
Advanced Mechanisms for

Service Combination and Transactions�

Carla Ferreira2, Ivan Lanese1, Antonio Ravara2,
Hugo Torres Vieira2, and Gianluigi Zavattaro1

1 Focus Team, Università di Bologna/INRIA, Italy
{lanese,zavattar}@cs.unibo.it

2 CITI and Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, Portugal

{carla.ferreira,aravara,htv}@fct.unl.pt

Abstract. Languages and models for service-oriented applications usu-
ally include primitives and constructs for exception and compensation
handling. Exception handling is used to react to unexpected events while
compensation handling is used to undo previously completed activities.
In this chapter we investigate the impact of exception and compensa-
tion handling in message-based process calculi and the related theories
developed within Sensoria.

1 Introduction

Long-running transactions (henceforth LRTs) are computer activities that may
last long periods of time. These kinds of activities are particularly common
in systems composed by loosely coupled components communicating by mes-
sage passing, like most distributed systems and, in particular, service-oriented
systems.

Due to the nature of these systems and to the time duration of the activities, it
is not feasible to lock (non-local) resources, and thus, LRTs do not enjoy some of
the usual ACID properties of database transactions (namely isolation, since the
execution of a single LRT is not intended to block the whole system). Therefore,
to recover from partial executions of LRTs (due to their abortion because of
system failures like unreachability of a partner or time-out of communication, or
to some other unexpected event), it is necessary to foresee special activities to
regain system consistency, i.e., to compensate the fact that the transaction has
been aborted. These activities should be triggered in case of transaction failure,
and need to be programmed a priori. Note that, in general, the execution of a
compensation does not exactly “undo” the activities already performed by the
LRT (what is, in general, impossible).

1.1 Content of the Chapter

Programming or specification languages provide these days two kinds of recovery
mechanisms: exception handling and compensation handling. The former uses
� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 302–325, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Advanced Mechanisms for Service Combination and Transactions 303

primitives like throw to raise failure signals and try-catch to manage them. The
latter uses primitives to install and activate dedicated compensation activities.
This chapter presents linguistic primitives and associated semantic models for
dealing with transaction failure. The main features under inspection are the
mechanisms to deal with:

1. failures: exceptions or compensations ;
2. non-interruptable units of process execution: protection operator ;
3. nested computations: nested transactions and nested failures.

The models are either based on (mobile) process calculi, or on the service-
oriented core calculi developed within Sensoria. We address three questions:

1. What is the relative expressive power of the mechanisms proposed?
Section 2 is dedicated to basic linguistic primitives for exception and com-
pensation handling. We present: (1) a study of the expressive power of two
well-known exception handling mechanisms, in the context of the Calculus of
Communicating Systems, CCS [28]; and (2) compensation handling mech-
anisms and their relative expressiveness, in the context of mobile process
calculi.

2. How can these recovery mechanisms be used in the context of Service-
Oriented Computing (SOC)?
Section 3 presents the application of the mechanisms in some of the Senso-
ria calculi.

3. How can one ensure that the compensation activities implement a particular
recovery policy?
Section 4 presents three different models to reason about the compensation
activities: two of them use abstract descriptions of the desired behavior,
in BPEL and SAGAs respectively, and the last one defines a state-based
compensation model to reason about the correctness of the activities.

1.2 Overview of Process Calculi Approaches

In process calculi there are several approaches toward the formalization of LRTs,
whose proposals differ with respect to the mechanisms to recover from transac-
tion failure. Table 1 presents a summary of the use of compensation handling
mechanisms in different message-based calculi, which we group in three fami-
lies: π-calculus [29,34] based, session-based and correlation-based. Compensation
handling has been investigated also in the context of event-based communication:
this is the subject of Chapter 3-4 where compensation handling is investigated
in the context of the Signal Calculus SC [14].

π-calculus Based Calculi. The πt-calculus is an extension of asynchronous poly-
adic π-calculus [34] with the notion of transaction [2]. The compensation mecha-
nism is static, and transaction abort triggers the execution of the compensations
of all terminated subtransactions. The cJoin calculus [7] extends the Join calcu-
lus [15] with primitives for representing transactions with static compensations.

304 C. Ferreira et al.

Table 1. Features of message-based calculi with compensation handling

communication compensation nested vs protection
mechanism definition non-nested operator

πt [2] π-based static nested no

c-join [7] π-based static nested no

webπ [24] π-based static non-nested implementable

webπ∞ [27] π-based static non-nested implementable

dcπ [36] π-based parallel nested yes

CaSPiS [3] sessions static nested no

CC [37] sessions static nested no

COWS [26] correlation static nested yes

SOCK [18] correlation dynamic nested implementable

Transactions can however dynamically merge, thus merging their compensations.
Laneve and Zavattaro defined webπ [24], which is an extension of asynchronous
polyadic π-calculus with a timed transaction construct. An untimed version of
webπ, called webπ∞, was proposed by Mazzara and Lanese [27]. Both webπ
and webπ∞ support a non-nested static compensation mechanism. The dcπ cal-
culus [36] is also based on the asynchronous polyadic π-calculus, extended with
primitives for representing nested transactions and dynamic compensations. This
is obtained by adding information about compensation update to input prefix.
Compensation items are composed in parallel. Section 2 presents in more detail
the compensation handling mechanisms of webπ∞ and dcπ.

Session-Based Calculi. The coordinated handling of exceptions of several parties
involved in a service conversation is of particular importance, since an exception
local to a party must be somehow propagated to all other parties involved in the
service task.

CaSPiS [3] includes primitives for compensating aborted sessions (see Section 3
for more details). The Conversation Calculus, CC [37], supports error recovery
with two exception primitives: try-catch and throw. Section 4.3 presents in more
detail the exception handling mechanism and the soundness model of CC. In
the approach of Carbone et al. [13], as in SCC [4] and CaSPiS [3], such error
propagation is modeled internally to the semantics of the exception handling
primitives. CC considers a different approach, by providing the exception han-
dling primitives with a standard “local” semantics, leaving to the programmer
the task of coordinating the exception handling activities. The approach of Car-
bone et al. [13] already aims at a typed exception handling model, allowing to
prove safety and liveness results.

Correlation-Based Calculi. COWS [26] provides a primitive to kill processes
within a scope. We show in Section 4.1 how these primitives can be used to
encode a BPEL-style scope construct (BPEL [32] is a language for service or-
chestration which provides static nested compensations). SOCK [18] includes also

Advanced Mechanisms for Service Combination and Transactions 305

explicit primitives for dynamic handler update and automatic failure notification
to remote partners. Section 3 presents in more detail the compensation handling
mechanisms of SOCK. An implementation of SOCK, the language JOLIE [21],
inherits its fault handling capabilities.

2 Basic Mechanisms

In this section we focus on different basic linguistic primitives that have been pro-
posed for programming long-running transactions (LRTs), inter-relating them.
We leave to the next section their application to service-oriented systems.

2.1 Exception Handling

Here we present and compare with respect to expressiveness two well established
mechanisms, the first taken from the tradition of process calculi—the interrupt
operator of CSP [20]; the second from popular programming languages—the
try-catch operator of languages such as C++ or Java.

Interrupt Versus Try-catch. The interrupt operator P�Q executes P until Q exe-
cutes its first action; when Q starts executing, the process P is interrupted. The
tryP catchQ operator executes P , but if P performs a throw action it is inter-
rupted and Q is executed instead. We have found these operators particularly
useful because, even if very simple, they are the basic building blocks to model
the typical operators for programming LRTs.

These two operators are apparently very similar as they both allow for the
combination of two processes P and Q, where the first one executes until the
second one performs its first action. Nevertheless, there is an interesting distin-
guishing feature, as shown by the following example.

Consider for instance a bank payment activity PAY , which may set a variable
res to false in case of failure. Failure management can be performed quite simply
using try-catch:

try PAY; if res = F then throw else 0; ...catch manageFault

The interrupt operator, instead, needs some help from an external process.

PAY; if res = F then throw else 0; ...�(f. manageFault) | throw.f

where we assume that throw synchronizes with throw and f with f . Here in case
of failure the external process is called, and then it enables the compensation.
When the compensation starts, the main activity is interrupted. Note however
that the interruption is not atomic as in previous case.

As seen in the examples, the main difference is that in the try-catch operator,
the decision to interrupt the execution of P is taken inside P itself (by means
of the execution of the throw action), while in the interrupt operator P�Q such
decision is taken from Q (by executing any initial action). Another difference

306 C. Ferreira et al.

Table 2. Interrupt vs try-catch

interrupt try-catch

CCS�
! CCStc

!

replication existential termination undecidable existential termination undecidable
universal termination decidable universal termination decidable

CCS�
rec CCStc

rec

recursion existential termination undecidable existential termination undecidable
universal termination decidable universal termination undecidable

between the try-catch and the interrupt operators is that the former includes an
implicit scoping mechanism which has no counterpart in the interrupt operator.
More precisely, the try-catch operator defines a new scope for the special throw
action which is bound to a specific instance of exception handler.

Starting from these intuitive and informal evaluations of the differences be-
tween such operators, a more rigorous and formal investigation has been per-
formed [5]. To this aim, two restriction-free fragments of CCS [28] have been
considered, one with replication and one with restriction, and they have been
both extended with either the interrupt or the try-catch operator thus obtaining
four different calculi: CCS�

! , CCStc
! , CCS�

rec, and CCStc
rec as depicted in Table 2.

Calculi without restriction, the standard explicit binder operator of CCS, have
been considered in order to be able to observe the impact of the implicit binder of
try-catch. Moreover, replication and recursion have been considered separately
because in CCS there is an interesting interplay between these operators and
binders [9]: in the case of replication it is possible to compute, given a process
P , an upper bound to the nesting depth of binders for all derivatives of P (i.e.
those processes that can be reached from P after a sequence of transitions). In
CCS with recursion, on the contrary, this upper bound cannot be computed in
general.

For these four calculi, the decidability of the following termination problems
has been investigated: existential termination (i.e., there exists a terminating
computation) and universal termination (i.e., all computations terminate). The
obtained results are depicted in Table 2.

These results about the decidability of existential/universal termination in
the considered calculi establish two interesting discrimination results:

– Basic mechanisms for interruption cannot be in general encoded
using only communication primitives. In CCS without restriction, ex-
istential termination is decidable [5], while it turns out to be undecidable
when either the interrupt or the try-catch operators are also considered.

– The try-catch mechanism cannot be in general encoded using com-
munication primitives and the interrupt operator. In the considered
calculus with recursion, universal termination is decidable in the presence of
the interrupt operator, while this is not the case for try-catch.

Advanced Mechanisms for Service Combination and Transactions 307

2.2 Compensation Handling

The operators above offer a local approach to error handling and compensations:
the trigger of the fault, the executing process and the compensation are all
defined inside P and Q. However, in a concurrent and distributed system, fault
triggers may also arise from other processes running concurrently.

Static Compensations. Such an aspect has been tackled first by webπ [24] and its
untimed version webπ∞ [27]. There, web transactions, i.e., long-running transac-
tions involving web applications, have been considered, and modeled by adding a
workunit construct to the asynchronous π-calculus. We concentrate here on the
untimed version proposed by [27], since time introduces a degree of expressive
power which is orthogonal to the one represented by compensation primitives
we investigate here.

A workunit 〈|P ; Q|〉t executes process P until a message t (without parame-
ters) is received on channel t. After that, process P is killed and compensation
Q is executed. Thus message t acts as throw in the case of the try-catch oper-
ator. However, here message t may come both from inside P , as for throw in
try-catch, or from parallel processes. Also, the message may be directed to a
specific workunit, instead of being forced to kill the nearest enclosing workunit.

Thus the above example of bank payment can be written in webπ∞ as:

〈| PAY.if res = F then t else 0.... ; manageFault|〉t
where we used prefixing instead of sequential composition (simply because this
is the control flow mechanism provided by webπ∞). However, the example can
be simply modified to allow for an external activity to interrupt the transaction.
Assume that in parallel some checks on the payment are done. If the checks do
not succeed, the transaction can also be interrupted by the parallel process:

〈| PAY.if res = F then t ; manageFault|〉t |if checkRes = F then t...

Since now the failure signal may also come from outside, it is necessary to define
when a workunit has terminated, thus to avoid interrupting and compensating
terminated transactions. In webπ∞ the transaction is considered terminated,
and thus discarded, when its body P becomes 0. A few other aspects have to
be considered for killing and termination. First, since webπ∞ is asynchronous,
messages are considered sent as soon as they become enabled. Thus they can
freely float out of workunits. Moreover, they are not deleted when the workunit
is interrupted. Another important aspect is transaction nesting. Two approaches
exist in the literature: nested failure and non-nested failure. In the nested failure
approach, when a transaction is killed all its subtransactions are killed too.
In the non-nested failure approach instead, subtransactions are preserved and
continue their regular execution. Suppose for instance that the payment workunit
described above is part of a more complex transaction with body Q:

〈|〈| PAY.... ; manageFault|〉t |Q ; manageLargerFault|〉s

308 C. Ferreira et al.

With the nested failure approach in case of failure of s also t is killed. However
this is not the behavior of webπ∞, which follows the non-nested failure approach.
In webπ∞ this behavior can be obtained by adding an explicit kill of t as part
of the management of the larger fault, e.g., by replacing the compensation with
the process t | manageLargerFault.

The webπ∞ calculus is equipped with a reduction semantics formally describ-
ing the behavior of systems based on web transactions, and with a labeled tran-
sition system supporting the standard observational equivalence—weak barbed
congruence [30]. Furthermore, weak asynchronous bisimilarity [1], adapted to the
webπ∞ setting, where transaction kill has to be explicitly considered, character-
izes weak barbed congruence. Therefore, transformations of webπ∞ processes can
be coinductively proved correct (with respect to weak asynchronous bisimilarity,
and thus, with respect to weak barbed congruence).

While referring to the paper [27] for the technical details, we present here a
sample law, illustrating handlers reducibility:

〈|P ; Q|〉x = (x′x′′)(〈|P ; x′ |〉x | 〈|x′.Q ; 0|〉x′′)

for each x′, x′′ �∈ fn(P) ∪ fn(Q), x′ �= x′′ �= x. In other words, it is not necessary
to have a generic process Q as compensation of a workunit, but it is enough to
have a simple output message x′ . In fact, it is enough to put the compensation
in another workunit, guarded by an input on the name x′. Note that both the
name x′ and the name x′′ of the auxiliary workunit need to be private (this is
done by the restriction operator (x′x′′)) to avoid interferences.

Dynamic Compensations. In webπ∞, the compensation of each workunit is
static, i.e., in a workunit 〈|P ; Q|〉x, P is not allowed to update Q. Assume
that P is a complex activity, e.g., executing a sequence of bank payments. If
a failure occurs before any bank payment, then no particular error recovery is
needed (possibly just some garbage collection or error notification). Instead, if
a few bank payments have been completed and an error requires to abort the
transaction, then the already completed bank payments have to be annulled. In
webπ∞ this can be done for instance by keeping track of the performed bank
payments, and by having the compensation Q checking which of them have been
completed to annul them. Another solution, suggested by the law above, is to
put the compensation in a different workunit to be replaced with an updated one
each time a new payment is completed. However, both the solutions are complex
and error-prone [19]. In general, one may want to adapt the compensation of a
complex transaction to the evolving state of its process P . This kind of problems
has been tackled by dcπ [36], by compensable processes [22], and by SOCK [18].
The three approaches differ in a few technical decisions, but they all share the
idea that a compensation can be dynamically updated. We present here the gen-
eral approach in the framework of π-calculus [36,22], leaving to next section the
discussion of the interplay with service-oriented features.

Parallel Recovery. The simplest proposal is the one of dcπ. There, scopes (similar
to webπ∞ workunits) have the form t[P] where P is the executing process and

Advanced Mechanisms for Service Combination and Transactions 309

t the scope name. Inputs in P may install compensations. For instance, assume
that a message payConf 〈v〉 confirms that a payment has been completed, and
that v contains the data of the payment. In dcπ such a message can be received by
an input payConf (x)%Annul〈x〉.Q that after receiving the message payConf 〈v〉
installs in the nearest enclosing scope a new compensation item Annul〈v〉 and
continues as Q{v/x}. When a scope is killed, all the installed compensation items
are executed in parallel. This form of recovery is called parallel recovery. Note
that input and compensation update form a unique atomic primitive. This is
important since it should never be the case that the state of the transaction is
changed (because of the received input), and the compensation has not been
changed accordingly. In our example this would cause a performed payment
not to be annulled. It would be difficult to ensure this atomicity property if
compensation update has to be mimicked as described above.

General Recovery Policies. As shown, dcπ allows to dynamically add new com-
pensation items in parallel. However, it may be handy to have more control on
the order of execution of compensation items, and to be able to remove com-
pensation items when they are no more useful. A more general approach has
been proposed in the framework of SOCK[18], and analyzed in the framework
of π-calculus [22]. We describe here the latter, where compensable processes
are defined. Compensable processes define a scope construct t[P, Q] similar to
the workunit 〈|P ; Q|〉t of webπ∞. However compensable processes provide in
addition a compensation update primitive inst�λX.Q′	.R that replaces the cur-
rent compensation Q in the nearest enclosing scope with the new compensation
Q′{Q/X}. This allows for instance to add a new compensation item in parallel,
by choosing Q′ = Q′′ |X where X does not occur in Q′′, mimicking dcπ parallel
recovery. However, many other options are available. For instance one may ex-
ecute compensations of different activities in reverse order of completion (this
policy is called backward recovery [16]). In compensable processes such behavior
is obtained by using compensations of the form λX.(finished)(Q′ | finished.X)
where the actual compensation Q′ signals its termination with an output on
the private channel finished. Moreover, the compensation can be deleted by in-
stalling λX.0, or replaced with a new compensation by installing λX.NewComp
where NewComp does not contain X .

Consider the following scenario: a few bank payments are executed by sending
messages to the banks in charge of them. If something goes wrong in one of the
payments, all of the performed payments have to be annulled. At the end a final
check is performed, and if it succeeds then annul is no more possible. This can
be implemented in compensable processes as follows:

t[PAY 1. inst�λX.ANNUL1.XPAY n. inst�λX.ANNULn.X	.
CHECK . if check = ok then inst�λX.0	 else t,0]

where PAY 1, . . . , PAY n are activities executing the payments, ANNUL1, . . . ,
ANNULn the corresponding annul activities and CHECK performs the final
verification putting the result in check.

310 C. Ferreira et al.

Differently from webπ∞, compensable processes have been given both a nes-
ted failure semantics and a non-nested failure one, while dcπ follows the nested
failure approach. However both compensable processes and dcπ provide a pro-
tection operator 〈P 〉 that executes P in a protected way and that can be used
to avoid undesired external kills. The non-nested failure approach can thus be
mimicked by enclosing each transaction in a protected block.

Another difference between webπ∞ and compensable processes is that com-
pensable processes scopes never commit. However, webπ∞ commit behavior can
be easily recovered since a scope (t)t[0,0] with a restricted name, no body and
no compensation is equivalent to 0. Note that “no compensation” can be forced
in compensable processes with a suitable compensation update, while the same
is not possible for webπ∞.

The definition of the semantics of compensation update requires a bit of care.
As said above, in fact, it should never be the case that a state change requiring a
compensation update has been performed, and the corresponding compensation
update has not been executed. For instance in:

t[PAY 1. inst�λX.ANNUL1.X]

if the transaction is killed after PAY 1 has been completed but before the compen-
sation has been updated, no annul is performed. For this reason, compensation
update has priority w.r.t. other actions. Thus a compensation update is executed
as soon as it becomes enabled. This feature comes for free in dcπ, since the input
and the compensation update are composed in a unique primitive.

The expressive powers of static recovery, parallel recovery, backward recov-
ery and dynamic recovery have been compared in [22]. There the existence/non
existence of suitable encodings (compositional [17], preserving testing equiva-
lence [33], and not introducing divergency) has been discussed. Two main results
were achieved:

– An encoding of parallel recovery into static recovery which satis-
fies the conditions above and preserves also weak bisimilarity. The
existence of such an encoding proves that parallel recovery and static recov-
ery have the same expressive power. The encoding stores the dynamically
created compensation items in the running process protected by protected
blocks, and exploits suitable messages to enable them only when needed.

– A separation result proving that no encoding satisfying the proper-
ties above exists from backward recovery to static recovery neither
from compensable processes to static recovery.

The results above, together with the ones presented at the beginning of the sec-
tion, prove that primitives for interruption and compensation are an important
feature of languages, since they can not be encoded in an easy way, and that also
the choice of the exact kind of primitives may change the expressive power of
the language. Thus a careful choice is needed to decide which of these primitives
have to be included in a language. Next section shows how these primitives can
be applied to service-oriented systems.

Advanced Mechanisms for Service Combination and Transactions 311

3 Exploiting the Mechanisms in SOC

In this section we show how the mechanisms introduced in the previous sections
to deal with failures and compensations can be exploited in service-oriented com-
puting models and languages, where an application is composed by orchestrating
different services. Service instances interact giving rise to sessions involving pos-
sibly many partners. Thus errors may be both internal to a single session, and in
this case the techniques described in the previous section may be applied directly,
or may involve different services. The first case has been considered for instance
in the Conversation Calculus [37] (see also Chapter 2-1), where a conversation
is a set of related interactions that take place in a dedicated medium—a con-
versation context—which may be accessed from several distributed conversation
access pieces (cf. endpoints), each one held by a different party. The Conversa-
tion Calculus manages errors by using the try-catch operator discussed in the
previous section. As we show in Section 4.3, this is enough to model cCSP [11].

Different approaches were chosen in various other Sensoria calculi. We
explain these approaches below.

3.1 Static Compensation Policies

We present the compensation mechanisms of COWS and of CaSPiS.

Killing Activities. COWS [26] includes primitives used to force immediate termi-
nation of concurrent threads. The syntax of COWS and an informal explanation
of its semantics are presented in Chapter 2-1. Besides allowing generation of
‘fresh’ private names (as ‘restriction’ in π-calculus [29]), the delimitation opera-
tor of COWS provides a means for modeling a named scope for grouping certain
activities. A named scope [k] s can be then equipped with suitable termination
activities, as well as ad hoc fault and compensation handlers, thus laying the
foundation for guaranteeing transactional properties in spite of services’ loose
coupling. This can be conveniently done by relying on the kill activity kill(k),
that causes immediate termination of all concurrent activities inside the enclos-
ing [k] (which stops the killing effect), and the protection operator {|s|}, that
preserves intact a critical activity s also when one of its enclosing scopes is
abruptly terminated.

Failure management operators can be programmed and assembled in COWS
by simply exploiting these basic operators. For example, the try-catch block used
for the bank payment activity can be written as follows:

PAY | [if , then, k] (if • then?〈false〉.(kill(k) | {|manageFault |}) |
if • then?〈true〉.s)

Suppose that the result of the payment transaction is provided by the process
PAY through the invoke activity if • then!〈xres〉 and by setting the variable xres

to communicate the success (xres = true) or failure (xres = false) of the trans-
action. The delimitation of the killer label k confines the transaction, otherwise

312 C. Ferreira et al.

uncontrolled faults can jeopardize service composition. Suppose that the failure
is risen by the activity if • then !〈false〉. The management of the corresponding
fault can be activated while the activity if • then?〈true〉.s is abruptly terminated
by means of the activity kill(k). To ensure a proper execution order in the above
transaction, i.e. the management of the fault should not be performed before the
termination of the killing effect of kill(k), kill activities in COWS have higher
priority than other activities.

Finally, restriction and protection operators implicitly provide embedded
mechanisms for handling nested failures. The following simple example illus-
trates the effect of executing a kill activity within a nested protection block:

[k] ({|s1 | [k′] {|s2 | kill(k′)|} | kill(k)|} | s3) | s4

evolves to

[k, k′] {|s2 | kill(k′)|} | s4

For simplicity, we assume that s1 and s3 do not contain protected activities. In
essence, kill(k) terminates all parallel services inside delimitation [k] (i.e. s1 and
s3), except those that are protected at the same nesting level of the kill activity
(i.e. s2 | kill(k′)).

Closing Sessions. The Service Centered Calculus (SCC) [4] and its evolution
CaSPiS [3] propose another approach. As shown in Chapter 2-1, conversations in
CaSPiS are structured as binary sessions involving a client and a service instance,
dynamically created during service invocation. CaSPiS features primitives for
session closure. Recall that, using close, a partner can leave a session at any
time; the semantics will then guarantee that the other party is informed and
that nested sessions are closed as well. In terms of transactions, completing and
abandoning a session may be understood respectively as commit and failure.
CaSPiS compensation handling can be classified as static, indeed compensations
are programmed once and for all by means of listeners, k · P , at design time.

Below, we briefly illustrate the use of session-closing primitives for program-
ming compensations by means of a simple example. Further details can be found
in [3], while the (similar) approach proposed by SCC is described in [4].

Consider another version of the bank example, where the bank (process B
below) offers a service pay that, after receiving the amount to be paid and
the user’s credentials, invokes an auxiliary service, checkAmt, in order to check
the client’s available funds. A client (process C below) invokes this service and
requires the payment of an amount a. The example contains three listeners. In
B, upon invocation, the listener of the service definition payk, k ·close, closes the
current session and notifies the closure to the invoker, while the listener of service
invocation, checkAmtk′ , also closes the enclosing session by spawning †(k). The
listener of service invocation payk′′ , k′′ · payNotAllowed , is activated in case of
failure in the payment process on the service side: payNotAllowed encodes the
execution of appropriate recovery actions

Advanced Mechanisms for Service Combination and Transactions 313

B � (ν k)payk.
(
k · close

| (?amt, ?id)select ?go
from (ν k′)checkAmtk′ .(k′ · (close|†(k)) |

〈amt, id〉(?rep)〈rep〉↑)
inif go then · · · else close

)

C � (ν k′′, a, id)payk′′ .
(
k′′ · payNotAllowed | 〈a, id〉 · · ·) .

Consider the system S � B |C. The session installed between the client and the
bank can be terminated unexpectedly in two cases: when the auxiliary service
closes the interaction unexpectedly or when the checkAmt service answers neg-
atively. After the synchronization of service definition and invocation and the
first intra-session communication for sending the amount and the id, the system
becomes S′ below.

S′ � (ν r, k, k′′, a, id)(
r �k′′

(
k · close | select ?go

from (ν k′)checkAmtk′ .(k′ · (close|†(k)) |
〈a, id〉(?rep)〈rep〉↑)

inif go then · · · else close
)

|r �k

(
k′′ · payNotAllowed | · · ·

)

If the service call checkAmt returns false, S′ reduces to S′′ and (omitting the
terminated session originated by the service invocation checkAmtk′ .) we have

S′′ � (ν r, k, k′′, a, id)
(
r �k′′

(
k · close | close

) | r �k

(
k′′ · payNotAllowed | · · ·)

)

−→
(ν r, k, k′′, a, id)

(
�

(
k · close | †(k′′)

) | r �k

(
k′′ · payNotAllowed | · · ·)

)

−→
(ν r, k, k′′, a, id)

(
�

(
k · close

) | r �k

(
payNotAllowed | · · ·)

)
� S′′′ .

In S′′′, the client proceeds by taking appropriate recovery actions (defined in
payNotAllowed).

In case the closure is originated by service checkAmt, the signal †(k) will be
captured by the listener k · close and the session closure protocol will proceed
similarly.

3.2 Dynamic Compensation Policies

The last approach we consider is the one of the Service Oriented Computing
Kernel (SOCK) [10]. As described in Chapter 2-1, SOCK is a calculus for service-
oriented computing that has been inspired by the main technologies in the field,

314 C. Ferreira et al.

in particular WSDL [38], the standard for defining web service interfaces, and
WS-BPEL [32], the de-facto standard for web services composition. SOCK allows
the definition of services exploiting the one-way and request-response patterns
provided by WSDL.

From a compensation point of view, SOCK has been extended in [18] with
mechanisms that integrate the WS-BPEL concepts of scope, termination and
compensation with the dynamic approach to error recovery described in the
previous section.

A scope in SOCK is a process container denoted by a name and able to manage
faults. Faults are thrown by the primitive throw(f) where f is the name of the
fault. Inside a scope, three different kinds of handler can be defined. A fault
handler f specifies the recovery code to be executed when fault f is thrown inside
the scope. A termination handler, which has the name of the scope containing it,
specifies how to smoothly terminate the scope when it is reached by an external
fault. Finally, compensation handler q specifies how to undo the activities of
the finished scope q if required during error recovery inside an outer scope. For
instance

{PAY : [f → manageFault, q → manageExternalFault]}q

is a scope that executes activity PAY , executes code manageFault in case PAY
throws fault f and executes code manageExternalFault in case of external
failure.1

Assume that activity PAY throws fault f , e.g. since PAY = PAY ′ | throw(f).
First, all the activities inside PAY ′ are terminated, including subscopes. Termi-
nation handlers of those subscopes are executed. Then the fault handler for f is
looked for inside q. Since it is available then it is executed, handling fault f . If
no fault handler was found, the fault would be rethrown to the enclosing scope,
let us call it q′, while q terminates with a failure. Error handling would continue
in q′, and the fault would be recursively thrown to the nearest enclosing scope
until a handler is found. Both termination handler manageExternalFault and
fault handler manageFault may use the primitive comp(q1) to execute the com-
pensation handler of some subscope q1 of q to undo its activity. This is available
only if q1 has terminated with success.

Up to here, this is the error recovery policy used also by WS-BPEL. How-
ever, in WS-BPEL handlers are defined statically inside the scope. SOCK al-
lows to update them at runtime, thus following the dynamic approach. Consider
the scope q above. SOCK provides a compensation update primitive, inst([f →
newHandler]), similar to the one of compensable processes, to replace the old
handler manageFault with the new handler newHandler. Differently from com-
pensable processes, now the name of the handler(s) to be updated has to be
specified. Like in compensable processes, the old handler may not be discarded.
In fact, one can use the placeholder cH inside the handler update primitive to
recover the old handler. For instance, inst([f → newHandler; cH]), adds the new
handler newHandler before the old handler manageFault (here ; is sequential
1 The actual syntax is slightly more complex, cfr. [18].

Advanced Mechanisms for Service Combination and Transactions 315

composition), producing the new handler newHandler; manageFault. Both fault
and termination handlers can be updated in this way. A compensation handler
instead is just the last defined termination handler when the scope terminates.
This is justified by the fact that intuitively the behavior of a service should be
the same if the fault occurs just before or just after its termination. Anyway, the
ability of dynamically updating the handlers allows to redefine termination han-
dler just before termination if a different behavior is desired for compensation
handler. Notice that the update primitive is executed with priority w.r.t. other
instructions, so to ensure that the state of the error handlers always matches the
state of the computation.

Until now we have managed errors involving just one service instance. As al-
ready said, services in SOCK may interact using two modalities: one-way o@z(y)
and request-response or@z(y, x). With the one-way, a service invokes another
service o located at z and does not care about the result. This is a loosely cou-
pled interaction pattern, thus does not poses particular problems from an error
handling point of view. With the request-response instead a client invokes a ser-
vice or located at z and waits for an answer. This interaction pattern may be
spoiled by errors both on client side and on service side. Assume for instance
that the invoked service fails because of some fault f , either from the service
code or from the service environment. In WS-BPEL such a service will not send
back any answer, and the client would wait undefinitely. Vice versa, if the client
fails (because of some fault in a parallel process), the answer from the service
may be lost. Consider our example of bank payment. Now the payment may be
required by a process

{payr@bank(y, x) |Q : [f → manageFault, g → manageRemoteFault]}q

Suppose that after the payr service has been invoked Q throws fault f . Thus the
client will not know whether the operation has been successful (and money has
been taken from the account) or not. Clearly the two scenarios require different
compensation policies on the client side.

To answer these problems SOCK proposes an approach based on automatic
error notification and allows to exploit those notifications during error recovery.
In particular, if the server payr above fails because of fault g, a faulty answer is
automatically sent to the waiting client, where it is considered as a local fault.
This has a double aim: on the one side the client will not be stuck waiting for a
response that will not arrive, on the other side the client may specify a suitable
handler for g allowing to recover locally from the remote error. For instance
the handler manageRemoteFault may notify the user or look for other payment
methods.

Furthermore, if the client fails while waiting for the answer of the request-
response operation (the fault comes from Q), the answer from payr is waited for
before error recovery is started. Also, a non-faulty answer may update the error-
handler on the client side requiring for instance to undo the remote activity. This
can be obtained by modifying the request-response above into

payr@bank(y, x, [f → annulPay; cH])

316 C. Ferreira et al.

Now, upon successful answer from payr, the fault handler for f is updated spec-
ifying that in case of such a fault (that, we assume, makes the whole transaction
fail) the pay operation should be undone. The compensation update is performed
only if the remote operation has been successful, and even if there has been a
local fault in the meanwhile.

The proposed approach has been validated (see [18] for details) in differ-
ent ways. First, by formally proving that the formalism satisfies some expected
high-level properties such as “each request-response receives an answer, either
a normal one or a faulty one” or “it is never the case that a fault is managed
by an handler that has not been updated”. Second, SOCK error handling prim-
itives have been used to program error handling for the automotive case study
(see Chapter 0-3). Third, SOCK primitives have been introduced in the language
JOLIE [31,21], a full-fledged language to program service-oriented applications
inspired by SOCK, and used to program real applications.

4 Models of Compensations

In the previous sections we have presented different mechanisms for defining
long-running transactions and compensations. However those mechanisms are
not all at the same abstraction level. They range from some low level mecha-
nisms, such as the ones of COWS [26] providing basic operators such as kill and
protection, to more complex mechanisms such as the ones of SOCK [19] and WS-
BPEL [32]. In the literature there are also abstract descriptions of the desired
behavior that compensated activities should have, such as the one provided by
SAGAs calculi [8]. Also, some approaches aiming at proving the correctness of
compensations are emerging [12,35].

In this section we present three comparisons between approaches at different
levels of abstraction. These can be exploited with different aims. On one side
they provide a way to assess the expressive power of languages, showing that
they are able to implement some abstract behavior. On the other side they
help the programmer of the application, who can specify the desired recovery
strategy at the high level of abstraction and exploit an automatic translation to
derive an implementation which is correct by construction. Finally, techniques
and strategies developed at one abstraction level can be exported to other levels.

4.1 Encoding BPEL Scopes in COWS

The first encoding that we present shows how COWS basic mechanisms are
powerful enough to implement WS-BPEL [32] scope construct.

Consider the following version of the WS-BPEL scope activity:

[s : catch(φ1){s1} : . . . : catch(φn){sn} : sc]i

Advanced Mechanisms for Service Combination and Transactions 317

This construct permits explicitly grouping activities together2. The declaration
of a scope activity contains a unique scope identifier i , a service s representing the
normal behavior, an optional list of fault handlers s1, . . . , sn, and a compensation
handler sc. The fault generator activity throw(φ) can be used by a service to
rise a fault signal φ. This signal will trigger execution of activity s′, if a construct
of the form catch(φ){s′} exists within the same scope. The compensate activity
compensate(i) can be used to invoke a compensation handler of an inner scope
named i that has already completed with success. Compensation can only be
invoked from within a fault or a compensation handler. Here, we fix two syntactic
constraints: handlers do not contain scope activities and, as in WS-BPEL (see
[32]), for each compensate(i) occurring in a service there exists at least an
inner scope i . Notably, an activity [s : catch(φ1){s1} : . . . : catch(φn){sn} : sc]i
acts as a binder for φ1, . . . , φn; in this way, a scope can only catch and handle
faults coming from its enclosed activities.

Now we show that this version of fault and compensation handling can be
easily encoded in COWS. The most interesting cases of the encoding are the
following:

〈〈[s : catch(φ1){s1} : . . . : catch(φn){sn} : sc]i〉〉k =
[φ1, . . . , φn] (〈〈catch(φ1){s1}〉〉k | . . . | 〈〈catch(φn){sn}〉〉k

| [ki] 〈〈s〉〉ki ; (xdone • odone!〈〉 | [k′] {|make • undo?〈i〉.〈〈sc〉〉k′ |}))

〈〈catch(φ){s}〉〉k = raise • throw?〈φ〉.[k′] 〈〈s〉〉k′

〈〈compensate(i)〉〉k = make • undo!〈i〉 | xdone • odone!〈〉
〈〈throw(φ)〉〉k = {|raise • throw !〈φ〉|} | kill(k)

The two distinguished endpoints raise • throw and make • undo are used for
exchanging fault and compensation signals, respectively. Each scope identifier i
or fault signal φ can be used to activate scope compensation or fault handling,
respectively.

The encoding 〈〈·〉〉k is parametrized by the label k that identifies the closest en-
closing scope, if any. The parameter is used when encoding a fault generator, to
launch a kill activity that forces termination of all the remaining activities of the
enclosing scope, and when encoding a scope, to delimit the field of action of inner
kill activities. The compensation handler sc of scope i is installed when the nor-
mal behavior s successfully completes, but it is activated only when signal make •

undo!〈i〉 occurs. Similarly, if during normal execution a fault φ occurs, a signal
raise • throw !〈φ〉 triggers execution of the corresponding fault handler (if any).
Installed compensation handlers are protected from killing by means of {| |}. No-
tably, the compensate activity can immediately terminate (thus enabling possible
sequential compositions by signaling its completion through the endpoint xdone •

odone); this, of course, does not mean that the corresponding handler is terminated.

2 This version only permits to compensate specified inner scopes and does not provide
an automatic compensation mechanism à la SAGAs. This latter mechanism, how-
ever, can be implemented in COWS by relying on ‘queues’ (we refer the interested
reader to [25] for further details).

318 C. Ferreira et al.

4.2 SAGAs in SOCK

The next encoding that we present is from the SAGAs calculi [8] to SOCK [18].
SAGAs calculi are based on the composition of basic activities. An activity A
may either terminate with success, or with failure. An activity A may have an
associated compensation activity B whose aim is to compensate the activity A in
case of failure of the transaction. Activities can be composed using sequential and
parallel composition, and grouped into subtransactions. For instance a SAGA
executing two payment requests and annulling them in case of failure can be
written as:

{[PAY1%ANNUL1; PAY2%ANNUL2]}
Different recovery policies are defined, specifying how to compose compensa-
tions and when to execute them. The general idea is that sequential activities
are compensated in backward order while parallel activities are compensated in
parallel. SAGAs calculi provide different policies, depending on whether paral-
lel activities are stopped in case of fault, and on whether compensations are
executed in a centralized or distributed way. We concentrate here on “coordi-
nated interruption”, where parallel branches are stopped when a flow aborts,
and compensations are handled in a centralized way.

This policy has been implemented using SOCK mechanisms in [23].
SAGA activities have been implemented by SOCK services, invoked using the
request-response interaction pattern. For instance, the activity PAY1 above is
implemented by a service PAY1 located at location lPAY1 and invoked by a
request-response PAY1@lPAY1 (parameters are not considered since they are
not important from a failure point of view).

If the activity PAY1 succeeds, then it sends back an answer (values sent in
the answer are not important too). If it fails, then it generates a specific fault
c. Through the automatic fault notification mechanism of SOCK, this fault is
notified to the caller, where it is raised signaling that the current SAGA is
aborting and has to be compensated.

Abortion of a SAGA is managed by using SOCK fault and compensation
handlers. Each activity invocation is inside a dedicated scope. If the activity
successfully finishes, then its compensation is installed as compensation handler
for the scope. At the SAGA level, a fault handler for c is installed, invoking
the compensations of the different inner activities in the required order, which is
extracted from the structure of the term. For instance, the SAGA of the example
above is modeled by a scope of the form

{inst([c → comp(pay2); comp(pay1)]; . . .); {. . . }pay1 ; {. . . }pay2}u

Since compensation handlers are available only after the corresponding activity
successfully ends, then only those activities are compensated, as required.

Assume now that the compensating activity ANNUL1 is executed as part of
the recovery. As specified by the compensation handler for PAY1, this is executed
with a different handler w.r.t. normal activities. In particular, in case of failure,
the fault c is caught, and a fault f (for fail) is raised instead. Fault f is never

Advanced Mechanisms for Service Combination and Transactions 319

caught and makes the whole SAGA fail, according to the SAGA idea that failure
is a catastrophic event.

The translation outlined above has been described in detail and proved correct
in [23]. We outline here also the correctness result. SAGA behavior is defined in
terms of a big-step LTS semantics, with rules of the form Γ � S

α−→ � where S
is a SAGA, Γ a function that specifies for each activity in S whether it succeeds
or it fails, α an observation of the computation, specifying the composition of
successful activities executed (the composition contains sequential and parallel
operators) and � may be either success, abort (i.e., success of the compensation)
or failure. For instance the SAGA above has a big-step transition of the form

PAY1 �→ �, PAY2 �→ �, ANNUL1 �→ � �
{[PAY1%ANNUL1; PAY2%ANNUL2]} PAY1;ANNUL1−−−−−−−−−−→ �

specifying that the SAGA aborts if activities PAY1 and ANNUL1 succeed and
PAY2 aborts.

SOCK instead has a small step semantics, including different observations
such as service invocations and replies, uncaught faults and others. Thus the
correctness is expressed in terms of an abstraction of the possible SOCK com-
putation containing only the events corresponding to successful answers from
request responses.

The correctness result can be stated as follows (see [23] for a more formal
statement).

Theorem 1. Let S be a SAGA. Γ � S
α−→ � iff for each observation o which is

a linearization3 of α one of the following happens:

– � is success and there is a computation starting from the translation of S
that does not contain uncaught faults whose abstracted observation is o;

– � is abort and there is a computation starting from the translation of S
whose abstracted observation is o and which terminates with an uncaught
fault c which is the only uncaught fault;

– � is failure and there is a computation starting from the translation of S
whose abstracted observation is o and which terminates with an uncaught
fault f which is the only uncaught fault.

For the SAGA above the theorem guarantees that the translation of the SAGA
has a computation whose abstracted observation is PAY1; ANNUL1 and which
has a unique uncaught fault, c.

4.3 Analysis of Compensations in the Conversation Calculus

In this section we show how the Conversation Calculus (CC) [37] (see also Chap-
ter 2-1) may be used to model and reason about structured compensating trans-
actions, following the techniques detailed in [12]. To reason about compensations
3 A linearization is obtained by taking an actual interleaving for parallel activities.

320 C. Ferreira et al.

in an abstract way, independently from a particular language implementation, we
introduce a general model of stateful compensating transactions. We then take
the core language for structured compensations introduced in [11], the compen-
sating CSP calculus (cCSP), but reinterpret its semantics in our generic compen-
sating model framework and prove the fundamental property expected in any
compensation model, namely atomicity of transactions (Theorem 2). Lastly, we
present an embedding of cCSP transactions in the Conversation Calculus, which
is proven correct since it induces a stateful model of compensating transactions
(Theorem 3). In the remainder of this section we describe the main ideas that
are at the basis of our development.

In our model, the most elementary program is a primitive action, similar to
a SAGA activity. A primitive action enjoys the following atomicity property:
it either executes successfully to completion, or it aborts. In case of abortion,
a primitive action is required not to perform any relevant observable behavior,
except signaling abortion by throwing an exception. A transaction, which may
involve several primitive actions, must also enjoy the atomicity property: it either
executes successfully to completion, or it aborts leaving the system in a state
equivalent to the one right before the transaction started executing. An aborted
transaction must not have any visible effect on the state of the system, so any
actions that were executed up to the point of the abortion must be in some
way reverted. Compensations provide a means to achieve this reversibility: if we
attach to every action a compensation that reverts the effect of the action, then
by executing all compensations of the previously executed actions (in the reverse
order) we end up in a state that should be in some sense equivalent to the state
right before the transaction started executing.

We define an abstract notion of compensating model, leaving open the in-
tended notion of “similarity” (�) between states, up to to which reversibility is
to be measured. The definition is also independent of the concrete underlying
operational model.

Definition 1 (Compensation Model). A compensation model is a pair (S,D)
where S gives its static structure and D gives its dynamic structure. The static
structure S = (S, | , #, �) is defined such that:

– S is a set of (abstract) states
– | is a partial composition operation on states
– # is an apartness relation on states
– �	 is an equivalence relation on S

The dynamic structure D = (Σ,
a→) is defined such that:

– Σ is a set of primitive actions
– a→ is a labeled (by elements of Σ) transition system between states.

On the one hand, the compensation model describes the static structure which
consists in a set of states S, a composition operation over states (defined only
when such states are independent/apart #) and an equivalence relation that
introduces flexibility at the level of measuring the cancellation effect of compen-
sations: since compensations, in general, may not be able to leave the system in

Advanced Mechanisms for Service Combination and Transactions 321

exactly the same state, we must consider a flexible notion of equivalence that
allows us to capture that the compensations produce an “equivalent enough”
state. On the other hand, the dynamic structure of the compensation model is
described by a labeled transition system between the states.

Using this abstract notion of compensation model we proceed by equipping
the cCSP with a semantics defined in terms of interpretations of a compensation
model. The semantics captures the effects and final status of cCSP programs—
the states in which the system is left after executing the program, and a signal
that indicates that the program successfully completed or aborted. cCSP pro-
grams are split in two categories: basic programs and compensable programs.
The simplest compensable program is a pair P ÷ Q where P and Q are atomic
actions and action Q is the compensation of action P . Thus action Q intended to
undo the effect of the P action, leading to a �	-equivalent state to the state right
before P was executed. Complex structured compensable programs may then be
defined by composition under various control operators: sequential composition
T ; R, parallel composition T | R, and others. An arbitrary compensable program
T may then be encapsulated as a basic program, by means of the operator 〈T 〉.

The compensation model already allows us to state conditions on basic ac-
tions precise enough to derive general properties, namely the following atomicity
result, that may then be reused in each particular application of the model.

Theorem 2 (Atomicity). Let R be a �	-consistent compensable program. Then
〈R〉 � R+ ⊕ throw .

Theorem 2 guarantees that the behavior of transactions implemented over �	-
consistent compensable programs approximate atomicity: a transaction either
aborts (throw) doing “nothing”, or (⊕) terminates successfully after executing all
of its forward actions (R+) (P is the forward action in P ÷Q). The �	-consistent
condition ensures that for each compensation pair P ÷Q in the program, action
Q reverts the effect of P up to �	.

We now present our provably correct embedding of the cCSP language for
structured compensating transactions in the Conversation Calculus. We con-
sider that primitive actions are implemented by CC processes conforming to the
following behavior: after some interactions with the environment it either sends
(only once) the message ok�! in the current conversation context without any
further action, or aborts, by throwing an exception. If the outcome is abortion,
the system should be left in the “same” state (up to �) as it was before the
primitive action started executing.

We show a selection of our encoding in Fig. 1. We use [P] � (νn)(n �
[P]) as an abbreviation to represent an anonymous (restricted) context (use-
ful to frame local computations). We denote by �P �ok the encoding of a basic
program P (namely structured compensating transactions) into a conversation
calculus process. The ok index represents the message label that signals the
successful completion of the basic program, while abortion is signaled by throw-
ing an exception. The encoding of compensable transaction T is denoted by
�T �ok ,ab,cm,cb . The encoding of T will either issue a single message ok� to signal
successful completion (and the implicit installation of compensation handlers)

322 C. Ferreira et al.

�〈T 〉�ok � [�T �ok,ab,cm,cb | ab?.throw 0 | ok?.ok�!]

�P ÷ Q�ok ,ab,cm,cb � [try �P �ok catch ab�! |
ok?.ok �!.(cm�?.�Q�cb | cb?.cb�!)]

�T1; T2�ok,ab,cm,cb � [�T1�ok1,ab1,cm1,cb | ab1?.ab
�! |

ok1?.�T2�ok,ab,cm,cm1 | ab?.cm1!.cb?.ab�! |
ok?.ok �!.cm�?.cm !.cb?.cb�!]

�T1 | T2�ok,ab,cm,cb � [�T1�ok1,ab,cm1,cb1 | �T2�ok2,ab,cm2,cb2 |
ok1?.ok2?.ok

�!.cm�?.(cm1! | cm2! | cb1?.cb2?.cb
�!) |

ab?.(ok1?.cm1!.cb1?.ab
�! | ok2?.cm2!.cb1?.ab

�! | ab?.ab�!)]

Fig. 1. Encoding of structured compensating transactions in the CC (selected cases)

or (in exclusive alternative) a single message ab� to signal abortion. After suc-
cessful completion, reception of a single message cm� (“compensate me”) by the
residual will trigger the compensation process. When compensation terminates,
a single message cb� (“compensate back”) will be issued, to trigger compensation
of previous successfully terminated activities.

We prove that our encoding is correct, by showing that it induces a compen-
sation model in the sense of Definition 1 and with respect to the cCSP semantics
(see [12]).

Theorem 3 (Correctness). Let S = (S, | , #, �) and D = (Σ,
a−→) define a

CC compensating model M = (S,D). If 〈T 〉 is a �	-consistent CC program over
Σ, then �〈T 〉�ok is a CC atomic activity, that either behaves as T +, or aborts
without any observable behavior modulo �	.

Theorem 3 states that the mapping �−�ok yields a sound embedding of arbitrary
(�	-consistent) structured compensating transactions in any CC compensating
model. By showing that our encoding is an instance of the cCSP semantics,
we directly recover the property stated in Theorem 2 to any CC compensation
model.

Our framework naturally supports distributed transactions since primitive
actions may be realized by calls to remote services. For example, let us consider a
cCSP specification of a compensable transaction, which captures a credit request
operation between a client and a bank, where the financial ranking of the client
is updated according to the credit request operation, e.g., so as to indicate his
financial status is less reliable.

〈StartCreditRequest ÷ AbandonData ;UpdateRate ÷ RestoreRate ;ClientAccept ÷ skip〉
Whenever a credit request operation starts, some data is created and the client’s
financial rate is updated. Then either the client accepts or otherwise the transac-
tion is aborted. In the latter case, the client rate is restored and the data of the
operation is cleared. Primitive actions such as UpdateRate and RestoreRate may
be implemented via calls to services that realize the expected tasks, for instance:

Advanced Mechanisms for Service Combination and Transactions 323

UpdateRate � new Bank · UpdateRate ⇐ lowerClientRate!.(ok?.ok�! + ko?.throw)

RestoreRate � new Bank · RestoreRate ⇐ raiseClientRate!.ok?.ok�!

Notice that these CC programs either send a single ok message or abort by
throwing an exception, and hence fit in our previous description of primitive
actions. We may then directly obtain a CC implementation of the cCSP trans-
action specified above, via such implementations of the primitive actions and via
the developed embedding of the cCSP compensation operators in CC.

5 Conclusion

In this chapter we have summarized the main results of the Sensoria project
concerning fault and compensation handling in message-based calculi. They con-
cern different aspects. On one side, we have studied different primitives for mod-
eling long-running transactions and compensations, adapting also them to the
particular needs of service-oriented computing. In particular, the idea of dy-
namic handlers is new, and has been studied in details. On the other side, we
have analyzed the expressive power of the different primitives, proving some
interesting separation results. Finally, we have exploited these mechanisms by
inserting them into calculi and languages for service-oriented computing, such as
CaSPiS [3], COWS [26], the Conversation Calculus [37], SOCK [10] and Jolie [31].
Similar results for event-based calculi are presented in Chapter 3-4. For instance,
a mapping of SAGAs into the Signal Calculus [14] has been presented in [6].

While we have today a huge toolbox of primitives able to deal with the
challenges of service-oriented computing, the understanding of the relationships
among them is still far. A few works [22,23,12] have appeared analyzing encod-
ings and separation results, but many pieces are missing, and the whole picture
is still quite obscure. Keep also in mind that the problem is made hard since the
expressive power depends not only on the chosen primitives for fault and com-
pensation handling, but also on the underlying language. Another important
stream for future work is the proof of correctness of compensation strategies.
For long-running transactions one cannot require, as can be done for ACID
transactions instead, that in case of failure the system goes back to the starting
state, since recovery is not perfect. A few approaches are emerging here too.
The previous section presented a framework for reasoning about the correct re-
covery, measured up to some particular behavioral equivalence parametrically
defined in the framework. An alternative approach is to examine observations:
a relation between performed activities and executed compensations is required,
based again on some user-defined pattern [35].

Acknowledgments. The work reported herein is the result of a collaborative
effort of many researchers, not just of the authors. Special thanks to Lucia Ac-
ciai for the contribution on CaSPiS in Section 3, and to Rosario Pugliese and
Francesco Tiezzi for the contribution on COWS in the same section.

António Ravara was partially supported by the Security and Quantum Infor-
mation Group, Instituto de Telecomunicações, Portugal.

324 C. Ferreira et al.

References

1. Amadio, R.M., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous
pi-calculus. Theoretical Computer Science 195(2), 291–324 (1998)

2. Bocchi, L., Laneve, C., Zavattaro, G.: A calculus for long-running transactions. In:
Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp.
124–138. Springer, Heidelberg (2003)

3. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and pipelines for struc-
tured service programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008)

4. Boreale, M., et al.: SCC: a Service Centered Calculus. In: Bravetti, M., Núñez,
M., Tennenholtz, M. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 38–57. Springer,
Heidelberg (2006)

5. Bravetti, M., Zavattaro, G.: On the expressive power of process interruption and
compensation. Mathematical Structures in Computer Science 19(3) (2009)

6. Bruni, R., Ferrari, G.L., Melgratti, H.C., Montanari, U., Strollo, D., Tuosto, E.:
From theory to practice in transactional composition of web services. In: Bravetti,
M., Kloul, L., Tennenholtz, M. (eds.) EPEW/WS-FM 2005. LNCS, vol. 3670, pp.
272–286. Springer, Heidelberg (2005)

7. Bruni, R., Melgratti, H., Montanari, U.: Nested commits for mobile calculi: Ex-
tending join. In: Proc. of IFIP TCS 2004, pp. 563–576. Kluwer, Dordrecht (2004)

8. Bruni, R., Melgratti, H., Montanari, U.: Theoretical foundations for compensations
in flow composition languages. In: Proc. of POPL 2005, pp. 209–220. ACM Press,
New York (2005)

9. Busi, N., Gabbrielli, M., Zavattaro, G.: Replication vs. recursive definitions in
channel based calculi. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger,
G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 133–144. Springer, Heidelberg (2003)

10. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: SOCK: A calculus
for service oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, pp. 327–338. Springer, Heidelberg (2006)

11. Butler, M.J., Hoare, C.A.R., Ferreira, C.: A trace semantics for long-running trans-
actions. In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Se-
quential Processes. The First 25 Years. LNCS, vol. 3525, pp. 133–150. Springer,
Heidelberg (2005)

12. Caires, L., Ferreira, C., Vieira, H.T.: A process calculus analysis of compensations.
In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 87–103.
Springer, Heidelberg (2009)

13. Carbone, M., Honda, K., Yoshida, N.: Structured interactional exceptions for ses-
sion types. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 402–417. Springer, Heidelberg (2008)

14. Ferrari, G.L., Guanciale, R., Strollo, D.: JSCL: A middleware for service coordina-
tion. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006.
LNCS, vol. 4229, pp. 46–60. Springer, Heidelberg (2006)

15. Fournet, C., Gonthier, G.: The join calculus: A language for distributed mobile
programming. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM
2000. LNCS, vol. 2395, pp. 268–332. Springer, Heidelberg (2002)

16. Garcia-Molina, H., Gawlick, D., Klein, J., Kleissner, K., Salem, K.: Coordinat-
ing multi-transaction activities. Technical Report Report No. UMIACS-TR-90-24,
Univ. of Maryland Institute for Advanced Computer Studies (1990)

Advanced Mechanisms for Service Combination and Transactions 325

17. Gorla, D.: Towards a unified approach to encodability and separation results for
process calculi. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS,
vol. 5201, pp. 492–507. Springer, Heidelberg (2008)

18. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: On the interplay between fault
handling and request-response service invocations. In: Proc. of ACSD 2008, pp.
190–199. IEEE Computer Society Press, Los Alamitos (2008)

19. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: Dynamic error handling in service
oriented applications. Fundamenta Informaticae 95(1), 73–102 (2009)

20. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

21. Jolie website, http://www.jolie-lang.org/
22. Lanese, I., Vaz, C., Ferreira, C.: On the expressive power of primitives for compen-

sation handling. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 366–386.
Springer, Heidelberg (2010)

23. Lanese, I., Zavattaro, G.: Programming sagas in SOCK. In: Proc. of SEFM 2009,
pp. 189–198. IEEE Computer Society Press, Los Alamitos (2009)

24. Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.)
FOSSACS 2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)

25. Lapadula, A.: A Formal Account of Web Services Orchestration. PhD thesis, Di-
partimento di Sistemi e Informatica, Università degli Studi di Firenze (2008),
http://rap.dsi.unifi.it/cows

26. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web ser-
vices. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,
Heidelberg (2007)

27. Mazzara, M., Lanese, I.: Towards a unifying theory for web services composition.
In: Bravetti, M., Núñez, M., Tennenholtz, M. (eds.) WS-FM 2006. LNCS, vol. 4184,
pp. 257–272. Springer, Heidelberg (2006)

28. Milner,R.:Communication andConcurrency.Prentice-Hall, EnglewoodCliffs (1989)
29. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part I/II. In-

formation and Computation 100, 1–77 (1992)
30. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992.

LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)
31. Montesi, F., Guidi, C., Zavattaro, G.: Composing services with JOLIE. In: Proc.

of ECOWS 2007, pp. 13–22. IEEE Computer Society Press, Los Alamitos (2007)
32. Oasis. Web Services Business Process Execution Language Version 2.0 (2007),

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
33. Rensink, A., Vogler, W.: Fair testing. Information and Computation 205(2), 125–

198 (2007)
34. Sangiorgi, D., Walker, D.: Pi-Calculus: A Theory of Mobile Processes. Cambridge

University Press, Cambridge (2001)
35. Vaz, C., Ferreira, C.: Towards compensation correctness in interactive systems. In:

Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 161–177. Springer,
Heidelberg (2010)

36. Vaz, C., Ferreira, C., Ravara, A.: Dynamic recovering of long running transactions.
In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 201–215.
Springer, Heidelberg (2009)

37. Vieira, H.T., Caires, L., Seco, J.C.: The conversation calculus: A model of service-
oriented computation. In: Gairing, M. (ed.) ESOP 2008. LNCS, vol. 4960, pp.
269–283. Springer, Heidelberg (2008)

38. World Wide Web Consortium. Web Services Description Language (WSDL) 1.1
(2001), http://www.w3.org/TR/wsdl

http://www.jolie-lang.org/
http://rap.dsi.unifi.it/cows
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/wsdl

	Advanced Mechanisms for Service Combination and Transactions
	Introduction
	Content of the Chapter
	Overview of Process Calculi Approaches

	Basic Mechanisms
	Exception Handling
	Compensation Handling

	Exploiting the Mechanisms in SOC
	Static Compensation Policies
	Dynamic Compensation Policies

	Models of Compensations
	Encoding BPEL Scopes in COWS
	SAGAs in SOCK
	Analysis of Compensations in the Conversation Calculus

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

