
Tools and Verification�

Massimo Bartoletti1, Lúıs Caires2, Ivan Lanese3, Franco Mazzanti4,
Davide Sangiorgi3, Hugo Torres Vieira2, and Roberto Zunino5

1 Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Italy
bart@unica.it

2 CITI and Dep. de Informatica, FCT, Universidade Nova de Lisboa, Portugal
luis.caires@di.fct.unl.pt, htv@fct.unl.pt

3 Focus Team, Università di Bologna/INRIA, Italy
{lanese,davide.sangiorgi}@cs.unibo.it

4 ISTI-CNR, Pisa, Italy
franco.mazzanti@isti.cnr.it

5 Dipartimento di Ingegneria e Scienza dell’Informazione, Università di Trento, Italy
zunino@disi.unitn.it

Abstract. This chapter presents different tools that have been devel-
oped inside the Sensoria project. Sensoria studied qualitative analysis
techniques for verifying properties of service implementations with re-
spect to their formal specifications. The tools presented in this chapter
have been developed to carry out the analysis in an automated, or semi-
automated, way.

We present four different tools, all developed during the Sensoria
project, exploiting new techniques and calculi from the Sensoria project
itself.

1 Introduction

This chapter presents a set of tools that have been developed inside the Sensoria
project for analysis and verification of service-oriented systems. The tools allow
the application of novel analysis techniques for service-oriented systems that
have been studied inside the project. Those tools are (partly) based on calculi
and models described in Chapter 2-1. Also, they have been validated by applying
them to the Sensoria case studies (described in Chapter 0-3), as illustrated in
Chapter 7-4 for the COWS Model Checker (CMC). This experimentation has
provided useful feedback for improving the tools themselves.

We describe four different tools in detail, all developed within the Sensoria
project and based on new techniques and calculi introduced in the project itself.
While referring to the next sections and to the publications in the bibliography
for a more detailed description of the tools and of the underlying theory, we give
here a short outline of each of them.

� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 408–427, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Tools and Verification 409

CMC and UMC model checkers: CMC (COWS Model Checker) and UMC
(UML Model Checker) are two prototypical instantiations of a common
logical verification framework for the analysis of functional properties of
service-oriented systems. Both tools have the goal of model-checking prop-
erties specified in Socl (the Service Oriented Computing Logic), and they
differ just for the underlying computational models, which are built out
from COWS (see Chapter 2-1) specifications in the case of CMC, and UML
statecharts in the case of UMC. In both cases, the specifications are mapped
onto Doubly Labeled Transition Systems, in which transitions are labeled by
sets of observable events. The on-the-fly model checking technique is used to
avoid statespace explosion. In this chapter we describe the tools themselves,
while the underlying logic and the algorithms exploited by them have been
described in Chapter 4-2.

ChorSLMC: ChorSLMC (Choreography Spatial Logic Model Checker) is a
verification tool for service-based systems implemented as an extension to
SLMC, a framework for model checking distributed systems against proper-
ties expressible in dynamic-spatial logic. Descriptions of participants may be
specified either in the Conversation Calculus [29] (see also Chapter 2-1), a
core calculus for service-oriented computing developed within the Sensoria
project, or in a fragment of WS-BPEL [1], while choreographic descriptions
may be specified in an abstract version of WS-CDL [33]. The tool may also
be used on service-based systems to check other interesting properties of
typical distributed systems, using the core dynamic-spatial logic available in
SLMC.

LocUsT: the LocUsT tool is a model checker for usages, abstract descriptions of
the behavior of services. Usages are expressed in a simple process calculus.
They over-approximate all the possible execution traces of a service, focusing
on resource creation and access. Usage policies are then used to express
constraints on the use of resources, by identifying the forbidden patterns.
A policy is represented through a finite state automaton parametrized over
resources. LocUsT takes as input a usage and a policy, and decides whether
a trace of the usage that violates some instantiation of the policy exists.

The CMC and UMC tools are strongly related, just differing on the format of
the description of the model of the system to be analyzed, and concentrate on
verifying behavioral properties expressed in Socl logic. ChorSLMC also concen-
trates on behavioral properties, but they are verified by checking conformance
to a choreographic description. LocUsT instead tackles a different problem, con-
centrating more on the security aspects, and allowing to check that resources
are used according to a specified policy.

2 CMC-UMC Verification of Service-Oriented Models

CMC (COWS Model Checker) and UMC (UML Model Checker) [23, 27] are
two prototypical instantiations of a common logical verification framework for
the verification of functional properties of service-oriented systems. They differ

410 M. Bartoletti et al.

just for the underlying computational models which are built out from COWS
[20, 21] specifications in the case of CMC, and out from UML [28] statecharts
in the case of UMC. For verification of service-oriented models we do not intend
just the final “validation” step of a completed architecture design, but rather a
formal support during all the steps of the incremental design phase (hence when
running designs are still likely to be incomplete and with high probability to
contain mistakes). Indeed CMC/UMC have been developed having in mind the
needs of a system designer which intends to take advantage of formal approaches
to achieve an early validation of the system requirements and an early detection
of design errors. From this point of view the design of CMC/UMC has been
driven by the desire to achieve the following goals (or, at least, to experiment in
the following directions):

– The support of a good user experience (easiness of use) in the computer-aided
application of formal methods.

– The support of abstraction mechanisms allowing to observe the system at
an high level of abstraction, hiding all the irrelevant and unnecessary com-
putational details.

– The possibility to explore step by step the possible system evolutions and the
possibility to generate a “summary” of system behavior in terms of minimal
abstract traces.

– The possibility to investigate detailed and complex system properties using a
parametric branching time temporal logic supported by an on-the-fly model
checker.

– The possibility of obtaining an understandable explanation of the model-
checking results.

In the following we will briefly present the achieved results with respect to the
above five points.

User Experience. Several kinds of user interfaces have been experimented in
the attempt to make possible the access to verification facilities also by non
technical people. This without losing the possibility to tune and control the
verification environment in a more advanced way. In particular:

– CMC/UMC are accessible as web applications to allow their experimentation
and use without any kind of local installation, and exploiting the friendliness
and flexibility of hypertextual documents to support the interactions with
the user.

– CMC/UMC are usable with a simple, platform independent, java-based,
graphical interface to achieve offline model exploration and verification.

– CMC/UMC are available as binary, platform-specific, command line oriented
applications (for Mac, Windows, Linux and Sun systems) to exploit the
simplest, most efficient, and finest level of interaction and control of the
system verification and exploration.

– Models can be edited as simple textual documents.

Tools and Verification 411

– UML Statechart models can also be edited through a dedicated graphical
interface.

– UML Statechart models can be extracted from standard UML XMI docu-
ments.

Abstraction Mechanisms. In our context, services are considered as entities
which have some kind of abstract internal state and which are capable of support-
ing abstract interactions with their clients, like for example accepting requests,
delivering corresponding responses and, on-demand, canceling requests. More-
over, concrete operational models, with a specific concrete operational semantics,
are used to describe the details of the system states and their possible evolution
steps. This means that an abstraction mechanism needs to be applied to the sys-
tem state description and to the system evolution information. This mechanism
allows to extract from the operational semantics of the specific computational
model the relevant aspects we want to observe. In our tools this abstraction step
is achieved via a list of pattern matching rules which allow to specify which
state properties and which transition events we want to observe. These rules are
presented as structured actions of the form “mainlabel(flag,flag,..)”. When this
abstraction step is performed, the semantic model of a service-oriented system
can be seen as a doubly labeled transitions system (L2TS), where both the states
and the edges are labeled with sets of the above described structured actions.
This abstract L2TS induced by the operational semantics of the system will con-
stitute the reference structure used by the logic as interpretation domain and
by the full-trace minimization algorithm to generate and display the abstract
minimized views of the system.

CMC is the instantiation of our verification framework with respect to the
COWS process calculus. COWS ha been explicitly defined for the specifica-
tion and orchestration of services and combines in an original way constructs
and well known features like asynchronous communication, polyadic synchro-
nization, pattern matching, protection, delimited receiving and killing activities.
The abstraction rules of CMC allow to “intercept” the communication actions
occurring between two COWS processes and present them as request/response
events in the context of some client-server interaction. The corresponding ab-
stract labels will therefore appear on the edges of the L2TS as they represent the
abstract events occurred during an evolution step. The CMC abstraction rules
moreover allow to observe the willingness of a COWS term to participate to a
communication synchronization (e.g., its willingness to perform the input side of
the synchronization) and present it as a state property reflecting the willingness
of a service to accept operation requests. In this case this abstract property will
appear as an abstract label associated to some states of the L2TS.

UMC is instead the instantiation of our verification framework with respect to
UML statecharts. These have a standard presentation and semantics as defined
by the OMG (Object Management Group). The communication events which
can be observed in this case are based on the notion of message passing. Indeed,
we can distinguish the event of sending an operation request (on the client side)
from the event of accepting that request (on the server side). Moreover UML

412 M. Bartoletti et al.

Fig. 1. UMC manual model exploration page

statecharts are built over the concept of local attribute of objects, and during
the execution of a system transition (beyond multiple communication actions)
several updates of the local object attributes can be executed. The abstraction
rules of UMC allow to observe all these events (acceptance of a message, sending
of a message, update of a local attribute) as abstract events representing relevant
aspects of the service-oriented behavior of the system, and represent them as
abstract labels associated to the L2TS edges. Other abstraction rules of UMC
allow instead to observe the specific value of selected object attributes, and
whether or not an object in a specific state, and present this information as
abstract state predicates labeling the states of the L2TS.

Step by Step Exploration. The first and simpler way to explore a CMC/UMC
model is to manually navigate through its L2TS structure, observing at each
step the set of possible immediate evolutions, the set of abstract events occurring
during these evolutions, the set of abstract properties holding in the current state
and, if desired, also all the ground details of the underlying computational model
with respect to the current state structure and evolutions. The web application
interface (shown in Fig. 1), thanks to the use of tooltips, colors and hyperlinks,
makes this exploration experience more immediate.

Abstract Minimized Traces. The possibility of selecting a small set of ab-
stract events of interest and, starting from them, compute and observe the min-
imized full-trace abstract view of the system is an extremely powerful way of

Tools and Verification 413

checking whether the system behavior matches the intended requirements. This
works even in the case in which the requirements themselves are not fully clear
or well formalized. Let us consider, for example, the automotive case study de-
scribed in [25]. This is formalized as a collection of UMC statecharts, which is
a model constituted by several hundreds of states. Suppose we are interested in
observing only the “bank” related events and the “garage” related events. Us-
ing the appropriate abstractions and using UMC to build the minimized model
with respect to them we obtain the L2TS shown in Fig. 2, which summarizes
all the possible system traces with respect to the observed set of events. It is
extremely easy to become confident of the correctness of the model just looking
at the L2TS, without being forced to identify a priori a complete set of require-
ments and formalize them in terms of logic formulas for being separately model
checked. Unfortunately the abstract minimization approach to system verifica-
tion has also some drawbacks:

– It is computationally expensive: for very large models it might be too much
resource consuming to compute its abstract, minimal full-trace view.

– If the L2TS is not finite, it is not even a matter of available computing
resources. Building the abstraction is not possible.

– The abstract view completely lost the connection with the original “con-
crete” computational model. If the system behavior is not the expected one,
no immediate way is available to reconstruct unexpected computations in
the concrete model.

– If the resulting chart is rather complex, relying on just the intuition to assess
its correctness is unreliable and lacks of concrete formal evidence.

Socl Model Checking. To overcome the drawbacks of the previous approach,
as well as to directly formalize and check specific functional / safety / liveness
requirements of a system, a verification technique based on on-the-fly, bounded
model checking of Socl formulas is considered. This approach also permits to
reduce the average verification time and, at the same time, performing some
verification also in the case of non finite-state systems. Socl [15] is a service-
oriented temporal logic derived from UCTL [16, 17, 24] of which we recall here
the most important characteristics:

– It is a branching time logic, built over the classical intuitive “eventually” (F),
“always” (G), “until” (U), “next” (X) temporal operators. The evaluation
of this logic is known [7] to be achievable with a computational complexity
which is linear with respect to the size of the formula and the size of the
model.

– It is an event and state based logic. Being its interpretation domain our
abstract state/event based L2TS structures, Socl allows to directly express
state predicates to be evaluated over the abstract labels associated to the
states of the L2TS, and action expressions to be evaluated over the abstract
labels associated to the edges of the L2TS.

414 M. Bartoletti et al.

1

{request(bankcharge,car1)}

2

{fail(bankcharge,car1)}

{response(bankcharge,car1)}

7

#final

3

{revoke(bankcharge,car1)}

{request(garage,car1)}

4

{fail(garage,car1)}

{response(garage,car1)}

6

{revoke(bankcharge,car1)}

5 #final

{revoke(bankcharge,car1)} {revoke(garage,car1)}

8

{revoke(garage,car1)}

Fig. 2. An abstract view of the automotive case study

– It is a parametric temporal logic, in which the values of the arguments of
an abstract event occurring during a transition can be used to dynamically
instantiate a parametric subformula to be evaluated in the target state of
the transition itself.

Socl is supported in CMC/UMC by an on-the-fly model checking algorithm
which generates the model statespace on demand according to the flow of the
evaluation. The UCTL formula is evaluated adopting a top-down traversal of
the structure of the formula itself minimizing the need of the model statespace
generation (which is explored in a depth-first way); a bounded [8] model checking
approach is also used to try to produce an evaluation result also in the case of
infinite state models.

The Socl verification engine is exactly the same in both CMC and UMC
since it is based on the abstract L2TS computed from the models, and not on
the specific concrete computational models defined by input model specification
languages. In the following we show some examples of Socl formulas, just to give
an intuition of its structure, referring to [15] for the details of its definition and
for its formal presentation. These examples are written with respect to the same
abstraction rules used to generate the abstract minimized traces shown in Fig.
2. With respect to the above scenario we can check, for example, that: “It is
always true (AG) that an unsuccessful response from the garage to a client is al-
ways eventually (AF) followed by a revoke operation to the bank, on behalf of the

Tools and Verification 415

same client”. This property can be formalized in Socl (following the CMC/UMC
syntax) as:

AG [fail(garage, $client)] AF{revoke(bankcharge,%client)} true.

Another general property that we can check with respect to the same scenario is
that: “It is always true (AG) that a request for an operation is always followed
(AF) either by a successful response to that operation or by a failure notification”.
In this case the property can be formalized as:

AG [request($operation,$client)]
AF {response(%operation,%client)

or fail (%operation,%client)}.
Proofs and Counterexamples. It is well known that providing a counterex-
ample for a given temporal logic formula is quite easy in the case of linear time
logics and quite complex in the case of branching time logics. The problems to be
solved for the generation of useful proofs/counterexamples are essentially three:

– The proof/counterexample is not (in general) based on a single execution
path of the system, but may be based on a subgraph of the L2TS modeling
the system.

– Not all the L2TS states needed by the proof/counterexample are in general
“useful” from the point of view of the user.

– The information on the set of L2TS states needed by the proof/counter-
example is sometimes not sufficient to produce usable feedback to the user.
We might need to provide feedback also on which subformula was being
evaluated when the L2TS states have been explored.

Let us consider, for example, a simple formula of the kind: “(AG predicate1) or
(AG predicate2)”. If this formula does not hold, its counterexample has the form
of a pair of paths, one leading to a state in which predicate1 does not hold, and
another leading to a state in which predicate2 does not hold.

Let us consider, moreover, the formula: “EF predicate”. If this formula does
not hold, its counterexample would coincide with the full system statespace,
however it would be completely pointless to provide the user with an exhaustive
list of all the states for which the predicate does not hold. On the contrary, if the
formula holds the user might be interested in the sequence of steps which would
prove it.

Let us consider, as third example, the formula “EF AG predicate”. If the
formula holds for a certain system, the user might be interested in the proof for
the first part of the formula, showing an execution path which, starting from
the initial state would lead to an intermediate state for which the subformula
“AG predicate” holds; once identified that intermediate state all the other states
reachable from it belonging to the proof of the subformula “AG predicate” would
probably add only irrelevant noise and complexity to the original information.
The “useful” part of the proof, would be constituted by a fragment of the full
proof. CMC/UMC tries to convey to the user what is supposed to be the “useful”
part of a proof or counterexample, but only more experience might consolidate
the identification of the “best” reasonable behavior.

416 M. Bartoletti et al.

Application to the Case Studies. The design and development of the pro-
totypes has greatly taken advantage from the early experiences gained through
their application to the Sensoria case studies. The first of these applications
has been the use of UMC for the analysis of communication protocols for service-
oriented applications [24, 26]. Subsequently the Sensoria automotive case study
has been the stimulus for the first experimentations with the Socl logic and the
COWS language [15]. The same case study has also been specified in terms of
UML statecharts and verified with UMC [25], thus experimenting with the Sen-
soria UML profile for SOA [19, 22]. Finally both COWS/CMC and UML/UMC
have been applied for the formalization and verification of the Sensoria Credit
Portal case study (see Chapter 0-3).

3 Model-Checking Service Conversations with
ChorSLMC

A service-based system is a decentralized coordinated distributed system, where
independent partners interact by message passing. It is then useful to consider
the extension of automated verification techniques, based on model-checking,
to service-oriented models, able to certify the general “standard properties” of
concurrent distributed systems, such as reachability, termination, liveness, race-
freedom, just to refer a few. We may also be interested in domain specific in-
variants. This class of properties is easily expressible in some kind of temporal
logic. Adding to these, it is well known that to describe interactions among part-
ners in a service relationship two viewpoints are considered particularly useful:
orchestration and choreography.

“Orchestration” focuses on the coordination of several partners from the local
viewpoint of a single participant, for the purpose of providing a new functionality
or service to the external world, “choreography” describes the global behavior of
a system that emerges from the interaction of several independent participants.
An orchestration can be seen as the description of a workflow process, with
its own control flow graph, while a choreography, just like a message sequence
chart, describes the message exchanges between a group of partners involved
in a complex transaction. Orchestration specification languages are program-
ming languages, with a definite operational semantics (cf. WS-BPEL [1] and
various service-oriented calculi described in Chapter 2-1), while choreography
languages (cf. WS-CDL [33] and the calculus of [13]) define global behaviors of
composite systems “without a single point of control”, and are not intended to
be “executable”. Therefore, in addition to common behavioral-temporal prop-
erties, an important analysis problem in service-oriented computing is to check
conformance of local descriptions (orchestrations) with respect to choreographies
(cf. [9, 14]). Specifying (and checking) conformance of localized process interac-
tions against choreographies requires a specification language able to talk about
the internal spatial structure of a concurrent system, and its dynamic evolution.
Such expressiveness falls out of the scope of extensional behavioral logics such
as Hennessy-Milner logic and variants (and supporting tools).

Tools and Verification 417

We have developed a fairly simple, yet powerful, technique, building on
dynamic-spatial logics and model-checking [10, 11], particularly appropriate for
this class of analysis problems. We have also implemented a supporting tool
ChorSLMC, which is an extension of SLMC, a dynamic-spatial logic model-
checker. The tool may be used to check not only choreography conformance, but
many other key properties of service-oriented systems, such as race-freedom and
deadlock absence, and system invariants, that may be easily expressed in the
underlying logical framework.

Approach. Our approach to the choreographic analysis problem relies on lan-
guage translations, and on the reuse of previously developed model-checking
techniques for spatial logic and related tools. More concretely, we have developed
provably correct encodings, allowing local descriptions of partner sites, expressed
in a service-oriented calculus, to be adequately translated into a lower level
analysis language (a dialect of the π-calculus), and global descriptions (chore-
ographies), to be adequately translated into dynamic-spatial logic formulas. The
correctness of our translation ensures that a system System, expressed in the
core Conversation Calculus [29] (described in Chapter 2-1 and referred below by
CC) or, alternatively, in a simple dialect of WS-BPEL, conforms to a choreogra-
phy Choreography , expressed in a WS-CDL dialect, if and only if its π-calculus
translation satisfies the corresponding dynamic-spatial logic formula.

[[System]] |= [[Choreography]]

The correctness of the translation between the source language (either CC or
WS-BPEL) is obtained by observing that for model-checking purposes, we don’t
really need full abstraction but just some suitable operational correspondence.
The encoding of choreographies in the logic is supported by the structural
observational power of spatial logics, that allow observation of internal mes-
sage exchanges, unobservable by purely behavioral logics such as those sup-
ported by other existing model checking tools. Choreography conformance of
service-oriented systems is then reduced to a model-checking problem that may
be easily handled by existing tools, namely the Spatial Logic Model Checker
(SLMC) [31, 32] (started to be developed in Global Computing 1 Project Pro-
fundis, and extended during Global Computing 2 Project Sensoria). The struc-
tural observation power of spatial logics turns out to be essential in this applica-
tion to choreographic verification, since, e.g., the message exchanges mentioned
in a choreographic description are not observable by traditional process logics
invariant under behavioral equivalences. Thus, general process logics and tools
that cannot observe internal message exchanges in a system would not be appro-
priate for the service verification problem we consider here. Both local descrip-
tions of services, expressed in suitable orchestration languages, and the global
choreographic descriptions, expressed in a WS-CDL dialect, are translated by
ChorSLMC into π-calculus / dynamic-spatial logic specifications, respectively,
which are directly fed to the SLMC verification engine.

418 M. Bartoletti et al.

Input Specification Languages. The ChorSLMC tool supports two modeling
languages for defining the behavior of partners in a service collaboration: a core
fragment of the Conversation Calculus, obtained by removing exception handling
primitives, and a fragment of WS-BPEL. The specification syntax is depicted
below, and includes the basic constructors presented in Chapter 2-1. Both the
CC model and the WS-BPEL model are detailed in [30].

α ::= LABEL!(õ) (send here)
| LABEL?(̃i) (receive here)
| LABEL̂!(õ) (send up)
| LABEL̂?(̃i) (receive up)

P ::= end (inaction)
| context n {P} (site)
| α.P (action)
| switch {α1.P1; . . . ; αk.Pk} (select)
| def LABEL ⇒ P (service definition)
| new n.LABEL ⇐ P (service instantiation)
| join n.LABEL ⇐ P (conversation join)
| P1 | P2 (parallel)
| Id (process identifier)
| if (bool expr) then P1 else P2 (conditional)

To describe choreographies, a fairly simplified version of the WS-CDL language is
also considered, defined as an extension of the dynamic-spatial logic available in
SLMC with specialized choreography operators as shown below. In such a way, it
is possible to freely mix choreography operators with propositional and first order
name quantification, spatial operators and fixpoint operators. The choreography
fragment is close to the languages of global types introduced by [13, 18], and is
also processed directly by the ChorSLMC tool.

A ::= end (no action)
| exchange(n,LABEL, A) (may interaction in conversation n)
| exchanges(n,LABEL, arg, A) (may interaction in conversation n)
| aexchange(n,LABEL, A) (all interaction in conversation n)
| aexchanges(n,LABEL, arg, A) (all interaction in conversation n)
| parallel(A′, A′′) (parallel activities)
| choice(A′, A′′) (choice)
| F (spatial logic formulae)

The language contains constructs to express parallel / choice flow and primitives
to express message exchanges: exchange(n,LABEL, A) asserts that there is a
message interaction on label LABEL between two partners in conversation n
and A specifies the behavior of the continuation; exchanges(n,LABEL, arg, A)
specifies an extra argument arg which captures the conversation name exchanged
in the communication; aexchange(n,LABEL, A) asserts that after all interactions
on label LABEL in conversation n the continuation satisfies behavior A. We

Tools and Verification 419

Client

RateCalc

userData

rateValue

Bank FinancePortal Clerk Manager

CreditRequest

login

request
login

show

deny

ReviewApp

approved
requestEval

branch{
denied

pass

login

AuthCredit

requestApp
show

accept

reject
approved

denied

branch{

Fig. 3. Credit request message sequence chart

refer to [30] for a detailed explanation of our orchestration and choreography
description language semantics, and the formal specification of their translation
into the π-calculus and logic understood by the SLMC framework.

Simple Examples. We now illustrate the usage of the specification languages
and of our tool. Consider the credit request scenario from the Sensoria Fi-
nancial Case Study described in Chapter 0-3, whose choreographic specification
may be graphically depicted by the message sequence chart in Fig. 3. We specify
the part of the choreography related to the interaction between the client, the
finance portal and the bank as follows, using the basic choreographic language
for CC systems (actually the input syntax for ChorSLMC).

defprop clientInteraction =

maxfix Loop.

hidden clientConv.

exchanges(financePortal, creditRequest, clientConv,

exchange(clientConv, login,

exchange(clientConv, request,

exchanges(bank, rateCalc, clientConv,

exchange(clientConv, userData,

exchange(clientConv, rateValue,

choice(

exchange(clientConv, approved, exchange(client,approved,Loop)),

may_tau(clerkInteraction(clientConv,Loop)))))))))));

Notice that the exchange specification may be used not only to specify “regu-
lar” message exchanges, but also conversation initiation (creditRequest) and

420 M. Bartoletti et al.

conversation join (rateCalc) messages (see [12]). The behavior of each partner
/ role is then specified using the appropriate modeling language. We show the
code for the creditRequest service definition:

defproc cc FinancePortalSpec1 =

context financePortal {

def creditRequest => (

login?(uid).request?(data).

join bank.rateCalc <= (

userData!(data).rateValue?(rate).

if (rate=aaa) then approved!().end

else this(clientChat).

requestEval^!(clientChat,uid,data).end))};

We specify the whole system as the composition of the roles of the finance
portal, bank, client, clerk and manager. Also we specify that clientInteraction is
the entry point of the global choreography.

defproc cc System = FinancePortalSpec1 | BankSpec | BankSpec2

| ClientSpec | FinancePortalSpec2 | ClerkSpec

| FinancePortalSpec3 | ManagerSpec;

defprop chor = clientInteraction;

After all definitions have been loaded into the ChorSLMC tool we may verify
that the CC credit request system conforms to the prescribed choreography.

check System(up,here) |= chor;

Processing...

* Process System(up,here) satisfies the formula chor *

Notice that the tool may be used to automatically verify (for finite state mod-
els) not only choreographic conformance of composite service systems, but also
common safety and liveness properties, such as invariant satisfaction, race and
deadlock absence. For example:

check System(up,here) |= eventually(exchange(bank,rateCalc,true));

Processing...

* Process System(up,here) satisfies the formula

eventually (exchange(bank,rateCalc,true)) *

To conclude, the ChorSLMC tool provides a very flexible and powerful instru-
ment to analyze general structural safety and liveness properties of service-
oriented systems, expressed in languages which are familiar to software engineers,
while building in solid process calculi and specification logic based foundations.

4 The LocUsT Tool

A fundamental concern of service-oriented applications is to ensure that re-
sources are used correctly. Devising expressive, flexible and efficient mechanisms

Tools and Verification 421

to control resource usages is therefore a major issue in the design and imple-
mentation of languages for services. In [6], a comprehensive framework has been
proposed for safely protecting code with usage policies, within a linguistic setting.
Resource usage control is made feasible by suitably extending and integrating
techniques from type theory and model-checking.

The LocUsT tool is the verification core of our framework. It takes as input a
usage policy and a program abstraction (called a usage), and statically checks
whether the abstraction complies with the policy. More precisely, LocUsT decides
in polynomial time whether a trace of the given usage exists that violates the
policy [5].

Usage Policies. Usage policies define safety properties on sequences of re-
source accesses and creations. We will define below our usage policies, and the
compliance of a trace with a policy. First, we introduce some basic notions.

Resources are denoted with r, r′, . . . ∈ Res, and they can be accessed through
actions α, α′, . . . ∈ Act. An event α(r1, . . . , rk) ∈ Ev models the action α (with
arity |α| = k) being fired on the target resources r1, . . . , rk. The special ac-
tion new represents the creation of a resource. Traces η, η′, . . . ∈ Ev∗ are finite
sequences of events.

Usage policies are an extension of finite state automata. Their edges have
the form α(ρ), where ρ ∈ (Res ∪ Var)|α|. We use final states to represent policy
violations: a trace leading to a final state suffices to produce a violation. Two
examples of usage policies are in Fig. 4.

Formally, a usage policy ϕ is a 5-tuple 〈S, Q, q0, F, E〉, where:

– S ⊆ Act × (Res ∪ Var)∗ is the input alphabet,
– Q is a finite set of states,
– q0 ∈ Q \ F is the start state,
– F ⊂ Q is the set of final “offending” states,
– E ⊆ Q × S × Q is a finite set of edges, written q

α(ρ)−−−� q′

Each usage policy ϕ denotes a set of traces, i.e. the traces that obey ϕ. The
semantics of ϕ considers all the possible instantiations of its variables to actual
resources: a trace η respects ϕ when η leads no instantiations of ϕ (on the
resources in η) to an offending state.

Usage policies were first introduced in [3], where a block of code B could be
sandboxed by a policy ϕ, so to require that ϕ must hold through the execu-
tion of B. The definition of policies has since then been revised several times,
so to make them more expressive. In the original formulation, policies could
only inspect sequences of actions, neglecting resources. In [4] policies can be
parametrized over a single resource, and resources can be dynamically created; [5]
deals with the general case of an arbitrary number of parameters.

Examples. Consider a Web application that allows for editing documents, stor-
ing them on a remote site, and sharing them with other users. The editor is

422 M. Bartoletti et al.

implemented as an applet run by a local browser. The user can tag any of her
documents as private. To avoid direct information flows, the policy requires that
private files cannot be sent to the server in plain text, yet they can be sent
encrypted. This policy is modeled by ϕIF(x) below. After having tagged the file
x as private (edge from q0 to q1), if x was to be sent to the server (edge from
q1 to q2), then the policy would be violated: the double circle around q2 marks
it as an offending state. Instead, if x is encrypted (edge from q1 to q3), then x
can be freely transmitted: indeed, the absence of paths from q3 to an offending
state indicates that once state q3 is reached, the policy will not be violated on
file x. A further policy is applied to our editor, to avoid information flow due to
covert channels. It requires that, after reading a private file, any other file must
be encrypted before it can be transmitted. This is modeled by ϕCC(x, y) below.
A violation occurs if after some private file x is read (path from q′0 to q′2), then
some other file y is sent (edge from q′2 to the offending state q′4).

send(x)

q2q3

q′
1

q′
4 q′

3q′
2

q′
0

private(x)

encrypt(y)send(y)

read(x)

q0 q1
private(x)

encrypt(x)

ϕIF(x) ϕCC(x, y)

Fig. 4. The information flow policy ϕIF(x) and the covert channels policy ϕCC(x, y)

Here is how the policies ϕIF(x) and ϕCC(x, y) are expressed in the LocUsT
syntax. The field tagged name defines the name of the policy. The remaining
fields describe the logic of the automaton. The tag states is for the set of states,
start is for the initial state, and final is for the list of the final (offending)
states. The tag trans preludes to the transition relation of the automaton.

name: phi_IF name: phi_CC

states: q0 q1 q2 q3 states: q0 q1 q2 q3 q4

start: q0 start: q0

final: q2 final: q4

trans: trans:

q0 -- private(x) --> q1 q0 -- private(x) --> q1

q1 -- encrypt(x) --> q3 q1 -- read(x) --> q2

q1 -- send(x) --> q2 q2 -- send(y) --> q4

q2 -- encrypt(y) --> q3

Usages. Usages are program abstractions, expressed in a simple process calcu-
lus. They over-approximate all the patterns of resource accesses and creations
of the service itself. Formally, usages have the following syntax:

Tools and Verification 423

U, U′ ::= 0 empty
α(ρ) event (ρ ∈ Res|α|)
nu n.U resource creation
U . U’ sequence
U + U’ choice
ϕ[U] policy framing
mu h.U recursion
h recursion variable

The usage 0 represents a computation not affecting resources. The usage α(ρ) is
for a computation that executes the action α on the resources mentioned in ρ.
The usage nu n.U represents the creation of a resource n, which can then be used
in U with the requirement that the first action on n must be a new(n) event.
The operators . and + denote sequentialization and non-deterministic choice of
usages, respectively. The usage ϕ[U] represents the fact that the policy ϕ has
to be enforced on the usage U. The usage mu h.U stands for a recursion; the
recursion variable h may occur in U.

For instance, consider the following usage:

phi_IF[nu n. new(n).private(n).(send(n)+encrypt(n))]

This usage will be rejected by the LocUsT model-checker, because a send(n)
may occur in a trace after a private(n), so violating the policy ϕIF.

The following usage will instead pass the model-checking, because the action
send is not fired on a private document.

phi_IF[nu n. nu f. new(n).new(f).private(n).read(n).send(f)]

The following usage is rejected by the model-checker, because it violates the
policy ϕCC. Note in fact that a file f is sent unencrypted after the private file n
has been read.

phi_CC[nu n. nu f. new(n).new(f).private(n).read(n).send(f)]

The following trace is detected to attempt a violation of the policy ϕCC.

nu n. new(n).private(n).nu f. new(f).
(mu h. phi_CC[send(f)] + read(n) . h)

After having read the private file n an arbitrary number of times, it may acti-
vate the policy ϕCC , within which sending the unencrypted file f is no longer
permitted.

Finally, the following usage passes the model-checking, since the file f can
only be sent after it has been encrypted:

nu n. new(n).private(n).nu f. new(f).
(mu h. phi_CC[send(f) . h] + read(n) . encrypt(f) . h)

Service Call-by-Contract. So far, we have shown how LocUsT can verify
that an abstraction of the service behavior does not violate a given policy. This

424 M. Bartoletti et al.

technique can serve as a foundation for a service composition framework, where
services are orchestrated according to their behavioral properties.

In our framework, each service publishes the abstraction of its behavior (i.e.
its usage) in a repository. Then, a client can ask for a service that respects
a given property (expressed as a usage policy). This is done by querying the
repository with that usage policy. Upon such request, the repository matches
the given policy against the usages of the registered services. This task can
be accomplished by the LocUsT tool. When LocUsT finds that the property
requested by the client matches the usage of a service, the name of that service
is forwarded to the client, which can then invoke the service using standard
mechanisms.

Summing up, our technique allows for defining a call-by-contract invocation
mechanism, which allows clients to abstract from the actual service names, and
just consider the properties these services have to offer.

The theory underlying our call-by-contract invocation mechanism was origi-
nally introduced in [2]. There, a type and effect system and a model-checker were
exploited to define a call-by-contract orchestrator. Call-by-contract is described
in detail in Chapter 2-4.

Verification Technique. We now briefly recap the verification technique de-
scribed in detail in [5], which is the one implemented in the LocUsT tool. Our
algorithm is composed of several phases, summarized below.

1. Regularization. First, the usage is regularized, i.e. transformed so that
in no trace a policy framing ϕ[−] is entered twice: for instance ϕ[U . ϕ[U′]]
becomes ϕ[U . U′]. Particular care must be exercised when handling recursive
usages such as mu h. ϕ[h + U].

2. Conversion into BPA. The usage is transformed in a process of Basic Pro-
cess Algebras. Dynamic creation caused by nu n is handled by instantiating
n with a finite number of static witnesses. Note that this transformation re-
stricts the resources to be considered by the model-checker from an infinite
to a finite set. Yet, this phase is correct, as shown in [5]. Some spurious traces
might however be introduced by this transformation, so invalidating com-
pleteness. For instance, in some trace of the BPA associated to nu n.U.(nu
m.U’) the same witness might be chosen for both n and m. This would cause
the model-checker to report a violation, so over-approximating the predicted
behavior. The “Weak Until” phase described below will allow for recovering
completeness.

3. Framing the Policy. The policy is duplicated in two layers, so that the
first layer handles the transitions made by the usage when outside the pol-
icy framing, and the second handles them when inside the policy framing.
Thanks to the regularization phase, this phase only needs to consider two
layers.

4. Instantiating the Policy. The usage policies are instantiated, by non-
deterministically assigning to each variable some known resource, including
the witnesses generated in the “Conversion into BPA” phase.

Tools and Verification 425

5. Weak Until. Policies are adapted so to correctly handle traces where the
same witness # happens to be generated twice, i.e. those having a double
new(#) event. As noticed above, these traces do not correspond to any trace
of the original usage, so they must never trigger a policy violation. In [5] this
is proved enough to guarantee the completeness of model checking, while
preserving its correctness.

6. Model-Checking. Finally, the traces of the BPA generated at phase 2 are
matched against all the policies obtained after phase 5. Our model-checking
algorithm decides whether there exists a policy violated by some BPA trace.
Our model-checking procedure is complete, and it always terminates even
though the BPA may have an infinite number of traces, possibly of infinite
length (for instance, mu h. c + h.h + a.h.b).

The complexity of our model-checking algorithm is polynomial in the size of
the usage and on the size of the policy. There is an exponential factor in the
number of policy parameters, only. From a pragmatic point of view, we expect
the number of parameters to be very small in practice. This exponential factor
is mainly due to the policy instantiation step above, which is non-deterministic.

5 Conclusion

We have reported on four tools that have been developed within the Senso-
ria project, providing practical support for the application of Sensoria tech-
niques to service-oriented systems, including the Sensoria case studies. The
tools tackle, in particular, the problems of model checking service-oriented sys-
tems, including multiparty systems, of checking conformance of orchestrations
with respect to choreographic descriptions, and of ensuring that systems access
resources according to specified policies.

The tools are at different stages of development. The CMC/UMC framework
is more mature, and has been integrated in the Sensoria Development Envi-
ronment (see Chapter 6-5), thus allowing to use it in an integrated way inside
the software development process. The other tools are less mature, and their in-
tegration is part of our future plans. However all the tools are publicly available:
CMC and UMC at http://fmt.isti.cnr.it/cmc and http://fmt.isti.cnr.
it/umc respectively, ChorSLMC at http://ctp.di.fct.unl.pt/SLMC/ and Lo-
cUsT at http://www.di.unipi.it/~zunino/software/locust.

References

1. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0.
Technical report, OASIS (2006)

2. Bartoletti, M., Degano, P., Ferrari, G.L.: Enforcing secure service composition.
In: Proc. of CSFW-18 2005, pp. 211–223. IEEE Computer Society, Los Alamitos
(2005)

3. Bartoletti, M., Degano, P., Ferrari, G.L.: History-based access control with lo-
cal policies. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 316–332.
Springer, Heidelberg (2005)

http://fmt.isti.cnr.it/cmc
http://fmt.isti.cnr.it/umc
http://fmt.isti.cnr.it/umc
http://ctp.di.fct.unl.pt/SLMC/
http://www.di.unipi.it/~zunino/software/locust

426 M. Bartoletti et al.

4. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Types and effects for resource
usage analysis. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 32–47.
Springer, Heidelberg (2007)

5. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Model checking usage policies.
In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 19–35.
Springer, Heidelberg (2009)

6. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Local policies for resource
usage analysis. ACM Trans. Program. Lang. Syst. 31(6) (2009)

7. Bhat, G., Cleaveland, R., Grumberg, O.: Efficient on-the-fly model checking for
CTL*. In: Proc. of LICS 1995, pp. 388–397. IEEE Computer Society, Los Alamitos
(1995)

8. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bdds.
In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999)

9. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography confor-
mance and contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007.
LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007)

10. Caires, L.: Behavioral and spatial observations in a logic for the pi-calculus. In:
Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 72–89. Springer, Hei-
delberg (2004)

11. Caires, L., Cardelli, L.: A Spatial Logic for Concurrency (Part I). Information and
Computation 186(2), 194–235 (2003)

12. Caires, L., Vieira, H.T.: Conversation types. In: Castagna, G. (ed.) ESOP 2009.
LNCS, vol. 5502, pp. 285–300. Springer, Heidelberg (2009)

13. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred program-
ming for web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
2–17. Springer, Heidelberg (2007)

14. Carbone, M., Honda, K., Yoshida, N., Milner, R., Brown, G., Ross-Talbot, S.:
A theoretical basis of communication–centred concurrent programming. Technical
report, W3C (2006)

15. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A
model checking approach for verifying COWS specifications. In: Fiadeiro, J.L.,
Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 230–245. Springer, Heidelberg
(2008)

16. Gnesi, S., Mazzanti, F.: On the fly model checking of communicating UML state
machines. In: Proc. of SERA 2004, pp. 331–338. ACIS (2004)

17. Gnesi, S., Mazzanti, F.: A model checking verification environment for UML stat-
echarts. In: Proc. of XLIII Annual Italian Conference AICA. AICA (2005)

18. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proc. of POPL 2008, pp. 273–284. ACM, New York (2008)

19. Koch, N., Mayer, P., Heckel, R., Gönczy, L., Montangero, C.: UML for Service-
Oriented Systems. SensoriaDeliverable 1.4a (September 2007)

20. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web ser-
vices. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,
Heidelberg (2007)

21. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Ser-
vices (full version). Technical report, Dipartimento di Sistemi e Informatica, Univ.
Firenze (2007), http://rap.dsi.unifi.it/cows

22. Mayer, P., Schroeder, A., Koch, N.: Mdd4soa: Model-driven service orchestration.
In: Proc. of EDOC 2008, pp. 203–212. IEEE Computer Society, Los Alamitos
(2008)

http://rap.dsi.unifi.it/cows

Tools and Verification 427

23. Mazzanti, F.: UMC User Guide v3.3. Technical Report 2006-TR-33, Istituto di
Scienza e Tecnologie dell’Informazione “A. Faedo”. CNR (2006),
http://fmt.isti.cnr.it/WEBPAPER/UMC-UG33.pdf

24. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: An action/state-based model-
checking approach for the analysis of communication protocols for service-oriented
applications. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp.
133–148. Springer, Heidelberg (2008)

25. ter Beek, M.H., Gnesi, S., Koch, N., Mazzanti, F.: Formal verification of an auto-
motive scenario in service-oriented computing. In: Proc. of ICSE 2008, pp. 613–622.
ACM Press, New York (2008)

26. ter Beek, M.H., Gnesi, S., Mazzanti, F., Moiso, C.: Formal modelling and verifica-
tion of an asynchronous extension of soap. In: Proc. of ECOWS 2006, pp. 287–296.
IEEE Computer Society, Los Alamitos (2006)

27. ter Beek, M.H., Mazzanti, F., Gnesi, S.: CMC-UMC: A framework for the verifica-
tion of abstract service-oriented properties. In: Proc. of SAC 2009, pp. 2111–2117.
ACM Press, New York (2009)

28. Unified Modeling Language, http://www.uml.org/
29. Vieira, H.T., Caires, L., Seco, J.C.: The conversation calculus: A model of service

oriented computation. In: Gairing, M. (ed.) ESOP 2008. LNCS, vol. 4960, pp.
269–283. Springer, Heidelberg (2008)

30. Vieira, H.T., Caires, L., Sousa, D.: Checking Services Conformance Based on Spa-
tial Logic Model-Checking (revised). Technical Report TR-DI/FCT/UNL-04/2009,
Departamento de Informática, Universidade Nova de Lisboa (2009)

31. Vieira, H.T., Caires, L., Viegas, R.: The Spatial Logic Model Checker,
http://ctp.di.fct.unl.pt/SLMC/

32. Vieira, H.T., Caires, L., Viegas, R.: The Spatial Logic Model Checker User’s
Manual v1.0. Technical Report TR-DI/FCT/UNL-05/2005, Departamento de In-
formática, Universidade Nova de Lisboa (2005)

33. Web Services Choreography Working Group WCDL. Web Services Choreography
Description Language: Primer (2006),
http://www.w3.org/TR/2006/WD-ws-cdl-10-primer-20060619/

http://fmt.isti.cnr.it/WEBPAPER/UMC-UG33.pdf
http://www.uml.org/
http://ctp.di.fct.unl.pt/SLMC/
http://www.w3.org/TR/2006/WD-ws-cdl-10-primer-20060619/

	Tools and Verification
	Introduction
	CMC-UMC Verification of Service-Oriented Models
	Model-Checking Service Conversations with ChorSLMC
	The LocUsT Tool
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

