
Controlling Reversibility in Higher-Order Pi⋆

Ivan Lanese1, Claudio Antares Mezzina2,
Alan Schmitt2, and Jean-Bernard Stefani2

1 University of Bologna & INRIA, Italy
2 INRIA Grenoble-Rhône-Alpes, France

Abstract. We present in this paper a fine-grained rollback primitive
for the higher-order π-calculus (HOπ), that builds on the reversibility
apparatus of reversible HOπ [8]. The definition of a proper semantics for
such a primitive is a surprisingly delicate matter because of the potential
interferences between concurrent rollbacks. We define in this paper a
high-level operational semantics which we prove sound and complete with
respect to reversible HOπ backward reduction. We also define a lower-
level distributed semantics, which is closer to an actual implementation
of the rollback primitive, and we prove it to be fully abstract with respect
to the high-level semantics.

1 Introduction

Motivation and contributions. Reversible computing, or related notions, can be
found in many areas, including hardware design, program debugging, discrete-
event simulation, biological modeling, and quantum computing (see [2] and the
introduction of [9] for early surveys on reversible computing). Of particular in-
terest is the application of reversibility to the study of programming abstractions
for fault-tolerant systems. In particular, most fault tolerance schemes based on
system recovery techniques [1], including rollback/recovery schemes and transac-
tion abstractions, imply some form of undo. The ability to undo any single action
in a reversible computation model provides an ideal setting to study, revisit, or
imagine alternatives to these different schemes. This is in part the motivation
behind the recent development of the reversible process calculi RCCS [4] and
ρπ [8], with [5] showing how a general notion of interactive transaction emerges
from the introduction of irreversible (commit) actions in RCCS. However, these
calculi do not really provide much in the way of controlling reversibility. The
notion of irreversible action in RCCS only prevents a computation from rolling
back past a certain point. Exploiting the low-level reversibility machinery avail-
able in these models of computation for fault-recovery purposes would require
more extensive control on the reversal of actions, including when they can take
place and how far back (along a past computation) they apply.

We present in this paper the study of a fine-grained rollback control primi-
tive, i.e., one where potentially every single step in a concurrent execution can

⋆ Partly funded by the EU project FP7-231620 HATS and the ANR-2010-SEGI-013
project AEOLUS.

be undone. Specifically, we introduce a rollback construct for an asynchronous
higher-order π-calculus (HOπ – see [10]), building on the machinery we intro-
duced for ρπ, the reversible higher-order π-calculus presented in [8]. We chose
HOπ as our substrate because we find it a convenient starting point for study-
ing distributed programming models with inherently higher-order features such
as dynamic code update, which we aim to combine with abstractions for sys-
tem recovery and fault tolerance. Surprisingly, finding a suitable definition for
a fine-grained rollback construct in HOπ is more difficult than one may think,
even with the help of the reversible machinery from [8]. There are two main
difficulties. The first one is in actually pinning down the intended effect of a
rollback operation, especially in presence of other concurrent rollbacks. The sec-
ond one is in finding a suitably distributed semantics for rollback, dealing only
with local information and not relying on complex atomic transitions involving
a potentially unbounded number of distinct processes.

We show in this paper how to deal with these difficulties by making the
following contributions: (i) we define a high-level operational semantics for a
rollback construct in an asynchronous higher-order π-calculus, which we prove
maximally permissive, in the sense that it makes reachable all past states in a
given computation; (ii) we present a low-level semantics for the proposed rollback
construct which can be understood as a fully distributed variant of our high-level
semantics, and we prove it to be fully abstract with respect to the high-level one.

Paper Outline. In Section 2 we present informally our rollback calculus, which
we call roll-π, and illustrate the difficulties that may arise in defining a fine-
grained rollback primitive. In Section 3 we formalize roll-π and its high-level
operational semantics. In Section 4 we present a distributed operational seman-
tics for roll-π, and we prove that it is fully abstract with respect to the high-level
one. Section 5 discusses related work and concludes the paper. Proof sketches of
the main results are collected in Appendix.

2 Informal presentation

To define roll-π and its rollback construct, we rely on the same support for
reversibility as in ρπ [8]. Let us review briefly its basic mechanisms.

Reversibility in ρπ. We attach to each process P a unique tag κ (either simple,
written as k, or composite, denoted as 〈hi, h̃〉 · k). The uniqueness of tags for
processes is achieved thanks to the following structural congruence rule that
defines how tags and parallel composition commute.

k :
n
∏

i=1

τi ≡ νh̃.
n
∏

i=1

(〈hi, h̃〉 · k : τi) with h̃ = {h1, . . . , hn} n ≥ 2 (1)

In the equation,
n
∏

i=1

is n-ary parallel composition and ν is the restriction operator,

both standard from π-calculus. Each τi (called a thread) is either a message, of

2

the form a〈P 〉 (where a is a channel name), or a receiver process (also called a
trigger), of the form a(X)⊲P . A forward computation step (or forward reduction
step, noted with arrow ։) consists of the reception of a message by a receiver
process, and takes the following form (note that ρπ is an asynchronous calculus).

(κ1 : a〈P 〉) | (κ2 : a(X) ⊲ Q)։ νk. k : Q{P/X} | [M ; k] (2)

In this forward step, κ1 identifies a thread consisting of message a〈P 〉 on chan-
nel a, and κ2 identifies a thread consisting of a trigger process a(X) ⊲ Q that
expects a message on channel a. The result of the message input yields, as usual,
an instance Q{P /X} of the body of the trigger Q with the formal parameter X
instantiated by the received value, i.e., the process P (ρπ is a higher-order calcu-
lus). Message input also has two side effects: (i) the tagging of the newly created
process Q{P /X} by a fresh tag k, and (ii) the creation of a memory [M ; k], which
records the original two threads, M = (κ1 : a〈P 〉) | (κ2 : a(X) ⊲ Q), together
with tag k.

In ρπ, a forward reduction step such as (2) above is systematically associated
with a backward reduction step (noted with arrow) of the form:

(k : Q) | [M ; k] M (3)

which undoes the communication between thread κ1 and thread κ2. When nec-
essary to avoid confusion, we will add a ρπ subscript to arrows representing ρπ
reductions.

Given a configuration M , the set of memories present in M provides us
with an ordering :> between tags in M that reflects their causal dependency: if
memory [κ1 : P1 | κ2 : P2; k] occurs in M , then κi > k. Also, k > 〈hi, h̃〉 · k, and
we define the relation :> as the reflexive and transitive closure of the > relation.
We say that tag κ has κ′ as a causal antecedent if κ′ :> κ.

Reversibility in roll-π. The notion of memory introduced in ρπ is in some way a
checkpoint, uniquely identified by its tag. In roll-π, we exploit this intuition to
introduce an explicit form of backward reduction. Specifically, backward reduc-
tion is not allowed by default as in ρπ, but has to be triggered by an instruction
of the form roll k, whose intent is that the current computation be rolled back to
a state just prior to the creation of the memory bearing the tag k. To be able to
form an instruction of the form roll k, one needs a way to pass the knowledge of
a memory tag to a process. This is achieved in roll-π by adding a bound variable
to each trigger process, which now takes the form a(X) ⊲γ P , where γ is the
tag variable bound by the trigger construct and whose scope is P . A forward
reduction step in roll-π therefore is:

(κ1 : a〈P 〉) | (κ2 : a(X) ⊲γ Q)։ νk. k : Q{P,k/X,γ} | [M ; k] (4)

where the only difference with (2) lies in the fact that the newly created tag k
is passed as an argument to the trigger body Q. We write a(X) ⊲ P in place of
a(X) ⊲γ P if the tag variable γ does not appear free in P .

3

M1

a

&& &&LLLLLL
M3

d

&& &&MMMMMM

M
a

%% %%LLLLLL

b 99 99rrrrrr

M ′

d

&& &&LLLLLL

c 88 88rrrrrr

M ′′

roll δ

ee

roll γ

yy

M2

b 88 88rrrrrr

M4

c 88 88qqqqqq

Fig. 1. Concurrent rollback anomaly

Now, given the above intent for the rollback primitive roll, how does one de-
fine its operational semantics? As hinted at in the introduction, this is actually
a subtler affair than one may expect. A big difference with ρπ, where commu-
nication steps are undone one by one, is that the k in roll k may refer to a
communication step far in the past. So the idea behind a roll k is to restore the
content of a memory [M ; k] and to delete all its forward history. Consider the
following attempt at a rule for roll:

(Naive)
N ◮ k complete(N | [M ; k] | (κ : roll k))

N | [M ; k] | (κ : roll k) M | N k

The different predicates and the operator used in the rule are defined formally
in the next section, but an informal explanation should be enough to understand
how the rule works. Briefly, the assertionN ◮ k states that all the active threads
and memories in N bear tags κ that have k as causal antecedent, i.e., k :> κ (N
does not contain unrelated processes). The assertion complete(Mc) states that
configuration Mc gathers all the threads (inside or outside memories) whose tags
have as a causal antecedent the tag of a memory in Mc itself, i.e., if a memory
in Mc is of the form [M ′; k′] (the communication M ′ created a process tagged
with k′), then a process or a memory containing a process tagged with k′ has to
be in Mc (Mc contains every related process). The premise of rule Naive thus
asserts that the configuration Mc = N | [M ; k] | κ : roll k, on the left hand side
of the reduction in the conclusion of the rule, gathers all (and only) the threads
and memories which have originated from the process tagged by k, itself created
by the interaction of the message and trigger recorded in M . Being complete,
Mc is thus ready to be rolled back and replaced by the configuration M which
is at its origin. Rolling back Mc has another effect, noted as N k in the right
hand side of the conclusion, which is to release from memories those messages
or triggers which do not have k as a causal antecedent, but which participated
in communications with causal descendants of k.

For instance, the configuration M0 = M1 | (κ2 : c(Y) ⊲δ Y), where M1 =
(κ0 : a〈P 〉) | (κ1 : a(X) ⊲γ c〈roll γ〉), has the following forward reductions (where

4

M2 = (k : c〈roll k〉) | (κ2 : c(Y) ⊲δ Y)):

M0 ։ νk. [M1; k] | (k : c〈roll k〉) | (κ2 : c(Y) ⊲δ Y)

։ νk, l. [M1; k] | [M2; l] | (l : roll k) = M3

Applying rule Naive (and structural congruence, defined later) on M3 we get:

M3 M1 | [M2; l] k = M1 | (κ2 : c(Y) ⊲δ Y) = M0

where (κ2 : c(Y) ⊲δ Y) is released from memory [M2; l] because it does not have
k as a causal antecedent.

Rule Naive looks reasonable enough, but difficulties arise when concurrent
rollbacks are taken into account. Consider the following configuration:

M = (k1 : τ1) | (k2 : a〈0〉) | (k3 : τ3) | (k4 : b〈0〉)

where1 τ1 = a(X) ⊲γ d〈0〉 | (c(Y) ⊲ roll γ) and τ3 = b(Z) ⊲δ c〈0〉 | (d(U) ⊲ roll δ).
The most interesting reductions of M are depicted in Figure 1. Forward

reductions are labelled by the name of the channel used for communication,
while backward reductions are labelled by the executed roll instruction. The
main processes and short-cuts are detailed below:

M1 = νl2, h3, h4. σ1 | [σ2; l2] | (κ3 : c〈0〉) | (κ4 : τ4)

M2 = νl1, h1, h2. [σ1; l1] | (κ1 : d〈0〉) | (κ2 : τ2) | σ2

M ′′ = νl1 . . . l3, h1 . . . h4. [σ1; l1] | [σ2; l2] | [σ3; l3] | [σ4; l4] | (l3 : roll l1) | (l4 : roll l2)

where

σ1 = (k1 : τ1) | (k2 : a〈0〉) σ2 = (k3 : τ3) | (k4 : b〈0〉) σ3 = (κ2 : τ2) | (κ3 : c〈0〉)

σ4 = (κ1 : d〈0〉) | (κ4 : τ4) τ2 = (c(Y) ⊲ roll l1) τ4 = (d(U) ⊲ roll l2)

κ1 = 〈h1, {h1, h2}〉 · l1 κ3 = 〈h3, {h3, h4}〉 · l2

κ2 = 〈h2, {h1, h2}〉 · l1 κ4 = 〈h4, {h3, h4}〉 · l2

Now, from M ′′, there are two possibilities to apply rule Naive, giving rise to
the following two possible backward reductions:

M ′′
 νl2, h3, h4. σ1 | [σ2; l2] | (κ3 : c〈0〉) | (κ4 : τ4) = M1

M ′′
 νl1, h1, h2. [σ1; l1] | (κ1 : d〈0〉) | (κ2 : τ2) | σ2 = M2

The anomaly here is that there is no way from M1 or M2 to get back to M , the
original configuration, despite the fact that M ′′ has two roll instructions which
would seem sufficient to undo all the reductions which lead from M to M ′′. Note
that M1 and M2 are configurations which could both have been reached from
M . Thus rule Naive is not unsound, but incomplete or insufficiently permissive,
at least with respect to what is possible in ρπ: if we were to undo actions in

1 We assume parallel composition has precedence over trigger.

5

P,Q ::= 0 | X | νa.P | (P | Q) | a〈P 〉 | a(X) ⊲γ P | roll k | roll γ

M,N ::= 0 | νu.M | (M | N) | κ : P | [µ; k] | [µ; k]•

κ ::= k | 〈h, h̃〉 · k

µ ::= ((κ1 : a〈P 〉) | (κ2 : a(X) ⊲γ Q))

a ∈ N X ∈ VP γ ∈ VK u ∈ I h, k ∈ K

Fig. 2. Syntax of roll-π

M ′′ step by step, following the ρπ semantics of backward reduction, we could
definitely reach all of M , M1, and M2. Note that the higher-order aspects do
not matter here.

The main motivation to have a complete rule comes from the fact that, in an
abstract semantics, one wants to be as liberal as possible, and not unduly restrict
implementations. If we were to pick the Naive rule as our semantics for rollback,
then a correct implementation would have to enforce the same restrictions with
respect to states reachable from backward reductions, restrictions which, in the
case of rule Naive, are both complex to characterize (in terms of conflicting
rollbacks) and quite artificial since they do not correspond to any clear execution
policy. In the next section, we present a maximally permissive semantics for
rollback, using ρπ as our benchmark for completeness.

3 The roll-π calculus and its high-level semantics

3.1 Syntax

Names, keys, and variables. We assume the existence of the following denumer-
able infinite mutually disjoint sets: the set N of names, the set K of keys, the
set VK of tag variables, and the set VP of process variables. The set I = N ∪K
is called the set of identifiers. We note N the set of natural integers. We let
(together with their decorated variants): a, b, c range over N ; h, k, l range over
K; u, v, w range over I; δ, γ range over VK; X,Y, Z range over VP . We note ũ a
finite set of identifiers {u1, . . . , un}.

Syntax. The syntax of the roll-π calculus is given in Figure 2 (in writing roll-π
terms, we freely add balanced parenthesis around terms to disambiguate them).
Processes of the roll-π calculus, given by the P,Q productions in Figure 2, are
the standard processes of the asynchronous higher-order π-calculus, except for
the presence of the roll primitive and the extra bound tag variable in triggers. A
trigger in roll-π takes the form a(X) ⊲γ P , which allows the receipt of a message
of the form a〈Q〉 on channel a, and the capture of the tag of the receipt event
with tag variable γ.

Processes in roll-π cannot directly execute, only configurations can. Configu-
rations in roll-π are given by the M,N productions in Figure 2. A configuration
is built up from tagged processes and memories.

6

In a tagged process κ : P the tag κ is either a single key k or a pair of the
form 〈h, h̃〉 · k, where h̃ is a set of keys with h ∈ h̃. A tag serves as an identifier
for a process. As in ρπ [8], tags and memories help capture the flow of causality
in a computation.

A memory is a configuration of the form [µ; k], which keeps track of the
fact that a configuration µ was reached during execution, that triggered the
launch of a process tagged with the fresh tag k. In a memory [µ; k], we call
µ the configuration part of the memory, and k the tag of the memory. The
configuration part µ = (κ1 : a〈P 〉) | (κ2 : a(X) ⊲γ Q) of a memory records the
message a〈P 〉 and the trigger a(X)⊲γQ involved in the message receipt, together
with their respective thread tags κ1, κ2. A marked memory is a configuration of
the form [µ; k]•, which just serves to indicate that a rollback operation targeting
this memory has been initiated.

We note P the set of roll-π processes, and C the set of roll-π configurations.
We call agent an element of the set A = P ∪ C. We let (together with their
decorated variants) P,Q,R range over P ; L,M,N range over C; and A,B,C
range over A. We call thread, a process that is either a message a〈P 〉, a trigger
a(X) ⊲γ P , or a rollback instruction roll k. We let τ and its decorated variants
range over threads.

Free identifiers and free variables. Notions of free identifiers and free variables
in roll-π are classical. It suffices to note that constructs with binders are of the
forms: νa. P which binds the name a with scope P ; νu.M , which binds the
identifier u with scope M ; and a(X) ⊲γ P , which binds the process variable X
and the tag variable γ with scope P . We note fn(P), fn(M) and fn(κ) the
set of free names, free identifiers, and free keys, respectively, of process P , of
configurationM , and of tag κ. Note in particular that fn(κ : P) = fn(κ)∪fn(P),
fn(roll k) = {k}, fn(k) = {k} and fn(〈h, h̃〉 · k) = h̃∪{k}. We say that a process
P or a configuration M is closed if it has no free (process or tag) variable. We
note Pcl the set of closed processes, Ccl the set of closed configurations, and Acl

the set of closed agents.

Initial and consistent configurations. Not all configurations allowed by the syn-
tax in Figure 2 are meaningful. For instance, in a memory [µ; k], tags occurring
in the configuration part µ must be different from the key k, and if a tagged
process κ1 : roll k occurs in a configuration M , we expect a memory [µ; k] to
occur in M as well. In the rest of the paper, we only will be considering well-
formed, or consistent, closed configurations. A configuration is consistent if it
can be derived using the rules of the calculus from an initial configuration. A
configuration is initial if it does not contain memories, all the tags are distinct
and simple (i.e., of the form k), and the argument of each roll is bound by a
trigger.

We do not give here a syntactic characterization of consistent configurations
as it is not essential to understand the developments in this paper (the interested
reader may find some more details in [8], where a syntactic characterization of
ρπ consistent configurations is provided).

7

(E.ParC) A | B ≡ B | A (E.ParA) A | (B | C) ≡ (A | B) | C

(E.ParN) A | 0 ≡ A (E.NewN) νu.0 ≡ 0 (E.NewC) νu. νv.A ≡ νv. νu.A

(E.NewP) (νu.A) | B ≡ νu. (A | B) (E.α) A =α B =⇒ A ≡ B

(E.TagN) κ : νa. P ≡ νa. κ : P

(E.TagP) k :

n
∏

i=1

τi ≡ νh̃.

n
∏

i=1

(〈hi, h̃〉 · k : τi) h̃ = {h1, . . . , hn} n ≥ 2

Fig. 3. Structural congruence for roll-π

Remark 1. We have no construct for replicated processes or guarded choice in roll-π:

as in HOπ, these can easily be encoded.

Remark 2. In the remainder of the paper, we adopt Barendregt’s Variable Convention:

If terms t1, . . . , tn occur in a certain context (e.g., definition, proof), then in these terms

all bound identifiers and variables are chosen to be different from the free ones.

3.2 Operational semantics

The operational semantics of the roll-π calculus is defined via a reduction relation
→, which is a binary relation over closed configurations (→ ⊂ Ccl × Ccl), and a
structural congruence relation ≡, which is a binary relation over processes and
configurations (≡ ⊂ P2 ∪ C2). We define evaluation contexts as “configurations
with a hole ·”, given by the following grammar:

E ::= · | (M | E) | νu.E

General contexts C are just processes or configurations with a hole ·. A congru-
ence on processes or configurations is an equivalence relation R that is closed
for general contexts: P RQ =⇒ C[P]RC[Q] or M RN =⇒ C[M]RC[N].

The relation ≡ is defined as the smallest congruence on processes and con-
figurations that satisfies the rules in Figure 3. We note t =α t′ when terms
t, t′ are equal modulo α-conversion. If ũ = {u1, . . . , un}, then νũ. A stands for
νu1. . . . νun. A. We note

∏n
i=1

Ai for A1 | . . . | An (there is no need to indi-
cate how the latter expression is parenthesized because the parallel operator
is associative by rule E.ParA). In rule E.TagP, processes τi are threads. Re-
call the use of the variable convention in these rules: for instance, in the rule
(νu.A) | B ≡ νu. (A | B) the variable convention makes implicit the condition
u 6∈ fn(B). The structural congruence rules are the usual rules for the π-calculus
(E.ParC to E.α) without the rule dealing with replication, and with the addi-
tion of two new rules dealing with tags: E.TagN and E.TagP. Rule E.TagN is
a scope extrusion rule to push restrictions to the top level. Rule E.TagP allows

8

(H.Com)
µ = (κ1 : a〈P 〉) | (κ2 : a(X) ⊲γ Q)

(κ1 : a〈P 〉) | (κ2 : a(X) ⊲γ Q)։ νk. (k : Q{P,k/X,γ}) | [µ; k]

(H.Start) (κ1 : roll k) | [µ; k] (κ1 : roll k) | [µ; k]•

(H.Roll)
N ◮ k complete(N | [µ; k])

N | [µ; k]• µ | N k

Fig. 4. Reduction rules for roll-π

to generate unique tags for each thread in a configuration. An easy induction on
the structure of terms provides us with a kind of normal form for configurations
(by convention

∏

i∈I Ai = 0 if I = ∅, and [µ; k]◦ stands for [µ; k] or [µ; k]•):

Lemma 1 (Thread normal form). For any configuration M , we have

M ≡ νũ.
∏

i∈I

(κi : ρi) |
∏

j∈J

[µj ; kj]
◦

with ρi = 0, ρi = roll ki, ρi = ai〈Pi〉, or ρi = ai(Xi) ⊲γi
Pi.

We say that a binary relation R on closed configurations is evaluation-closed
if it satisfies the inference rules:

(R.Ctx)
M R N

E[M] R E[N]
(R.Eqv)

M ≡ M ′ M ′ R N ′ N ′ ≡ N

M R N

The reduction relation → is defined as the union of two relations, the forward
reduction relation ։ and the backward reduction relation : → = ։ ∪ .
Relations ։ and are defined to be the smallest evaluation-closed binary re-
lations on closed configurations satisfying the rules in Figure 4 (note again the
use of the variable convention: in rule H.Com the key k is fresh).

The rule for forward reduction H.Com is the standard communication rule
of the higher-order π-calculus with three side effects: (i) the creation of a new
memory to record the configuration that gave rise to it; (ii) the tagging of the
continuation of the message receipt with the fresh key k; (iii) the passing of
the newly created tag k as a parameter to the newly launched instance of the
trigger’s body, Q.

Backward reduction is subject to the rules H.Roll and H.Start. Rule
H.Roll is similar to rule Naive defined in the previous section, except that
it relies on the presence of a marked memory instead of on the presence of the
process κ : roll k to roll back a given configuration. Rule H.Start just marks a
memory to enable rollback.

The definition of rule H.Roll exploits several predicates and relations which
we define below.

9

Definition 1 (Causal dependence). Let M be a configuration and let TM be
the set of tags occurring in M . The binary relation >M on TM is defined as the
smallest relation satisfying the following clauses:

– k >M 〈hi, h̃〉 · k
– κ′ >M k if κ′ occurs in µ for some memory [µ; k]◦ that occurs in M

The causal dependence relation :>M is the reflexive and transitive closure of
>M .

Relation κ :>M κ′ reads “κ is a causal antecedent of κ′ according to M”. When
configuration M is clear from the context, we write κ :> κ′ for κ :>M κ′.

Definition 2 (κ dependence). Let M ≡ νũ.
∏

i∈I κi : ρi |
∏

j∈J [µj ; kj]
◦.

Configuration M is κ-dependent, written M ◮ κ, if ∀i ∈ I ∪ J, κ :>M κi.

We define now the projection operation on configurationsM κ, that captures
the parallel composition of all tagged processes that do not depend on κ occurring
in memories in M .

Definition 3 (Projection). Let M ≡ νũ.
∏

i∈I(κi : ρi) |
∏

j∈J [µj ;κj]
◦, with

µj = κ′
j : Rj | κ′′

j : Tj. Then:

M κ = νũ. (
∏

j′∈J′

κ′
j′ : Rj′) | (

∏

j′′∈J′′

κ′′
j′′ : Tj′′)

where J ′ = {j ∈ J | κ 6:> κ′
j} and J ′′ = {j ∈ J | κ 6:> κ′′

j }.

Finally we define the notion of complete configuration, used in the premise
of rule H.Roll:

Definition 4 (Complete configuration). A configuration M contains a tag-
ged process κ : P , written κ : P ∈ M , if M ≡ νũ. (κ : P) | N or M ≡ νũ. [κ : P |
κ1 : Q; k]◦ | N .

A configuration M is complete, noted complete(M), if for each memory
[µ; k]◦ that occurs in M , one of the following holds:

1. There exists a process P such that k : P ∈ M .
2. There is h̃ such that for each hi ∈ h̃ there exists a process Pi such that

〈hi, h̃〉 · k : Pi ∈ M .

Barbed bisimulation. The operational semantics of the roll-π calculus is com-
pleted classically by the definition of a contextual equivalence between configu-
rations, which takes the form of a barbed congruence. We first define observables
in configurations. We say that name a is observable in configuration M , noted
M ↓a, if M ≡ νũ. (κ : a〈P 〉) | N , with a 6∈ ũ. Keys are not observable: this is
because they are just an internal device used to support reversibility. We note
⇒, ։∗, ∗ the reflexive and transitive closures of →, ։, and , respectively.

10

One of the aims of this paper is to define a low-level semantics for roll-π, and
show that it is equivalent to the high-level one. We want to use weak barbed
congruence for this purpose. Thus we need a definition of barbed congruence
able to relate roll-π configurations executed under different semantics. These se-
mantics will also rely on different runtime syntaxes. Thus, we define a family of
relations, each labeled by the semantics to be used on the left and right compo-
nents of its elements. We also label sets of configurations with the corresponding
semantics, thus highlighting that the corresponding runtime syntax has to be
included. However, contexts do not include runtime syntax, since we never add
contexts at runtime.

Definition 5 (Barbed bisimulation and congruence). A relation s1Rs2 ⊆
Ccl
s1 × Ccl

s2 on closed consistent configurations is a strong (resp. weak) barbed
simulation if whenever M s1Rs2 N

– M ↓a implies N ↓a (resp. N ⇒s2↓a)
– M →s1 M ′ implies N →s2 N ′, with M ′

s1Rs2N
′ (resp. N ⇒s2 N ′ with

M ′
s1Rs2N

′)

A relation s1Rs2 ⊆ Ccl
s1 × Ccl

s2 is a strong (resp. weak) barbed bisimulation if

s1Rs2 and (s1Rs2)
−1 are strong (resp. weak) barbed simulations. We call strong

(resp. weak) barbed bisimilarity and note s1∼s2 (resp. s1≈s2) the largest strong
(resp. weak) barbed bisimulation with respect to semantics s1 and s2.

We say that two configurations M and N are strong (resp. weak) barbed
congruent, written s1∼

c
s2 (resp. s1≈

c
s2), if for each roll-π context C such that

C[M] and C[N] are consistent, then C[M] s1∼s2 C[N] (resp. C[M] s1≈s2 C[N]).

3.3 Soundness and completeness of backward reduction in roll-π

We present in this section a Loop Theorem, that establishes the soundness of
backward reduction in roll-π, and we prove the completeness (or maximal per-
missiveness) of backward reduction in roll-π.

Theorem 1 (Loop Theorem - Soundness of backward reduction). For
any (consistent) configurations M and M ′ with no marked memories, if M ∗

M ′, then M ′
։

∗ M .

To state the completeness result for backward reduction in roll-π, we define
a family of functions φe : Croll-π → Cρπ , where e ∈ N , mapping a roll-π configu-
ration to a ρπ configuration. Function φe is defined by induction as follows:

φe(νu.A) = νu. φe(A) φe(A | B) = φe(A) | φe(B) φe(κ : P) = κ : φe(P)

φe([µ; k]
�) = [φe(µ); k] φe(0) = 0 φe(X) = X

φe(roll k) = e〈0〉 φe(roll γ) = e〈0〉 φe(a〈P 〉) = a〈φe(P)〉

φe(a(X) ⊲γ P) = a(X) ⊲ φe(P)

Note that roll instructions are transformed not into 0 but into a thread e〈0〉: this
is to ensure a consistent roll-π configuration is transformed into a consistent ρπ

11

configuration (recall that 0 is not a thread, thus it may be collected by structural
congruence and there would be no thread corresponding to the roll k process).

We now state that roll-π is maximally permissive: any subset of roll primitives
in evaluation context may successfully be executed, unlike in the naive example
of Section 2. Let M = νũ. [µ; k] | (k : P) | N be a ρπ configuration and S =
{k1, . . . , kn} a set of keys. We note M S M ′ if M ρπ M ′, M ′ = νũ. µ | N ,
and ki :> k for some ki ∈ S (here k is the key of the memory [µ; k] consumed by
the reduction). If M ′ 6 S , we say that M ′ is final with respect to S. We note ∗

S

the reflexive and transitive closure of S . We assume here that reductions are
name-preserving, i.e. existing keys are not α-converted (cf. [8] for a discussion
on the topic).

Theorem 2 (Completeness of backward reduction). Let M be a (con-
sistent) roll-π configuration such that M ≡ νũ.

∏n
i=1

κi : roll ki | M1, let
S = {k1, . . . , kn}, and let e ∈ N \ fn(M). Then for all T ⊆ S, if φe(M) ∗

T N
and N is final with respect to T , there exists M ′ such that N = φe(M

′), and
M ∗

roll-π M ′.

4 A distributed semantics for roll-π

The semantics defined in the previous section captures the behavior of rollback,
but it relies on global checks on large parts of the configuration, for verifying
that it is complete and κ-dependent. This makes it difficult to implement directly
such a semantics, even more so in a distributed setting.

We thus present now a low-level (written LL) semantics, where the conditions
above are verified incrementally by relying on communication of rl notifications.
We show that the LL semantics captures the same intuition as the one introduced
in Section 3 by proving that given a (consistent) configuration, its behaviors
under the two semantics are weak barbed congruent according to Definition 5.

To avoid confusion between the two semantics (and others semantics used
in the proof), we use a subscript LL to identify all the elements (reductions,
structural congruence, . . .) referred to the low-level semantics presented here,
and HL (for high-level) for the semantics described in Section 3.

The LL semantics →LL of roll-π is defined as for the HL one (cf. Section 3.2),
as →LL = ։LL ∪ LL, where relations ։LL and LL are defined to be the
smallest evaluation-closed binary relations on closed LL configurations satisfying
the rules in Figure 5. The notion of structural congruence used in the definition
of evaluation-closed is here the smallest congruence on LL processes and config-
urations that satisfies the rules in Figure 3 and in Figure 6.

LL configurations differ from HL configurations in two aspects. First, tagged
processes (inside or outside memories) can be frozen, denoted ⌊κ : P⌋, to indicate
that they are participating to a rollback (rollback is no longer atomic). Second,
LL configurations include notifications of the form rl κ, used to notify a tagged
process with key κ to enter a rollback.

Let us describe the LL rules. Communication rule L.Com is as before. The
main idea for rollback is that when a memory pointed by a roll is marked (rule

12

(L.Com)
µ = (κ1 : a〈P 〉) | (κ2 : a(X) ⊲γ Q)

(κ1 : a〈P 〉) | (κ2 : a(X) ⊲γ Q)։LL νk. (k : Q{P,k/X,γ}) | [µ; k]

(L.Start) (κ1 : roll k) | [µ; k] LL (κ1 : roll k) | [µ; k]• | rl k

(L.Span) rl κ1 | [κ1 : P | M ; k]◦ LL [⌊κ1 : P⌋ | M ; k]◦ | rl k

(L.Branch)
〈hi, h̃〉 · k occurs in M

rl k | M LL

∏

hi∈h̃

rl 〈hi, h̃〉 · k | M

(L.Up) rl κ1 | (κ1 : P) LL ⌊κ1 : P⌋ (L.Stop) [µ; k]◦ | ⌊k : P⌋ LL µ

Fig. 5. Reduction rules for LL

(E.Gb1) νk. rl k ≡LL 0 (E.Gb2) νk.
∏

hi∈h̃

rl 〈hi, h̃〉 · k ≡LL 0

(E.TagPFr) ⌊k :

n
∏

i=1

τi⌋ ≡LL νh̃.

n
∏

i=1

⌊(〈hi, h̃〉 · k : τi)⌋ h̃ = {h1, . . . , hn} n ≥ 2

Fig. 6. Additional structural laws for LL

L.Start), a notification rl k is generated. This notification is propagated by
rules L.Span and L.Branch. Rule L.Span also freezes threads inside memories,
specifying that they will be eventually removed by the rollback. Rule L.Branch
(where the predicate “κ occurs in M” means that either M = κ : P or M =
[µ; k′]◦ with κ : P ∈ M) is used when the target configuration has been split
into multiple threads: a notification has to be sent to each of them. Rule L.Up
is similar to L.Span, but it applies to tagged processes outside memories. It also
stops the propagation of the rl notification. The main idea is that by using rules
L.Span, L.Branch, and L.Up one is able to tag all the causal descendants of
a marked memory. Finally, rule L.Stop rolls back a single computation step by
removing a frozen process and freeing the content of the memory created together
with it. In the LL semantics a rollback request is thus executed incrementally,
while it was atomic in the HL semantics (rule H.Roll). The LL semantics also
exploits an extended structural congruence, adding axioms E.Gb1 and E.Gb2
to garbage collect rl notifications when they are no more needed, and extending
axiom E.TagP to deal with frozen threads (axiom E.TagPFr).

We now show an example to clarify the semantics (each reduction is labeled
by the name of the axiom used to derive it). Let M0 = M1 | (κ2 : c(Y) ⊲δ Y),

13

where M1 = (κ0 : a〈P 〉) | (κ1 : a(X) ⊲γ c〈roll γ〉). We have:

M0 ։ νk. [M1; k] | (k : c〈roll k〉) | (κ2 : c(Y) ⊲δ Y)

(L.Com) ։ νk, l. [M1; k] | [M2; l] | (l : roll k)

(L.Start) νk, l. [M1; k]
• | [M2; l] | (l : roll k) | rl k

(L.Span) νk, l. [M1; k]
• | [M ′

2
; l] | (l : roll k) | rl l

(L.Up) νk, l. [M1; k]
• | [M ′

2
; l] | ⌊(l : roll k)⌋

(L.Stop) νk. [M1; k]
• | M ′

2

(L.Stop) M1 | (κ2 : c(Y) ⊲δ Y)

where:

M2 = (k : c〈roll k〉) | (κ2 : c(Y) ⊲δ Y) M ′
2
= ⌊(k : c〈roll k〉)⌋ | (κ2 : c(Y) ⊲δ Y)

One can see that the rollback operation starts with the application of the rule
L.Start, whose effects are (i) to mark the memory aimed by a roll process, and
(ii) to generate a notification rl k to freeze its continuation. Since the continuation
of the memory [M1; k] is contained in the memory [M2; l] then the rule L.Span
is applied. So, the part of the memory containing the tag k gets frozen and
a freeze notification rl l is generated. The notification eventually reaches the
process l : roll k and freezes it (rule L.Up). Now, since there exists a memory
whose continuation is a frozen process, we can apply the rule L.Stop, and free
the configuration part of the memory (M ′

2). Again, we have that the continuation
of [M1; k] is a frozen process and by applying the rule L.Stop we can free the
configuration M1, obtaining the initial configuration. In general, a rollback of a
step whose memory is tagged by k is performed by executing a top-down visit
of its causal descendants, freezing them, followed by a bottom-up visit undoing
the steps one at the time.

We can now state the correspondence result between the two semantics.

Theorem 3 (Correspondence between HL and LL). For each roll-π HL
consistent configuration M , M HL≈

c
LL M .

Proof. The proof is quite long and technical, and relies on a several additional
semantics used as intermediate steps from HL to LL. A sketch of the proof can
be found in Appendix C. ⊓⊔

This result can be easily formulated as full abstraction. Consider in fact the
encoding j from HL configurations to LL configurations given by the injection
(HL configurations are a subset of LL configurations). This encoding is fully
abstract.

Corollary 1 (Full abstraction). Let j be the injection from HL (consistent)
configurations to LL configurations and let M , N be two HL configurations. Then
we have j(M) LL≈

c
LL j(N) iff M HL≈

c
HL N .

Proof. From Theorem 3 we have M HL≈c
LL j(M) and N HL≈c

LL j(N). The
thesis follows by transitivity. ⊓⊔

14

5 Related work and conclusion

We have introduced in this paper a fine-grained undo capability for the asyn-
chronous higher-order π-calculus, in the form of a rollback primitive. We present
a simple but non-trivial high-level semantics for rollback, and we prove it both
sound (rolling back brings a concurrent program back to a state that is a proper
antecedent of the current one) and complete (rolling back can reach all an-
tecedent states of the current one). We also present a lower-level distributed
semantics for rollback, which we prove to be fully abstract with respect to the
high-level one. The reversibility apparatus we exploit to support our rollback
primitive is directly taken from our reversible HOπ calculus [8].

Undo or rollback capabilities in programming languages have been the sub-
ject of numerous previous works and we do not have the space to review them
here; see [9] for an early survey in the setting of sequential programming lan-
guages. Among the recent works that have considered undo or rollback capa-
bilities for concurrent program execution, we can single out [3] where logging
primitives are coupled with a notion of process group to serve as a basis for
defining transaction abstractions, [11] which introduces a checkpoint abstraction
for functional programs, and [7] which extends the actor model with constructs
to create globally-consistent checkpoints. Compared to these works, our rollback
primitive brings immediate potential benefits: it provides a general semantics for
undo operations which is not provided in [3]; thanks to the fine-grained causality
tracking implied by our reversible substrate, our roll-π calculus does not suffer
from uncontrolled cascading rollbacks (domino effect) which may arise with [11],
and, in contrast to [7], provides a built-in guarantee that, in failure-free compu-
tations, rollback is always possible and reaches a consistent state (soundness of
backward reduction).

Our low-level semantics for rollback, being a first refinement towards an im-
plementation, is certainly related to distributed checkpoint and rollback schemes,
in particular to the causal logging schemes discussed in the survey [6]. A thor-
ough analysis of this relationship must be left for further study, however, as it
requires a proper modeling of site and communication failures, as well as an
explicit model for persistent data.

References

1. A. Avizienis, J.C. Laprie, B. Randell, and C.E. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Trans. Dependable Sec.

Comput., 1(1), 2004.
2. C.H. Bennett. Notes on the history of reversible computation. IBM Journal of

Research and Development, 32(1), 1988.
3. T. Chothia and D. Duggan. Abstractions for fault-tolerant global computing.

Theor. Comput. Sci., 322(3), 2004.
4. V. Danos and J. Krivine. Reversible communicating systems. In Proc. of CON-

CUR’04, volume 3170 of LNCS. Springer, 2004.
5. V. Danos and J. Krivine. Transactions in RCCS. In Proc. of CONCUR’05, volume

3653 of LNCS. Springer, 2005.

15

6. E.N. Elnozahy, L. Alvisi, Y.M. Wang, and D.B. Johnson. A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv., 34(3), 2002.

7. J. Field and C.A. Varela. Transactors: a programming model for maintaining glob-
ally consistent distributed state in unreliable environments. In Proc. of POPL’05.
ACM, 2005.

8. I. Lanese, C.A. Mezzina, and J.B. Stefani. Reversing higher-order pi. In Proc. of

CONCUR 2010, volume 6269 of LNCS. Springer, 2010.

9. G.B. Leeman. A formal approach to undo operations in programming languages.
ACM Trans. Program. Lang. Syst., 8(1), 1986.

10. D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-

Order Paradigms. PhD thesis CST–99–93, University of Edinburgh, Dept. of Comp.
Sci., 1992.

11. L. Ziarek and S. Jagannathan. Lightweight checkpointing for concurrent ML. J.

Funct. Program., 20(2), 2010.

A Proof Sketch of Theorem 1

Theorem 1 (Loop Theorem). For any (consistent) configurations M and M ′

with no marked memories, if M ∗ M ′, then M ′
։

∗ M .

Proof. The computationM ∗ M ′ is composed by applications of rulesH.Start
and H.Roll. Also, if there is no H.Roll application then the computation is
empty. We proceed by induction on the number of applications of H.Roll. The
base case (zero applications) is trivial. For the inductive case, take the last such
application, which is also the last reduction in the computation, as M ′ has no
marked memories: M ∗ M ′′

 M ′. Let us consider the computation obtained
by removing from M

∗ M ′′ the applications of rule H.Start that added
marks removed by M ′′

 M ′ (there is at least the mark corresponding to the
rollback, with additionally other marks coming from causally dependent mem-
ories removed as a side effect). This is of the form M

∗ M ′′
1

with M ′′
1

with
no marked memories, and equal to M ′′ but for missing marks. By inductive
hypothesis M ′′

1 ։
∗ M .

We now need to prove that M ′
։

∗ M ′′
1
to conclude. We prove the following

property: for every M i with at least one mark such that M i
 M ′, and for every

M i
1
equal to M i except for having no marks, we have M ′

։
∗ M i

1
. We prove this

property by induction on the number of memories removed by the step M i

M ′. If only one memory is removed, then we simply replay the communication
it contained and have M ′

։M i
1
. For the inductive case, we consider a removed

memory whose only causal descendant is a process, i.e., M i contains a sub-
process of the form [µ; k]◦ | (k : P). LetM− be the same configuration where this
process has been replaced by µ (thus undoing the communication that created
the memory). As there are at least two memories removed in M i

 M ′, and
as every removed memory is a causal descendent of Mk (the memory for which
the rollback is done), the memory [µ;κ]◦ cannot be Mk (since Mk does not only
have a process as causal descendant, but also at least one other memory). Thus
we have M−

 M ′, and by induction (one fewer memory is removed), we have

16

M ′
։

∗ M−
1
. As M−

1
is M− with every mark removed, we have M−

1
։ M i

1
by

replaying the communication µ. Thus we have M ′
։

∗ M i
1
.

We conclude by applying this property to M ′′
 M ′, thus we have M ′

։
∗

M ′′
1
. The thesis follows. ⊓⊔

B Proof Sketch of Theorem 2

Theorem 2 (Completeness of backward reduction). Let M be a (con-
sistent) roll-π configuration such that M ≡ νũ.

∏n
i=1

κi : roll ki | M1, let
S = {k1, . . . , kn}, and let e ∈ N \ fn(M). Then for all T ⊆ S, if φe(M) ∗

T N
and N is final with respect to T , there exists M ′ such that N = φe(M

′), and
M ∗

ρπ M ′.

Proof. Let us consider the computation obtained in roll-π by starting from M
and first applying rule H.Start for every unmarked memory with key in T ,
yielding configuration Mm, then rule H.Roll for every memory with key in
T as far as possible (in an arbitrary order). Such a computation has the form
M ∗ M ′. We claim that this M ′ is the required one.

Let Mu be M where we removed every mark. We haveMu
∗ M ′

u, whereM
′
u

is M ′ with every mark removed, by the following reasoning: first every memory
with key ki in T has a roll ki in Mu to mark the memory using rule H.Start.
Then we apply the same sequence of reductions as from Mm to M ′ (the fact
that some memories which are not rolled back are marked does not prevent any
reduction). The resulting configuration has no marks (as every marked memory
has been rolled back), and only lacks some marks when compared to M ′.

By the Loop Theorem, we have M ′
u ։

∗ Mu. As φe(Mu) = φe(M) and
φe(M

′
u) = φe(M

′), the forward computation M ′
u ։

∗ Mu can be translated into
ρπ: φe(M

′)։∗
ρπ φe(M). From the Loop Lemma of ρπ (cf. [8], Lemma 5), we also

have φe(M) ∗
ρπ φe(M

′). Note that all the reductions involve memories which
are descendants of keys in T and that φe(M

′) is final with respect to T .
Let us take an arbitrary ρπ computation φe(M) ∗

T N such that N is final
with respect to T . We will show that φe(M

′) ≡ N . This will prove the thesis.
The proof is by induction on the number of reductions in φe(M) ∗

T N .
The base case (zero reductions) is trivial, as it means that φe(M) was already
final with respect to T , thus (by consistency of M), T = ∅ and M ′ = M .
For the inductive case consider the first reduction in both φe(M) ∗

T N and
φe(M) ∗

ρπ φe(M
′) (they both have one since they are not final with respect

to T). If the two reductions involve the same memory then they coincide, and
the thesis follows by inductive hypothesis. Otherwise, let [µ, k] be the memory
involved in the first reduction for φe(M) ∗

T N . The same memory is involved
in a reduction in φe(M) ∗

ρπ φe(M
′) (otherwise φe(M

′) would not be final).
Note now that two enabeld backward reductions can always be swapped (cf. [8],
Lemma 7). By applying multiple times this swapping, one can move the reduction
involving [µ, k] to the beginning of φe(M) ∗

ρπ φe(M
′) without changing the

final state. Thus we are back to the case where the initial reduction is the same
and we can apply inductive hypothesis. ⊓⊔

17

(F.InP)
M is (k, k1)− labeling κ1 = k1 ∨ κ1 = 〈hi, h̃〉 · k1 k /∈ S

M | ⌊κ1 : P⌋S FR M | ⌊κ1 : P⌋S∪{k}

(F.InM)
M is (k, k1)− labeling κ1 = k1 ∨ κ1 = 〈hi, h̃〉 · k1 k /∈ S

M | [⌊κ1 : P⌋S | M ; k2]
�
 FR M | [⌊κ1 : P⌋S∪{k} | M ; k2]

�
(F.Roll)

complete([µ; k] |
∏

i∈I

Ni) ∀i∈I .Ni is k-labeled

[µ; k]• |
∏

i∈I

Ni FR µ | (
∏

i∈I

Ni) k

(E.Freeze) κ : P ≡FR ⌊κ : P⌋∅

Fig. 7. FR semantics

C Proof of Theorem 3

This appendix provides a detailed proof sketch for Theorem 3. We recall below
the statement of the theorem.

Theorem 3 (Correspondence between HL and LL). For each roll-π HL
consistent configuration M , M HL≈

c
LL M .

The proof relies on a several semantics used as intermediate steps between
the HL and LL semantics. The first such intermediate semantics annotates the
HL configurations by freezing the processes involved in rollbacks. For this reason
we call it FR (for freezing) semantics. Differently from LL frozen processes, FR
frozen processes are also labeled by a set of keys, which corresponds to the set
of rollbacks they are involved in.

We define the FR rules in Figure 7, including the axiom E.Freeze to be
added to the structural congruence. We skip rules F.Com and F.Start which
are identical to the corresponding rules in the HL semantics.

The rules exploit the auxiliary notations of memory/process k-labeled and
memory (k, k1)-labeling, defined below. The intuition is that a memory/process
is k-labeled if it is participating to the rollback aiming at undoing the reduction
that created memory with key k. A memory is (k, k1)-labeling if it is participating
to the rollback aiming at undoing the reduction that created memory with key
k, and if it created the memory/process with key k1.

Definition 6. A memory M is k-labeled if it is of the form [⌊κ1 : P⌋S | M ′; k2]
with k ∈ S. A process M is k-labeled if it is of the form ⌊κ1 : P⌋S with k ∈ S.

A memory M is (k, k1)-labeling if

1. k = k1 and M has the form [M ′; k]• or;
2. M has the form [µ; k1]

� and it is k-labeled.

18

The FR semantics allows to perform the check that all the involved processes
are k-dependent in a distributed way. The proof of the correspondence between
HL and FR semantics is based on the fact that freeze annotations can be removed
to get the corresponding HL configuration. We start by defining the function γ(·)
that removes such annotations.

Definition 7. The function γ(·) from FR configurations to HL configurations
is defined as follows:

γ(νu.M) = νu. γ(M) γ(M | N) = γ(M) | γ(N)
γ(κ : P) = κ : P γ(0) = 0
γ([µ; k]) = [γ(µ); k] γ([µ; k]•) = [γ(µ); k]•

γ(⌊κ : P⌋S) = κ : P

The following proposition, similar to the Loop Theorem (Theorem 1), shows
the semantic relation between M and γ(M).

Proposition 1. For each consistent FR configuration M , γ(M) ∗
FR M ⇒FR

γ(M).

Proof. The proof shows that γ(M) ∗
FR M by recreating the freezing (this is

possible thanks to consistency). The second part, M ⇒FR γ(M), follows by
terminating every rollback for which freezing has started, then going forward
again. Finally, memories that were marked in M are marked again using rule
F.Start. ⊓⊔

We can now prove results on the operational correspondence between the two
semantics. We start from the direction from HL to FR.

Proposition 2 (Operational correspondence: from HL to FR). For all
HL configurations M,N , if M →HL N then M ⇒FR N .

Proof. By induction on the derivation of →HL, with a case analysis on the used
rule. The only non trivial case concerns rule H.Roll. In this case one can easy
show a computation that first freezes all the processes involved in the rollback
and then applies rule F.Roll. ⊓⊔

We consider now the opposite direction, from FR to HL.

Proposition 3 (Operational correspondence: from FR to HL). For all
FR configurations M,N , if M →FR N then γ(M) 99KHL γ(N) (here 99KHL is
the reflexive closure of →HL).

Proof. By induction on the derivation of →FR, with a case analysis on the used
rule. The thesis follows by observing that the effect of rules F.InP, F.InM and
E.Freeze is discarded by function γ(·), while rule F.Roll corresponds to rule
H.Roll. ⊓⊔

We can use the two results above to ensure that HL and FR semantics are
equivalent with respect to weak barbed congruence.

19

(R.Start) κ1 : roll k | [µ; k] RL κ1 : roll k | [µ; k]• | rl k, k

(R.Span)
k /∈ S

rl k, κ1 | [⌊κ1 : P⌋S | M ; k2]
�
 RL [⌊κ1 : P⌋S∪{k} | M ; k2]

� | rl k, k2

(R.Branch)
〈hi, h̃〉 · k1 free in M

rl k, k1 | M RL

∏

hi∈h̃

rl k, 〈hi, h̃〉 · k1 | M

(R.Up)
k /∈ S

rl k, κ1 | ⌊κ1 : P⌋S RL ⌊κ1 : P⌋S∪{k} (E.GBR) νk1. rl k, k1 ≡RL 0

(E.GBB) νk1.
∏

hi∈h̃

rl k, 〈hi, h̃〉 · k1 ≡RL 0

Fig. 8. RL semantics

Theorem 4 (Behavioral correspondence: HL vs FR). For each (consis-
tent) HL configuration M we have M HL≈

c
FR M .

Proof. We show that the relation:

HLRFR =

ß

(C[γ(M)],C[M])
∣

∣

∣

M is a consistent FR configuration ∧
C[γ(M)],C[M] are consistent

™

is a weak barbed bisimulation with respect to HL and FR.
Observe that C[γ(M)] = γ(C[M]), thus it is enough to consider pairs of

consistent configurations of the form (γ(M),M).
For the condition on barbs, first observe that if M has a barb, then γ(M) has

the same barb. For the opposite direction, if γ(M) has a barb, using Proposition 1
we have that M ⇒ γ(M), thus M has the same (weak) barb.

For the condition on reductions we have a case analysis according to the
type of reduction and the configuration that makes the challenge. Challenges
from FR configuration M are matched thanks to Proposition 3. Challenges from
HL configuration γ(M) are a bit more tricky. For backward reductions, M has to
freeze processes involved in the rollback and then use rule F.Roll. For forward
reductions, one has to apply Proposition 1 to have M ⇒ γ(M) and then match
the forward reduction. ⊓⊔

The next semantics in the chain of refinements introduces rl k, κ1 notifications
to freeze threads. Thus we call it RL (for roll) semantics, and define its rules
(including additional axioms needed for structural congruence) in Figure 8.

Rules R.Com and R.Roll are as in the FR semantics and therefore skipped.
Rules R.Start, R.Span, R.Branch, and R.Up are similar to the correspond-
ing rules in the FR semantics, but rl notifications are used for propagating the

20

freezing procedure. Finally, structural congruence rules E.GBR and E.GBB are
used to garbage collect useless notifications.

Notifications here are slightly more complex than in the LL semantics. A
notification rl k, κ1 means that there is an ongoing rollback aiming at undoing
the reduction that created the memory with key k, and the memory/process
with tag κ1 is the next one to be found.

As before, rl notifications can be seen as an annotation in the semantics, and
we define a function γr(·) removing them.

Definition 8. The function γr(•) from RL configurations to FR configurations
is defined as follows:

γr(νu.M) = νu. γr(M) γr(M | N) = γr(M) | γr(N)
γr(κ : P) = κ : P γr(0) = 0
γr([M ; k]) = [M ; k] γr([M ; k]•) = [M ; k]•

γr(⌊κ : P⌋S) = ⌊κ : P⌋S γr(rl k, κ1) = 0

The relation between FR and RL semantics is stronger than the one between
HL and FR semantics. It can be formalized as a weak barbed congruence, which
is strong but for the need of replicating notifications to the different branches
of parallel composition (rule R.Branch). The correspondence is based on the
following invariant, which defines the behavior of rl notifications.

Lemma 2. For each RL configuration M ≡RL νñ. [µ, k1]
� | N we have that

[µ, k1]
� is (k, k1)-labeling if and only if:

– either there is in N a process ⌊k1 : P⌋S or a memory [⌊k1 : P⌋S | N ′; k2]
�

with k ∈ S;
– or there is in N a configuration of the form rl k, k1;
– or there exists h̃ and 〈hi, h̃〉 · k1 is free in N and for each hi ∈ h̃:

• either there is in N a configuration ⌊〈hi, h̃〉·k1 : P⌋S or memory [⌊〈hi, h̃〉·
k1 : P⌋S | N ′; k3]

� with k ∈ S;

• or there is in N a configuration of the form rl k, 〈hi, h̃〉 · k1.

We can now prove the correspondence theorem.

Theorem 5 (Behavioral correspondence: FR vs RL). For each (consis-
tent) FR configuration M we have M FR≈

c
RL M .

Proof. We show that the relation:

FRRRL =

ß

(C[γr(M)],C[M])
∣

∣

∣

M is a consistent RL configuration ∧
C[γr(M)],C[M] are consistent

™

is a weak barbed bisimulation with respect to FR and RL.
The proof for barbs follows trivially since rl notifications have no barb.

The proof for reductions is trivial for reductions derived using rules R.Comm,
R.Start, and R.Roll and the corresponding FR rules. The proof for the other
rules is based on Lemma 2. ⊓⊔

21

(D.Stop)
S 6= ∅

[µ; k]� | ⌊k : P⌋S DS µ

(E.TagPFr) ⌊k :

n
∏

i=1

τi⌋S ≡DS νh̃.

n
∏

i=1

⌊(〈hi, h̃〉 · k : τi)⌋S h̃ = {h1, . . . , hn} n ≥ 2

Fig. 9. DS semantics

The next semantics in the chain of refinements makes the rollback execution
distributed, dividing the atomic global rule F.Roll in smaller steps. We thus
call it DS (for distributed) semantics, and define its rules (including additional
axioms needed for structural congruence) in Figure 9.

Rules D.Com, D.Start, D.Span, D.Branch, and D.UP are as in the RL
semantics. Also, structural law E.TagPFr is specular to the rule E.TagP but
it is used on frozen threads. In this way, since we are doing the rollback step by
step using the rule D.Roll, we can lump together all the frozen threads of a key
in order to obtain a frozen process that is equivalent to the parallel composition
of all the frozen thread.

We prove now results on the operational correspondence between the two
semantics. We start from the direction from RL to DS.

Proposition 4 (Operational correspondence: from RL to DS). For all
RL configurations M,N , if M →RL N then M ⇒DS N .

Proof. The proof is by case analysis on the axiom used to derive M →RL N .
The only non trivial caso is the one involving rule H.Roll. The proof is done
by showing that a bottom-up visit of the complete configuration involved in the
rollback provides the desired result. The main point to be proved is that only
elements in (

∏

i∈I Ni) k are not removed. ⊓⊔

We need a lemma stating that DS reductions derived using rule D.Stop
commute with other reductions. To help the notation, we write M →֒DS N if
M DS N and the reduction is derived using rule D.Stop. Also, →֒∗

DS is the
reflexive and transitive closure of →֒DS .

Lemma 3 (Stop swap). For each consistent DS configuration N , if N →֒DS

M and N →DS N ′ then there is a DS configuration M ′ such that M 99KDS M ′

and N ′ →֒DS M ′.

Proof. The proof is by case analysis on the rule used to derive M →DS M ′. ⊓⊔

We can now prove the equivalence result.

Theorem 6 (Behavioral correspondence: RL vs DS). For each (consis-
tent) RL configuration M we have M RL≈

c
DS M .

22

Proof. We have to show that for each consistent RL configuration M and each
C[·] such that C[M] is consistent, C[M]RL≈DS C[M]. To this end we show that
the relation:

RLRDS =

(M,N)

∣

∣

∣

∣

∣

M is a consistent RL configuration ∧
N is a consistent DS configuration ∧

N →֒∗
DS M

is a weak barbed bisimulation with respect to RL and DS.
Challenges from M (both barbs and reductions) are trivially answered since

N →֒∗
DS M and then answers the challenge. The only tricky case is when the

challenge is a reduction derived using rule R.Roll, but this can be answered
thanks to Proposition 4.

Let us consider challenges fromN . If N has a barb then M has the same barb
since rule D.Stop never removes barbs. If N →DS N ′ then using multiple times
Lemma 3 one can deriveN →֒∗

DS M 99KDS M ′ andN ′ →֒∗
DS M ′. IfM 99KDS M ′

does not use rule D.Stop then M 99KRL M ′ and the thesis follows. Otherwise
N →֒∗

DS M ′ and the pair (M ′, N) is in the relation as desired. ⊓⊔

The final step is the relation between DS and LL semantics. One can easily
see that the two semantics are almost equal when transforming roll notifications
of the form rl k, κ1 into rl κ1 and frozen configurations ⌊M⌋S into ⌊M⌋ if S 6= ∅
and M if S = ∅. The only remaining difference is that in DS semantics roll
notifications may proceed and add new keys to set S of frozen processes, while
in LL semantics they are blocked. However, these notifications will not have any
effect on the rest of the system, and will finally disappear when facing a process
which is outside a memory.

We can formalize this last intuition by showing that two LL processes differing
only for some redundant rl notifications are bisimilar.

Lemma 4. For each consistent DS configuration of the form C[rl κ | M], we
have C[rl κ | M]DS≈

c
DS C[M] if either M contains a notification rl κ or ⌊κ :

P⌋ ∈ M for some P .

Proof. By coinduction, showing that related processes evolve to relate or iden-
tical processes. ⊓⊔

We can also define a function γd(·) removing the redundant information.

Definition 9. The function γd(·) from DS configurations to LL configurations
is defined as follows:

γd(νu.M) = νu. γd(M) γd(M | N) = γd(M) | γd(N)
γd(κ : P) = κ : P γd(0) = 0
γd([M ; k]) = [M ; k] γd([M ; k]•) = [M ; k]•

γd(⌊κ : P⌋
∅
) = κ : P γd(⌊κ : P⌋S) = ⌊κ : P⌋ if S 6= ∅

γd(rl k, κ1) = rl κ1

We can now prove the correspondence theorem.

23

Theorem 7 (Behavioral correspondence: DS vs LL). For each (consis-
tent) DS configuration M we have M DS≈

c
LL M .

Proof. We show that the relation:

DSRLL =

ß

(C[M],C[γd(M)])
∣

∣

∣

M is a consistent DS configuration ∧
C[M],C[γd(M)] are consistent

™

is a weak barbed bisimulation with respect to DS and LL. All the involved checks
are easy.

We can apply transitivity to the result above and the one of Lemma 4 to
prove the thesis. ⊓⊔

We can finally concatenate all the results to get the correspondence between
HL semantics and LL semantics. We restate Theorem 3 below and prove it.

Theorem 8 (Behavioral correspondence: HL vs LL). For each (consis-
tent) HL configuration M we have M HL≈

c
LL M .

Proof. We have the following results: M HL≈
c
FR M (Theorem 4), M FR≈

c
RL M

(Theorem 5), M RL≈
c
DS M (Theorem 6), M DS≈

c
LL M (Theorem 7). The thesis

follows by concatenating all the results. ⊓⊔

24

