
Behavioral Theory for Session-Oriented Calculi�

Ivan Lanese1, Antonio Ravara2, and Hugo Torres Vieira2

1 Focus Team, Università di Bologna/INRIA, Italy
lanese@cs.unibo.it

2 CITI and Dep. of Informatics, FCT, Univ. Nova de Lisboa, Portugal
{aravara,htv}@fct.unl.pt

Abstract. This chapter presents the behavioral theory of some of the
Sensoria core calculi. We consider SSCC, μse and CC as representa-
tives of the session-based approach and COWS as representative of the
correlation-based one.

For SSCC, μse and CC the main point is the structure that the session/
conversation mechanism creates in programs. We show how the differ-
ences between binary sessions, multiparty sessions and dynamic conver-
sations are captured by different behavioral laws. We also exploit those
laws for proving the correctness of program transformations.

For COWS the main point is that communication is prioritized (the
best matching input captures the output), and this has a strong influence
on the behavioral theory of COWS. In particular, we show that communi-
cation in COWS is neither purely synchronous nor purely asynchronous.

1 Introduction

In most formal languages, it is common to have several terms denoting the same
computational process. To understand when this situation occurs, the language
needs to be equipped with a notion of equivalence. This notion relies on an
underlying description of the behavior of such process.

In process calculi the behavior of systems is usually defined in terms of either a
reduction relation or of a labeled transition relation (also called labeled transition
system, or LTS). The former describes the possible evolutions of a process in
isolation; the latter allows to describe also the potential interactions with the
environment (usually, the latter relation includes the former).

The most natural notion of term equivalence is behavioral indistinguishabil-
ity in any possible context the term may occur in. In fact, it should be possible
to replace one equivalent process for another without changing the observable
behavior of the system (or part of it). Then, such a relation guarantees the cor-
rectness of program transformations developed for, e.g., improving the global
performance or to increase fault tolerance. In service-oriented computing, equiv-
alent services can serve the same purpose in a complex orchestration, thus the
choice can be driven by their non-functional properties such as cost or perfor-
mance. Such a notion is called a contextual equivalence, and distinguishability
� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 189–213, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

190 I. Lanese, A. Ravara, and H.T. Vieira

is based on a notion of observation. In sequential settings, one may define as
observables the values produced by a computation, or even simply termination;
in concurrent settings the observables are usually descriptions of a process in-
teraction potential.

Contextual equivalences are, however, difficult to use. They require an univer-
sal quantification over possible contexts (normally infinitely many), thus lacking
a practical proof technique. A typical solution is to look for a co-inductive con-
gruence relation which characterizes it.

In the realm of process algebras, one can find a myriad of behavioral equiva-
lence notions (van Glabbeek presents an overview, interrelating several notions,
in [11]). Different equivalences (or pre-orders) take into account different ways
of observing the behavior of processes. Considering the most significant notions,
trace equivalence [12] looks at the sequence of observable actions, (labeled) bisim-
ilarity [17] takes into account also points of choice, and testing equivalences [10]
consider the interactions between the process and an observer.

Different equivalences can be useful for different purposes; however, two cri-
teria are important: being a congruence, and, in particular, coinciding with the
contextual equivalence (which is a congruence by definition). The former result
means that given two equivalent processes, placing them in a language context
will produce two processes that are again equivalent, thus allowing substituting
“equals for equals” in context, not changing the global behavior. The congruence
result also testifies that all the constructs of a calculus may be soundly inter-
preted as compositional semantic operators on bisimilarity equivalence classes. If
an equivalence coincides with a given contextual equivalence, it captures exactly
the abstract semantics given by the chosen observables.

In mobile process calculi like the π-calculus [21], standard contextual equiv-
alences are barbed congruence [18] and barbed bisimilarity [13] (the basic ob-
servables are called barbs). Their co-inductive characterization is based on the
notion of bisimilarity. For instance, for barbed congruence, it is full bisimilarity
(the substitution-closed ground bisimilarity) over a(n early) LTS. Bisimilarity is
the largest bisimulation, the latter being a relation R such that if (P, Q) ∈ R
then for each action of P there is a corresponding action of Q and the two actions
lead to processes P ′ and Q′ such that (P ′, Q′) ∈ R. Bisimilarity is a good tool
for proving process equivalence, since it is naturally equipped with a proof tech-
nique: to prove that two processes P and Q are bisimilar it is enough to exhibit
a bisimulation including the pair (P, Q). There are, in general, two notions of
bisimulation: a strong one, taking into account also internal actions, and a weak
one, abstracting them away. The latter is particularly interesting, since it allows
to prove correctness of program optimizations (in fact equivalent processes need
not perform the same number of internal actions).

In this chapter we apply bisimilarity notions to some of the Sensoria core
calculi, namely SSCC, μse, CC and COWS (see Chapter 2-1 for a description
of SSCC, CC and COWS, and [6] for μse). The different features of the calculi
have a strong impact on their behavioral theory.

Behavioral Theory for Session-Oriented Calculi 191

For the session-based calculi, standard notions of equivalence can be used,
and the main point is the characterization of the communication structure of the
processes. In fact, the different notions of binary session (for SSCC), multiparty
session (for μse) and dynamic conversation (for CC) are captured by different
behavioral equations. We discuss those laws, and exploit them to prove the
correctness of different kinds of program transformations. For CC we also prove
a normal form result.

Communication in COWS is based on the correlation set mechanism, which
provides prioritized communication (the best matching input captures the out-
put). The corresponding barbed bisimilarity is captured by a more complex form
of bisimilarity with respect to the ones for the other calculi, and shows that com-
munication in COWS is neither purely synchronous nor purely asynchronous.

2 Behavioral Theory for SSCC

In this section we study the behavioral theory of SSCC (Stream-based Service
Centred Calculus [15]), and we apply it to prove the correctness of some program
transformations.

We recall that SSCC is a calculus for modelling service-oriented systems based
on the concepts of services, binary sessions, and streams. The (static) syntax of
SSCC has been defined in Chapter 2-1. We refer to this chapter also for an infor-
mal description of the operators, while presenting here the LTS semantics and
the behavioral theory. We need as auxiliary operators to define the semantics
also r � P for client-side session, r � P for service-side session, (νr)P for ses-
sion name restriction and stream P as f = v in Q for stream with stored values.
Processes are herein written in this extended (called run-time) syntax, and con-
sidered up to the structural congruence relation inductively defined by the rules
in Fig. 1. Note that structural congruence is included in bisimilarity (forthcoming
Lemma 2).

Operational Semantics. The semantics of SSCC is defined using an LTS in the
early style. This LTS is slightly different, but equivalent to its original presenta-
tion in [15]. We require processes to have no free process variables.

P |0 ≡ P P |Q ≡ Q|P (P |Q)|R ≡ P |(Q|R)

(νn)P |Q ≡ (νn)(P |Q) if n /∈ fn(Q) r � (νa)P ≡ (νa)(r � P)

stream (νa)P as f = v in Q ≡ (νa)(stream P as f = v in Q) if a /∈ fn(Q) ∪ {v}
stream P as f = v in (νa)Q ≡ (νa)(streamP as f = v in Q) if a /∈ fn(P) ∪ {v}

(νn)(νm)P ≡ (νm)(νn)P (νa)0 ≡ 0 rec X.P ≡ P [rec X.P/X]

Fig. 1. Structural congruence

192 I. Lanese, A. Ravara, and H.T. Vieira

Definition 1 (SSCC Labeled Transition System). The rules in Fig. 2, to-
gether with the symmetric version of rules L-par, L-par-close, and L-sess-
com-close, inductively define the LTS on processes.

The LTS uses μ as a metavariable for labels. The bound names in labels are r
in service definition activation and service invocation and a in extrusion labels
(conventionally, they are all in parenthesis). Label ↑ v denotes sending value v.
Dually, label ↓v is receiving value v. We use � v to denote one of ↑v or ↓v, and
we assume that when multiple � v appear in the same rule they are instantiated
in the same direction, and that �v denotes the opposite direction. We use similar
conventions for other labels.

Continuing with the labels, a⇐(r) and a⇒(r) denote respectively the request
and the activation of a service, where a is the name of the service, and r is the
name of the new session to be created. We use a⇔ (r) to denote one of a⇐ (r)
or a⇒ (r). Furthermore, label ⇑ v denotes the feeding of value v into a stream,
while label f ⇓v reads value v from stream f . When an input or an output label
crosses a session construct (rule L-sess-val), we add to the label the name of
the session and whether it is a server or a client session (for example, ↓ v may
become r � ↓v).

The label denoting a conversation step in a free session r is rτ , and if the
value passed in the session channel is private, it remains private in the resulting
process. A label τ is obtained only when r is restricted (rule L-sess-res). Thus
a τ action can be obtained in four cases: a communication inside a restricted
session, a service invocation, a feed or a read from a stream. Note also that
we have two contexts causing interaction: parallel composition and stream. Fi-
nally, bound actions, (a)μ, represent the extrusion of a in their respective free
counterparts μ.

Some processes, such as r � r � P , can be written using the run-time syntax,
but they are not reachable from processes in the static syntax. We consider these
processes ill-formed, and will not consider them anymore.

Bisimilarity. We study the usual notions of strong and weak bisimilarity. Both
are non-input congruences in the class of SSCC processes. One can get a congru-
ence by considering (strong or weak) full bisimilarity, i.e., by closing bisimilarity
with respect to service name substitutions (there is no reason to close with re-
spect to session or stream names, since no substitutions are performed on them).
Although the general strategy is the same as for the π-calculus, the proof tech-
niques themselves differ significantly. Herein we only present the main results.
Detailed proofs can be found in [8].

To define weak bisimilarity we introduce some abbreviations: let P
τ=⇒ Q

denote P (τ−→)nQ (with n ≥ 0, i.e., zero or more transitions) and let P
α=⇒ Q

denote P
τ=⇒ α−→ τ=⇒ Q for α = τ .

Definition 2 (Strong and Weak Bisimilarity). A symmetric binary relation
R on processes is a (strong) bisimulation if, for any processes P , Q such that
PRQ, if P

α−→ P ′ with bn(α)∩ fn(Q) = ∅, then there exists Q′ such that Q
α−→ Q′

Behavioral Theory for Session-Oriented Calculi 193

v.P
↑v−→ P (x)P

↓v−→ P [v/x] feed v.P
⇑v−−→ P f(x).P

f⇓v−−→ P [v/x]
(L-send, L-receive, L-feed, L-read)

P
μ−→ P ′ μ �=⇑v bn(μ) ∩ (fn(Q) ∪ {w}) = ∅

stream P as f = w in Q
μ−→ stream P ′ as f = w inQ

(L-stream-pass-P)

Q
μ−→ Q′ μ �= f ⇓v bn(μ) ∩ (fn(P) ∪ {w}) = ∅

stream P as f = w in Q
μ−→ stream P as f = w in Q′ (L-stream-pass-Q)

P
⇑v−−→ P ′

stream P as f = w in Q
τ−→ stream P ′ as f = v : : w in Q

(L-stream-feed)

Q
f⇓v−−→ Q′

stream P as f = w : : v in Q
τ−→ stream P as f = w in Q′ (L-stream-cons)

r /∈ fn(P)

a ⇐ P
a⇐(r)−−−−→ r � P

r /∈ fn(P)

a ⇒ P
a⇒(r)−−−−→ r � P

(L-call, L-def)

P
μ−→ P ′ bn(μ) ∩ fn(Q) = ∅

P |Q μ−→ P ′|Q
P

	v−−→ P ′

r �� P
r��	v−−−−→ r �� P ′

(L-par, L-sess-val)

P [rec X.P/X]
μ−→ P ′

rec X.P
μ−→ P ′

P
r��↑v−−−→ P ′ Q

r��↓v−−−→ Q′

stream P as f = w in Q
rτ−−→ stream P ′ as f = w in Q′

(L-rec, L-sess-com-stream)

P
a⇔(r)−−−−→ P ′ Q

a⇔(r)−−−−→ Q′

stream P as f = w in Q
τ−→ (νr)streamP ′ as f = w in Q′ (L-serv-com-stream)

P
r��↑v−−−→ P ′ Q

r��↓v−−−→ Q′

P |Q rτ−−→ P ′|Q′
P

a⇔(r)−−−−→ P ′ Q
a⇔(r)−−−−→ Q′

P |Q τ−→ (νr)(P ′|Q′)
(L-sess-com-par, L-serv-com-par)

P
μ−→ P ′ n /∈ n(μ)

(νn)P
μ−→ (νn)P ′

P
rτ−−→ P ′

(νr)P
τ−→ (νr)P ′

P
μ−→ P ′ μ �= v r /∈ bn(μ)

r �� P
μ−→ r �� P ′

(L-res,L-sess-res, L-sess-pass)

P
r��(v)↑v−−−−−→ P ′ Q

r��↓v−−−→ Q′ v /∈ fn(Q)

P |Q rτ−−→ (νv)(P ′|Q′)

P
μ−→ P ′ μ ∈ {↑a, r ��↑a,⇑a}

(νa)P
(a)μ−−−→ P ′

(L-par-close, L-extr)

P
r��(v)↑v−−−−−→ P ′ Q

r��↓v−−−→ Q′ v /∈ fn(Q) ∪ {w}
stream P as f = w inQ

rτ−−→ (νv)stream P ′ as f = w in Q′ (L-sess-com-close)

P
(v)⇑v−−−−→ P ′ v /∈ fn(Q) ∪ {w}

stream P as f = w inQ
τ−→ (νv)stream P ′ as f = v : : w in Q

(L-feed-close)

Fig. 2. SSCC labeled transition system

194 I. Lanese, A. Ravara, and H.T. Vieira

and P ′ R Q′. (Strong) bisimilarity ∼ is the largest bisimulation. Two processes
P and Q are (strong) bisimilar if P ∼ Q.

Weak bisimilarity ≈ is like the strong version, but using weak transitions P
α=⇒

Q instead of strong transitions P
α−→ Q.

Also, a full strong (resp. weak) bisimulation is a strong (resp. weak) bisimula-
tion closed under service name substitutions, and we call full strong (resp. weak)
bisimilarity ∼f (resp. ≈f) the largest full strong (resp. weak) bisimulation.

Note that bisimilarity (respectively full bisimilarity) can be obtained as the
union of all bisimulations (respectively full bisimulations). Moreover, as desired,
structurally congruent processes (cf. Fig. 1) are strong bisimilar.

Lemma 1 (Harmony Lemma). Let P and Q be processes with P ≡ Q. If
P

α−→ P ′, then Q
α−→ Q′ with P ′ ≡ Q′, and vice-versa.

Lemma 2. Structurally congruent processes are full bisimilar.

As in the π-calculus, strong and weak full bisimilarity are congruences, i.e., they
are closed under arbitrary contexts.

Theorem 1. Strong and weak full bisimilarity are congruences.

Useful Axioms. Even if presenting a complete axiomatization for such a com-
plex calculus is out of the scope of this chapter, we present here some axioms
(equational laws correct with respect to strong/weak full bisimilarity) that cap-
ture key facts about the behavior of processes. Some of them are useful to prove
the correctness of the transformations presented in the following. To show the
axioms we need to define contexts.

An n-ary context is a process where n subterms have been replaced by symbols
•1, . . . , •n. The application C�P1, . . . , Pn� of context C�•1, . . . , •n� to processes
P1, . . . , Pn is the process obtained by replacing •i with Pi.

The correctness of the axioms below can be proved by considering as full
bisimulation all the instances of the equations together with the identity.

Session Garbage Collection

(νr)D�r � 0, r � 0�∼f D�0,0� where D does not bind r (1)

Stream Garbage Collection

stream0 as f inP ∼f P if f does not occur in P (2)

Session Independence

r �� Q | s �� P∼f r �� (s �� Q |P) if s = r (3)

The same holds if the two sessions have opposite polarities.

Behavioral Theory for Session-Oriented Calculi 195

Stream Independence

stream P as f in (stream P ′ as g in Q)∼f

stream P ′ as g in (stream P as f in Q) if f = g (4)

Streams are Orthogonal to Sessions

r �� (feed v |P)∼f feed v | r �� P (5)

Stream Locality

stream P as f in (Q |Q′)∼f(stream P as f inQ) |Q′ if f /∈ fn(Q′) (6)

Parallel Composition Versus Streams

stream P as f in Q∼f P |Q if f /∈ fn(Q) and P does not contain feed (7)

Interestingly the Session Independence law is strongly dependent on the available
operators, and fails in similar calculi such as [5,4]. This captures the fact that in
SSCC session nesting is immaterial.

From Object-Oriented to Service-Oriented Models. We apply now the behavioral
theory developed so far to bridge the gap between traditional object-oriented and
Sensoria service-oriented models, so to allow the reuse of existing tools and
techniques. We detail a model transformation procedure from a common object-
oriented communication pattern into a session-based, service-oriented one, and
prove it correct with respect to weak full bisimilarity. Since we have also proved
that weak full bisimilarity is a congruence, the behavior of every composition
built exploiting these services remains unchanged when moving from the original
programs into their transformed versions.

UML Sequence Diagrams [2] (SDs) describe the exchange of messages among
the components in a complex system. We present here a typical SD and show
how it can be implemented in SSCC by exploiting suitable macros. We then show
how subsessions can be used to simplify the implementation.

Object-Oriented View. The SD on the left of Fig. 3 describes a common pattern
appearing in scenarios involving (at least) three partners. The description of the
communication pattern is as follows.

Object B receives from object A the value w and forwards it (or a value
computed from it) to object C. After receiving the value, object C answers
with a value w’. Object B replies with v and finally object C replies with
value v’. Then, object B forwards it to object A.

Note that “Object B receives from object A the value w” means that object A
invokes a method in object B passing the value w. We can imagine for instance
that A is the user of the credit portal in the financial case study (see Chapter
0-3), which invokes the credit portal itself (B). The credit portal then interacts
with the rating system (C), possibly exchanging different pieces of information.
The final answer is then sent back to the user.

196 I. Lanese, A. Ravara, and H.T. Vieira

: A : B : C

�1: w

�2: w

� 3: w’

�4: v

� 5: v’

� 6: v’

: A

rA

: B

rB sB

: C

sC

�1: w

���
1.1: w

�2: w

� 3: w’

�4: v

� 5: v’

���
5.1: v’

� 6: v’

Fig. 3. Sequence diagram communication pattern: object-oriented and session-oriented
view

Session-Oriented View. We want to move to a scenario where components are
clients and servers of a service-oriented architecture, and where communication
happens via sessions. We refine the diagram by incorporating information about
the running sessions, in the diagram on the right of Fig. 3, where the slanted
arrows mean message passing between sessions. An instance of the credit portal B
(let us call these instances participants) has a session r running with an instance
of client A and another session s running with an instance of the rating system
service C. Since sessions involve two partners, a session r between instances of
A and B has two sides—called endpoints, rA at the instance of A and rB at the
instance of B.

In addition to the normal constructs in SSCC, to model object-oriented sys-
tems (that do not follow the laws of session communication), it is useful to have
two constructs enabling arbitrary message passing. These can be expressed by
exploiting fresh auxiliary services.

b ⇑ 〈v1, ..., vn〉.P � stream b ⇐ v1...vn.feed unit as f in f(v).P

b ⇓ (x1, ..., xn)P � stream b ⇒ (z1)...(zn).feed z1...feed zn as f

in f(x1)...f(xn).P

where name v and stream f are not used in P and unit is a value used for
synchronization.

The diagram on the right of Fig. 3 is directly implemented in SSCC as

SC � (νb, c) (A | B | C)

where

A � b ⇐ w.(y)P, B � (νb1, b2) (B1 | B2), and C � c ⇒ (x)w′.(y)v′.S,

B1 � b ⇒ (x)b1 ⇑ x.b2 ⇓ (y)y.Q, and B2 � c ⇐ b1 ⇓ (x)x.(z)v.(y)b2 ⇑ y.R.

It is easy to check that the behavior of the process SC above reflects the one
described on the right of Fig. 3.

Behavioral Theory for Session-Oriented Calculi 197

: A

rA

: E

rE

sE

: C

sC

�1: w

�2: w

� 3: w’

�4: v

� 5: v’

�	
5.1: v’

�6: v’

Fig. 4. Sequence diagram: using a subsession

An Optimization. When the credit portal B has the value sent by client A, it
may immediately send it to the rating system C, calling it (and thus opening
a subsession). One simply has to perform a “local” transformation on B. The
resulting diagram is in Fig. 4, and it is implemented in SSCC as process SC′,
where we denote by E the new instance of B.

SC′ � (νb, c) (A | E | C) where

E � b ⇒ (x)(νb1)(c ⇐ x.(z)v.(y)b1 ⇑ y.R | b1 ⇓ (y)y.Q)

Naturally, one asks whether the transformation of SC into SC′ is correct, not
changing the observable behavior of processes. Indeed, this is the case, and this
can be proved using the definition of full weak bisimilarity and the axioms pre-
sented before.

The correctness of the transformation, i.e., SC≈f SC′, follows from closure
under contexts from the following equation.

(νc)(B |C) ≈f (νc)(E |C) (8)

We sketch the correctness proof, while referring to [9] for more details and for
other examples of transformations, e.g. replacing auxiliary services with stream-
based communications.

Proof (of Equation 8). The proof can be obtained by exhibiting a bisimulation
including the two processes. The two processes can mimic each other even if the
first one is nondeterministic, since the nondeterminism comes from τ steps, whose
order is not important, since the processes are confluent. Garbage collection
Equations 1 and 2 are used in the proof. After some steps, the two processes
have evolved to:

(νs)(r � Q[w/x][v′
/y] | s � R[w/x][w′

/z][v′
/y] | s � S[w/x][v/y])

(νs)(r � (s � R[w/x][w′
/z][v′

/y]) | Q[w/x][v′
/y] | s � S[w/x][v/y])

respectively. These processes can be proved equivalent using structural congru-
ence (which is included in full bisimilarity, according to Lemma 2), session in-
dependence (Equation 3) and closure under contexts.

198 I. Lanese, A. Ravara, and H.T. Vieira

S, T ::= l :: a ⇒ P Service definition | l :: P Located process
| S|T Composition of systems | (νn)S New name

P, Q ::= 0 Empty process
| xw.P Intra-session output | x(y).P Intra-session input
| x!w.P Intra-location output | x?(y).P Intra-location input
| install[a ⇒ P].Q Service installation | invoke a.P Service invocation
| mergep e.P Entry point | r � P Endpoint
| P |Q Parallel composition | (νn)P New name
| rec X.P Recursive process | X Recursive call

Fig. 5. Syntax of μse systems and processes

3 From Binary to Multiparty Sessions

In this section we apply the notions of bisimilarity from Definition 2 to μse, a
name passing calculus for programming dynamic multiparty sessions proposed
in [6]. Multiparty sessions extend the idea of sessions to multiparty communica-
tions, and have been recently object of deep study in the field of service-oriented
computing [3,7,14], since they provide a natural framework to describe the com-
plex interactions among services. The distinctive feature of μse is its ability to
dynamically create sessions and merging different existing sessions.

We describe now the syntax and the operational semantics of μse, so to allow
to apply bisimilarity in this setting. μse is a calculus featuring names for:

– multiparty sessions (ranged by r, s, . . .),
– services (ranged by a, b, . . .), able to enter sessions upon invocation,
– channels (ranged by x, y, . . .), to route messages inside sessions,
– entry points (ranged by e, f, . . .), allowing to merge running sessions,
– locations (ranged by l, . . .), where services and sessions are located.

Channels, services and entry points are communicable values (ranged over by
v, w, . . .) while sessions and locations cannot be communicated. We let n, m, . . .
range over all names but locations.

The syntax of μse is defined in Fig. 5. Systems (ranged over by S, T, . . .) are
parallel compositions of locations where services are published and processes
executed. A location where a service a is defined is meant to be the domain into
which all instances of a are executed.

A μse process can be the empty process, a process prefixed by an action, a
process running in a session (endpoint), the parallel composition of processes, a
process under a name restriction, a recursive process or a recursive invocation.

Processes (ranged over by P, Q, . . .) communicate via channels according to
two modalities: intra-session and intra-location. Intra-session communications
are used to let different endpoints of the same session to interact regardless their
running locations. Conversely, intra-location communications allow endpoints

Behavioral Theory for Session-Oriented Calculi 199

A|A′ ≡ A′|A A|0 ≡ A (A|A′)|A′′ ≡ A|(A′|A′′)

(νn)(A|A′′) ≡ A|(νn)A′′, if n �∈ fn(A)

(νn)(νm)A ≡ (νm)(νn)A (νn)A ≡ A, if n �∈ fn(A)

l :: P |l :: Q ≡ l :: (P |Q) l :: (νn)P ≡ (νn)(l :: P)

r � (νn)P ≡ (νn)(r � P), if n �= r rec X.P ≡ P{rec X.P/X}
r

·
= r ≡ 0 (νr)(r

·
= s) ≡ 0 r

·
= s|P ≡ r

·
= s|P{r/s} r

·
= s ≡ s

·
= r

r � (s
·
= t|P) ≡ s

·
= t|r � P l :: (r

·
= s|P) ≡ r

·
= s|l :: P

Fig. 6. μse structural congruence

(of possibly different sessions) to communicate, provided that they are running
in the same location. This is used to model local communications and replaces
SSCC streams.

Processes can install new service definitions in their running locations. Service
invocations enable processes to activate new endpoints on the service location.
Service invocation requires only the service name, not its location, thus if many
services with the same name are available one of them is chosen nondeterminis-
tically. Finally, the prefix mergep e is a mechanism for merging existing sessions.

The operational semantics of μse requires a structural congruence relation
and an extended syntax, namely explicit substitutions r

·= s of sessions. Let
A,B range over systems (including explicit substitutions) and processes. The
structural congruence relation is defined in Fig. 6. This exploits the usual notions
of free and bound names: the occurrences of y and n are bound in x(y).P ,
x?(y).P , (νn)P and (νn)S. Bound names can be safely alpha renamed.

Structural congruence ≡ includes associativity, commutativity and identity
over 0 for parallel composition and rules for scope extrusion. Also, ≡ gives the
semantics of recursion and r

·= s in terms of substitutions. Note that any explicit
substitution r

·= s is persistent and can freely “float” in the term structure, unless
a restriction on r or s forbids its movements.

The operational semantics of μse is specified through an LTS defined on terms
up to structural congruence (thus lemmas corresponding to Lemmas 1 and 2 hold
by definition). We use α to range over labels. Bound variables occurring in labels
are in round parentheses.

Definition 3 (μse Labeled Transition System). The μse LTS is the least
relation generated by the rules in Fig. 7, closed under structural congruence.

The rules for prefixes simply execute them, moving the information to the tran-
sition label. As usual for early semantics, input prefixes guess the actual value
and immediately substitute it for the formal variable. Sessions are transparent to
most of the actions, while a session name is added to the label in case of session-
dependent actions (intra-session communications, invoke and merge). Only the

200 I. Lanese, A. Ravara, and H.T. Vieira

xv.P
xv−→ P x!v.P

x!v−−→ P x(y).P
xv−→ P{v/y} x?(y).P

x?v−−→ P{v/y}

l :: a ⇒ P
r�a−−→ l :: r � P invoke a.P

⊥a−−→ P install[a ⇒ R].P
a[R]−−−→ P

mergep e.P
ep−→ P

P
α−→ Q α ∈ {⊥a, xv, xv, ep}

r � P
r α−−→ r � Q

P
α−→ Q α /∈ {⊥a, xv, xv, ep}

r � P
α−→ r � Q

P
a[R]−−−→ Q

l :: P
τ−→ l :: Q | l :: a ⇒ R

P
α−→ Q α /∈ {a[R], x?(v), x!v}

l :: P
α−→ l :: Q

P
x!v−−→ P ′ Q

x?v−−→ Q′

P |Q τ−→ P ′|Q′
A α−→ A′ bn(α) ∩ fn(B) = ∅

A|B α−→ A′|B
A r xv−−−→ A′ B r xv−−−→ B′

A|B τ−→ A′|B′

A re+−−→ A′ B se−−−→ B′

A|B τ−→ A′|B′|s ·
= r

S
r�a−−→ S′ T

r⊥a−−→ T ′

S|T τ−→ S′|T ′

A α−→ A′ n /∈ n(α)

(νn)A α−→ (νn)A′
A α−→ A′ α ∈ {xw, x!w, r xw, r x!w}

(νw)A (w)α−−−→ A′

Fig. 7. μse operational semantics

name of the innermost session is added. Service definitions can produce sessions,
and the session name is guessed in the early style. Install requests are executed
when the level of locations is reached. Observe that locations are transparent
to all actions but install and intra-location communications. Also, most of the
synchronization rules can be applied both at the process and at the system level.
The only exceptions are (i) intra-location communication, which is meaningful
only at the process level, and (ii) service invocation, which can be stated only at
the system level since definitions are always at the top level. Finally, restriction
is dealt with using structural congruence, but the rule for extrusions is necessary
for interactions with the environment (and notably for bisimulation).

To prove equivalences of μse processes we use the notion of weak bisimilarity,
defined as for SSCC (see Definition 2), but using μse LTS. It is not easy to
prove that μse bisimilarity is a congruence, since service installation makes it a
(partially) higher order calculus, and proving congruence for higher-order calculi
is a hard problem. However, standard techniques can be used to show that
full bisimilarity is closed under parallel composition, which is the most used
composition operation.

As for SSCC, we show here a few axioms for reasoning on μse processes.

Session Garbage Collection

r � 0∼f 0 (9)

Behavioral Theory for Session-Oriented Calculi 201

Session Independence

r � Q | s � P∼f r � (s � Q |P) (10)

Location Garbage Collection

l :: 0|A∼f A (11)

Intra-Session Communication is Orthogonal w.r.t. Locations

l :: xw∼f l′ :: xw (12)

Intra-Location Communication is Orthogonal w.r.t. Sessions

r � x!w∼f r′ � x!w (13)

The axioms concerning sessions are simpler than in SSCC since there is no need
to preserve the invariant that sessions have exactly two partners. Note that also
in μse session independence hold, i.e. session nesting is immaterial.

We show here how to use bisimilarity to analyze properties of services and
multiparty sessions, in particular to prove that an implementation of a service
is compliant (i.e., bisimilar) to a more abstract specification.

Let us consider the service CalculateRating from the credit request scenario.
We can write the specification in μse as:

l :: ∗CalculateRating ⇒ P with P = data(user).some comp.ret rating (14)

The symbol ∗ preceding the service definition means that the service is persistent
(this can be programmed using recursion). Also, some comp in P denotes some
sequence of actions computing the actual rating, e.g. interacting with some local
database.

This service is deterministic: once invoked, it waits until receiving a value
in channel data, then performs some comp, and finally, it sends the rating on
channel ret. CalculateRating may be computationally expensive, so different re-
quests can be served using replicated services. The following implementation asks
another service Calci nondeterministically chosen from a pool Calc1, . . . , Calcn

to do the job:

l :: (νCalc1 . . . Calcn)
(
(νav)(

n∏

i=1

rec X.av!Calci.X |

∗ CalculateRating ⇒ av?(u).invoke u) |
n∏

i=1

∗Calci ⇒ P
)

Instead of directly computing the rating, upon invocation the service receives
(through an intra-location communication on the private channel av) the name
of the “private” local service Calci that actually computes the rating. The proof
that this implementation is weak bisimilar to system (14) is a simple application

202 I. Lanese, A. Ravara, and H.T. Vieira

of the behavioral theory developed so far. Note that, removing e.g., the restriction
on av breaks the bisimilarity, since the implementation of CalculateRating could
then interact with another channel av in the environment, while the specification
does not allow this interaction.

This implementation exploits multiparty sessions. In fact, the invoker and
services CalculateRating and Calci are three endpoints of the same session.
Note that Calci has been added dynamically by CalculateRating, however it can
interact directly also with the other endpoint. Programming the same behavior
in SSCC would require two binary sessions and some auxiliary communications.

Another way to create a ternary session is by using the merge primitive, as
shown below. For simplicity, we consider just one such session:

(νe)l :: CalculateRating ⇒ rec Y.(merge+ e.install[CalculateRating ⇒ Y]) |
rec X.(νr)r � merge− e.(P |X).

In this case, the invocation in the specification is simulated by the invocation
in the implementation plus the merge. Note that e should be bound to avoid
interference, and that the merge has to be completed before CalculateRating
can be made available again. Similarly, r is restricted to avoid different recursive
calls to interfere. We prove now the correctness of the transformation, which
exploits the axioms presented before.

Proof (Correctness of the transformation). Upon invocation of CalculateRating,
system 14 becomes:

l :: ∗CalculateRating ⇒ P | l :: r′ � P (15)

Its implementation can execute the same transition, and reduce via a sequence
of internal actions (merge and install) to:

(νe)l :: CalculateRating ⇒ rec Y.(merge+ e.install[CalculateRating ⇒ Y]) |
l :: (νr′′)r′ � 0 | r′′ � (P |rec X.(νr)r � merge− e.(P |X)) | r′ ·= r′′

We can use Equation 9 to remove r′ �0 and structural congruence to apply and
remove the explicit substitution, obtaining:

(νe)l :: CalculateRating ⇒ rec Y.(merge+ e.install[CalculateRating ⇒ Y]) |
l :: r′ � (P |rec X.(νr)r � merge− e.(P |X))

By unfolding recursion we get:

(νe)l :: CalculateRating ⇒ rec Y.(merge+ e.install[CalculateRating ⇒ Y]) |
l :: r′ � (P |(νr)r � merge− e.(P |rec X.(νr)r � merge− e.(P |X)))

and using structural congruence and Equation 10 we get:

(νe)l :: CalculateRating ⇒ rec Y.(merge+ e.install[CalculateRating ⇒ Y]) |
l :: r′ � P | (νr)r � merge− e.(P |rec X.(νr)r � merge− e.(P |X))

Behavioral Theory for Session-Oriented Calculi 203

Using again structural congruence, and in particular folding again the recursion
we go back to the original system, with an additional r′ � P parallel compo-
nent. This is exactly what happens for the specification, thus one can use clo-
sure under parallel composition to prove by co-induction the correctness of the
transformation.

4 Dynamic Conversations

In this section we define the behavioral semantics of the Conversation Calculus
(CC) [22] (see also Chapter 2-1) and report results that: (1) corroborate our
syntactically chosen constructs at the semantic level; and (2) provide further
insight on the communication model of the CC. The operational semantics of
the core CC is defined by a labeled transition system, which definition relies on
the following notions of transition labels and actions.

Definition 4. Transition labels and actions are defined as follows:

σ ::= τ | ld!(a) | ld?(a) | this (Actions)
λ ::= c σ | σ | (νa)λ (Transition Labels)

An action τ denotes an internal communication, actions ld!(a) and ld?(a) repre-
sent communications with the environment, and this represents a conversation
identity access. To capture the observational semantics of processes, transition
labels need to register not only the action but also the conversation where the
action takes place. So, a transition label λ containing c σ is said to be located at
conversation c (or just located), otherwise is said to be unlocated. In (νa)λ the
distinguished occurrence of a is bound with scope λ (cf. the π-calculus bound
output actions). For a communication label λ we denote by λ the dual matching
label obtained by swapping inputs with outputs, such that, e.g., ld!(a) = ld?(a)
and ld?(a) = ld!(a). The this transition label represents a conversation identity
access. Processes can explicitly access the identity of the conversation in which
they are located (which is captured by a this label), and synchronizations be-
tween processes may also require such contextual information.

We may now define the labeled transition system. For the sake of presentation,
we split the presentation into two sets of rules, one (in Fig. 8) containing the
rules for the basic operators, which are essentially identical to the corresponding
ones in the π-calculus, and the other (in Fig. 9) grouping the rules specific to
the Conversation Calculus.

Definition 5 (CC Labeled Transition System). The rules in Fig. 8 and in
Fig. 9 inductively define the LTS on processes.

Transition rules presented in Fig. 8 should be fairly clear to a reader familiar
with mobile process calculi. We discuss the intuitions behind the rules shown
in Fig. 9. In rule (Here) an � directed message (to the enclosing conversation)
becomes � (in the current conversation), after passing through the conversation

204 I. Lanese, A. Ravara, and H.T. Vieira

ld!(a).P
ld!(a)−→ P (Out) ld?(x).P

ld?(a)−→ P{a/x} (In)
αj .Pj

λ−→ Q j ∈ I

Σi∈I αi.Pi
λ−→ Q

(Sum)

P
λ−→ Q a ∈ out(λ)

(νa)P
(νa)λ−→ Q

(Open)
P

λ−→ Q a �∈ na(λ)

(νa)P
λ−→ (νa)Q

(Res)

P
λ−→ Q bn(λ)# fn(R)

P | R
λ−→ Q | R

(Par-l)
P

λ−→ P ′ Q
λ−→ Q′

P | Q
τ−→ P ′ | Q′ (Comm)

P
(νa)λ−→ P ′ Q

λ−→ Q′ a �∈ fn(Q)

P | Q
τ−→ (νa)(P ′ | Q′)

(Close-l)
P{recX .P/X} λ−→ Q

recX .P
λ−→ Q

(Rec)

Fig. 8. CC LTS - Basic operators (π-calculus like)

access boundary. In rule (Loc) an unlocated � message (in the current conver-
sation) gets explicitly located at the conversation c in which it originates. In
rule (Through) an already located communication label transparently crosses
some other conversation boundary, and likewise for a τ label in rule (Tau). In
rule (This) a this label reads the current conversation identity, and originates
a c this label. A c this labeled transition may only progress inside the c con-
versation, as expressed by the rule (ThisLoc), where a this label matches the
enclosing conversation. In rules (ThisComm-r) and (ThisClose-r) an unlocated
communication matches a communication located at c, originating a c this label,
thus ensuring the interaction occurs in the given conversation c.

Building on the notion of observation over processes captured by the labeled
transition system of the CC, we characterize the CC semantic object by an obser-
vational equivalence, expressed in terms of standard notions of strong and weak
bisimilarity defined as for SSCC (cf. Definition 2). We prove the expected prop-
erties of strong and weak bisimilarity: they are equivalence relations and they
are preserved under a standard set of structural laws (cf. π-calculus structural
congruence [21]). Then we prove that strong bisimilarity and weak bisimilarity
are congruences.

Theorem 2. Strong bisimilarity and weak bisimilarity are congruences.

Next, we show other interesting behavioral equations, that confirm basic intu-
itions about our conversation-based communication model.

Given processes P and Q, the following axioms hold:

Conversation Split

n � [P] | n � [Q] ∼ n � [P | Q] (16)

Conversation Nesting

m � [n � [o � [P]]] ∼ n � [o � [P]] (17)

Behavioral Theory for Session-Oriented Calculi 205

P
λ�−→ Q

c � [P]
λ�−→ c � [Q]

(Here)
P

λ�−→ Q

c � [P]
c·λ�−→ c � [Q]

(Loc)

P
a λ�−→ Q

c � [P]
a λ�−→ c � [Q]

(Through)
P

τ−→ Q

c � [P]
τ−→ c � [Q]

(Tau)

this(x).P
c this−→ P{c/x} (This)

P
c this−→ Q

c � [P]
τ−→ c � [Q]

(ThisLoc)

P
σ−→ P ′ Q

c σ−→ Q′

P | Q
c this−→ P ′ | Q′

(ThisComm-r)
P

σ−→ P ′ Q
(νa)c σ−→ Q′

P | Q
c this−→ (νa)(P ′ | Q′)

(ThisClose-r)

Fig. 9. CC LTS - Conversation operators

Output Nested Up — Output Here

n �
[
l�!(ñ).P

] ∼ l�!(ñ).n � [P] (18)

Input Nested Up — Input Here

n �
[
l�?(x̃).P

] ∼ l�?(x̃).n � [P] (n ∈ x̃) (19)

Output Nested Here

m �
[
n �

[
l�!(ñ).P

]] ∼ n �
[
l�!(ñ).m � [n � [P]]

]
(20)

Input Nested Here

m �
[
n �

[
l�?(x̃).P

]] ∼ n �
[
l�?(x̃).m � [n � [P]]

]
({m, n}# x̃) (21)

Equation 16 captures the notion of conversation context as a single medium
accessible through distinct pieces. Equation 17 expresses the fact that processes
may only interact in the conversation in which they are located and in the
enclosing one (via � communications). Notice however that there are processes
P and Q such that:

n � [m � [P] | Q] ∼ m � [P] | n � [Q] (22)

For instance, consider processes R1 and R2 defined as follows:

R1 � c �
[
b �

[
l�!(a)

] | l�?(x)
]

R2 � b �
[
l�!(a)

] | c �
[
l�?(x)

]

206 I. Lanese, A. Ravara, and H.T. Vieira

Since R1 exhibits a τ transition and R2 does not, we have that R1 ∼ R2. The
inequation (22) contrasts with Equation 16: the relation between a conversation
and its caller must be preserved. Equations 18-19 illustrate the notion of enclos-
ing conversation: a � message prefix located in a nested conversation behaves the
same as a � message prefix in the current conversation. Equations 20-21 show
that a here (�) message prefix together with the respective conversation can be
pulled up to top level in the conversation nesting.

The behavioral laws shown above hint on the abstract spatial model of CC
processes, and pave the way for establishing a normal form result: we prove
that any CC process is behaviorally equivalent to a process in normal form—
considering the depth of a process is the number of enclosing conversation access
pieces, we say a process is in normal form if all its active communication prefixes
are of (at most) depth two (see [22]).

To conclude this section, we show an example derivation that uses Theo-
rem 2 and the equational laws above. We consider a system where a Client and
a FinancePortal exchange a login message in conversation CreditChat , each
party holding a distinct piece of the conversation. In Fig. 10 we show that such
system behaviorally coincides with a system where such message exchange takes
place in a single conversation piece. Such behavioral reconfigurations suggest an
alternative characterization of the operational semantics of the CC based on a
notion of reduction: we may describe the evolution of the basic representatives
of the behavioral equivalence classes, and then close the reduction relation under
such equivalence classes.

FinancePortal � [CreditChat � [login�?(uId).ServiceProtocol]]
|
Client � [CreditChat � [login�!(uId).ClientProtocol]]

∼ (Theorem 2 and Equation 21)

CreditChat � [login�?(uId).FinancePortal � [CreditChat � [ServiceProtocol]]]
|
Client � [CreditChat � [login�!(uId).ClientProtocol]]

∼ (Theorem 2 and Equation 20)

CreditChat � [login�?(uId).FinancePortal � [CreditChat � [ServiceProtocol]]]
|
CreditChat � [login�!(uId).Client � [CreditChat � [ClientProtocol]]]

∼ (Equation 16)

CreditChat � [login�?(uId).FinancePortal � [CreditChat � [ServiceProtocol]]
|
login�!(uId).Client � [CreditChat � [ClientProtocol]]]

Fig. 10. Credit request system behavioral reconfiguration

Behavioral Theory for Session-Oriented Calculi 207

g + 0 ≡ g g1 + g2 ≡ g2 + g1 (g1 + g2) + g3 ≡g1 + (g2 + g3)

s | 0 ≡ s s1 | s2 ≡ s2 | s1 (s1 | s2) | s3 ≡s1 | (s2 | s3)

∗0 ≡ 0 ∗ s ≡ s |∗ s

{|0|} ≡ 0 {| {|s|} |} ≡ {|s|} {|[e] s|} ≡[e] {|s|}
[e]0 ≡ 0 [e1] [e2] s ≡ [e2] [e1] s s1 | [e] s2 ≡[e] (s1 | s2) if e /∈ fe(s1)∪fk(s2)

Fig. 11. COWS structural congruence

5 Behavioral Semantics for COWS

In this section, we present the operational semantics of COWS (Calculus for
Orchestration of Web-Services [16]), together with some bisimulation-based ob-
servational semantics. The syntax of COWS is presented in Chapter 2-1.

Operational Semantics. The operational semantics of COWS is defined using an
LTS in the ‘late’ style only for closed services, i.e. services without free variables
and killer labels (of course, closed services may contain free names). To simplify
the rules, we exploit a relation of structural congruence, written ≡. It is defined
as the least congruence relation induced by the equational laws shown in Fig. 11.

To define the labeled transition relation, we use a few auxiliary functions. As
a matter of notation, we shall use n to range over endpoints that do not contain
variables (e.g. p • o), and u to range over endpoints that may contain variables
(e.g. u • u′). Firstly, we use the function [[]] for evaluating closed expressions (i.e.
expressions without variables): it takes a closed expression and returns a value. It
is not explicitly defined since the exact syntax of expressions is deliberately not
specified. Secondly, we use the partial function M(,) for performing pattern-
matching on semi-structured data and, thus, determining if a receive and an
invoke over the same endpoint can synchronize. Two tuples match if they have
the same number of fields and corresponding fields have matching values/vari-
ables. Variables match any value, and two values match only if they are identical.
When tuples w̄ and v̄ do match, M(w̄, v̄) returns a substitution for the variables
in w̄; otherwise, it is undefined. Here substitutions (ranged over by σ) are written
as collections of pairs of the form x �→ v. Application of substitution σ to s is
written s ·σ. This may require a preventive α-conversion. In fact, we identify ser-
vices up to the services’ equivalence classes induced by α-conversion, also when
this is not explicitly mentioned. We use ∅ to denote the empty substitution, |σ |
to denote the number of pairs in σ, and σ1�σ2 to denote the union of σ1 and σ2

when they have disjoint domains. Thirdly, we define a function, named halt(),
that takes a service s as an argument and returns the service obtained by only
retaining the protected activities inside s. Function halt() is defined inductively
on the syntax of services. The most significant case is halt({|s|}) = {|s|}. In the
other cases, halt() returns 0, except for parallel composition, delimitation and
replication operators, for which it acts as an homomorphism. Finally, we use two
predicates: noKill(s, e) holds true if either e is not a killer label or e = k and
s cannot immediately perform a free activity kill(k); noConf(s, n, v̄,
), with

natural number, holds true if s does not produce communication conflicts, i.e. s

208 I. Lanese, A. Ravara, and H.T. Vieira

[[ε̄]] = v̄

n!ε̄
n� v̄−−−−−→ 0

n?w̄.s
n� w̄−−−−−→ s

g
α−−−→ s

g + g′ α−−−→ s

s ≡ α−−−→≡ s′

s
α−−−→ s′

s
n� [m̄] v̄−−−−−−−→ s′ n ∈ v̄ n /∈ (n ∪ m̄)

[n] s
n� [n,m̄] v̄−−−−−−−−→ s′

s
σ �{x �→v}−−−−−−−−→ s′

[x] s
σ−−→ s′ ·{x �→ v}

s
n� [ȳ] w̄−−−−−−−→ s′ x ∈ w̄ x /∈ ȳ

[x] s
n� [x,ȳ] w̄−−−−−−−−→ s′

s
n σ�{x �→v}
 v̄−−−−−−−−−−−→ s′

[x] s
nσ
 v̄−−−−−→ s′ ·{x �→ v}

s1
n� v̄−−−−−→ s′1 s2

n� v̄−−−−−→ s′2

s1 | s2
∅−−→ s′1 | s′2

s
nσ
 v̄−−−−−→ s′ n ∈ n

[n] s
σ−−→ [n] s′

s1
n� w̄−−−−−→s′1 s2

n� v̄−−−−−→s′2 M(w̄, v̄)=σ |σ |�1 noConf(s1 | s2, n, v̄, |σ |)
s1 | s2

nσ |σ| v̄−−−−−−→ s′1 | s′2

s1
α−−−→ s′1 α �= k, n σ � v̄

s1 | s2
α−−−→ s′1 | s2

s1
nσ
 v̄−−−−−→ s′1 noConf(s2, n, v̄, �)

s1 | s2
nσ
 v̄−−−−−→ s′1 | s2

kill(k)
k−−→ 0

s
α−−−→ s′ e /∈ (e(α) ∪ ce(α)) α �= k, † noKill(s, e)

[e] s
α−−−→ [e] s′

s
k−−→ s′

[k] s
†−−→ [k] s′

s
k−−→ s′ k �= e

[e] s
k−−→ [e] s′

s
†−−→ s′

[e] s
†−−→ [e] s′

s1
k−−→ s′1

s1 | s2
k−−→ s′1 | halt(s2)

s
α−−−→ s′

{|s|} α−−−→ {|s′|}

Fig. 12. COWS operational semantics

cannot immediately perform a receive activity matching v̄ over the endpoint n
that generates a substitution with fewer pairs than
. Their inductive definitions
can be found in [16].

Definition 6 (COWS Labeled Transition System). The rules in Fig. 12
inductively define the LTS on processes. Labels α are generated by the following
grammar:

α ::= n � [n̄] v̄ | n � [x̄] w̄ | σ | n σ
 v̄ | k | †

The meaning of labels is as follows: n � [n̄] v̄ and n � [x̄] w̄ denote execution of
invoke and receive activities over the endpoint n with arguments v̄ and w̄, re-
spectively, of which n̄ and x̄ are bound; σ denotes execution of a communication,
not subject to priority check, with generated substitution σ to be still applied;
n σ
 v̄ denotes execution of a communication, subject to priority check, over n
with matching values v̄, generated substitution having
 pairs, and substitution

Behavioral Theory for Session-Oriented Calculi 209

σ to be still applied; k denotes execution of a request for terminating a term from
within the delimitation [k] , and † denotes taking place of forced termination. In
particular, the empty substitution ∅ and labels of the form n ∅
 v̄ denote compu-
tational steps corresponding to taking place of communication without pending
substitutions, while † denotes a computational step corresponding to taking place
of forced termination. We will use bu(α) to denote the set of names/variables
that occur bound in α, e(α) to denote the set of elements (i.e. names, vari-
ables and killer labels) occurring in α, except for α = n σ
 v̄ for which we let
e(n σ
 v̄) = e(σ), and ce(α) to denote the names composing the endpoint in case
α denotes execution of a communication.

Observational Semantics. We now define natural notions of barbed bisimilarities
for COWS and prove their coincidence with more manageable characterizations
in terms of (labeled) bisimilarities. We want to define a notion of barbed bisimi-
larity for the calculus along the line of [13,20]. To this aim, since communication
is asynchronous, we consider as basic observable only the output capabilities of
terms, like for asynchronous π-calculus [1]. The intuition is that an asynchronous
observer cannot directly observe the receipt of data that he has sent.

Definition 7 (Basic observable). Let s be a COWS closed term. Predicate

s ↓n holds true if there exist s′, n̄ and v̄ such that s
n� [n̄] v̄−−−−−−−→ s′.

Definition 8 (Barbed bisimilarity for COWS). A symmetric binary rela-
tion R on COWS closed terms is a barbed bisimulation if it is barb preserving,
and computation and context closed. Two closed terms s1 and s2 are barbed
bisimilar, written s1 � s2, if s1Rs2 for some barbed bisimulation R. � is called
barbed bisimilarity.

Context closure condition enables compositional reasoning, since it implies that
� is a congruence on COWS closed terms, but requires considering all possible
language contexts. To avoid this universal quantification, we provide a purely co-
inductive notion of bisimulation that only requires considering transitions of the
LTS defining the semantics of the terms under analysis. Because in COWS only
the output capability of names can be exported, we define a COWS bisimulation
as a family of relations indexed with sets of names corresponding to the names
that cannot be used by contexts (to test) for reception since they are dynamically
exported private names.

Definition 9 (Names-indexed family of relations). A names-indexed fam-
ily F of relations is a set of symmetric binary relations RN on COWS closed
terms, one for each set of names N , i.e. F = {RN }N .

To be a congruence, bisimilarity must explicitly take care of the terms resulting
from application of function halt(), that gets the same effect as of plunging its
argument term within the context [k] (kill(k) | [[·]]).
Definition 10 (COWS bisimilarity). A names-indexed family of relations
{RN }N is a COWS bisimulation if, whenever s1RN s2 then the following two
conditions hold:

210 I. Lanese, A. Ravara, and H.T. Vieira

a. halt(s1)RN halt(s2) and

b. if s1
α−−−→ s′1, where bu(α) are fresh, then:

1. if α = n � [x̄] w̄ then one of the following holds:

(a) ∃ s′2 : s2
n�[x̄] w̄−−−−−−→ s′2 and

∀ v̄ s.t. M(x̄, v̄) = σ and noConf(s2, n, w̄·σ, | x̄ |) : s′1·σRN s′2·σ
(b) | x̄ |=|w̄ | and ∃ s′2 : s2

∅−−→ s′2 and ∀ v̄ s.t. M(x̄, v̄) = σ and
noConf(s2, n, w̄·σ, | x̄ |) : s′1·σRN (s′2 | n!v̄) or s′1·σRN (s′2 |

{|n!v̄|})
2. if α = n ∅
 v̄ and
 =| v̄ | then one of the following holds:

(a) ∃ s′2 : s2
n ∅ � v̄−−−−−→ s′2 and s′1 RN s′2 (b) ∃ s′2 : s2

∅−−→ s′2
and s′1 RN s′2

3. if α = n� [n̄] v̄ where n /∈ N then ∃ s′2 : s2
n�[n̄] v̄−−−−−−→ s′2 and s′1 RN∪ n̄ s′2

4. if α = ∅, α = † or α = n ∅
 v̄ with
 =| v̄ |, then ∃ s′2 : s2
α−−−→ s′2 and

s′1 RN s′2

Two closed terms s1 and s2 are N -bisimilar, written s1 ∼N s2, if s1RN s2

for some RN in a COWS bisimulation. They are COWS bisimilar, written
s1 ∼ s2, if they are ∅-bisimilar. ∼N is called N -bisimilarity, while ∼ is called
COWS bisimilarity.

This definition is more complex than Definition 2, since it has to account for
priority of COWS communication, kill, and asynchrony. Our main results prove
that COWS bisimilarity ∼ is a congruence for COWS and is sound and complete
with respect to barbed bisimilarity.

Theorem 3 (Congruence). ∼ is a congruence for COWS closed terms.

Theorem 4 (Soundness and completeness of ∼ w.r.t. �). Given two
COWS closed terms s1 and s2, s1 ∼ s2 if and only if s1 � s2.

Our semantic theories extend in a standard way to the weak case so that results
of congruence and coincidence still hold. We refer the interested reader to the
extended version of [19] for the exact definitions and a full account of the proofs.

Examples. We show now that, differently from asynchronous π-calculus, in
COWS it is not true that receive activities are always unobservable. To illus-
trate this, we consider a tailored version of the input absorption law character-
izing asynchronous bisimulation in asynchronous π-calculus (i.e., the equation
a(b). āb + τ = τ presented in [1]):

[x] (∅ + n?〈x, v〉. n!〈x, v〉) = ∅ (23)

where, for the sake of presentation, we exploit the context ∅ + [[·]] � [m] (m!〈〉 |
m?〈〉 + [[·]]) and the term ∅ � [m] (m!〈〉 | m?〈〉). Communication along the private
endpoint m models the τ action of π-calculus, while activities n?〈x, v〉 and n!〈x, v〉

Behavioral Theory for Session-Oriented Calculi 211

recall the π-calculus actions a(b) and āb, respectively. Intuitively, the equality
means that a service that emits the data it has received behaves as a service
that simply performs an unobservable action, which means that receive activities
cannot be observed. In COWS, however, the context C � [y, z] n?〈y, z〉. m!〈〉 |
n!〈v′, v〉 | [[·]] can tell the two terms above apart. In fact, we have

C[[∅]] n ∅ 2 〈v′,v〉−−−−−−−−→ m!〈〉 | ∅
where the term (m!〈〉 | ∅) satisfies the predicate ↓m. Instead, the other term cannot
properly reply because the receive n?〈x, v〉 has higher priority than n?〈y, z〉 when
synchronizing with the invocation n!〈v′, v〉. Thus, C[[[x] (∅ + n?〈x, v〉. n!〈x, v〉)]]
can only evolve to terms that cannot immediately satisfy the predicate ↓m. From
this, we have

[x] (∅ + n?〈x, v〉. n!〈x, v〉) � ∅
Indeed, in COWS receive activities that exercise a priority (i.e. receives whose
arguments contain some values) can be detected by an interacting observer.

Now, consider the term [x, x′] (∅+n?〈x, x′〉. n!〈x, x′〉). Since n?〈x, x′〉 does not
exercise any priority on parallel terms, we have that

[x, x′] (∅+ n?〈x, x′〉. n!〈x, x′〉) � ∅ C[[[x, x′] (∅+ n?〈x, x′〉. n!〈x, x′〉)]] � C[[∅]]
Similarly, taken D � n?〈〉. m!〈〉 | n!〈〉 | [[·]], we have that

∅ + n?〈〉. n!〈〉 � ∅ D[[∅ + n?〈〉. n!〈〉]] � D[[∅]]
Therefore, communication in COWS is neither purely asynchronous nor purely
synchronous. Indeed, receives having the smallest priority (i.e. whose arguments
are, possible empty, tuples of variables) cannot be observed, while, by exploiting
proper contexts, the other receives can be detected.

6 Conclusion

In this chapter we have studied behavioral equivalences in the context of different
Sensoria calculi.

For the session-based calculi, SSCC, μse and CC, we have presented a few
axioms, and then applied them to prove the correctness of different kinds of
program transformations. Observing the behavioral identities characterized for
the three calculi one may find similarities. For instance, we may notice that,
in some sense, feeding streams, intra-site communication and communication
to the caller context are disconnected from the particular subsidiary session or
conversation—this is reflected in (5), (13) and (18). On the other hand, the
fact that interaction under a session or conversation is independent from the
location or caller context is reflected by (12) and (20). However, the presented
models also present quite clear distinctions in the behavioral identities shown.
For example, (3) and (10) contrast with (22): in CC the relation between caller
context and subsidiary conversation must, in general, be preserved, since pro-
cesses interacting in a subsidiary conversation may also continuously interact in

212 I. Lanese, A. Ravara, and H.T. Vieira

their caller contexts. However, distinct sessions may be nested in μse and SSCC
without any consequence to the behavior of processes, as they either interact in
the session or interact under the location (μse)/feed streams (SSCC), that can
be accessed regardless of session nesting. Another distinction may be noticed at
the level of the split rule for CC systems shown in Equation 16, which may not
be reproduced in either SSCC or μse.

For the correlation-based calculus COWS instead, the priority mechanism
required by correlation has a strong impact on the classical behavioral theory.
In particular, we have shown that a particular notion of labeled bisimilarity is
needed to capture barbed bisimilarity, and that communication is neither purely
synchronous nor purely asynchronous.

Acknowledgments. The work reported herein is the result of a collaborative
effort of many researchers, not just of the authors. Special thanks to Rosario
Pugliese and Francesco Tiezzi, who wrote the section on COWS.

António Ravara was partially supported by the Security and Quantum Infor-
mation Group, Instituto de Telecomunicações, Portugal.

References

1. Amadio, R.M., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous
pi-calculus. Theoretical Computer Science 195(2), 291–324 (1998)

2. Ambler, S.W.: The Object Primer: Agile Model-Driven Development with UML
2.0. Cambridge University Press, Cambridge (2004)

3. Bonelli, E., Compagnoni, A.: Multipoint session types for a distributed calculus. In:
Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 240–256. Springer,
Heidelberg (2008)

4. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and pipelines for struc-
tured service programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008)

5. Boreale, M., et al.: SCC: a Service Centered Calculus. In: Bravetti, M., Núñez,
M., Tennenholtz, M. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 38–57. Springer,
Heidelberg (2006)

6. Bruni, R., Lanese, I., Melgratti, H., Tuosto, E.: Multiparty sessions in SOC. In:
Wang, A.H., Tennenholtz, M. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp.
67–82. Springer, Heidelberg (2008)

7. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred program-
ming for web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
2–17. Springer, Heidelberg (2007)

8. Cruz-Filipe, L., Lanese, I., Martins, F., Ravara, A., Vasconcelos, V.T.: Bisimula-
tions in SSCC. DI/FCUL TR 07–37, Department of Informatics, Faculty of Sci-
ences, University of Lisbon (2007)

9. Cruz-Filipe, L., Lanese, I., Martins, F., Ravara, A., Vasconcelos, V.T.: Behavioural
theory at work: Program transformations in a service-centred calculus. In: Barthe,
G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 59–77. Springer,
Heidelberg (2008)

10. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Com-
puter Science 34, 83–133 (1984)

Behavioral Theory for Session-Oriented Calculi 213

11. van Glabbeek, R.J.: The linear time – branching time spectrum I; the semantics of
concrete, sequential processes. In: Handbook of Process Algebra, ch. 1, pp. 3–99.
Elsevier, Amsterdam (2001), http://boole.stanford.edu/pub/spectrum1.ps.gz

12. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

13. Honda, K., Yoshida, N.: On reduction-based process semantics. Theoretical Com-
puter Science 151(2), 437–486 (1995)

14. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proc. of POPL 2008, pp. 273–284. ACM Press, New York (2008)

15. Lanese, I., Martins, F., Vasconcelos, V.T., Ravara, A.: Disciplining orchestration
and conversation in service-oriented computing. In: Proc. of SEFM 2007, pp. 305–
314. IEEE Computer Society Press, Los Alamitos (2007)

16. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services.
In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Heidel-
berg (2007), http://rap.dsi.unifi.it/cows/papers/cows-esop07-full.pdf

17. Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs
(1989)

18. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992.
LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)

19. Pugliese, R., Tiezzi, F., Yoshida, N.: On observing dynamic prioritised actions in
soc. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas,
W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 558–570. Springer, Heidelberg (2009),
http://rap.dsi.unifi.it/cows/papers/bis4cows-full.pdf

20. Sangiorgi, D., Walker, D.: On barbed equivalences in pi-calculus. In: Larsen, K.G.,
Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 292–304. Springer, Hei-
delberg (2001)

21. Sangiorgi, D., Walker, D.: Pi-Calculus: A Theory of Mobile Processes. Cambridge
University Press, Cambridge (2001)

22. Vieira, H.T., Caires, L., Seco, J.C.: The conversation calculus: A model of service-
oriented computation. In: Gairing, M. (ed.) ESOP 2008. LNCS, vol. 4960, pp.
269–283. Springer, Heidelberg (2008)

http://boole.stanford.edu/pub/spectrum1.ps.gz
http://rap.dsi.unifi.it/cows/papers/cows-esop07-full.pdf
http://rap.dsi.unifi.it/cows/papers/bis4cows-full.pdf

	Behavioral Theory for Session-Oriented Calculi
	Introduction
	Behavioral Theory for SSCC
	From Binary to Multiparty Sessions
	Dynamic Conversations
	Behavioral Semantics for COWS
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

