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Abstract. Modern software systems have frequently to face unexpected
events, reacting so to reach a consistent state. In the field of concur-
rent and mobile systems (e.g., for web services) the problem is usually
tackled using long running transactions and compensations: activities
programmed to recover partial executions of long running transactions.

We compare the expressive power of different approaches to the spec-
ification of those compensations. We consider (i) static recovery, where
the compensation is statically defined together with the transaction, (ii)
parallel recovery, where the compensation is dynamically built as par-
allel composition of compensation elements and (iii) general dynamic
recovery, where more refined ways of composing compensation elements
are provided. We define an encoding of parallel recovery into static re-
covery enjoying nice compositionality properties, showing that the two
approaches have the same expressive power. We also show that no such
encoding of general dynamic recovery into static recovery is possible, i.e.
general dynamic recovery is strictly more expressive.

1 Introduction

Modern software systems are complex and composed by different interacting
components, commonly developed and managed separately. Also, they usually
rely on communication infrastructures, such as the Internet or wireless networks,
that are unreliable. Thus unexpected events can frequently arise during the exe-
cution of such applications: received data items may not have the desired struc-
ture, communication partners may disconnect, etc. In this context it is important
to use suitable error handling techniques allowing the whole system to reach a
correct state even if some of its components have failed.

In the field of concurrent and mobile systems (e.g., in the case of web services),
this problem is usually tackled using the concept of long running transaction.
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A long running transaction either succeeds, or a compensation is executed tak-
ing the system to a consistent state, possibly different from the one in which
the transaction started. This weakens the constraint of ACID transactions from
database theory, since it is difficult to guarantee ACID properties when trans-
actions can last for a long time, and when some actions cannot be undone.

In the literature there are different proposals of primitives for long running
transactions, from the Java try P catch e Q1, where Q is in charge of managing
exception e raised inside P , to the complex mechanisms of WS-BPEL [1] (the
de-facto standard for web services composition), exploiting fault, termination
and compensation handlers to deal with different error handling issues.

However, the relationships between the different proposals are not clear, and
there has been little work trying to formally compare the expressive power of the
proposed mechanisms. This problem is made hard by the fact that different prim-
itives for long running transactions are realized on top of different underlying
languages. Thus the different expressive power of the error handling primitives
is hidden because of other differences between the underlying languages. Under-
standing the expressive power of different primitives is important for language
design: primitives that do not add expressive power can be left out from the
core language and implemented as macros when needed, primitives that add
expressive power should be implemented in the core language.

This paper tackles this problem, by presenting a formal comparison of differ-
ent approaches to long running transactions in a concurrent and mobile setting.
To this end we add primitives for error handling, distilled from approaches in
the literature, to the same underlying language, so to have a more clear compar-
ison. We have chosen the simplest possible underlying language able to model
concurrent and mobile systems: the π-calculus [2]. Then further work is required
to apply the results to more complex calculi and real languages (see Section 6).

The approaches to error handling are far too many to be compared here,
thus we concentrate on a main feature: whether the compensation code for a
transaction is statically defined, or it is dynamically generated. Static recovery
is for instance the approach of Java try-catch, and is the classic approach of
interaction-based models [3–6]. For dynamic recovery we consider two different
possibilities: in parallel recovery the compensation is incrementally built as par-
allel composition of simpler compensations, while in general dynamic recovery
compensations can be both updated and replaced. Parallel recovery is commonly
used [1, 7, 8] to execute compensations of subtransactions when a transaction
fails, and it is the mechanism exploited by dcπ [9]. Most of the compensable
flow approaches [7, 8, 10], where compensations of complex activities are built
as compositions of compensations of their constituting activities, execute com-
pensations of sequential activities in backward order. Compensations are always
executed in backward order in backward recovery [11]. Backward recovery is the
main instance of general dynamic recovery, which has been proposed in [12].
Backward recovery has also been applied to Java in [13].

1 Actually, Java try-catch is designed for exception handling, but can be used also for
programming long running transactions.
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π ::= π-calculus prefixes
| a〈v〉 (Output prefix)
| a(x) (Input prefix)

P, Q ::= π-calculus processes
0 (Inaction)

| ∑
i∈I πi.Pi (Guarded choice)

| !π.P (Guarded replication)
| P | Q (Parallel composition)
| (ν x) P (Restriction)

Fig. 1. π-calculus processes

This paper compares the expressive power of static recovery, parallel recovery
and general dynamic recovery in the context of π-calculus. Our main results are:

– a compositional encoding of parallel recovery into static recovery;
– a separation result showing that no similar encoding exists from general

dynamic recovery (neither from backward recovery) to static recovery.

We also discuss how these results can be applied to other calculi in the literature.

Structure of the work: Section 2 introduces the primitives for long running
transactions. Section 3 discusses the conditions that a good encoding must sat-
isfy. Sections 4 and 5 present the main technical results: the encoding of parallel
recovery into static recovery, and the impossibility of encoding general dynamic
recovery into static recovery. Finally, Section 6 discusses how to apply the results
to calculi in the literature. Proofs can be found in [14].

2 Primitives for Compensations

2.1 Syntax

In this section we formalize in the framework of π-calculus [2] some primitives for
static, parallel and general dynamic recovery. The relationships between these
primitives and other primitives in the literature are discussed in Section 6.

To simplify the understanding and the comparisons, we define the three calculi
corresponding to static, parallel and general dynamic recovery in an incremental
way. The syntax of all our calculi relies on a countable set of names N , ranged
over by lower case letters. We use x to denote a tuple x1, · · · , xn of such names,
for some n ≥ 0, and {x} denotes the set of elements in the tuple. As already
said, our calculi are built on top of π-calculus, whose syntax is in Fig. 1.

Prefixes in π-calculus can be either outputs a〈v〉 of a tuple of values v on
channel a, or corresponding inputs a(x). The π-calculus syntax includes the
inactive process 0, guarded choice

∑
i∈I πi.Pi, guarded replication !π.P , parallel

composition P |Q of processes P and Q, and restriction (ν x)P of name x inside
P . We write a for a〈v〉 when v is empty, and a for a(x) when x is empty. We also
write (ν x) for (ν x1) · · · (ν xn) when x = x1, . . . , xn. The formal description of
the semantics will be given in Section 2.2 (see also [2]).

The first, and simpler, extension that we present corresponds to static recov-
ery. The syntax is presented in Fig. 2 (left). Static recovery can be realized by
adding just two constructs: transaction scope and protected block. A transaction
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P, Q ::= Static rec. processes P, Q ::= Compensable processes
. . . (π-calculus processes) . . . (Static rec. processes)

| t[P, Q] (Transaction scope) | X (Process variable)
| 〈P 〉 (Protected block) | inst�λX.Q�.P (Compensation update)

Fig. 2. Static recovery and compensable processes

scope t[P, Q] behaves as process P until an error is notified to it by an output t
on the name t of the transaction. When such a notification is received, the body
P of the transaction is killed and compensation Q is executed. Q is executed in a
protected block, i.e. not influenced by successive external errors. Error notifica-
tions may be generated both from the body P and from external processes. Error
notifications are simple output messages (without parameters). Thus one may
have nondeterminism, since the same output may be caught either by an input
or by a transaction scope. If such a behavior is not desired, it can be avoided by
using a simple sorting system. We will not consider this issue. Protected block
〈P 〉 behaves as P , but it is not killed in case of failure of an external transaction.

Compensable processes, which realize general dynamic recovery, extend static
recovery processes. The main difference is that in compensable processes the
body P of transaction t[P, Q] can update the compensation Q. Compensation
update is performed by a new operator inst�λX.Q′�.P ′, where function λX.Q′ is
the compensation update (X can occur inside Q′). Applying such a compensation
update to compensation Q produces a new compensation Q′{Q/X}. Note that Q
may not occur at all in the resulting compensation, and it may also occur more
than once. For instance, λX.0 deletes the current compensation. The syntax
of compensable processes extends the one of static recovery processes with the
compensation update operator and process variables (see Fig. 2 (right)).

We define for compensable processes the usual notions of free and bound
names. Names in x are bound in a(x).P , while x is bound in (ν x)P . Other
names are free. We denote with fn(•), bn(•) and n(•) the functions computing
the sets of free, bound and all the names respectively. Also, variable X is bound
in λX.Q. Bound names and variables can be α-converted as usual. We consider
only processes with no free variables. For simplicity we may drop trailing 0s.

Static recovery processes are a subcalculus of compensable processes where
compensation update is never used. Also, if a compensation update has the
form λX.Q |X where X does not occur in Q, then Q is added in parallel to the
existing compensation. Thus parallel recovery can be seen as a particular case of
compensable processes too. When speaking about parallel recovery we will write
a compensation update λX.Q | X simply as Q.

Definition 1 (Classes of processes). Compensable processes CP are defined
by the syntax in Fig. 2 (right). Parallel recovery processes PP are compensable
processes where all the compensation updates have the form λX.Q | X where Q
is a process without free variables. Static recovery processes SP are compensable
processes where the compensation update operator is never used.
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extrn(0) = 0
extrn(

∑
i∈I πi.Pi) = 0

extrn(!π.P ) = 0
extrn(inst�λX.Q�.P ) = 0

extrn(〈P 〉) = 〈P 〉
extrn(t [P, Q]) = extrn(P ) | 〈Q〉

extrn(P | Q) = extrn(P ) | extrn(Q)
extrn((ν x)P ) = (ν x) extrn(P )

Fig. 3. Extraction function with nested failure

The main question that this paper wants to answer is whether the three classes
of processes CP , PP and SP have the same expressive power or not.

2.2 Operational Semantics

To define the operational semantics of compensable processes we need an auxil-
iary definition: when a transaction scope t[P, Q] is killed, part of its body P has
to be preserved, in particular the part composed of protected blocks.

The definition of function extr(P ) computing the part to be preserved de-
pends on the meaning of transaction nesting. In the literature, two approaches
are considered: according to the nested failure approach a subtransaction has to
be killed when the transaction containing it is killed. This is for instance the ap-
proach of SAGAs calculi [8], WS-BPEL [1], and others. In the non-nested failure
approach instead, subtransactions are unaffected by external failures (however
the recovery of a transaction may include the explicit killing of its subtrans-
actions). This is for instance the approach of Webπ [5]. We consider both the
possibilities, since they just differ in the definition of function extr(•). Our re-
sults hold in both the cases. One can simulate the non-nested approach using
the nested one by protecting each transaction using a protected block, while it
is not clear whether the opposite simulation is possible. Clarifying this point is
left for future work.

Definition 2 (Extraction function). We denote the functions corresponding
to nested and non-nested failure respectively as extrn(•) and extrnn(•). The func-
tion extrn(•) is defined in Fig. 3. The definition of function extrnn(•) is the same
but for the clause for transaction scope, which becomes extrnn(t [P, Q]) = t [P, Q].

There is no need to define extrn(X) or extrnn(X) since X can occur only inside
the compensation update primitive.

We also need an auxiliary predicate noComp(P ) which is true iff P has no
pending compensation update. This is needed since a compensation update is
performed to reflect in the compensation some change in the state of the exe-
cuting process, and it should never happen that the state has changed and the
compensation update has not been performed. In other words, compensation up-
date should have priority w.r.t. other transitions (see [15] for a discussion on this
topic). Priority of compensation update is obtained by ensuring in the semantics
that when an action (different from a compensation update) is performed, no
compensation update is pending.

Definition 3 (noComp(•) predicate). The predicate noComp(P ) that verifies
the non-existence of pending compensation updates in P is defined in Fig. 4.
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noComp(0)
noComp(

∑
i∈I πi.Pi)

noComp(!π.P )

noComp(〈P 〉) if noComp(P )
noComp(t [P, Q]) if noComp(P )

noComp(P | Q) if noComp(P ) and noComp(Q)
noComp((ν x)P ) if noComp(P )

Fig. 4. No pending compensation update predicate

In particular, noComp(P ) is false if P is a compensation update primitive.
The operational semantics of compensable processes (and, implicitly, of static

recovery and parallel recovery processes) is defined below. We use a(v), (w)a〈v〉,
τ , (w)λX.Q and τc as labels. The first three forms of labels are as in π-calculus
(but outputs are also used for error notification, and inputs for receiving the
notification), while the last two labels are for compensation update. In particular,
(w)λX.Q requires a compensation update while τc is the corresponding internal
action. This has to be distinguished from τ since it has priority. We write a
for a(v) and a for a〈v〉 if v is empty. We use t instead of a to emphasize that
the name is used for error notification. Names in w are bound in (w)a〈v〉 and
(w)λX.Q. Other names are free. Functions fn(•), bn(•) and n(•) are extended
accordingly. We drop the set of bound names (w) from labels if it is empty.

Definition 4 (Operational semantics). The operational semantics with nes-
ted failure of compensable processes CP is the minimum labeled transition system
(LTS) closed under the rules in Fig. 5 (symmetric rules are considered for (L-
Par) and (L-Close)). The operational semantics with non-nested failure of
compensable processes CP is the minimum LTS closed under the rules in Fig. 5
(symmetric rules are considered for (L-Par) and (L-Close)), but where func-
tion extrn(•) is replaced by function extrnn(•).
Thefirst seven rules and the ninth extend the correspondingπ-calculus rules [2], the
others define the behavior of transactions, compensations and protected blocks.

Auxiliary rules (P-Out) and (P-In) execute output and input prefixes re-
spectively. The input rule guesses the received values v in the early style. Rules
(L-Choice) and (L-Rep) deal with guarded choice and replication respectively.
Rule (L-Par) allows one of the components of parallel composition to progress.
If the performed action is not a compensation update, then the rule verifies that
no compensation update is pending in the other component (last condition).
Rule (L-Res) is the classic rule for restriction. Rule (L-Open) allows to extrude
bound names. Rule (L-Close) performs communication. If the output action
contains some extruded names, restrictions for them are reintroduced.

Rule (L-Scope-out) allows the body P of a transaction scope to progress,
provided that the performed action is not a compensation update. Rule (L-
Recover-out) allows external processes to kill a transaction scope via an out-
put t. The resulting process is composed by two parts: the first one extracted
from P , and the second one corresponding to compensation Q, which will be
executed inside a protected block. The condition ensures that there are no pend-
ing compensation updates. Rule (L-Recover-in) is similar to (L-Recover-
out), but now the error notification comes from P . In this case condition
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(P-Out)

a〈v〉.P a〈v〉−−−→ P

(P-In)

a(x).P
a(v)−−−→ P{v/x}

(L-Choice)

πj .Pj
α−→ P ′

j j ∈ I∑
i∈I

πi.Pi
α−→ P ′

j

(L-Rep)

π.P
α−→ P ′

!π.P
α−→ P ′|!π.P

(L-Par)

P
α−→ P ′ bn(α) ∩ fn(Q) = ∅

α /∈ {(w)λX.R, τc} ⇒ noComp(Q)

P | Q α−→ P ′ | Q

(L-Res)

P
α−→ P ′ x /∈ n(α)

(ν x)P
α−→ (ν x)P ′

(L-Open)

P
(w)x〈v〉−−−−−→ P ′ z �= x z ∈ {v} \ {w}

(ν z)P
(zw)x〈v〉−−−−−−→ P ′

(L-Open2)

P
(w)λX.Q−−−−−−→ P ′ z ∈ fn(Q) \ {w}

(ν z) P
(zw)λX.Q−−−−−−−→ P ′

(L-Close)

P
x(v)−−−→ P ′ Q

(z)x〈v〉−−−−−→ Q′ {z} ∩ fn(P ) = ∅
P | Q τ−→ (ν z) (P ′ | Q′)

(L-Scope-close)

P
(z)λX.R−−−−−→ P ′ {z} ∩ (fn(Q) ∪ {t}) = ∅

t[P, Q]
τc−→ (ν z) t[P ′, R{Q/X}]

(L-Recover-out)

noComp(P )

t[P, Q]
t−→ extrn(P ) | 〈Q〉

(L-Scope-out)

P
α−→ P ′ α �= (z)λX.Q bn(α) ∩ (fn(Q) ∪ {t}) = ∅

t[P, Q]
α−→ t[P ′, Q]

(L-Recover-in)

P
t−→ P ′

t[P, Q]
τ−→ extrn(P

′) | 〈Q〉
(L-Inst)

inst�λX.Q�.P λX.Q−−−→ P

(L-Block)

P
α−→ P ′

〈P 〉 α−→ 〈P ′〉

Fig. 5. LTS for compensable processes

noComp(P ) is redundant since it can be deduced from the derivation. Rule (L-
Inst) requires a compensation update (note that the resulting internal action is
τc) while rule (L-Open2) allows to extrude bound names occurring in it. Rule
(L-Scope-close) updates the compensation of a transaction scope (the sub-
stitution should not capture free names). If the compensation update includes
extruded names, restrictions for these names are reintroduced (similarly to rule
(L-Close)). Finally, rule (L-Block) defines the behavior of protected blocks.

Example 1. We give here a few examples of transitions2.
– Transaction scopes can compute: a〈b〉 | t[a(x).x.0, Q] τ−→ 0 | t[b.0, Q]
– Transaction scopes can be killed: t | t[a.0, Q] τ−→ 〈Q〉
– Transaction scopes can commit suicide: t[ t.0 | a.0, Q] τ−→ 〈Q〉
– New compensations can be added in parallel:

t[inst�λX.P |X�.a.0, Q] τc−→ t[a.0, P |Q]
2 To simplify the presentation we discard some garbage. This can be done using the

notion of structural congruence in Definition 14.
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– New compensations can be added at the beginning:
t[inst�λX.b.X�.a.0, Q] τc−→ t[a.0, b.Q]

– Compensations can be deleted: t[inst�λX.0�.a.0, Q] τc−→ t[a.0, 0]

3 Conditions for Good Encodings

When discussing encodability/separation results, a main point is to decide which
conditions an encoding has to satisfy in order to be considered a good means
for language comparison. In the literature there are different proposals of such
conditions [16–19]. The choice of the conditions determines the level of abstrac-
tion used when comparing the different languages. Since different expressiveness
gaps are visible at different levels of abstraction, there are no universally good
sets of conditions. Also, encodability results are stronger if stated at the low
level of abstraction, i.e. with more strict conditions, while separation results are
more general when proved at the high level of abstraction. However, it is im-
portant that related results are proved under the same conditions, thus defining
a coherent picture of the expressiveness at the chosen level of abstraction. For
these reasons we discuss below the conditions that we use throughout the paper,
thus fixing our level of abstraction. We will consider stricter conditions too when
proving encodability results, thus strengthening them.

There are two kinds of conditions: (i) syntactic conditions on the form of the
translation, and (ii) conditions specifying the kind of behavior that the transla-
tion should preserve. We will base the latter on the concepts of divergence and
should testing equivalence [20] (this choice will be discussed later).

Definition 5. Process P diverges if there is an infinite sequence of actions τ
or τc starting from P .

Weak transitions are defined as follows: ==⇒ is the reflexive and transitive closure
of τ−→ ∪ τc−→, while α==⇒ is ==⇒ α−→==⇒.

Definition 6 (Should testing). Let P and O be processes and
√

a special
name occurring in O but not in P . We call O an observer. P should O iff for

each P ′ such that P | O ==⇒ P ′ we have P ′
√

==⇒. Two processes P and Q are
should testing equivalent, written P �shd Q, if, for each observer O, P should
O iff Q should O.

We use should testing equivalence as our basic notion of process equivalence.
However, we have to restrict its applicability. In fact, we are interested in how
compensation update can be realized, but compensation update is only mean-
ingful inside transaction scopes. Thus we have to restrict our attention to well
formed processes, i.e. processes that will never feature a compensation update
outside a transaction scope.

Definition 7 (Well formed processes). Predicates wf(•) and wc(•) charac-
terizing well formed processes and processes with well formed compensations are
defined by mutual induction in Fig. 6.
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wf(0)
wf(a〈v〉.P ) if wf(P )
wf(a(x).P ) if wf(P )
wf((ν x)P ) if wf(P )

wf(P | Q) if wf(P ) ∧ wf(Q)
wf(〈P 〉) if wf(P )

wf(t[P, Q]) if wc(P ) ∧ wf(Q)
wf(X)

wc(0)
wc(a〈v〉.P ) if wc(P )
wc(a(x).P ) if wc(P )

wc(inst�λX.R�.P ) if wf(R) ∧ wc(P )
wc((ν x)P ) if wc(P )

wc(P | Q) if wc(P ) ∧ wc(Q)
wc(〈P 〉) if wf(P )

wc(t[P, Q]) if wc(P ) ∧ wf(Q)
wc(X)

Fig. 6. Well formedness predicates

Next definition introduces n-ary contexts.

Definition 8. An n-ary context C[•1, . . . , •n] is obtained by replacing in a pro-
cess n occurrences of 0 with placeholders •1, . . . , •n. Process C[P1, . . . , Pn] is
obtained by replacing inside C[•1, . . . , •n] each •i with Pi.

We describe below the conditions that we require for good encodings. Since we
always deal with subcalculi of compensable processes we can use the notion of
equivalence defined above for them, e.g. observers in should testing are compens-
able processes (not necessarily well-formed).

Definition 9 (Conditions for good encodings). An encoding from a subcal-
culus C1 of compensable processes to a subcalculus C2 of compensable processes
is a function �•� : C1 → C2. Such an encoding is compositional if:

1. �P | Q� = �P � | �Q�;
2. for each name substitution σ there is a name substitution σ′ such that �Pσ� =

�P �σ′;
3. �t [P, Q]� = Ct[�P �, �Q�], where Ct[•1, •2] is a fixed binary context with pa-

rameter t.

An encoding is correct if for each well formed process P , P is should testing
equivalent to �P �. It is divergence reflecting if �P � diverges implies P diverges.
An encoding is good if it is compositional, correct and divergence reflecting.

The properties above have been taken from [19], where a general framework for
proving encodability and separation results is presented, and then adapted to
our setting. In particular, some of the conditions have been simplified since a
few issues do not emerge in our work (e.g., since all the calculi are subcalculi of
compensable processes). Condition 3, for instance, requires the transaction scope
to be translated into a context in the target language, and such a condition is
required for each operator in [19]. We have chosen should testing equivalence
as correctness criterion. Roughly, it combines operational correspondence and
success sensitiveness from [19]. Since we require also divergence reflection, using
must testing [21] instead of should testing does not change our results [20].

As we already said, we will show that our encoding satisfies stricter conditions.
In particular, we will replace the notion of correctness based on should testing



On the Expressive Power of Primitives for Compensation Handling 375

equivalence with one based on weak bisimilarity (we have chosen should testing
instead of must testing since weak bisimilarity implies should testing [20]).

Weak bisimilarity for compensable processes extends weak early π-calculus
bisimilarity with features from higher-order bisimilarity [22], since compensation
update is a form of higher-order communication.

Definition 10 (Weak bisimulation). A weak bisimulation is a symmetric
binary relation R such that PRQ implies:

– if P
τ−→ P ′ or P

τc−→ P ′ then there is Q′ such that Q ==⇒ Q′ and P ′RQ′;

– if P
(z)λX.R−−−−−→ P ′ and {z} ∩ fn(Q) = ∅ then there are S, Q′ such that

Q
(z)λX.S

=====⇒ Q′, P ′RQ′ and R{T/X}RS{T/X} for all processes T with no
free variables;

– if P
α−→ P ′ with α �= τ, (z)λX.R and bn(α)∩ fn(Q) = ∅, then there is Q′ such

that Q
α==⇒ Q′ and P ′RQ′;

– extr(P )R extr(Q).

The function extr(•) in the last condition should be instantiated to extrn(•) or
extrnn(•) according to the chosen LTS semantics. Closure under the extraction
function is required for having a compositional semantics (see [23]).

Definition 11. Weak bisimilarity ≈ is the largest weak bisimulation.

We will use the notion below as stronger form of correctness.

Definition 12. An encoding is bisimilarity preserving if for each well formed
process P , P is weakly bisimilar to �P �.

The lemma below proves that a bisimilarity preserving encoding is correct.

Lemma 3.1. Let P and Q be processes. If P ≈ Q then P �shd Q.

4 Parallel Recovery Can Be Implemented Using Static
Recovery

In this section we compare the expressive power of parallel recovery and static
recovery, considering both the cases of nested failure and non-nested failure.
We present an encoding from parallel recovery to static recovery, showing that
static recovery is as expressive as parallel recovery. The encoding respects the
conditions of Definition 9 and Definition 12.

The encoding associates to each transaction scope a fresh name r. Compen-
sations to be installed are left in the body of the transaction scope, protected
by a protected block and guarded by an input on r. When the transaction scope
is killed, an output on r, included in the static compensation, becomes enabled
and can interact with the stored compensations, enabling them. Each of them
also regenerates the output on r to enable further compensation elements.
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(ν r) t
[
book.(〈r.(unbook|r)〉 | pay.〈r.(refund|r)〉), 0 | r] book−−−→
(ν r) t

[〈r.(unbook|r)〉 | pay.〈r.(refund|r)〉, 0 | r] pay−−→
(ν r) t

[〈r.(unbook|r)〉 | 〈r.(refund|r)〉, 0 | r] t−→
(ν r) 〈r.(unbook|r)〉 | 〈r.(refund|r)〉 | 〈r〉 τ−→

(ν r) 〈r.(unbook|r)〉 | 〈(refund|r)〉 τ−→
(ν r) 〈unbook|r〉 | 〈refund〉 unbook−−−−→

(ν r) 〈r〉 | 〈refund〉 refund−−−−−→ (ν r) 〈r〉 | 〈0〉

Fig. 7. Sample execution

Definition 13 (From parallel to static recovery). Let r be a fixed fresh
name. The encoding �•�p2s from parallel recovery processes to static recovery
processes is defined as:

�t [P, Q]�p2s = (ν r) t [�P �p2s, �Q�p2s | r]
�inst�λX.Q | X�.P �p2s = �P �p2s | 〈r.(�Q�p2s | r)〉

and maps all the other operators homomorphically to themselves.

Name r will be α-converted to different names inside different scopes.

Example 2. We apply here the translation to a simple example. Consider a trans-
action which books some hotel and then pays for it. In case of failure, the booking
should be undone by sending a message unbook, and the payment by sending a
message refund. For simplicity we do not consider the contents of the messages.
The transaction can be modeled using parallel recovery processes as

t[book. inst�unbook�.pay. inst�refund�, 0]

Its translation is:

(ν r) t[book.(〈r.(unbook|r)〉 | pay.〈r.(refund|r)〉), 0 | r]

Figure 7 shows a sample execution, where the hotel is booked and payed, then
the transaction scope is killed and the two items of compensation are executed.

It is easy to see that the encoding is compositional. Even more, it maps all the
operators but transaction scope and compensation update homomorphically to
themselves.

Remark 1. We have presented the encoding in the framework of synchronous π-
calculus. The same encoding however can be used for CCS [24] and asynchronous
π-calculus [25], extended with the primitives for transactions and compensations.
In fact the encoding does not exploit name communication nor synchrony. We
have presented it in the most general setting since it is easier to restrict the
approach to CCS than to generalize an approach from CCS to π-calculus.
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The rest of this section is devoted to prove that �•�p2s is a good, bisimilarity
preserving encoding (see Definitions 9 and 12). We describe in detail the case of
nested failure, the case of non-nested failure requires minimum changes.

Remark 2. If we drop the requirement of well formedness, bisimilarity preserva-
tion is no more satisfied, e.g. since

�inst�λX.Q | X�.P �p2s = �P �p2s | 〈r.(�Q�p2s | r)〉 r−→
while inst�λX.Q |X�.P has no corresponding transition. Alternatively, one may
require that actions on fresh names introduced by the translation, such as r here,
are not observed by the behavioral equivalence.

While weak bisimilarity is preserved only for well formed processes, a strict re-
lationship holds also between the behavior of a general process P and of its
translation �P �p2s, as shown by Lemma 4.2 and Lemma 4.3. Roughly, the trans-
lation P̃ of a process P such that P

α−→ P ′ evolves to some process P̃ ′ which is
the translation of P ′. However, this holds only up to some transformations delet-
ing the garbage produced by the translation. To this end we exploit a structural
congruence and an auxiliary reduction relation.

Definition 14 (Structural congruence). Structural congruence on compens-
able processes is the minimum congruence ≡ closed under the rules in Fig. 8.

0 | P ≡P P | Q≡Q | P (P | Q) | R≡P | (Q | R)

(ν x)0≡0 (ν x) (ν y) P ≡(ν y) (ν x) P 〈(ν x)P 〉≡(ν x) 〈P 〉 (ν x) x≡0

P | (ν x) Q ≡ (ν x) (P | Q) if x /∈ fn(P )

t [(ν x) P, Q] ≡ (ν x) t [P, Q] if t �= x, x /∈ fn(Q)

〈〈P 〉〉≡ 〈P 〉 〈P | Q〉≡ 〈P 〉 | 〈Q〉 〈0〉≡0

Fig. 8. Structural congruence relation

Structural congruence includes standard rules from π-calculus, scope extrusion
for the operators for transaction and compensation handling and a few rules
capturing the properties of protected block. We also consider the simple garbage
collection rule (ν x)x≡ 0, since it simplifies our proofs.

Definition 15 (Auxiliary reduction relation). The auxiliary reduction re-
lation �→ is the minimum congruence generated by the following rule:

(ν r) 〈r〉|∏i∈{1,...,n}〈r.(Qi|r)〉 �→ (ν r) 〈r〉 | ∏i∈{1,...,n}〈Qi〉 if r /∈ fn(Qi) for each
i ∈ {1, . . . , n}.
The definition below introduces possible translations, which generalize the con-
cept of translation. The idea is that each process in the set of possible translations
of P behaves as P . Possible translations account for the different shapes that a
dynamically created compensation can have, according to how it has been built
as a composition of compensation items.
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Definition 16 (Possible translations). Let r be a fixed fresh name. Given a
parallel recovery process P the set of its possible translations {|P |}p2s is defined
by structural induction on P and then closed under the structural congruence
and the auxiliary reduction relation. More precisely:

– if P = t[R, Q] for each decomposition Q≡∏
i∈{0,...,n} Qi, each R̃ ∈ {|R|}p2s

and Q̃i ∈ {|Qi|}p2s, we have that (ν r) t
[
R̃ | ∏i∈{1,...,n}〈r.(Q̃i | r)〉, Q̃0 | r

]
∈

{|P |}p2s;
– if P = inst�λX.Q | X�.R for each Q̃ ∈ {|Q|}p2s and each R̃ ∈ {|R|}p2s, we

have that R̃ | 〈r.(Q̃ | r)〉 ∈ {|P |}p2s;
– for each other n-ary operator op, if P = op(Q1, . . . , Qn) for each Q̃i ∈

{|Qi|}p2s we have that op(Q̃1, . . . , Q̃n) ∈ {|P |}p2s.

Furthermore:

– if P̃ ∈ {|P |}p2s and P̃ ′ ≡ P̃ then P̃ ′ ∈ {|P |}p2s;
– if P̃ ∈ {|P |}p2s and P̃ ′ �→ P̃ then P̃ ′ ∈ {|P |}p2s.

The lemma below relates the possible translations of P and of extrn(P ).

Lemma 4.1. Let P̃ ∈ {|P |}p2s. Then extrn(P̃ ) ∈ {|extrn(P )|}p2s.

The lemmas below relate the behavior of a process with the one of its possible
translations. Namely, it will be shown that a possible translation evolves into
a possible translation (this does not hold for translations). As already said, we
write a compensation update λX.Q | X simply as Q.

Lemma 4.2. Let P be a parallel recovery process and P̃ ∈ {|P |}p2s one of its
possible translations. If P

α−→ P ′ then one of the following holds:

1. α /∈ {(z)Q, τc} and P̃
α==⇒ P̃ ′ with P̃ ′ ∈ {|P ′|}p2s;

2. α = (z)Q and P̃ ==⇒ (ν z) (P̃ ′ | 〈r.(Q̃ | r)〉) where P̃ ′ ∈ {|P ′|}p2s and Q̃ ∈
{|Q|}p2s;

3. α = τc and P̃ ==⇒ P̃ ′ with P̃ ′ ∈ {|P ′|}p2s.

Proof. The proof is by structural induction on P , using a case analysis on the
last applied rule. ��
The following lemma discusses the reverse implication.

Lemma 4.3. Let P be a parallel recovery process such that noComp(P ) and
P̃ ∈ {|P |}p2s one of its possible translations. If P̃

α−→ P̃ ′ with α �= r then P
α==⇒ P ′

with P̃ ′ ∈ {|P ′|}p2s.

Proof. The proof is by induction on the derivation of P̃ ∈ {|P |}p2s. ��
Theorem 4.1. Let P be a well formed process. Then P ≈ �P �p2s.

Proof. First note that �P �p2s ∈ {|P |}p2s. The proof is by coinduction. We have to
show that the relation R = {(P, P̃ )|wf(P )∧P̃ ∈ {|P |}p2s} is a weak bisimulation.
The proof exploits Lemmas 4.1, 4.2 and 4.3. ��
Corollary 1. �•�p2s is a good encoding.



On the Expressive Power of Primitives for Compensation Handling 379

5 General Dynamic Recovery Is More Expressive Than
Static Recovery

In this section we compare the expressive power of general dynamic recovery
and static recovery, showing that the former is more powerful. We also adapt
our result to show that backward recovery is more powerful than static recovery.

The main idea is that with general dynamic recovery it is possible to check
the order of execution of parallel actions by observing the compensations that
they install, while this is not possible with static recovery. For instance, process
t[a. inst�λX.a′.0� | b. inst�λX.b′.0�,0] can perform a computation with labels a,
b, t, b′ but no computation with labels b, a, t, b′, i.e. whether b′ is available or
not depends on the order of execution of the parallel actions a and b. The proof
of the separation result in Theorem 5.1 exploits similar arguments. The proof is
based on the fact that the order of installation of compensations is not known
statically because of the nondeterminism in the scheduling of parallel processes.

Before proving the theorem we need a few auxiliary notions and results.

Definition 17 (Enabling contexts). Enabling contexts E[•1] are unary con-
texts generated by:
E[•1] ::= •1 | P |E[•1] | E[•1]|P | (ν x)E[•1] | t[E[•1], Q] | 〈E[•1]〉

Definition 18. Given a process P the maximum choice degree mcd(P ) of P
is the maximum number of alternatives in a nondeterministic choice inside P .
The maximum transaction nesting degree mtd(P ) of P is the maximum level of
nesting of transaction scopes inside P .

Next lemma shows that the maximum choice degree and the maximum transac-
tion nesting degree of a process never increase during computations.

Lemma 5.1. If P
α−→ P ′ then mcd(P ′) ≤ mcd(P ) and mtd(P ′) ≤ mtd(P ).

Next lemma exploits the definition above to determine structural properties of
processes from their behavior.

Lemma 5.2. Let P be a static recovery process. Assume that P
ai−→ P ′

i for each
i ∈ {1, . . . , n}. Assume that n > c + t where c is the maximum choice degree
of P and t is the maximum transaction nesting degree of P . Then there are
an enabling context E[•1], processes Q1 and Q2 and indexes j and k such that
P ==⇒ Q = E[Q1|Q2] with Q1

aj−→ Q′
1 and Q2

ak−→ Q′
2.

Proof. The proof is by structural induction on P . ��

We can finally prove the desired separation result.

Theorem 5.1. There is no good encoding �•�g2s of compensable processes into
static recovery processes.
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Proof. Suppose by contradiction that such an encoding exists. For each i let
Pi = ai. inst�λYi.bi.0�.0. Consider the process P = t[

∏
i∈{1,...,n} Pi,0]. Because

of conditions 1 and 3 of compositional encodings, its encoding �P �g2s should be of
the form Ct[

∏
i∈{1,...,n}�Pi�g2s, �0�g2s], which we will denote as P̃ . Note that P is

well formed, thus P�shd�P �g2s. Let us consider the observers Oj,k = aj .ak.t.bk.
√

and O′
j,k = aj .ak.t.bj .

√
. For each j, k note that P should Oj,k, while P should

not O′
j,k. Also, given Oj = aj .

√
, P should Oj for each j. Thanks to correctness,

P̃ has to pass the same tests. Test Oj can succeed only if P̃
aj==⇒. Also, no action

τ or τc should compromise the possibility of performing aj for each j, since we
are using should testing equivalence.

We show now by contradiction that P̃ ==⇒ Q for some Q such that Q
ai−→ Q′

i

for each i ∈ {1, . . . , n}. We assume that such a Q does not exist and build an
infinite computation composed by transitions τ and τc, contradicting divergence
reflection. Since we assume Q does not exist, in particular, for some ai there is no
transition P̃

ai−→. Thus since P̃
ai==⇒ we have P̃

τ−→+
Q1

ai−→ where τ−→+
denotes a

non empty sequence of transitions τ and τc. Also, Q1 must still satisfy the tests.
Since Q does not exist, there is also some aj such that there is no transition
Q1

aj−→. Thus we can further extend the computation. By iterating the procedure
we get an infinite sequence of transitions τ and τc. Since P does not diverge,
and the encoding has to be divergence reflecting, we have a contradiction.

Now observe that thanks to condition 2 of compositional encoding all �Pi�g2s

are equal up to name substitution and thus have the same maximum choice
degree and maximum transaction nesting degree. Thus the maximum choice
degree c and maximum transaction nesting degree t of P̃ do not depend on n.
In particular, we can choose n > c + t. Thanks to Lemma 5.1 the same relation
holds also for Q. Thus we can apply Lemma 5.2 to prove that Q = E[Q1|Q2] with
Q1

aj−→ Q′
1 and Q2

ak−→ Q′
2 for some enabling context E[•]. We have E[Q1|Q2]

aj−→
E[Q′

1|Q2]
ak−→ E[Q′

1|Q′
2] and E[Q1|Q2]

ak−→ E[Q1|Q′
2]

aj−→ E[Q′
1|Q′

2]. The final
process E[Q′

1|Q′
2] is the same in both the cases.

These computations can be observed using observers Oj,k = aj .ak.t.bk.
√

and
O′

k,j = ak.aj .t.bk.
√

above. P̃ | O ==⇒ E[Q′
1|Q′

2] | t.bk.
√

for both O = Oj,k and

O = O′
k,j . From P̃ should Oj,k we deduce E[Q′

1|Q′
2] | t.bk.

√ √
==⇒, while from P̃

should not O′
k,j we deduce that this computation cannot exist.

This is a contradiction, thus the encoding �•�g2s does not exist. ��
The theorem above holds for both nested and non-nested failure.

Remark 3. We have presented this separation result in the framework of syn-
chronous π-calculus. The same result however can be proved for CCS [24], ex-
tended with the primitives for transactions and compensations. In fact the used
processes and observers are all CCS processes.

It is interesting to see how the result and the proof change if conditions for good
encodings are modified, in particular as far as correctness is concerned. First note
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that requiring bisimilarity preservation instead of correctness weakens the result.
However, this weaker result can be easily extended to asynchronous compensable
processes, which are obtained by disallowing continuation after the output prefix,
as done for π-calculus [25]. In particular, no compensation update can become
enabled because of the execution of an output action.

Corollary 2. There is no good bisimilarity preserving encoding �•�g2s−a of a-
synchronous compensable processes into asynchronous static recovery processes.

We have not been able to prove the result above without the condition of bisim-
ilarity preservation, since it is difficult for asynchronous observers to force an
order of execution for parallel actions.

Many approaches in the literature, such as [19], use as observers in the target
language the encoding of the observers in the source language. In our case we
can use the same observers since the target language is a sublanguage of the
starting one. We can restate our results using the approach in [19], but we need
some more conditions on the translation (e.g., preservation of the behavior of
sequential CCS processes).

The theorem above concerns general dynamic recovery, however a similar
result can be obtained for backward recovery. Backward recovery is easily defined
in a calculus with sequential composition by requiring all the compensation
updates to have the form λX.P ; X where ; is sequential composition and X
does not occur in P . It is easy to see that just having a very constrained form of
backward recovery, where P is a single prefix, is enough to increase the expressive
power beyond static recovery. This can be easily stated in our framework by
allowing only compensation updates of the form λX.π.X where π is any prefix.

Corollary 3. There is no good encoding �•�b2s of backward recovery processes
into static recovery processes.

Proof. It is enough to consider Pi = ai. inst�λYi.bi.Yi�.0 instead of the process
Pi = ai. inst�λYi.bi.0�.0 in the proof of Theorem 5.1. ��
From the results of previous section we also deduce that both general dynamic
recovery and backward recovery are more expressive than parallel recovery.

6 Applications and Related Works

We discuss here how to apply the results in sections 4 and 5 to other calculi and
languages in the literature. The calculi more related to ours are the so-called
interaction-based calculi [3–5, 9], which are obtained by adding primitives for
compensation handling on top of concurrent calculi such as π-calculus [2] or
Join [26]. These calculi differ on many design choices. The main differences are
summarized in Table 1 and their impact on our results discussed below.

Dcπ. Dcπ [9] is a calculus with parallel recovery based on asynchronous π-
calculus [25]. For this reason, compensation update is allowed only after input
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prefix. Actually, in dcπ, input prefix and compensation update are combined
in an atomic primitive a(x)%Q.P that, after receiving values v on channel a,
continues as P{v/x} and adds Q{v/x} in parallel to the current compensation.
The same behavior can be obtained in parallel recovery processes by writing
a(x). inst�λX.Q | X�.P , thanks to priority of compensation update. Thus dcπ
can be seen as the asynchronous fragment of parallel recovery processes with
nested failure where compensation update can occur only after input prefix. Both
the encoding in Section 4 and the separation result for asynchronous calculi in
Corollary 2 can be easily adapted to dcπ.

Webπ and Webπ∞. Webπ [5] is a calculus with static recovery based on asyn-
chronous π-calculus [25]. It provides timed transactions, which add an orthogonal
degree of expressive power. Its untimed fragment, Webπ∞ [23] instead corre-
sponds exactly to the asynchronous fragment of static recovery with non-nested
failure where all messages are inside protected blocks. The encoding in Section 4
can be adapted to both the calculi. The main change required is to implement
protected block using a transaction scope with bound name. Also the separation
result in Corollary 2 can be easily applied to the two calculi.

πt-calculus. The πt-calculus [3] is based on asynchronous π-calculus. When
a component inside a transaction aborts, abortion or completion of parallel
components is waited for. Then the compensation of the transaction (called
failure manager) is executed, followed by the parallel composition of the com-
pensations of the already terminated subtransactions. It is difficult to adapt
our encoding to πt-calculus, since this will require to change the semantics of
abortion allowing a transaction to abort even if it contains protected blocks.
On the other hand the separation result in Corollary 2 can be applied, referred
to an extension of the πt-calculus where the failure manager can be updated
dynamically.

C-join. C-join [4] is a calculus with static recovery built on top of Join cal-
culus [26]. However here transactions can be dynamically merged, and their

Table 1. Features of interaction-based calculi and languages

underlying compens. nested vs protection encoding separation
language definition non-nested operator applicable res. applicable

dcπ asynch. π parallel nested yes yes asynch.

Webπ/Webπ∞ asynch. π static non-nested implem. yes asynch.

πt asynch. π static nested no no asynch.

C-join Join static nested no yesa no

SOCK - dynamic nested implem. yes no

COWS - static nested yes yes no

Jolie - dynamic nested implem. yes no

WS-BPEL - static nested implem. yes no

a If a protection operator is added.
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compensations are composed in parallel, thus obtaining some form of parallel
recovery. Our encoding is not directly applicable since C-join has no protected
block operator, but becomes applicable as soon as such an operator is introduced.
As far as the separation result is concerned, join patterns are more powerful than
π-calculus communication, and we conjecture that they can be used to imple-
ment general dynamic recovery.

Service oriented calculi. Many service oriented calculi have been recently
proposed [27–32]. Long running transactions are an important aspect of service
oriented computing thus many of these calculi include primitives for compensa-
tion handling. We discuss here the ones more related to our approach.

SOCK [28] is a language for composing service invocations and definitions
using primitives from sequential languages and concurrent calculi. It has been
extended with primitives for general dynamic recovery in [12]. Our encoding can
be applied to SOCK using signals for mimicking CCS communication. Actually,
in SOCK, the protected block is just used in the definition of the semantics, but
it can be implemented too. Since SOCK has no restriction operator, fresh signal
names should be statically generated, and the behavioral correspondence result
should be restated along the lines of Remark 2. The separation result instead
does not apply: SOCK services are stateful, and the state can be used to keep
track of the order of execution of parallel activities. All the observations made
for SOCK hold also for Jolie [33, 34], a service oriented language based on it.

COWS [30] communication is in the style of fusion calculus [35]. COWS has
a kill primitive and a protected block. This allows to program static recovery
(see [30]). Our encoding can be applied to program also parallel recovery. The
separation result instead cannot be easily extended, since COWS communication
and kill have priorities, thus allowing parallel processes to influence each other.

Other service oriented calculi include only mechanisms for exception han-
dling [31] or notification of session failure [27, 32].

Compensable flow calculi. Calculi based on the compensable flow approach
such as SAGAs calculi [8] or StAC [7], use backward recovery for sequential
activities and parallel recovery for parallel ones. Thus our separation result does
not apply. Also, since there is no communication, atomicity constraints are less
strong. However we are not aware of good encodings of compensable flow calculi
into static recovery calculi. For instance, the mapping in [6] of cCSP [10] into
the conversation calculus [31] is not compositional.

WS-BPEL. WS-BPEL [1] is the de-facto standard for web services composition.
Compensations are statically defined, and they are composed using backward
recovery for sequential subtransactions, and parallel recovery for parallel ones.
Our separation result does not apply because of the reasons discussed for SOCK
and for compensable flow calculi. As far as the encoding is concerned, the same
approach used for SOCK can be applied.

Future work. As we already discussed throughout the paper, many open issues
concerning the expressive power of mechanisms for long running transactions
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remain. In fact this topic, while relevant, has been neglected until now: a few
papers, such as [36, 37], study the expressive power of primitives for interrup-
tion, more than primitives for compensation as in our case. We think that the
techniques presented in this paper can be successfully applied to answer some of
the open issues. We refer in particular to the analysis of whether nested failure
can be implemented using non-nested failure, and to the encodability of BPEL-
style recovery into static recovery. We conjecture that this encoding is possible,
thus BPEL-style recovery could be defined as a macro on top of static recovery.
After those problems have been analyzed in a simple setting, additional work is
required to transfer the results to other calculi/languages. Another important
topic that deserves further investigation is the impact of communication primi-
tives more powerful than π-calculus message passing, such as join patterns, on
our separation result. It would also be interesting to generalize the techniques
of this paper to deal with languages for adaptation [38], since dynamic compen-
sations can be seen as an approach for adaptation of compensations.
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