
Exploiting User-definable Synchronizations in

Graph Transformation �

Ivan Lanese
1

Computer Science Department, University of Bologna, Bologna, Italy

Abstract

Parametric Synchronized Hyperedge Replacement (PSHR) is a graph transformation formalism where pro-
ductions specifying the behavior of single components can be synchronized to give full transitions. The
main feature of PSHR is that the synchronization model is user-definable. To enhance the applicability
of the approach we propose a simplified and more suggestive semantics, preserving however the expressive
power of the original one. We also show how some common synchronization models can be formalized and
exploited inside PSHR. This allows to simplify the modelling step, and the produced model too. We apply
this approach to the airport case study of FET-GC project AGILE.

Keywords: Graph transformation, Synchronized Hyperedge Replacement, synchronization algebras,
mobility.

1 Introduction

Architectural modelling is the step of the design of a system that fixes the structure

of the system, that is its components and the connections among them, and its

evolution over time. Since these aspects have a large impact on all the following

phases of the development process, it is important that the decisions made are

clearly stated in the model. This requires modelling frameworks with a formal

syntax and semantics.

Many approaches to this problem have been presented in the literature, from

UML [13] to different Architecture Description Languages [3]. We choose as frame-

work Synchronized Hyperedge Replacement (SHR) [6], which is a graph transfor-

mation framework. Thus the system is modelled as an (hyper)graph, where (hy-

per)edges are components connected through common nodes. This provides both

sound mathematical foundations and a suggestive visual representation. In SHR

the behavior of components is specified by productions which can be synchronized

� Research supported by the EC Project IST-FP6 16004 Sensoria.
1 Email: lanese@cs.unibo.it

Electronic Notes in Theoretical Computer Science 211 (2008) 27–38

1571-0661/$ – see front matter © 2008 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.04.027

mailto:lanese@cs.unibo.it
http://www.elsevier.com/locate/entcs

to build transitions. In particular, productions perform actions on nearby nodes,

and actions performed on the same node must be compatible according to some

synchronization model. We also use mobility [9,8], allowing actions to carry nodes

as parameters, and synchronization to merge them thus reconfiguring the system.

In particular, we consider Parametric SHR (PSHR) [11], where both action syn-

chronization and mobility patterns are specified by a user-defined Synchronization

Algebra with Mobility (SAM). This allows to choose each time the most suitable

synchronization model for the application at hand.

PSHR is very expressive, as shown in [11], but its formal semantics is quite heavy

and difficult to understand. This problem is common to other SHR variants, and

is aggravated in PSHR by the need to manage different synchronization models.

The problem is due to the fact that the standard semantics of SHR is based on

inference rules that exploit a representation of graphs as terms in an algebra. In

this presentation each part of the transition is obtained as a result of many inference

steps, thus it is not easy to guess the global effect of a set of productions. We propose

a more extensional semantics, where the synchronizations allowed on a node by a

specific SAM are directly characterized, and an algorithm specifies how to build

a full transition. Also, the semantics is based on a set-theoretic representation of

graphs instead of on an algebraic one.

We also show how a synchronization model can be formalized as a SAM, and

how PSHR can be used to model the evolution of a system using this SAM. We

apply this approach to the airport case study [2], which has been proposed in-

side the FET-GC project AGILE [1] on architectures for mobility. We show that

parametric synchronization allows a simpler model than the one presented in [4],

where a synchronized version of Double Pushout [7] based on a fixed two-parties

synchronization is used.

Structure of the paper. § 2 defines graphs and SHR transitions. § 3 presents

SAMs, characterizes their effects, and analyzes the modelling of synchronization

policies as SAMs. § 4 contains the algorithm to derive transitions from productions.

§ 5 details the application of the approach to the airport case study. Finally, § 6

presents conclusions and plans for future work.

2 Hypergraphs and SHR transitions

SHR [6] is an approach to (hyper)graph transformation that defines global tran-

sitions using local productions. Productions define how a single (hyper)edge can

be rewritten and the conditions that this rewriting imposes. Conditions are spec-

ified as compatibility requirements among actions performed by productions on

nearby nodes. The exact requirements depend on the chosen synchronization model.

We use the extension of SHR with mobility [9,8], that allows edges to send node

references together with actions, and nodes whose references are matched during

synchronization are merged. In this work we use Parametric SHR (PSHR) [11],

where the used synchronization model and mobility patterns can be freely chosen

by specifying them via a Synchronization Algebra with Mobility (SAM). A detailed

I. Lanese / Electronic Notes in Theoretical Computer Science 211 (2008) 27–3828

description of different SHR frameworks can be found in [10].

The usual presentation of SHR is based on a representation of graphs as terms in

a suitable term algebra and on inference rules to derive transitions from productions.

This presentation allows to easily prove properties of the framework exploiting tech-

niques from the process calculi field, but it is not so suggestive, since transitions

are built as a result of many inference steps, and this makes difficult to understand

the actual interactions. Also, the general mechanism is hidden because of heavy

technicalities.

We propose here an original and more suggestive semantics, where transitions

are built using an ad-hoc algorithm that highlights the main features of the syn-

chronization and mobility mechanisms, and we present a direct description of the

interactions allowed by a SAM. Also, our semantics is based on a set-theoretic

presentation of graphs instead of on an algebraic one.

We always assume to have a countable set of nodes N , a countable set of edges

E , and a countable ranked set of edge labels LE. Given L ∈ LE, rank(L) is its

rank.

Definition 2.1 (Hypergraph)

A (hyper)graph is a tuple 〈E, lab, N, conn,Γ〉 where E ⊆ E is the set of edges,

lab : E → LE is the labelling function for edges, N ⊆ N is the set of nodes,

conn : E → N∗ is a function mapping each edge e to a n-uple of nodes where n is

the rank of the label lab(e), and Γ ⊆ N is the set of nodes in the interface. Nodes

not in the interface are said hidden.

Graphs are considered up to bijective renamings of edges and of hidden nodes.

In the above description conn specifies to which nodes each edge is attached.

We present now the steps of an SHR computation.

Definition 2.2 (SHR transition) Let Act be a set of actions, and given a ∈ Act

let ar(a) be its arity. An SHR transition is of the form:

G
Λ,π
−−→ G′

where G and G′ are graphs. Let ΓG be the interface of G. Then Λ : ΓG → (Act×N ∗)

is a total function and π : ΓG → ΓG is an idempotent substitution. Function Λ

assigns to each node x the action a ∈ Act and the vector y of node references sent

to x by the transition. If Λ(x) = 〈a,y〉 then we define nΛ(x) = y. We require that

ar(a) = |y|. We define the set of communicated names n(Λ) as {z|∃x.z ∈ nΛ(x)}.
Substitution π allows to merge nodes. Since π is idempotent, it maps every node into

a standard representative of its equivalence class. We require that ∀x ∈ n(Λ).xπ = x,

i.e., only references to representatives can be sent.

SHR transitions are obtained by synchronizing productions using a specified

synchronization model.

Definition 2.3 (SHR production) An SHR production is an SHR transition

G
Λ,id
−−→ G′ such that G is a graph containing exactly one edge e. Also, each node in

I. Lanese / Electronic Notes in Theoretical Computer Science 211 (2008) 27–38 29

G occurs exactly once in conn(e). Furthermore the node substitution in the label is

id and the interface of G′ is ΓG ∪ n(Λ).

For each G of the above form there is an idle production G
Λε,id
−−−→ G where

Λε(x) = 〈ε, 〈〉〉 for each x ∈ ΓG (ε is a special “idle” action with ar(ε) = 0). Idle

productions are included in all sets of productions, which are also closed under

bijective renamings of nodes.

3 Synchronization Algebras with Mobility

We formalize a synchronization model as a Synchronization Algebra with Mobility

(SAM). SAMs were first introduced in [11], extending Winskel’s synchronization

algebras (SAs) [14] to deal with mobility of nodes.

As a notation, we use
 to denote disjoint set union. In A
 B we denote with

[1, x] (resp. [2, x]) the element that corresponds to x ∈ A (resp. x ∈ B).

Definition 3.1 (Synchronization algebra with mobility)

A Synchronization Algebra with Mobility < Act, ar, •, ε,mob, F in > consists of a

binary partial operator • on a set of actions Act, a set of mobility patterns mob

and a subset Fin of Act. Function ar : Act → N maps each action a ∈ Act to its

arity ar(a), and ε ∈ Act is an action of arity 0. Here mob is a set indexed by pairs

of actions (a, b) such that a • b is defined, and moba,b is a partial function from

{1, . . . , ar(a)}
 {1, . . . , ar(b)} to N.

We impose the following conditions:

(i) the • operator is associative and commutative;

(ii) ∀a, a′ ∈ Act.a • a′ = ε ⇒ a = a′ = ε;

(iii) ∀a ∈ Act.a • ε is defined ⇒
(a • ε = a ∧ ∀x ∈ {1, . . . , ar(a)}.moba,ε([1, x]) = x);

(iv) ε ∈ Fin;

(v) ∀a, b, c ∈ Act

∀x ∈ {1, . . . , ar(a)}.moba•b,c([1,moba,b([1, x])]) = moba,b•c([1, x]),

∀x ∈ {1, . . . , ar(b)}.moba•b,c([1,moba,b([2, x])]) = moba,b•c([2,mobb,c([1, x])]),

∀x ∈ {1, . . . , ar(c)}.moba•b,c([2, x]) = moba,b•c([2,mobb,c([2, x])]);

(vi) ∀a, b ∈ Act, x ∈ {1, . . . , ar(a)}.moba,b([1, x]) = mobb,a([2, x]);

(vii) ∀a, b ∈ Act.moba,b is surjective on {1, . . . , ar(a • b)}.

As in SAs, we have a set of actions Act and an operator • of action composition.

Here a•b = c means that actions a and b can synchronize giving action c as a result.

If a•b is undefined then a and b are not compatible. For instance in CCS an action a

can synchronize with a coaction a producing τ as a result. Action ε stands for “not

taking part to the synchronization”, and it allows to specify in a uniform way action

synchronization and asynchronous execution of actions. In fact, a • ε = a means

that a is executed asynchronously. With respect to SAs, now actions a in Act have

a specified arity ar(a), which corresponds to the number of node references carried

I. Lanese / Electronic Notes in Theoretical Computer Science 211 (2008) 27–3830

by a. A mobility pattern moba,b specifies how to build the references attached to

a • b starting from the references attached to a and b. The correspondence is just

positional as in usual procedure calls, but many parameters can be assigned to just

one position. In that case the parameters are merged and the result is assigned to the

chosen position. Using N as codomain instead of {1, . . . , ar(a • b)} allows to specify

merges among parameters even if the chosen representative of the equivalence class

defined in this way does not occur in the final label.

Simple message passing is specified by a set of mobility patterns MP that merges

corresponding references and assigns the result to the corresponding position. For-

mally, MPa1,a2
([n, x]) = x for each n ∈ {1, 2}, x ∈ {1, . . . , ar(an)}.

A mobility pattern moba1,a2
included in a SAM S can be applied to two actions

〈a1,y1〉 and 〈a2,y2〉 to compute both the substitution σ performing the merge of

parameters and the vector of parameters of the result, given respectively by the two

functions:

σ = sub(S, 〈a1,y1〉, 〈a2,y2〉) =

mgu({yi[j] = yh[k]|moba1,a2
([i, j]) = moba1,a2

([h, k])})

par(S, 〈a1,y1〉, 〈a2,y2〉)[i] = (yh[k])σ

where h, k are such that moba1,a2
([h, k]) = i ∧ i ≤ ar(a1 • a2)

For instance, let S be a message-passing SAM with actions a, b and c of arity 1, 3 and

2 respectively, such that a • b = c. Then sub(S, 〈a, 〈x1〉〉, 〈b, 〈y1, y2, y3〉〉) = {x1/y1}
(also {y1/x1} is a valid choice) and par(S, 〈a, 〈x1〉〉, 〈b, 〈y1, y2, y3〉〉) = 〈x1, y2〉. If

we consider an action a′ of arity 3 with parameters 〈x1, x2, x3〉 instead of a, then

σ = {x1/y1, x2/y2, x3/y3}, but x3 is not a parameter of the resulting action.

Fin is the set of complete synchronizations, that is synchronizations that are

allowed on hidden nodes. For instance, in CCS-style synchronization just τ (and ε)

are allowed on those nodes.

Conditions (i) and (ii) are from SAs. The former specifies that the result of an n-

ary synchronization does not depend on the order in which actions are synchronized.

The latter specifies that non ε actions can not disappear giving ε. Condition (iii)

specifies that synchronization with ε, if allowed, just propagates the other action.

Condition (iv) assures that all the edges can stay idle on any node. Conditions (v)

and (vi) state that mobility patterns are associative and commutative, extending

condition (i) to the mobility part. Finally, condition (vii) guarantees that each

reference attached to the composed action can be computed, that is it corresponds to

a non empty set of references from component actions. In particular, this guarantees

the existence of h, k in the definition of function par above.

We now characterize the effects of the synchronization specified by a SAM S

on a n-uple of actions 〈〈a1,y1〉, . . . , 〈an,yn〉〉. The effects of the synchronization

are an action cn with a tuple of parameters wn and a substitution ρn. We use

eqn({t1/x1, . . . , tm/xm}) to denote {t1 = x1, . . . , tm = xm}.

Definition 3.2 (Effects of a synchronization) The effects of a synchronization

are computed by induction on the number n of actions.

n = 1) c1 = a1, w1 = y1, ρ1 = id.

I. Lanese / Electronic Notes in Theoretical Computer Science 211 (2008) 27–38 31

Inductive case) Let cn, wn and ρn be the effects of the synchronization among

the first n actions. Then:

cn+1 = cn • an+1,

ρn+1 = mgu(eqn(ρn) ∪ eqn(sub(S, 〈cn,wn〉, 〈an+1,yn+1〉))),
wn+1 = par(S, 〈cn,wn〉, 〈an+1,yn+1〉)ρn+1.

Conditions (i), (v), (vi) in Definition 3.1 ensure that the result is independent w.r.t.

the order of a1, . . . , an.

We present now some simple SAMs which can be used as building blocks for

more complex ones, highlighting the technical aspects of the formalization of a

synchronization model as SAM. We just write the cases where • is defined. We also

skip cases that can be derived by commutativity. Furthermore, in the examples,

unless explicitly stated, we use moba,b = MPa,b. The following SAMs use the

minimal number of actions necessary to model a synchronization of the chosen

type, but sets of actions sharing just ε can be merged in a unique SAM allowing

different policies. In this case the action performed chooses the protocol to be used,

since it can interact only with other actions from the same group. An example of

this kind is presented in § 5.

Example 3.3 (Mutual exclusion SAM)

The mutual exclusion SAM is defined by:

- Fin = Act = {a, ε};

- λ • ε = λ for each λ ∈ Act.

Mutual exclusion ensures that in each transition at most one non ε action can be

performed on each node. Synchronization of a with ε is necessary to allow transitions

when more than one component is attached to the node. The SAM obtained by

removing this synchronization allows to detect if an edge is the only one attached

to a node, and it is attached just one time to it.

Example 3.4 (Milner SAM) The Milner SAM is defined by:

- Act = {a, a, τ, ε} with ar(a) = ar(a) and ar(τ) = 0;

- a • a = τ , λ • ε = λ for each λ ∈ Act;

- Fin = {τ, ε}.

The Milner SAM, so called since it is inspired by π-calculus synchronization,

models message passing, where actions a and a are input and output respectively

and τ stands for a complete message exchange. During synchronization correspond-

ing parameters are merged. Technically this is a refinement of the mutual exclusion

SAM, in fact mutual exclusion is imposed between different synchronizations. Hav-

ing just τ and ε in Fin ensures that on a hidden node x either nothing happens

or a complete message exchange is performed. Note that a SAM that uses many

actions, all interacting using the Milner protocol can be built, and many variations

are possible. For instance, the desired possibilities of input-output interactions can

be specified, e.g., allowing an input to interact with all the outputs in a given set.

We present now an extension of Milner SAM where communication has to be

I. Lanese / Electronic Notes in Theoretical Computer Science 211 (2008) 27–3832

authorized by a particular action ok, thus allowing a simple form of traffic control.

Thus a τ is here obtained as a result of a synchronization among a, a and ok. We

consider the simpler case of actions and coactions having arity 1.

Example 3.5 (Controlled Milner SAM) The controlled Milner SAM is defined

by:

- Act = {a, a, ok, (a, a), (a, ok), (a, ok), τ, ε} with ar(λ) = 1 for each λ ∈ Act \
{ok, (a, a), τ, ε}, ar((a, a)) = 2 and ar(λ′) = 0 for each λ ∈ {ok, τ, ε};

- a • a = (a, a) with moba,a([1, 1]) = 1, moba,a([2, 1]) = 2,

(a, a) • ok = τ with mob(a,a),ok([1, x]) = 1 for each x ∈ {1, 2},
a • ok = (a, ok), a • ok = (a, ok), (a, ok) • a = τ , (a, ok) • a = τ ,

λ • ε = λ for each λ ∈ Act;

- Fin = {τ, ε}.

We have used here a technical trick: actions (a, a), (a, ok) and (a, ok) are gen-

erally not used in productions, but they are used as intermediate results in the

computation of the full synchronization. Note that here mobility patterns are not

always specified by MP .

Example 3.6 (Broadcast SAM) The broadcast SAM is defined by:

- Act = {a, a, ε} with ar(a) = ar(a);

- a • a = a, a • a = a, ε • ε = ε;

- Fin = {a, ε}.

The broadcast SAM models secure broadcast, where one component performs

an output and all the others perform input. Notice that here reaction with ε is not

allowed, and this requires all the components to participate in a non idle way to the

synchronization. The requirement can be weakened by allowing some components

to stay idle, thus obtaining multicast.

Example 3.7 (Multicast SAM) The multicast SAM is defined by:

- Act = {a, a, ε} with ar(a) = ar(a);

- a • a = a, a • a = a, λ • ε = λ for each λ ∈ Act;

- Fin = {a, ε}.

To clarify Definition 3.2 we show here the effects of the synchronization of a tuple

of actions 〈〈a1,y1〉, . . . , 〈an,yn〉〉 according to multicast SAM. The synchronization

is allowed provided that at most one action is a. On a hidden node exactly one

action must be a. Also, ρ is an mgu of {yi1
= yi2

= · · · = yim
} where {i1, . . . , im}

are the indexes of the non ε actions. Finally, w = yi1
ρ.

4 Deriving transitions from productions

In this section we present an algorithm to derive all the transitions starting from a

graph G (without isolated nodes) specified by a set of productions P using a SAM

S. All the actions used in P are required to belong to Act.

I. Lanese / Electronic Notes in Theoretical Computer Science 211 (2008) 27–38 33

The steps of the algorithm are described below.

(i) For each edge e a production Pe = Le
Λe,id
−−−→ Re is chosen, in such a way that

there exists an idempotent substitution σe : ΓLe
→ ΓLe

such that Leσe is the

subgraph of G composed by the edge e and the attached nodes. Essentially Le

is equal to the desired subgraph, but if e is attached many times to the same

node x then all the occurrences of x but one are renamed in Le using fresh

names: σe performs the inverse substitution. Furthermore nodes created by

the productions (i.e., in Λe but not in Le) must be fresh.

(ii) For each node x, all the actions performed by productions Pe on nodes y such

that yσe = x are instantiated by applying σe to their tuples of parameters and

then composed, producing an action cx with parameters wx and a substitution

ρx.

(iii) If there is at least a node x for which the above action composition is not

defined, or x /∈ ΓG but cx /∈ Fin, then no transition can be derived for this

choice of productions.

(iv) A global substitution ρ is defined as the composition of all the substitutions

ρx, that is ρ = mgu{
⋃

x∈N eqn(ρx)}. Among the possible mgus we choose

one where nodes in ΓG are taken as representatives of their equivalence classes

whenever possible.

(v) Λ maps each node x in ΓG to the pair 〈cx,wxρ〉.

(vi) π is the restriction of ρ to the nodes in ΓG.

(vii) The final graph is obtained as follows:
• a graph is obtained by merging the instances Reσe of the RHSs of all the

productions Pe (choosing different representatives for hidden nodes and edges

in different RHSs);
• the substitution ρ is applied to the graph;
• only nodes in ΓG ∪ n(Λ) that occur in the resulting graph are kept in the

interface;
• isolated nodes are deleted.

We will not state here a formal theorem relating our semantics with the one

presented in [11], since the present semantics formalizes a more refined approach

to PSHR w.r.t. the older one available in [11]. In fact, the two approaches allow

slightly different classes of SAMs. We will however discuss informally the differences

between the two semantics.

In [11] graphs are represented as syntactic judgments Γ � T where T is a term

and Γ is the set of nodes in the interface (corresponding to ΓG here). The term T is

built using constants for edges and the empty graph, and operators for composing

graphs (merging common nodes) and hiding nodes. Term T is considered up to

a structural congruence that abstracts from the order of edges and of hidings and

allows α-conversion of nodes. Edges are not explicitly named: just the labels are

considered. Judgments up to structural congruence can be interpreted into graphs,

obtaining a bijective correspondence.

I. Lanese / Electronic Notes in Theoretical Computer Science 211 (2008) 27–3834

Pisa AI234

IL UMFG

Pisa

UM−C

FGAI234 IL−C

univ

inPi

chk

inAIinPi

inAI chk

univ:< ,<>>ε

Fig. 1. A sample transition.

From a dynamic point of view the main difference between the semantics pre-

sented here and the standard one is that here isolated nodes are forbidden in the

starting graph and removed from the result, while they are allowed in the standard

one. This is not an important restriction since isolated nodes can not influence the

other parts of the graph. They are actually needed in the standard semantics for

the internal steps of the derivation of some transitions. In our case it is enough

to allow them in productions. This difference allows to remove the component

Init, used in [11], from SAM definition. Also, the standard semantics allows a non

identity substitution π also in productions, but this is superfluous since the same

effect can be obtained by synchronizing two actions on a hidden node. However this

feature can be added also to our semantics. If we restrict our attention to SAMs

that can be specified in both the frameworks (and we find a suitable set Init for

[11]-style SAMs), and to productions having just id as node substitution, then the

two semantics are equivalent up to isolated nodes (and actions performed on them).

5 The airport case study

We show here how the approach described above can be applied to the airport case

study [2] of FET-GC project AGILE [1]. Since we are not aiming at tackling the

whole case study, but just at showing how PSHR can be applied, we will do some

simplifications. For a more complete approach to this modelling problem see [4].

The airport case study concentrates on modelling planes landing and taking off

at airports, with passengers boarding the planes. We model entities (which are

classes in UML class diagrams [13]) as edges with attributes modelled as nodes.

In particular, we have edges for airports, planes and passengers. In this example,

the first connection of each edge represents the attribute AtLoc, proposed in an

extension of UML diagrams with mobility [5]. The value of attribute AtLoc repre-

sents the location containing a mobile object. Also, objects that are locations such

as airports and planes have the dual attribute Containing. Furthermore, planes

have an attribute CheckedIn, whose value is the set of passengers that have already

checked in for next flight. Passengers that have already checked in have the dual

attribute. A simple graph modelling a system of this kind is the left graph in Fig-

ure 1, featuring one airport (Pisa) located in the universe (univ), a plane (AI234)

in the airport and three passengers, two which have already checked in (IL-C, UM -

C), and one which has not (FG). We represent edges as rectangles containing the

label and connected to bullets representing nodes. Bullets are solid for nodes in the

I. Lanese / Electronic Notes in Theoretical Computer Science 211 (2008) 27–38 35

AIR

PLA PLA

AIR PASPAS−C

at

at

chk

at

in

chk

newat

in

chk:

newat

chk:
<breq,<in>>

at:<req,<newat>>

<brd,<newat>>
in:<ack,<at>>

at:< ,<>>ε

in:< ,<>>ε

at:< ,<>>ε

Fig. 2. Productions for the example.

interface and empty otherwise.

We want to specify a transition that models the boarding of all the passengers

who have checked in and the take off of the plane. This transition requires multiple

checks and reconfigurations: essentially all the passengers who have checked in must

move (changing their location), and the airport must allow the plane to take off.

The plane must change its location too.

This is modelled by the productions in Figure 2 (which are schemas drawn

for generic labels AIR, PLA, PAS-C and PAS for airports, planes, checked in

passengers and not checked in passengers respectively), where Λ is represented by

decorating each node with the corresponding action.

We have now to specify the SAM S that we want to use. Actions ack and

req have to synchronize using Milner synchronization, since they model a message

exchange between the airport and the plane allowing the take off, while actions breq

and brd have to synchronize using broadcast synchronization with breq as output

action, since all the checked in passengers have to board. Thus we can build the

wanted SAM using the Milner SAM and the broadcast SAM as building blocks.

The resulting SAM is defined by:

- Act = {req, ack, breq, brd, τ, ε} with ar(λ) = 1 for each λ ∈ Act \ {τ, ε} and

ar(τ) = 0;

- req • ack = τ , breq • brd = breq, brd • brd = brd,

λ • ε = λ for each λ ∈ {req, ack, τ, ε};

- Fin = {τ, breq, ε}.

We can thus derive the transition in Figure 1. Let us see how the different steps

of the algorithm are performed.

(i) For each edge but FG the corresponding production in Figure 1 is used, for

edge FG an idle production is used. For nodes in the LHSs the names in the

graph can be used, since no edge is attached two times to the same node. For

new nodes (all called newat in the figure) different names must be chosen. To

this end we add the label of the corresponding edge to the nodes created by

passenger edges.

(ii) Let us consider node inP i as example. The actions performed on it are

〈ack, 〈univ〉〉, 〈req, 〈newat〉〉, 〈ε, 〈〉〉, 〈ε, 〈〉〉, 〈ε, 〈〉〉. These can be composed pro-

ducing ρinP i = {univ/newat} and action 〈τ, 〈〉〉.

(iii) The transition is allowed since all the compositions are defined and for nodes

I. Lanese / Electronic Notes in Theoretical Computer Science 211 (2008) 27–3836

different from univ the resulting action is in Fin.

(iv) The substitution ρ is {univ/newat, inP i/newatIL−C , inP i/newatUM−C}.

(v) Λ maps just univ to 〈ε, 〈〉〉.

(vi) π is the identity substitution.

(vii) The final graph is obtained from the union of the RHSs, applying substitution

ρ and leaving only univ in the interface.

Notably, when a suitable SAM is chosen for synchronization, the implementa-

tion of the communication protocol becomes trivial. In [4] instead just a simple

binary synchronization is used, thus a complex procedure is required to implement

broadcast. In particular, this adds to the model of the system a subgraph used

for synchronization purposes which does not correspond to any entity in the real

system. Our choice allows models at a more abstract level, as suited for modelling

complex systems.

6 Conclusion and future work

We have provided a more direct characterization of the behavior of a SAM and of

the transitions allowed by PSHR w.r.t. [11]. We think that this is useful to make

PSHR more usable. The result applies also to most of the SHR frameworks in the

literature, which are instances of PSHR with a suitable SAM. Our approach can be

also straightforwardly extended to deal with nondeterministic synchronizations and

the use of many SAMs inside the same graph as presented in [12].

As future work we want to formalize different forms of SAM composition using

categorical tools and analyze the observational semantics of SHR systems.

References

[1] AGILE: Architectures for mobility. http://www.pst.informatik.uni-muenchen.de/projekte/agile/ .

[2] L. F. Andrade et al. AGILE: Software architecture for mobility. In Proc. of WADT’02, volume 2755
of LNCS, pages 1–33. Springer, 2002.

[3] Architecture description languages. http://www.sei.cmu.edu/architecture/adl.html .

[4] P. Baldan, A. Corradini, and F. Gadducci. Specifying and verifying UML activity diagrams via graph
transformation. In Proc. of Global Computing 2004, volume 3267 of LNCS, pages 18–33. Springer,
2004.

[5] H. Baumeister, N. Koch, P. Kosiuczenko, and M. Wirsing. Extending activity diagrams to model mobile
systems. In Proc. of NetObjectDays’02, volume 2591 of LNCS, pages 278–293. Springer, 2002.

[6] P. Degano and U. Montanari. A model for distributed systems based on graph rewriting. Journal of
the ACM, 34(2):411–449, 1987.

[7] H. Ehrig, M. Pfender, and H. J. Schneider. Graph grammars: an algebraic approach. In Proc. of SWAT
’73, pages 167–180, IEEE, 1973.

[8] G. Ferrari, U. Montanari, and E. Tuosto. A LTS semantics of ambients via graph synchronization with
mobility. In Proc. of ICTCS ’01, volume 2202 of LNCS, pages 1–16. Springer, 2001.

[9] D. Hirsch and U. Montanari. Synchronized hyperedge replacement with name mobility. In Proc. of
CONCUR ’01, volume 2154 of LNCS. Springer, 2001.

I. Lanese / Electronic Notes in Theoretical Computer Science 211 (2008) 27–38 37

http://www.pst.informatik.uni-muenchen.de/projekte/agile/
http://www.sei.cmu.edu/ architecture/adl.html

[10] I. Lanese. Synchronization strategies for global computing models. PhD thesis, Computer Science
Department, University of Pisa, Pisa, Italy, 2006.

[11] I. Lanese and U. Montanari. Synchronization algebras with mobility for graph transformations. In
Proc. of FGUC’04 – Foundations of Global Ubiquitous Computing, volume 138 of ENTCS, pages 43–
60. Elsevier, 2004.

[12] I. Lanese and E. Tuosto. Synchronized hyperedge replacement for heterogeneous systems. In Proc. of
COORDINATION 2005, volume 3454 of LNCS, pages 220–235. Springer, 2005.

[13] J. Rumbaugh, I. Jacobson, and G. Book. The Unified Modeling Language Reference Manual. Addison
Wesley, 1999.

[14] G. Winskel. Synchronization trees. TCS, 34:33–82, 1984.

I. Lanese / Electronic Notes in Theoretical Computer Science 211 (2008) 27–3838

	Introduction
	Hypergraphs and SHR transitions
	Synchronization Algebras with Mobility
	Deriving transitions from productions
	The airport case study
	Conclusion and future work
	References

