added.

Table 1: Features of interaction-based calculi and languages.

encoding applicable: whether the encoding defined in Section 4 can be ap-
plied to the calculus or not; for calculi featuring parallel recovery or gen-
eral dynamic recovery this means whether or not the parallel recovery
subcalculus can be encoded in the static recovery subcalculus; for cal-
culi featuring static recovery it means whether or not a parallel recovery
mechanism can be encoded in the calculus;

separation applicable: whether the separation results from Section 5 can be
applied or not. In case they are applicable we write the reference to the
theorem that best applies. Theorem 6 is presented later on in this section.
As for the applicability of the encoding, the applicability of separation
results is referred to the static and general dynamic fragments/extensions
of the calculus.

We now describe in detail the relationships between compensable processes
and the calculi in the table. We start with webπ∞, since this is one of the most
related calculi to ours, and we show in detail how the results can be applied
to it. This can be used as a guideline for understanding how to apply those
results to other calculi. For this reason, the comparisons with other calculi are
less detailed.

6.1. Application to webπ∞
Webπ∞ [34] is a calculus with static recovery based on asynchronous π-

calculus [18]. It is the untimed fragment of webπ [8], which is described later.
In this section we study whether the encoding in Section 4 and the separation

results in Section 5 can be applied to webπ∞. Since webπ∞ is based on static
recovery, the two results show whether or not suitable extensions of webπ∞ with
parallel and general dynamic recovery can be encoded in the basic calculus. We
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will show that both the encoding in Section 4 and the separation result in
Theorem 3 can be applied to webπ∞ with minor adaptations. Before doing
this, we compare the design choices of webπ∞ with the ones of static recovery
processes.

Webπ∞ is strongly related to asynchronous static recovery processes with
preserving semantics for transaction nesting. Actually, the syntax of the two
calculi is the same but for some notational differences (also, webπ∞ has no
protection, but this can be easily encoded as discussed below), but the two
semantics differ in a few points, discussed below:

1. output messages in webπ∞ are not deleted in case of abort of the enclosing
transaction scope: the same behavior can be obtained in static recovery
processes by enclosing each output message inside a protected block, i.e.,
by defining the syntax for output messages as 〈a〈~v〉〉.

2. in webπ∞ messages and subtransactions can escape from transaction sco-
pes using structural congruence: actually, this has no influence on the
semantics since the external transaction scope has no influence on sub-
transactions neither on messages. For subtransactions, this depends on
the fact that webπ∞ has preserving semantics. For messages, this depends
on the fact that messages are protected, as discussed in the previous point.

3. protected blocks are not available in webπ∞: webπ∞ has preserving se-
mantics for transaction nesting, thus transaction scopes can be used to
mimic protected blocks. In particular, given a fresh name t, (ν t) t[P,0]
has the same behavior of 〈P 〉. Note that in webπ∞, when a transaction
scope t[P,Q] is aborted (e.g., from the outside), it becomes, assuming that
P contains no messages or subtransactions, (ν t) t[Q,0], which corresponds
exactly to 〈Q〉.

4. a transaction scope t[P,Q] can only be aborted if P contains at least one
input, i.e., once P completes the transaction scope cannot be aborted any
more. To match this behavior one would need to change the semantics of
static recovery processes, by adding a condition checking that there are
inputs inside the body of the transaction scope as a premise to both rule
(L-Recover-out) and rule (L-Recover-out). This can be done using
a predicate inp(P ) defined as for webπ∞.

As we have seen, the only two differences which have a relevant impact on
the semantics of the calculus are 1 and 4. Luckily, those two differences have
no impact on the encoding of parallel recovery into static recovery. We detail
below how the encoding in Definition 20 can be reformulated using webπ∞
semantics (we stick however to the notation of compensable processes). The
only notable difference is that protection is simulated by transaction scopes
with bound names, according to item 3 in the list above.

Definition 30 (From webπ∞ with parallel recovery to webπ∞).
Let r, s be fixed fresh names. The encoding J•Kwp2w from webπ∞ with parallel
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recovery processes to webπ∞ processes is defined as:

Jt[P,Q]Kwp2w = (ν r) t [JP Kwp2w , JQKwp2w | r]
Jinst⌊λX.Q |X⌋.P Kwp2w = JP Kwp2w | (ν s) s [r.(JQKwp2w | r),0]

All the remaining operators are homomorphically mapped to themselves.

To prove that J•Kwp2w is a good encoding one can follow the approach de-
scribed in Section 4. The results in Section 4 are stated on a synchronous calcu-
lus, while webπ∞ is asynchronous. However, the encoding of an asynchronous
process is still an asynchronous process, thus the result can be applied in an
asynchronous setting too (see Remark 1). We prove the correctness theorem be-
low. The notion of bisimilarity preservation suitable for webπ∞ is asynchronous,
since webπ∞ is asynchronous, but requires also to preserve the inp(•) predicate.
This is needed to have a compositional equivalence, as argued in [34]. We call
such a notion weak asynchronous webπ∞ bisimilarity. However, the encoding
preserves any reasonable weak equivalence, including weak synchronous bisimi-
larity and weak asynchronous bisimilarity.

Theorem 5. J•Kwp2w is a good, weak asynchronous webπ∞ bisimilarity pre-
serving encoding.

Proof. Following Definition 16, J•Kwp2w is a good encoding if it is composi-
tional, correct, and divergence reflecting. The proofs for compositionality and
divergence reflection are exactly as in Section 4. For proving that the encod-
ing is correct we prove that it preserves weak asynchronous webπ∞ bisimilarity
(which implies should testing equivalence for asynchronous observers). The
proof follows the same lines of the one in Section 4. The main differences are
that:

• in all processes, protected blocks are replaced by transaction scopes with
bound names;

• proofs related to the behavior of the extraction function (for instance,
Lemma 6) are easier, since webπ∞ is based on the preserving semantics;

• for checking bisimilarity one has to check that the inp(•) predicate is pre-
served; however all such checks are easy. 2

We now prove that webπ∞ extended with general recovery operators cannot
be encoded in webπ∞, transporting to webπ∞ the results in Section 5. Since
webπ∞ is an asynchronous calculus, the results of Theorem 3 and of Theorem 4
are of interest.

Adapting the first one to webπ∞ requires no effort. However, as for the
correctness of the encoding, the suitable notion of equivalence to be preserved is
weak asynchronous webπ∞ bisimilarity. Since this notion is stronger than weak
asynchronous bisimilarity, the proof has no need to be changed to accommodate
the new notion.
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Theorem 6. There is no good, weak asynchronous webπ∞ bisimilarity preserv-
ing encoding J•Kgw2w of webπ∞ with general recovery processes into webπ∞ pro-
cesses.

Proof. The proof is essentially equal to the proof of Theorem 3. 2

For Theorem 4, the situation is rather different. The proof of Theorem 4
strongly relies on output messages being killed by transaction abort, but this
requirement is not satisfied in webπ∞. Thus the proof strategy cannot be ap-
plied.

6.2. Relations with other calculi

We discuss here the relations between compensable processes and other cal-
culi/languages in the literature, focusing on whether and how our results can
be applied to them.

Webπ. Webπ [8] is the extension of webπ∞ with time: webπ transactions can
abort either because of an incoming error notification or because the time
allowed for the transaction expired. Thus webπ processes are time sen-
sitive, and the encoding does not work any more: a timed context can
notice that the original process and its translation take different amounts
of time to execute. It is not possible to statically keep this difference into
account, since it depends on the number of compensation updates. As far
as impossibility results are concerned, the approach used for webπ∞ can
be applied here, adapting Theorem 6. We guess that the additional ob-
servational power provided by time sensitivity can allow to prove stronger
results and/or to simplify the proofs. However, we are not interested here
in studying the expressive power of timed calculi, thus we leave this issue
for future work.

Dcπ. The Dynamic Compensation calculus [12] is a calculus with parallel re-
covery based on asynchronous π-calculus. For this reason, compensation
update is allowed only after input prefix. Actually, in dcπ, input prefix
and compensation update are combined in an atomic primitive a(~x)%Q.P
that, after receiving values ~v on channel a, continues as P{~v/~x} and adds
Q{~v/~x} in parallel to the current compensation. The same behavior can be
obtained in parallel recovery processes by writing a(~x). inst⌊λX.Q |X⌋.P .
In fact, even if in compensable processes the input and the compensation
update are two separate steps, the overall result is the same, and atomic-
ity is enforced by priority of compensation update. Thus dcπ can be seen
as the asynchronous fragment of parallel recovery processes with aborting
semantics for transaction nesting where compensation update can occur
only after input prefix. The encoding in Section 4 can be easily adapted
to dcπ, allowing to encode dcπ into its static recovery fragment. Similarly
Theorem 3 and Theorem 4 can be applied to dcπ, showing that the ex-
tension of dcπ with general dynamic recovery cannot be encoded in dcπ.
Note that to define such an extension one would need to change also the
runtime syntax of dcπ.
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πt-calculus. The πt-calculus [6] is based on asynchronous π-calculus. When
a process aborts, abortion or completion of parallel processes (including
parallel transactions) is waited for. Then, compensations of successfully
terminated parallel transactions are executed (in parallel), followed by
the failure manager of the enclosing transaction, which is in charge of
managing the abort. Both compensations and failure managers are defined
statically. It is difficult to adapt the encoding in Section 4 to πt-calculus.
One will need to add protected blocks to the calculus, and to change the
semantics of abort/commit. In fact, abort/commit in πt-calculus waits for
the termination of all parallel processes inside the same transaction scope,
and processes produced by the encoding include protected blocks which
cannot terminate before the compensation of the transaction is executed.
Concerning separation results, Theorem 3 can be adapted to prove that
adding general dynamic recovery to πt-calculus (allowing to dynamically
update failure managers or compensations) would increase its expressive
power. As for webπ∞, Theorem 4 cannot be adapted, since transaction
abort in πt-calculus never deletes output messages.

ATc. The Attribute-based Transactional calculus [13] is an extension of π-
calculus [4] to model the dynamic reconfiguration of transactions described
by Enterprise Java Beans [41]. As for dcπ, in ATc prefixes include a
compensation update (both input and output prefixes, since ATc is syn-
chronous), and the new compensation item is added in parallel to the cur-
rent compensation. ATc is based on the discarding semantics for trans-
action nesting. Our results apply quite straightforwardly to ATc. For
instance, the encoding in Section 4 can be applied to map ATc into its
static fragment, provided that a protection operator is added to the cal-
culus. Also, Theorem 2 can be used to show that adding general dynamic
recovery to the calculus would increase its expressive power.

TransCCS. TransCCS [21] is a calculus for modeling communicating transac-
tions. Part of the context can be imported into the body of the transaction
scope (in parallel), provided that it is also copied into the compensation
(in parallel), so to restore the environment state in case of failure. This is
different from our parallel recovery, since this is automatic and the added
code comes from outside the transaction scope. Thus, allowing the pro-
cess into the transaction scope to update the compensation code (using
parallel recovery or general dynamic recovery) is an orthogonal feature.
Our results apply to such an extension. Remember, in fact, that the en-
coding can be adapted to CCS-based languages (see Remark 1). Similarly,
Theorem 2 can be adapted (see Remark 3).

C-join. C-join [7] is a calculus with static recovery built on top of Join calcu-
lus [38]. However here transaction scopes can be dynamically merged, and
their compensations are composed in parallel, thus obtaining some form
of parallel recovery. The encoding in Section 4 is not directly applicable
since C-join has no protected block operator, but it becomes applicable
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as soon as such an operator is introduced. As far as separation results
are concerned, join patterns are more powerful than π-calculus commu-
nication, and we conjecture that they can be used to implement general
dynamic recovery. In fact, the separation results are based on the fact that
compensation update and the input prefix enabling it have to be executed
atomically, and it is difficult to satisfy such an atomicity constraint. How-
ever, one can use a join pattern with two arguments to model an input
and at the same time capture a mutual exclusion token. The capture of
the mutual exclusion token (which would be required to perform any ac-
tivity related to error handling) would ensure that compensation update
is completed before any other error handling activity could be done.

Service oriented calculi. Many service oriented calculi have been recently
proposed [42, 43, 44, 39, 45, 46]. Since long running transactions are
an important aspect of service oriented computing, many of these calculi
include primitives for error and compensation handling. We discuss here
the ones more related to our approach.

SOCK [43] is a calculus allowing to compose service invocations and defi-
nitions using primitives from sequential languages and concurrent calculi.
It has been extended with primitives for general dynamic recovery in [17].
The encoding in Section 4 can be applied to SOCK by exploiting signals
(SOCK synchronization mechanism) to enable compensation items. Ac-
tually, in SOCK, the protected block is just used in the definition of the
semantics, but it can be implemented too. In fact, (ν t) t[t, Q], which has
a straightforward translation into SOCK, reduces to 〈Q〉 (both on its own
and in case of an external abort before the synchronization on t). Since
SOCK has no restriction operator, fresh signal names should be statically
generated, and the behavioral correspondence result should be restated
along the lines of Remark 2. The separation result instead does not ap-
ply: SOCK global state allows to track the order in which parallel actions
are executed. However, exploiting this information for selecting the order
of execution of compensation items is not trivial, and we do not know
whether this can be done in a compositional way.

The discussion made for SOCK above applies also to Jolie [40, 47], a
full-fledged language for service oriented computing based on it.

COWS [39] communication is in the style of fusion calculus [48]. COWS
has a kill primitive and a protected block. This allows to program static
recovery as shown in [39]. Our encoding can be applied to program also
parallel recovery. The separation result instead cannot be easily extended,
since COWS communication and kill have priorities, thus allowing parallel
processes to influence each other. As for SOCK, it is not clear whether
such a feature allows to program general dynamic recovery.

Other service oriented calculi either have no error handling mechani-
sms [44], or they include only basic mechanisms for exception handling [45]
or notification of session failure [42, 46].
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Compensable flow calculi. Compensable flow calculi, such as SAGAs cal-
culi [11] or StAC [10], concentrate on how to derive compensations for
complex transactions from compensations for basic activities. These cal-
culi use backward recovery for sequential activities and parallel recovery
for parallel ones. However, these calculi are at a more abstract level, de-
scribing which compensation items are executed and when, but abstracting
away from most of the details: compensation policies are hard-wired in
the calculus semantics, not specified by the programmer. For this reason,
more than analyzing which mechanisms they can express, it is interesting
to analyze whether they can be implemented on top of more basic calculi.
Such a problem has been studied for instance in [9, 49]. Comparisons
among different compensable flow calculi, concentrating on classifying the
different hard-wired policies, have been presented in [50, 51].

WS-BPEL. WS-BPEL [3] is the de-facto standard for web services composi-
tion, proposed by Oasis. Compensations are statically defined, and they
are composed using backward recovery for sequential subtransactions, and
parallel recovery for parallel ones. The analysis of the applicability of our
results to WS-BPEL follows the same reasonings discussed for SOCK.
Summarizing, the encoding can be applied, while it is not clear how to
adapt the proofs of the separation results. Note that from BPEL docu-
mentation [3] it is not clear whether compensation execution is protected
from external faults as in SOCK, thus allowing to implement protected
blocks. However this is what happens in most of the implementations, e.g.
in ActiveBPEL [52], and in the formal semantics described in [53].

6.3. Conclusion and future work

We have presented different results concerning the expressive power of prim-
itives for compensation handling: an encoding of parallel recovery into static
recovery, and separation results showing that general dynamic recovery and
backward recovery cannot be encoded using static recovery. The general ap-
proach that we support consists in analyzing the problem in a simple formal
setting, and then transporting the results to more complex calculi and lan-
guages, where the feature under analysis will interact with other aspects. We
have presented our main results in sections 4 and 5, and discussed their appli-
cability to other calculi in the first part of this section. The proof techniques
used in Section 5 are original, different e.g. from the ones considered in [24, 27].

As we already discussed throughout the paper, many open issues concerning
the expressive power of mechanisms for long running transactions still remain.
In fact this topic, while relevant, has been neglected until now. We already
discussed in the first part of the section the most related works in the literature.
Other papers, such as [54, 55], study the expressive power of primitives for
interruption, more than primitives for compensation as in our case.

We think that the techniques presented in this paper can be successfully
applied to answer some of the open issues. We refer in particular to the analysis
of whether the aborting semantics for transaction nesting can be implemented
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using the preserving one, and to the encodability of BPEL-style recovery into
static recovery. We conjecture that this last encoding is possible, thus BPEL-
style recovery could be defined as a macro on top of static recovery. After these
problems have been analyzed in a simple setting, additional work is required
to transfer the results to other calculi/languages. Another important topic
that deserves further investigation is the impact of communication primitives
more powerful than π-calculus message passing, such as join patterns, on our
separation results. It has been shown in [56] that such a kind of synchronization
increases the expressive power of CCS, but its impact on our results has to be
analyzed. Similarly, the impact of priority on our results needs investigation.
The effect of priority on the expressive power of π-calculus has been studied for
instance in [57], and its effect on behavioral equivalence has been studied also
for service oriented calculi [58].

Thus, there are still many missing pieces in the puzzle. Filling them would
allow to have a deep understanding of the relationships among the different
design choices involved in the definition of mechanisms for long running trans-
actions, and of their relationships with other aspects of the underlying language.
This would allow to put some order on the current flurry of proposals, and to
choose the ones that best fit each purpose based on technical reasons.
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