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Abstract. Concurrent reversibility has been studied in different areas,
such as biological systems and dependable distributed systems. However,
only ”rigid” reversibility has been considered, allowing to go back to a
past state and restart the exact same computation, possibly leading to di-
vergence. In this paper we present croll-π, a concurrent calculus featuring
flexible reversibility where it is possible to specify alternatives to a com-
putation, to be used upon rollback. Alternatives in croll-π are attached
to messages. We show the robustness of this mechanism by encoding
more complex idioms for specifying flexible reversibility. Moreover, we
illustrate the benefits of our approach from both the programming and
the theoretical point of view. From the programming point of view we
present a simple solution of the Eight Queens problem. From the theoret-
ical point of view we encode a calculus based on interacting transactions.
Our encoding improves on the original approach by avoiding some spu-
rious undo of actions.

1 Introduction

Reversible programs can be executed both in the standard, forward direction as
well as in the backward direction, to go back to past states. Reversible program-
ming is attracting much interest for its potential in several areas. For instance,
chemical and biological reactions are typically bidirectional, and the direction
of execution is fixed by environmental conditions such as temperature. Simi-
larly, quantum computations are reversible as long as they are not observed.
Reversibility is also used for backtracking in the exploration of a program state-
space toward a solution, either as part of the design of the programming language
as in Prolog, or to implement transactions. We are particularly interested in the
use of reversibility for modeling and programming concurrent reliable systems.
In this setting, the main idea is that in case of an error the program backtracks
to a past state where the decisions leading to the error have not been taken yet,
so that a new forward execution may avoid repeating the (same) error.
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(ANR), projects REVER ANR 11 INSE 007 and PiCoq ANR 10 BLAN 0305.



Reversibility has a non trivial interplay with concurrency. Understanding this
interplay is fundamental in many of the areas above, e.g., for biological or reliable
distributed systems, which are naturally concurrent. In the spirit of concurrency,
independent threads of execution should be rolled-back independently, but causal
dependencies between related threads should be taken into account.

This form of reversibility, termed causal consistent, was first introduced by
RCCS [11], a reversible variant of CCS. RCCS paved the way to the definition of
reversible variants of more expressive concurrent calculi [8, 18, 20, 22]. This line
of research considered rigid, uncontrolled, step-by-step reversibility. Step-by-step
means that each single step can be undone, as opposed, e.g., to checkpointing
where many steps are undone at once. Uncontrolled means that there is no hint as
to when to go forward and when to go backward, and up to where. Rigid means
that the execution of a forward step followed by the corresponding backward step
leads back to the starting state, where an identical computation can restart.

While these works have been useful to understand the basics of concurrent
reversibility in different settings, the form of reversibility they provide is not
sufficient in practice. Subsequent works in the literature concentrated on the
problem of control of reversibility. Different forms of control have been proposed,
tailored to the expected application area. For instance, in the case of chemical
systems, it is reasonable to relate the direction of execution to some energy
parameters, as studied in [2]. In the area of reliable systems, two forms of control
of reversibility have been proposed: irreversible actions [12] and rollback [17].

These works were all based on rigid reversibility. However, rigid reversibility
may not always be the best choice. In the setting of reliable systems, for instance,
rigid reversibility means that to recover from an error a past state is reached.
From this past state the computation that lead to the error is still possible. If
the error was due to a transient fault, retrying the same computation may be
enough to succeed. If the failure was permanent, instead, the program may redo
the same error again and again, possibly forever. As a consequence, most of the
processes in the calculi cited above have divergent computations.

Our goal is to overcome this limitation by providing the programmer with
suitable linguistic constructs to specify what to do after a backward computation.
Such constructs can be used to ensure that new forward computations explore
new possibilities. To this end, we build on our previous work on roll-π [17], a
calculus where concurrent reversibility is controlled by a specific operator roll γ.
Executing this construct reverses the action referred by γ together with all the
actions depending on it. Here, we propose a new calculus called croll-π, for com-
pensating roll-π, as a framework for flexible reversibility. We attempt to keep
croll-π as close as possible to roll-π while enabling many new possible applica-
tions. We thus simply replace roll-π communication messages a〈P 〉 by messages
with alternative a〈P 〉 ÷ c〈Q〉. In forward computation, a message a〈P 〉 ÷ c〈Q〉
behaves exactly as a〈P 〉. However, if the interaction consuming it is reversed, the
original message is not recreated—as would be the case with rigid reversibility—
but the alternative c〈Q〉 is released instead.



Our contributions are as follows. We show that such a small addition to
the calculus greatly extends its expressive power. First we show that messages
with alternative allow for programming different patterns for flexible reversibil-
ity. Second, we describe a solution for the Eight Queens problem based on state
exploration, programmed on top of a croll-π proof-of-concept interpreter written
in Maude [10]. And third, we show that croll-π can be used to model commu-
nicating transactions as described in [13]. Notably, the tracking of causality of
croll-π is more precise than the one in [13], thus allowing to improve on the
original proposal by avoiding some spurious undo of actions. Additionally, we
study some relevant aspects of the behavioral theory of croll-π, including a con-
text lemma for barbed congruence. This allows us to reason on croll-π programs,
in particular to prove the correctness of the encodings of various primitives for
flexible reversibility and of the transactional calculus of [13].

Outline. Section 2 gives an informal introduction to croll-π. Section 3 defines
the croll-π calculus and its reduction semantics. It also introduces the basics
of its behavioral theory. Section 4 presents various croll-π idioms for flexible
reversibility. Section 5 outlines the croll-π interpreter in Maude and the solution
for the Eight Queens problem. Section 6 presents an encoding and an analysis of
the TransCCS constructs from [13]. Section 7 concludes the paper with related
work and a mention of future studies. The paper includes short proof sketches
for the main results. We refer to the online technical report [16] for full proofs.

2 Informal Presentation

Rigid reversibility in roll-π. The croll-π calculus is a conservative extension of the
roll-π calculus introduced in [17].5 We briefly review the roll-π constructs before
presenting the extension added by croll-π. Processes in roll-π are essentially pro-
cesses of the asynchronous higher-order π-calculus [24], extended with a rollback
primitive. Processes in roll-π cannot directly execute, only configurations can. A
configuration is essentially a parallel composition of tagged processes along with
memories tracking past interactions and connectors tracing causality informa-
tion. In a tagged process of the form k : P , the tag k uniquely identifies the
process P in a given configuration. We often use the term key instead of tag.

The uniqueness of tags in configurations is achieved thanks to the following
reduction rule that defines how parallel processes are split.

k : P | Q −→ νk1, k2. k ≺ (k1, k2) | k1 : P | k2 : Q

In the above reduction, | is the parallel composition operator and ν is the
restriction operator, both standard from the π-calculus. Connector k ≺ (k1, k2)
is used to remember that the process tagged by k has been split into two sub-
processes identified by the new keys k1 and k2. Thus complex processes can be
split into threads, where a thread is either a message, of the form a〈P 〉 (where a is

5 The version of roll-π presented here is slightly refined w.r.t. the one in [17].



a channel name), a receiver process (also called a trigger), of the form a(X)⊲γP ,
or a rollback instruction of the form roll k, where k is a key.

A forward communication step occurs when a message on a channel can be
received by a trigger on the same channel. It takes the following form (roll-π is
an asynchronous higher-order calculus).

(k1 : a〈P 〉) | (k2 : a(X) ⊲γ Q) −→ νk. k : Q{P,k/X,γ} | [µ; k]

In this forward step, keys k1 and k2 identify threads consisting respectively of
a message a〈P 〉 on channel a and a trigger a(X) ⊲γ Q expecting a message on
channel a. The result of the message input yields, as in higher-order π, the body
of the trigger Q with the formal parameter X instantiated by the received value,
i.e., process P . Message input also has three side effects: (i) the tagging of the
newly created process Q{P,k/X,γ} by a fresh key k; (ii) the creation of a memory
[µ; k], which records the original two threads,6 µ = (k1 : a〈P 〉) | (k2 : a(X)⊲γQ),
together with key k; and (iii) the instantiation of variable γ with the newly
created key k (the trigger construct is a binder both for its process parameter
and its key parameter).

In roll-π, a forward computation, i.e., a series of forward reduction steps
as above, can be perfectly undone by backward reductions triggered by the
occurrence of an instruction of the form roll k, where k refers to a previously
instantiated memory. In roll-π, we have for instance the following forward and
backward steps, where M = (k1 : a〈Q〉) | (k2 : a(X) ⊲γ X | roll γ):

M −→ νk. (k : Q | roll k) | [M ; k] −→

νk, k3, k4. k ≺ (k3, k4) | k3 : Q | k4 : roll k | [M ; k] −→ M

The communication between threads k1 and k2 in the first step and the split of
process k into k3 and k4 are perfectly undone by the third (backward) step.

More generally, the set of memories and connectors of a configuration M
provides us with an ordering <: between the keys of M that reflects their causal
dependency: k′ <: k means that key k′ has key k as causal descendant. Thus,
the effects of a rollback can be characterized as follows. When a rollback takes
place in a configuration M , triggered by an instruction kr : roll k, it suppresses
all threads and processes whose tag is a causal descendant of k, as well as all
connectors k′ ≺ (k1, k2) and memories m = [k1 : τ1 | k2 : τ2; k

′] whose key k′

is a causal descendant of k. When suppressing such a memory m, the rollback
operation may release a thread ki : τi if ki is not a causal descendant of k (at
least one of the threads of m must have k as causal antecedent if k′ has k as
causal antecedent). This is due to the fact that a thread that is not a causal
descendant of k may be involved in a communication (and then captured into
a memory) by a descendant of k. This thread can be seen as a resource that is
taken from the environment through interaction, and it should be restored in
case of rollback. Finally, rolling-back also releases the content µ of the memory
[µ; k] targeted by the roll, reversing the corresponding communication step.

6 Work can be done to store memories in a more efficient way. We will not consider
this issue in the current paper; an approach can be found in [20].



Flexible reversibility in croll-π. In roll-π, a rollback perfectly undoes a computa-
tion originated by a specific message receipt. However, nothing prevents the same
computation from taking place again and again (although not necessarily in the
same context, as independent computations may have proceeded on their own
in parallel). To allow for flexible reversibility, we extend roll-π with a single new
construct, called a message with alternative. In croll-π, a message may now take
the form a〈P 〉 ÷C, where alternative C may either be a message c〈Q〉÷ 0 with
null alternative or the null process 0. When the message receipt of k : a〈P 〉÷C
is rolled-back, configuration k : C is released instead of the original k : a〈P 〉, as
would be the case in roll-π. (Only the alternative associated to the message in the
memory [µ; k] targeted by the roll is released: other processes may be restored,
but not modified.) For example, if M = (k1 : a〈Q〉÷0) | (k2 : a(X) ⊲γ X | roll γ)
then we have the following computation, where the communication leading to
the rollback becomes disabled.

M −→ νk. (k : Q | roll k) | [M ; k] −→

νk, k3, k4. k ≺ (k3, k4) | k3 : Q | k4 : roll k | [M ; k] −→

k1 : 0 | (k2 : a(X) ⊲γ X | roll γ)

We will show that croll-π is powerful enough to devise various kinds of al-
ternatives (see Section 4), whose implementation is not possible in roll-π (cf.
Theorem 2). Also, thanks to the higher-order aspect of the calculus, the behav-
ior of roll-π can still be programmed: rigid reversibility can be seen as a particular
case of flexible reversibility. Thus, the introduction of messages with alternatives
has limited impact on the definition of the syntax and of the operational seman-
tics, but it has a strong impact on what can actually be modeled in the calculus
and on its theory.

3 The croll-π Calculus: Syntax and Semantics

3.1 Syntax

Names, keys, and variables. We assume the existence of the following denumer-
able infinite mutually-disjoint sets: the set N of names, the set K of keys, the
set VK of key variables, and the set VP of process variables. N denotes the set
of natural numbers. We let (together with their decorated variants): a, b, c range
over N ; h, k, l range over K; u, v, w range over N ∪K; γ range over VK; X,Y, Z
range over VP . We denote by ũ a finite set {u1, . . . , un}.

Syntax. The syntax of the croll-π calculus is given in Figure 1. Processes, given
by the P,Q productions, are the standard processes of the asynchronous higher-
order π-calculus [24], except for the presence of the roll primitive, the extra
bound tag variable in triggers, and messages with alternative that replace roll-π
messages a〈P 〉. The alternative operator ÷ binds more strongly than any other
operator. Configurations in croll-π are given by the M,N productions. A config-
uration is built up from tagged processes k : P , memories [µ; k], and connectors



P,Q ::= 0 | X | νa.P | (P | Q) | a(X) ⊲γ P | a〈P 〉÷C | roll k | roll γ

M,N ::= 0 | νu.M | (M | N) | k : P | [µ; k] | k ≺ (k1, k2) C ::= a〈P 〉÷ 0 | 0

µ ::= (k1 : a〈P 〉÷C) | (k2 : a(X) ⊲γ Q)

a, b, c ∈ N X,Y, Z ∈ VP γ ∈ VK u, v, w ∈ N ∪K h, k, l ∈ K

Fig. 1. Syntax of croll-π

k ≺ (k1, k2). In a memory [µ; k], we call µ the configuration part of the memory
and k its key. P denotes the set of croll-π processes and C the set of croll-π con-
figurations. We let (together with their decorated variants) P,Q,R range over P
and L,M,N range over C. We call thread a process that is either a message with
alternative a〈P 〉÷C, a trigger a(X)⊲γP , or a rollback instruction roll k. We let τ
and its decorated variants range over threads. We write

∏

i∈I Mi for the parallel
composition of configurations Mi for each i ∈ I (by convention

∏

i∈I Mi = 0 if
I = ∅), and we abbreviate a〈0〉 to a.

Free identifiers and free variables. Notions of free identifiers and free variables
in croll-π are standard. Constructs with binders are of the following forms: νa. P
binds the name a with scope P ; νu.M binds the identifier u with scope M ; and
a(X) ⊲γ P binds the process variable X and the key variable γ with scope P .
We denote by fn(P ) and fn(M) the set of free names and keys of process P and
configuration M , respectively. Note in particular that fn(k : P ) = {k} ∪ fn(P ),
fn(roll k) = {k}. We say that a process P or a configuration M is closed if it
has no free (process or key) variable. We denote by Pcl and Ccl the sets of closed
processes and configurations, respectively. We abbreviate a(X) ⊲γ P , where X is
not free in P , to a ⊲γ P ; and a(X) ⊲γ P , where γ is not free in P , to a(X) ⊲ P .

Remark 1. We have no construct for replicated processes or internal choice in croll-π:

as in the higher-order π-calculus, these can easily be encoded.

Remark 2. In the remainder of the paper, we adopt Barendregt’s Variable Convention:

if terms t1, . . . , tn occur in a certain context (e.g., definition, proof), then in these terms

all bound identifiers and variables are chosen to be different from the free ones.

3.2 Reduction Semantics

The reduction semantics of croll-π is defined via a reduction relation −→, which
is a binary relation over closed configurations (−→ ⊂ Ccl×Ccl), and a structural
congruence relation≡, which is a binary relation over configurations (≡ ⊂ C×C).
We define configuration contexts as “configurations with a hole •”, given by
the grammar: C ::= • | (M | C) | νu.C. General contexts G are just
configurations with a hole • in a place where an arbitrary process P can occur.
A congruence on processes or configurations is an equivalence relation R that



(E.ParC) M | N ≡ N | M (E.ParA) M1 | (M2 | M3) ≡ (M1 | M2) | M3

(E.NilM) M | 0 ≡ M (E.NewN) νu.0 ≡ 0

(E.NewC) νu. νv.M ≡ νv. νu.M (E.NewP) (νu.M) | N ≡ νu. (M | N)

(E.α) M =α N =⇒ M ≡ N (E.TagC) k ≺ (k1, k2) ≡ k ≺ (k2, k1)

(E.TagA) νh. k ≺ (h, k3) | h ≺ (k1, k2) ≡ νh. k ≺ (k1, h) | h ≺ (k2, k3)

Fig. 2. Structural congruence for croll-π.

(S.Com)
µ = (k1 : a〈P 〉÷C) | (k2 : a(X) ⊲γ Q2)

(k1 : a〈P 〉÷C) | (k2 : a(X) ⊲γ Q2) −→ νk. (k : Q2{
P,k/X,γ}) | [µ; k]

(S.TagN) k : νa. P −→ νa. k : P

(S.TagP) k : P | Q −→ νk1, k2. k ≺ (k1, k2) | k1 : P | k2 : Q

(S.Roll)
k <: N complete(N | [µ; k] | (kr : roll k)) µ′ = xtr(µ)

N | [µ; k] | (kr : roll k) −→ µ′ | N k

(S.Ctx)
M −→ N

C[M ] −→ C[N ]
(S.Eqv)

M ≡ M ′ M ′ −→ N ′ N ′ ≡ N

M −→ N

Fig. 3. Reduction rules for croll-π

is closed for general or configuration contexts: P RQ =⇒ G[P ]RG[Q] and
M RN =⇒ C[M ]RC[N ].

Structural congruence ≡ is defined as the smallest congruence on configura-
tions that satisfies the axioms in Figure 2, where t =α t′ denotes equality of t
and t′ modulo α-conversion. Axioms E.ParC to E.α are standard from the π-
calculus. Axioms E.TagC and E.TagA model commutativity and associativity
of connectors, in order not to have a rigid tree structure. Thanks to these two
axioms we will use n-ary connectors k ≺ (h1, . . . , hn) as a shortcut for any tree
of connectors with root k and leaves h1, . . . , hn, assuming all internal nodes are
bound. Also, νũ. A stands for νu1 . . . un. A if ũ = {u1, . . . , un}.

Configurations can be written in normal form using structural congruence.

Lemma 1 (Normal form). Given a configuration M , we have:

M ≡ νñ.
∏

i

(ki : Pi) |
∏

j

[µi; kj ] |
∏

l

kl ≺ (k′l, k
′′
l )

The reduction relation −→ is defined as the smallest binary relation on closed
configurations satisfying the rules of Figure 3. This extends the näıve semantics of



roll-π introduced in [17],7 and outlined here in Section 2, to manage alternatives.
We denote by =⇒ the reflexive and transitive closures of −→.

Reductions are either forward, given by rules S.Com, S.TagN, and S.TagP,
or backward, defined by rule S.Roll. They are closed under configuration con-
texts (rule S.Ctx) and under structural congruence (rule S.Eqv). The rule for
communication S.Com is the standard communication rule of the higher-order
π-calculus with the side effects discussed in Section 2. Rule S.TagN allows re-
strictions in processes to be lifted at the configuration level. Rule S.TagP allows
to split parallel processes. Rule S.Roll enacts rollback, canceling all the effects
of the interaction identified by the unique key k, and releasing the initial con-
figuration that gave rise to the interaction, where the alternative replaces the
original message. This is the only difference between croll-π and roll-π: in the lat-
ter, the memory µ was directly released. However, this small modification yields
significant changes to the expressive power of the calculus, as we will see later.

The rollback impacts only the causal descendants of k, defined as follows.

Definition 1 (Causal dependence). Let M be a configuration and let TM
be the set of keys occurring in M . Causal dependence <:M is the reflexive and
transitive closure of <M , which is defined as the smallest binary relation on TM
satisfying the following clauses:

– k <M k′ if k ≺ (k1, k2) occurs in M with k′ = k1 or k′ = k2;

– k <M k′ if a thread k : P occurs (inside µ) in a memory [µ; k′] of M .

If the configuration M is clear from the context, we write k <: k′ for k <:M k′.

A backward reduction triggered by roll k involves all and only the descen-
dants of key k. We ensure they are all selected by requiring that the configuration
is complete, and that no other term is selected by requiring k-dependence.

Definition 2 (Complete configuration). A configuration M is complete,
denoted as complete(M), if, for each memory [µ; k] and each connector k′ ≺
(k, k1) or k′ ≺ (k1, k) that occurs in M there exists in M either a connector
k ≺ (h1, h2) or a tagged process k : P (possibly inside a memory).

A configuration M is k-dependent if all its components depend on k.

Definition 3 (k-dependence). Let M be a configuration such that:
M ≡ νũ.

∏

i∈I(ki : Pi) |
∏

j∈J [µj ; kj ] |
∏

l∈L kl ≺ (k′l, k
′′
l ) with k /∈ ũ.

Configuration M is k-dependent, written k <: M by overloading the notation for
causal dependence among keys, if for every i in I ∪ J ∪ L, we have k <:M ki.

Rollback should release all the resources consumed by the computation to be
rolled-back which were provided by other threads. They are computed as follows.

7 We extend the näıve semantics instead of the high-level or the low-level semantics
(also defined in [17]) for the sake of simplicity. However, reduction semantics corre-
sponding to the high-level and low-level semantics of roll-π can similarly be specified.



Definition 4 (Projection). Let M be a configuration such that:
M ≡ νũ.

∏

i∈I(ki : Pi) |
∏

j∈J [k
′
j : Rj | k′′j : Tj; kj ] |

∏

l∈L kl ≺ (k′l, k
′′
l ) with

k /∈ ũ. Then:

M k = νũ.
(

∏

j′∈J′

k′j′ : Rj′
)

|
(

∏

j′′∈J′′

k′′j′′ : Tj′′
)

where J ′ = {j ∈ J | k 6<: k′j} and J ′′ = {j ∈ J | k 6<: k′′j }.

Intuitively, M k consists of the threads inside memories in M which are not
dependent on k.

Finally, and this is the main novelty of croll-π, function xtr defined below
replaces messages from the memory targeted by the roll by their alternatives.

Definition 5 (Extraction function).

xtr(M | N) = xtr(M) | xtr(N) xtr(k : a〈P 〉 ÷C) = k : C

xtr(k : a(X) ⊲γ Q) = k : a(X) ⊲γ Q

No other case needs to be taken into account as xtr is only called on the
contents of memories.

Remark 3. Not all syntactically licit configurations make sense. In particular, we ex-

pect configurations to respect the causal information required for executing croll-π

programs. We therefore work only with coherent configurations. A configuration is co-

herent if it is obtained by reduction starting from a configuration of the form νk. k : P

where P is closed and contains no roll h primitive (all the roll primitives should be of

the form roll γ).

3.3 Barbed Congruence

We define notions of strong and weak barbed congruence to reason on croll-π
processes and configurations. Name a is observable in configuration M , denoted
as M ↓a, if M ≡ νũ. (k : a〈P 〉÷C) | N , with a 6∈ ũ. We write MR↓a, where R is
a binary relation on configurations, if there exists N such that MRN and N ↓a.
The following definitions are classical.

Definition 6 (Barbed congruences for configurations). A relation R ⊆
Ccl ×Ccl on closed configurations is a strong (respectively weak) barbed simula-
tion if whenever M RN ,

– M ↓a implies N ↓a (respectively N =⇒↓a);
– M −→ M ′ implies N −→ N ′ (respectively N =⇒ N ′) with M ′RN ′.

A relation R ⊆ Ccl × Ccl is a strong (weak) barbed bisimulation if R and R−1

are strong (weak) barbed simulations. We call strong (weak) barbed bisimilarity
and denote by ∼ (≈) the largest strong (weak) barbed bisimulation. The largest
congruence for configuration contexts included in ∼ (≈) is called strong (weak)
barbed congruence, denoted by ∼c (≈c).



The notion of strong and weak barbed congruence extends to closed and open
processes, by considering general contexts that form closed configurations.

Definition 7 (Barbed congruences for processes). A relation R ⊆ Pcl ×
Pcl on closed processes is a strong (resp. weak) barbed congruence if whenever
PRQ, for all general contexts G such that G[P ] and G[Q] are closed configura-
tions, we have G[P ] ∼c G[Q] (resp. G[P ] ≈c G[Q]).

Two open processes P and Q are said to be strong (resp. weak) barbed con-
gruent, denoted by P ∼o

c Q (resp. P ≈o
c Q) if for all substitutions σ such that

Pσ and Qσ are closed, we have Pσ ∼c Qσ (resp. Pσ ≈c Qσ).

Working with arbitrary contexts can quickly become unwieldy. We offer the
following Context Lemma to simplify the proofs of congruence.

Theorem 1 (Context Lemma). Two processes P and Q are weak barbed con-
gruent, P ≈o

c Q, if and only if for all substitutions σ such that Pσ and Qσ are
closed, all closed configurations M , and all keys k, we have: M | (k : Pσ) ≈ M |
(k : Qσ).

The proof of this Context Lemma is much more involved than the corresponding
one in the π-calculus, notably because of the bookkeeping required in dealing
with process and thread tags. It is obtained by composing the lemmas below.

The first lemma shows that the only relevant configuration contexts are par-
allel contexts.

Lemma 2 (Context Lemma for closed configurations). For any closed
configurations M,N , M ∼c N if and only if, for all closed configurations L,
M | L ∼ N | L. Likewise, M ≈c N if and only if, for all L, M | L ≈ N | L.

Proof. The left to right implication is immediate, by definition of ∼c. For the
other direction, the proof consists in showing that R = {〈C[M ],C[N ]〉 | ∀L,M |
L ∼ N | L} is included in ∼. The weak case is identical to the strong one. ⊓⊔

We can then prove the thesis on closed processes.

Lemma 3 (Context lemma for closed processes). Let P and Q be closed
processes. We have P ≈c Q if and only if, for all closed configuration contexts
C and k 6∈ fn(P,Q), we have C[k : P ] ≈ C[k : Q].

Proof. The left to right implication is clear. One can prove the right to left
direction by induction on the form of general contexts for processes. ⊓⊔

We then deal with open processes.

Lemma 4 (Context lemma for open processes). Let P and Q be (possibly
open) processes. We have P ≈o

c Q if and only if for all closed configuration
contexts C, all substitutions σ such that Pσ and Qσ are closed, and all k 6∈
fn(P,Q), we have C[k : Pσ] ≈ C[k : Qσ].



R = R1 ∪ R2 ∪ R3 ∪R4 ∪R5 ∪ Id

R1 = {〈k : a〈P 〉÷Q | L ; k : (νc. a〈P 〉÷ c〈Q〉÷ 0 | c(X) ⊲ X) | L〉}

R2 = {〈k : a〈P 〉÷Q | L ; νc, k1, k2. k ≺ (k1, k2) | k1 : a〈P 〉÷ c〈Q〉÷ 0 | k2 : c(X) ⊲ X | L〉}

R3 = {〈νh. [k : a〈P 〉÷Q | k′ : a(X) ⊲γ R;h] | L′′ ;

νc, k1, k2, h. k ≺ (k1, k2) | [k1 : a〈P 〉÷ c〈Q〉÷ 0 | k′ : a(X) ⊲γ R;h] | k2 : c(X) ⊲ X | L′′〉}

R4 = {〈k : Q | L′′′ ; νc, k1, k2. k ≺ (k1, k2) | k1 : c〈Q〉÷ 0 | k2 : c(X) ⊲ X | L′′′〉}

R5 = {〈k : Q | L′′′ ; νc, k1, k2, h. k ≺ (k1, k2) | [k1 : c〈Q〉÷ 0 | k2 : c(X) ⊲ X; h] | h : Q | L′′′〉}

Fig. 4. Bisimulation relation for arbitrary alternatives.

Proof. For the only if part, one proceeds by induction on the number of bindings
in σ. The case for zero bindings follows from Lemma 3. For the inductive case,
we write P[•] for a process where an occurrence of 0 has been replaced by •, and
we show that contexts of the form P = a〈R〉 | a(X) ⊲ P′[•] where a is fresh and
P = a〈R〉 | a(X)⊲γ P

′[•] where a is fresh and X never occurs in the continuation
actually enforce the desired binding.

For the if part, the proof is by induction on the number of triggers. If the
number of triggers is 0 then the thesis follows from Lemma 3. The inductive
case consists in showing that equivalence under substitutions ensures equivalence
under a trigger context. ⊓⊔

Proof (of Theorem 1). A direct consequence of Lemma 4 and Lemma 2. ⊓⊔

4 croll-π expressiveness

4.1 Alternative idioms

The message with alternative a〈P 〉÷C triggers alternative C upon rollback. We
choose to restrict C to be either a message with 0 alternative or 0 itself in order
to have a minimal extension of roll-π. However, this simple form of alternative is
enough to encode far more complex alternative policies and constructs, as shown
below. We define the semantics of the alternative idioms below by changing
function xtr in Definition 5. We then encode them in croll-π and prove the
encoding correct w.r.t. weak barbed congruence. Since we consider extensions
of croll-π, in weak barbed congruence we consider just closure under croll-π
contexts. By showing that the extensions have the same expressive power of
croll-π, we ensure that allowing them in contexts would not change the result.
Every encoding maps unmentioned constructs homomorphically to themselves.
After having defined each alternative idiom, we freely use it as an abbreviation.

Arbitrary alternatives. Messages with arbitrary alternative can be defined by
allowing C to be any process Q. No changes are required to the definition of



function xtr. We can encode arbitrary alternatives as follows, where c is not free
in P,Q.

La〈P 〉 ÷QMaa = νc. a〈LP Maa〉 ÷ c〈LQMaa〉 ÷ 0 | c(X) ⊲ X

Proposition 1. P ≈c LP Maa for any closed process with arbitrary alternatives.

Proof. We consider just one instance of arbitrary alternative, the thesis will
follow by transitivity.

Thanks to Lemma 4 and Lemma 2, we only need to prove that for all closed
configurations L and k 6∈ fn(P ), we have k : a〈P 〉 ÷Q | L ≈ k : (νc. a〈P 〉 ÷
c〈Q〉÷0 | c(X) ⊲ X) | L. We consider the relation R in Figure 4 and prove that
it is a weak barbed bisimulation. In every relation, L is closed and k /∈ fn(P ).

InR1, the right configuration can reduce via rule S.TagN followed by S.TagP.
These lead to R2. Performing these reductions is needed to match the barb
and the relevant reductions of the left configuration, thus we consider directly
R2. In R2 the barbs coincide. Rollbacks lead to the identity. The only possible
communication is on a, and requires L ≡ L′ | k′ : a(X) ⊲γ R. It leads to R3,
where L′′ = L′ | R{P,h/X,γ}. In R3 the barbs coincide too. All the reductions
can be matched by staying in R3 or going to the identity, but for executing a
roll with key h. This leads to R4. From R4 we can always execute the internal
communication at c leading to R5. The thesis follows from the result below,
whose proof requires again to find a suitable bisimulation relation.

Lemma 5. For each configuration M k-dependent and complete such that k′, t,
k1, k2 /∈ fn(M) we have M ≈c νk′, t, k1, k2. k ≺ (k1, k2) | [k1 : t〈Q〉 ÷C | k2 :
t(X) ⊲ R; k′] | M{k

′

/k}.
⊓⊔

Proofs concerning other idioms follow similar lines, and can be found in the
online technical report [16].

A particular case of arbitrary alternative a〈P 〉 ÷Q is when Q is a message
whose alternative is not 0. By applying this pattern recursively we can write
a1〈P1〉 ÷ . . .÷ an〈Pn〉 ÷Q. In particular, by choosing a1 = · · · = an and P1 =
· · · = Pn we can try n times the alternative P before giving up by executing Q.

Endless retry. We can also retry the same alternative infinitely many times, thus
obtaining the behavior of roll-π messages.

La〈P 〉Mer = νt. Y | a〈LP Mer〉÷ t〈Y 〉 Y = t(Z) ⊲ Z | a〈LP Mer〉÷ t〈Z〉

Proposition 2. P ≈c LP Mer for any closed process with roll-π messages.

As corollary of Proposition 2 we thus have the following.

Corollary 1. croll-π is a conservative extension of roll-π.



Triggers with alternative. Until now we attached alternatives to messages. Sym-
metrically, one may attach alternatives to triggers. Thus, upon rollback, the
message is released and the trigger is replaced by a new process.

The syntax for triggers with alternative is a(X) ⊲γ Q÷b〈Q′〉÷0, with X not
free in Q′. As for messages, we use a single message as alternative, but one can
use general processes as described earlier. Triggers with alternative are defined
by the extract clause below.

xtr(k : a(X) ⊲γ Q÷ b〈Q′〉÷ 0) = k : b〈Q′〉÷ 0

Interestingly, messages with alternative and triggers with alternative may coex-
ist. The encoding of triggers with alternative is as follows.

La(X)⊲γ Q÷b〈Q′〉÷0Mat = νc, d. c÷d÷0 | (c⊲γ a(X)⊲ LQMat) | (d⊲ b〈LQ
′Mat〉÷0)

Proposition 3. P ≈c LP Mat for any closed process with triggers with alterna-
tive.

4.2 Comparing croll-π and roll-π

While Corollary 1 shows that croll-π is at least as expressive as roll-π, a natural
question is whether croll-π is actually strictly more expressive than roll-π or not.
The theorem below gives a positive answer to this question.

Theorem 2. There is no encoding L•M from croll-π to roll-π such that for each
croll-π configuration M :

1. if M has a computation including at least a backward step, then LMM has a
computation including at least a backward step;

2. if M has only finite computations, then LMM has only finite computations.

Proof. Consider configurationM = νk. k : a÷b÷0 | a⊲γ roll γ. This configuration
has a unique possible computation, composed by one forward step followed by
one backward step. Assume towards a contradiction that an encoding exists and
consider LMM. LMM should have at least a computation including a backward
step. From roll-π loop lemma, if we have a backward step, we are able to go
forward again, and then there is a looping computation. This is in contrast with
the second condition of the encoding. The thesis follows. ⊓⊔

The main point behind this result is that the Loop Lemma, a cornerstone of
roll-π theory [17] capturing the essence of rigid rollback (and similar results
in [8, 18, 20, 22]), does not hold in croll-π. Naturally, the result above does not
imply that croll-π cannot be encoded in HOπ or in π-calculus. However, these
calculi are too low level for us, as hinted by the fact that the encoding of a simple
reversible higher order calculus into HOπ is quite complex, as shown in [18].



5 Programming in croll-π

A main goal of croll-π is to make reversibility techniques exploitable for appli-
cation development. Even if croll-π is not yet a full-fledged language, we have
developed a proof-of-concept interpreter for it. To the best of our knowledge,
this is the first interpreter for a causal-consistent reversible language. We then
put the implementation at work on a few simple, yet interesting, programming
problems. We detail below the algorithm we devised to solve the Eight Queens
problem [3, p. 165]8.

The interpreter for croll-π is written in Maude [10], a language based on both
equational and rewriting logic that allows the programmer to define terms and
reduction rules, e.g., to execute reduction semantics of process calculi. Most
of croll-π’s rules are straightforwardly interpreted, with the exception of rule
S.Roll. This rule is quite complex as it involves checks on an unbounded num-
ber of interacting components. Such an issue is already present in roll-π [17],
where it is addressed by providing an easier to implement, yet equivalent, low-
level semantics. This semantics replaces rule S.Roll with a protocol that sends
notifications to all the involved components to roll-back, then waits for them to
do so. Extending the low-level semantics from roll-π to croll-π simply requires
the application of function xtr to the memory targeted by the rollback. We do
not detail the low-level semantics of croll-π here, and refer the reader to [17] for
a detailed description in the setting of roll-π. Our Maude interpreter is based on
this low-level semantics, extended with values (integers and pairs) and with the
if-then-else construct. It is fairly concise (less than 350 lines of code).

The Eight Queens problem can be formulated as follows: how to place 8 queens
on an 8 × 8 chess board such that no queen can directly capture another? We
have chosen this problem since its solution involves a state-space exploration
and requires frequent backtrack. We defined an algorithm in croll-π where all
queens are autonomous entities, numbered from 1 to 8, all executing the code
schema shown in Figure 5. We use x to indicate a pair of variables (x1, x2), and
replicated messages !ci〈x〉÷0 to denote the encoding of a parallel composition of
an infinite number of messages ci〈x〉÷0 (cf. Remark 1). The queens are activated
in numeric order. The i-th queen is activated by messages on channels cj from
its predecessors, instantiating variables xj with their position. When a queen is
activated it looks for its position by trying sequentially all the positions in the
i-th row of the chess board. To try a position, it sends it over channel pi and
then verifies whether there is a conflict or not by computing err(xj,x) for each
j < i. In case of conflict, it rolls-back the choice of the position (with roll γi) and
tries the next position. If no suitable position is available, the choice of position
of the previous queen is rolled-back (possibly recursively) by the communication
over fi. If instead there is no conflict, the queen commits its position on ci, thus
activating the next queen, and waits for potential rollback requests on fi+1.

8 The interpreter, the code for solving the Eight Queens problem, and other examples
are available at http://proton.inrialpes.fr/~mlienhar/croll-pi/implem.



Qi , c1(x1) ⊲ . . . ci−1(xi−1) ⊲ pi〈i, 1〉 ÷ . . .÷ pi〈i, 8〉÷ fi〈0〉÷ 0

| pi(x) ⊲γi if err(x1,x) then roll γi else . . . if err(xi−1,x) then roll γi

else !ci〈x〉÷ 0 | fi+1(y) ⊲ roll γi

err((x1, x2), (y1, y2)) , (x1 = y1 ∨ x2 = y2 ∨ |x1 − y1| = |x2 − y2|)

Fig. 5. The i-th queen

On a recent laptop, the interpreter returns almost immediately with the first
solution of the problem, namely the set of eight pairs (1,1) (2,5) (3,8) (4,6) (5,3)
(6,7) (7,2) (8,4).

6 Asynchronous Interacting Transactions

This section shows how croll-π can model in a precise way interacting transac-
tions with compensations as formalized in TransCCS [13]. Actually, the natural
croll-π encoding improves on the semantics in [13], since croll-π causality tracking
is more precise than the one in TransCCS, which is based on dynamic embedding
of processes into transactions. Thus croll-π avoids some spurious undo of actions,
as described below. Before entering the details of TransCCS, let us describe the
general idea.

We consider a very general notion of atomic (but not necessarily isolated)
transaction, i.e., a process that executes completely or not at all. Informally, a
transaction [P,Q]γ with name γ executing process P with compensation Q can
be modeled by a process of the form:

[P,Q]γ = νa, c. a÷ c÷ 0 | (a ⊲γ P ) | (c ⊲ Q)

Intuitively, when [P,Q]γ is executed, it first starts process P under the rollback
scope γ. Abortion of the transaction can be triggered in P by executing a roll γ.
Whenever P is rolled-back, the rollback does not restart P (since the message
on a is substituted by the alternative on c), but instead starts the compensation
process Q. In this approach commit is implicit: when there is no reachable roll γ,
the transaction is committed. From the explanation above, it should be clear that
in the execution of [P,Q]γ , either P executes completely, i.e., until it reaches
a commit, or not at all, in the sense that it is perfectly rolled-back. If P is
ever rolled-back, its failed execution can be compensated by that of process Q.
Interestingly, and in contrast with irreversible actions used in [12], our rollback
scopes can be nested without compromising this all-or-nothing semantics.

Let us now consider an asynchronous fragment of TransCCS, the calculus
in [13], removing choice and recursion. Dealing with the whole calculus would
not add new difficulties related to rollback, but only related to the encoding of
such operators in higher-order π. The syntax of the fragment of TransCCS we
consider is as follows.

P ::= 0 | νa. P | (P | Q) | a | a.P | co k | JP ⊲k QK



(R-Comm) a | a.P −→ P
(R-Emb)

k /∈ fn(R)

JP ⊲k QK | R −→ JP | R ⊲k Q | RK

(R-Co) JP | co k ⊲k QK −→ P (R-Ab) JP ⊲k QK −→ Q

and is closed under active contexts νa. •, • | Q and J•⊲kQK, and structural congruence.

Fig. 6. Reduction rules for TransCCS

Essentially, it extends CCS with a transactional construct JP ⊲k QK, executing a
transaction with body P , name k and compensation Q, and a commit operator
co k.

The rules defining the semantics of TransCCS are given in Figure 6. Struc-
tural congruence contains the usual rules for parallel composition and restriction.
Keep in mind that transaction scope is a binder for its name k, thus k does not
occur outside the transaction, and there is no name capture in rules R-Co and
R-Emb.

A croll-π transaction [P,Q]γ as above has explicit abort, specified by roll γ,
where γ is used as the transaction name, and implicit commit. TransCCS takes
different design choices, using non-deterministic abort and programmable com-
mit. Thus we have to instantiate the encoding above.

Definition 8 (TransCCS encoding). Let P be a TransCCS process. Its en-
coding L•Mt in croll-π is defined as:

Lνa. P Mt = νa. LP Mt LP | QMt = LP Mt | LQMt LaMt = a

La.P Mt = a ⊲ LP Mt Lco lMt = l(X) ⊲ 0 L0Mt = 0

LJP ⊲l QKMt = [νl. LP Mt | l〈roll γ〉 | l(X) ⊲ X, LQMt]γ

Since in croll-π only configurations can execute, the behavior of P should be
compared with νk. k : LP Mt.

In the encoding, abort is always possible since at any time the only occurrence
of the roll in the transaction can be activated by a communication on l. On the
other hand, executing the encoding of a TransCCS commit disables the roll

related to the transaction. This allows to garbage collect the compensation, and
thus corresponds to an actual commit. Note, however, that in croll-π the abort
operation is not atomic as in TransCCS since the roll related to a transaction
first has to be enabled through a communication on l, disabling in this way
any possibility to commit, and then it can be executed. Clearly, until the roll is
executed, the body of the transaction can continue its execution. To make abort
atomic one would need the ability to disable an active roll, as could be done
using a (mixed) choice such as (roll k) + (l ⊲ 0). In this setting an output on
l would commit the transaction. Adding choice would not make the reduction
semantics more difficult, but its impact on behavioral equivalence has not been
studied yet.



The relation between the behavior of a TransCCS process P and of its transla-
tion LP Mt is not immediate, not only because of the comment above on atomicity,
but also because of the approximate tracking of causality provided by TransCCS.
TransCCS tracks interacting processes using rule (R-Emb): only processes inside
the same transaction may interact, and when a process enters the transaction it
is saved in the compensation, so that it can be restored in case of abort. How-
ever, no check is performed to ensure that the process actually interacts with
the transaction code. For instance, a process a | a.P may enter a transaction
JQ⊲kRK and then perform the communication at a. Such a communication would
be undone in case of abort. This is a spurious undo, since the communication
at a is not related to the transaction code. Actually, the same communication
could have been performed outside the transaction, and in this case it would not
have been undone.

In croll-π encoding, a process is “inside” the transaction with key k if and only
if its tag is causally dependent on k. Thus a process enters a transaction only by
interacting with a process inside it. For this reason, there is no reduction in croll-π
corresponding to rule (R-Emb), and since no process inside the transaction is
involved in the reduction at a above, the reduction would not be undone in case
of abort, since it actually happens “outside” the transaction. Thus our encoding
avoids spurious undo, and computations in croll-π correspond to computations in
TransCCS with minimal applications of rule (R-Emb). These computations are
however very difficult to characterize because of syntactic constraints. In fact,
for two processes inside two parallel transactions k1 and k2 to interact, either k1
should move inside k2 or vice versa, but in both the cases not only the interacting
processes move, as minimality would require, but also all the other processes
inside the same transactions have to move. Intuitively, TransCCS approximates
the causality relation, which is a dag, using the tree defined by containment.
The spurious reductions undone in TransCCS can always be redone so to reach
a state corresponding to the croll-π one. In this sense croll-π minimizes the set
of interactions undone.

We define a notion of weak barbed bisimilarity t≈cπ relating a TransCCS
process P and a croll-π configuration M . First, we define barbs in TransCCS by
the predicate P ↓a, which is true in the cases below, false otherwise.

a↓a νb. P ↓a if P ↓a ∧ a 6= b
P | P ′↓a if P ↓a ∨ P ′↓a JP ⊲k QK↓a if P ↓a ∧ a 6= k

Here, differently from [13], we observe barbs inside the transaction body, to have
a natural correspondence with croll-π barbs.

Definition 9. A relation R relating TransCCS processes P and croll-π config-
urations M is a weak barbed bisimulation if and only if for each (P,M) ∈ R:

1. if P ↓a then M =⇒↓a;
2. if M ↓a then P =⇒↓a;
3. if P −→ P1 is derived using rule (R-Ab) then M =⇒ M ′, P1 =⇒ P2 and

P2RM ′;



4. if P −→ P1 is derived without using rule (R-Ab) then M =⇒ M ′ and
P1RM ′;

5. if M −→ M ′ then either: (i) PRM ′ or (ii) P −→ P1 and P1RM ′ or (iii)
M ′ −→ M ′′, P −→ P1 and P1RM ′′.

Weak barbed bisimilarity t≈cπ is the largest weak barbed bisimulation.

The main peculiarities of the definition above are in condition 3, which captures
the need of redoing some reductions that are unduly rolled-back in TransCCS,
and in case (iii) of condition 5, which forces atomic abort.

Theorem 3. For each TransCCS process P , P t≈cπ νk. k : LP Mt.

Proof. The proof has to take into account the fact that different croll-π configura-
tions may correspond to the same TransCCS process. In particular, a TransCCS
transaction JP⊲kQK is matched in different ways if Q is the original compensation
or if part of it is the result of an application of rule (R-Emb).

Thus, in the proof, we give a syntactic characterization of the set of croll-π
configurations LP Mp matching a TransCCS process P . Then we show that νk. k :
LP Mt ∈ LP Mp, and that there is a match between reductions of P and the weak
reductions of each configuration in LP Mp. The proof, in the two directions, is by
induction on the rule applied to derive a single step. ⊓⊔

7 Related work and conclusion

We have presented a concurrent process calculus with explicit rollback and min-
imal facilities for alternatives built on a reversible substrate analogous to a Lévy
labeling [4] for concurrent computations. We have shown by way of examples
how to build more complex alternative idioms and how to use rollback and al-
ternatives in conjunction to encode transactional constructs. In particular, we
have developed an analysis of communicating transactions proposed in Tran-
sCCS [13]. We also developed a proof-of-concept interpreter of our language and
used it to solve the Eight Queens problem.

Undo or rollback capabilities in sequential languages have a long history (see
[19] for an early survey). In a concurrent setting, interest has developed more
recently. Works such as [9] introduce logging and process group primitives as
a basis for defining fault-tolerant abstractions, including transactions. Ziarek et
al. [25] introduce a checkpoint abstraction for concurrent ML programs. Field
et al. [15] extend the actor model with checkpointing constructs. Most of the
approaches relying instead on a fully reversible concurrent language have already
been discussed in the introduction. Here we just recall that models of reversible
computation have also been studied in the context of computational biology, e.g.,
[8]. Also, the effect of reversibility on Hennessy-Milner logic has been studied
in [23]. Several recent works have proposed a formal analysis of transactions,
including [13] studied in this paper, as well as several other works such as [21, 5, 7]
(see [1] for numerous references to the line of work concentrating on software
transactional memories). Note that although reversible calculi can be used to



implement transactions, they offer more flexibility. For instance, transactional
events [14] only allow an all or nothing execution of transactions. Moreover, no
visible side-effect is allowed during the transaction, as there is no way to specify
how to compensate the side-effects of a failed transaction. A reversible calculus
with alternatives allows the encoding of such compensations.

With the exception of the seminal work by Danos and Krivine [12] on RCCS,
we are not aware of other work exploiting precise causal information as pro-
vided by our reversible machinery to analyze recovery-oriented constructs. Yet
this precision seems important: as we have seen in Section 6, it allows us to
weed out spurious undo of actions that appear in an approach that relies on a
cruder transaction “embedding” mechanism. Although we have not developed a
formal analysis yet, it seems this precision would be equally important, e.g., to
avoid uncontrolled cascading rollbacks (domino effect) in [25] or to ensure that,
in contrast to [15], rollback is always possible in failure-free computations. Al-
though [9] introduces primitives able to track down causality information among
groups of processes, called conclaves, it does not provide automatic support for
undoing the effects of aborted conclaves, while our calculus directly provides a
primitive to undo all the effects of a communication.

While encouraging, our results in Section 6 are only preliminary. Our con-
current rollback and minimal facilities for alternatives provide a good basis for
understanding the “all-or-nothing” property of transactions. To this end it would
be interesting to understand whether we are able to support both strong and
weak atomicity of [21]. How to support isolation properties found, e.g., in soft-
ware transactional memory models, in a way that combines well with these facil-
ities remains to be seen. Further, we would like to study the exact relationships
that exist between these facilities and the different notions of compensation that
have appeared in formal models of computation for service-oriented computing,
such as [5, 7]. It is also interesting to compare with zero-safe Petri nets [6],
since tokens in zero places dynamically define transaction scopes as done by
communications in croll-π.

From a practical point of view, we want both to refine the interpreter, and
to test it against a wider range of more complex case studies. Concerning the
interpreter, a main point is to allow for garbage collection of memories which
cannot be restored any more, so to improve space efficiency.
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Appendix

Additional material

A Appendix outline

We gather in this appendix full proofs of the main results of the paper, as well as
additional material needed to support the proofs. We start below by a number of
definitions that we have not included in the main text for lack of space. We then
proceed to present a number of useful lemmas (Section B). We finally present
the proofs of the main results of the paper, section by section.

Coherent configurations. Not all syntactically licit configurations make sense. In
particular, we expect configurations to respect the causal information required
for executing croll-π programs. We therefore work only with coherent closed
configurations. In particular, when working with configuration contexts C, we
are only considering coherent closed configurations C[M ]. A configuration

M ≡νũ.
∏

i∈I

ki : Pi |
∏

j∈J

[µj : k
′
j ] |

∏

z∈Z

k1z ≺ (k2z , k
3
z)

where µj = h′
j : aj〈Pj〉÷C | h′′

j : aj(X) ⊲γ Qj , is called coherent if the following
clauses are verified:

1. all tags ki, h
′
j , h

′′
j and k1z are distinct;

2. the relation <:M among tags is a partial order;
3. for each roll hi in Pi, hi <: ki.

Working only with coherent configurations is licit thanks to the following
lemma.

Lemma 6. Assume M is coherent. If M −→ M ′ then M ′ is coherent.

Proof. By case analysis on the reduction rules. ⊓⊔

General contexts. We did not detail in the main text the exact form of general
contexts. We do so now. We define four notions of contexts: process contexts,
thread contexts, memory contexts, and configuration contexts. Process contexts,
noted P, are given by the following grammar:

P ::= • | νa.P | (P | P) | a〈P〉 ÷C | a〈P 〉 ÷ b〈P〉 ÷ 0 | a(X) ⊲γ P

Thread contexts, noted T, are given by the following grammar:

T ::= • | k : a〈P〉÷C | k : a〈P 〉÷ c〈P〉 ÷ 0 | k : a(X) ⊲γ P



Memory contexts, noted M, are given by the following grammar:

M ::= [T | k2 : a(X) ⊲γ P ; k] | [k1 : a〈P 〉÷C | T; k]

Configuration contexts, noted C, are given by the following grammar:

C ::= • | νu.C | (M | C)

A (one hole) general context for processes G is thus either a context of the form
C[k : P], C[T] or C[M].

The definition of strong and weak barbed congruence for processes can be
detailed as follows.

Definition 10 (Strong and weak barbed congruences for processes).
We say two closed processes P and Q are strong (resp. weak) barbed congruent,
noted P ∼c Q (resp. P ≈c Q) if, for all closed process contexts, all closed
configuration contexts C, all closed thread contexts T, and all closed memory
contexts M, we have C[k : P[P ]] ∼ C[k : P[Q]] (resp. C[k : P[P ]] ≈ C[k : P[Q]]),
C[T[P ]] ∼ C[T[Q]] (resp. C[T[P ]] ≈ C[T[Q]]), and C[M[P ]] ∼ C[M[Q]] (resp.
C[M[P ]] ≈ C[M[Q]]).

B Useful lemmas

Lemma 7. Let σ be an injective substitution that sends channel names to chan-
nel names and keys to keys. If M ∼ N (resp. M ≈ N), then Mσ ∼ Nσ (resp.
Mσ ≈ Nσ).

Proof. By showing that S = {〈U, V 〉 | U ≡ Mσ, V ≡ Nσ} is a strong (resp.
weak) barbed bisimulation.

Lemma 8. For any closed configurations M,N , if M ∼ N , then νu.M ∼ νu.N
and if M ≈ N , then νu.M ≈ νu.N .

Proof. By showing that R = {〈νu.M, νu.N〉 | M ∼ N (resp.M ≈ N)} is a
strong (resp. weak) barbed bisimulation: if M ∼ N (resp. M ≈ N) then (weak)
observables and reductions of M and N are the same, the same is true of (weak)
observables and reductions of νu.M and νu.N .

The following lemma is the croll-π analog of a well-known result related to
the encoding of HOπ into the standard π-calculus. The situation is complicated
in our case by the necessity to clearly keep track of how tags are handled in
bisimulation candidates. A key point is the choice of the fixpoint combinator
(noted YP in the proof). Care has to be taken to avoid introducing undue causal
dependencies via this combinator, a situation that has no equivalent in HOπ.
In particular, the proof below would not work if we were to change the fixpoint
combinator to Y ′

P = c ⊲ t〈Y 〉 ⊲ P | t〈Y 〉 | Y . The combinator Y ′
P creates copies

of the P process only on demand, in contrast to YP , but in so doing creates
artificial causal dependencies between possibly independent executions of P .



R =R1 ∪R2 ∪R3 ∪ R4 ∪ Id YP = t(Y ) ⊲ (c ⊲ P ) | t〈Y 〉 | Y

R1 ={〈M{P /X} ; νc, t, k0, k
′
0.M{c/X} | k0 : t〈YP 〉 | k

′
0 : YP 〉}

R2 ={〈M{P /X} ; νc, t, k̃, k̃′, k̃′′, h̃.M{c/X} |

n
∏

i=0

([ki : t〈YP 〉 | k
′

i : YP ; k
′′

i ] |

k′′
i ≺ (hi+1, ki+1, k

′
i+1) | hi+1 : c ⊲ P ) | kn : t〈YP 〉 | k

′
n : YP 〉}

R3 ={〈M{P /X} |

m
∏

j=1

Mj ;

νc, t, k̃, k̃′, k̃′′, h̃.M{c/X} |
∏

i∈I

([ki : t〈YP 〉 | k
′
i : YP ; k

′′
i ] | k

′′
i ≺ (hi+1, ki+1, k

′
i+1) |

hi+1 : c ⊲ P ) |
∏

j∈J

([kj : c | hj+1 : c ⊲ P ; lj ]Mj{
lj/kj

}) |

kn : t〈YP 〉 | k
′
n : YP 〉 |

I ∪ J = {0, . . . , n}, I ∩ J = ∅}

Fig. 7. Candidate relation for Lemma 9

Lemma 9. For all closed processes P , all closed configurations M such that
M{P /X} is closed, and all c, t, k, k′ 6∈ fn(M,P ), we have

M{P/X} ≈c νc, t, k0, k
′
0.M{c/X} | k0 : t〈YP 〉 | k

′
0 : YP

where YP = t(Y ) ⊲ (c ⊲ P ) | t〈Y 〉 | Y .

Proof. We consider the relation R in Figure7 and prove that it is a weak barbed
congruence. In all the relations, c, t, k0, k

′
0 /∈ fn(M,P ). From R1 we immediately

move to the generalization in R2, obtained by unfolding the recursion.

Let us consider R2. The barbs of M are easily matched. If there is an occur-
rence of P enabled on the left, on the right we can perform an interaction on c
and we match the barb (if no trigger is enabled, we unfold again the recursion,
remaining in the same relation). On the right we have no other barbs. Let us
consider reductions. Unfolding of recursion leave us in the same relation. The
same for interactions inside M . Let us consider an interaction on c. Such interac-
tions are always enabled if on the left there is a P enabled, and we can imagine
to perform them as soon as possible. This leads us to R3, which generalizes R2.
Barbs are matched as before. Similarly unfolding of recursion and enabling of
copies of P leaves us in the same relation. The same for computations inside
M or P . Let us consider rollbacks. Rollbacks inside P or not involving them
are easily matched. Rollbacks involving P are matched by undoing the corre-
sponding communication on c, but not the corresponding unfolding of recursion.
Unfolding of recursion is never undone.



C Proofs of Section 3

C.1 Proofs of Section 3.3

(Reminder) Lemma 2. (Context Lemma for closed configurations). For any
closed configurations M,N , M ∼c N if and only if, for all closed configurations
L, M | L ∼ N | L. Likewise, M ≈c N if and only if, for all L, M | L ≈ N | L.

Proof. The left to right implication is immediate, by definition of ∼c. We prove
the other direction. As the weak case is identical to the strong one, we do not
detail it.

Let R = {〈C[M ],C[N ]〉 | ∀L,M | L ∼ N | L} be our candidate relation. By
definition, R is a congruence. We now need to show it is included in ∼. To this
end, we first show by induction on the context C that for all L, C[M ] | L ∼
C[N ] | L.

The base case is immediate as it is our initial hypothesis.
For the parallel composition case, we assume that ∀L,C[M ] | L ∼ C[N ] | L

and show that ∀L, (C[M ] | L′) | L ∼ (C[N ] | L′) | L. This is also immediate by
structural congruence.

For the restriction case, we assume that ∀L,C[M ] | L ∼ C[N ] | L and show
that ∀L, (νu.C[M ]) | L ∼ (νu.C[N ]) | L. For each fixed L, let v be a name
fresh in relation to C[.], M , N , and L. We write σ the permutation between u
and v. By α-conversion and structural equivalence, we have (νu.C[M ]) | L ∼
(νv.C[M ]σ) | L ∼ νv. (C[M ]σ | L). Let L′ = Lσ, where u was renamed to (the
fresh) v, we then have L′σ = L, thus (νu.C[M ]) | L ∼ νv. (C[M ] | L′)σ.

By induction, we have C[M ] | L′ ∼ C[N ] | L′. By Lemma 7 strong and weak
bisimilarity are preserved by injective renamings (which is the case here as v was
chosen fresh), thus we have (C[M ] | L′)σ ∼ (C[N ] | L′)σ. By Lemma 8, we then
have νv. (C[M ] | L′)σ ∼ νv. (C[N ] | L′)σ.

We now compute as follows:

νv. (C[N ] | L′)σ = νv. (C[N ]σ | L′σ) = νv. (C[N ]σ | L)

≡ (νv.C[N ]σ) | L =α (νu.C[N ]) | L

By transitivity, we thus have (νu.C[M ]) | L ∼ (νu.C[N ]) | L, as requested.
To conclude, let C[M ],C[N ] from R. By hypothesis, we have ∀L,M | L ∼

N | L. By the just proven property, we thus have ∀L,C[M ] | L ∼ C[N ] | L. By
taking L = 0, we have C[M ] ∼ C[N ], hence R ⊆∼. ⊓⊔

(Reminder) Lemma 3. (Context lemma for closed processes). Let P and Q
be closed processes. We have P ≈c Q if and only if, for all closed configuration
contexts C and k 6∈ fn(P,Q), we have C[k : P ] ≈ C[k : Q].

Proof. The left to right implication is clear. To prove the right to left direction
we proceed by induction on the form of general contexts for processes. We deal
first with contexts of the form C[k : P].



S =IdC2

cl
∪ S1 ∪ S2

S1 ={〈U, V 〉 | U ≡ C[U0] , V ≡ C[V0] , U0 = νt, k, k′. k : t〈YP′[P ]〉 | k
′ : YP′[P ] ,

V0 = νt, k, k′. k : t〈YP′[Q]〉 | k
′ : YP′[Q], t, k, k

′ 6∈ fn(C,P′[P ],P′[Q]) , C closed configuration context}

S2 = {〈U, V 〉 | U ≡ C[U0] , V ≡ C[V0]

U0 = νt, k̃. (

n
∏

i=1

m1
iP | ki ≺ (ki

1, k
i
2, k

i
3)) | (

∏

j∈J

ki
0 : c ⊲ P′[P ]) | (

∏

j∈J′

m2
jP ) | k1 : t〈YP′[P ]〉 | k2 : YP′[P ] ,

V0 = νt, k̃. (

n
∏

i=1

m1
iQ | ki ≺ (ki

1, k
i
2, k

i
3)) | (

∏

j∈J

ki
0 : c ⊲ P′[Q]) | (

∏

j∈J′

m2
jQ) | k1 : t〈YP′[Q]〉 | k2 : YP′[Q] ,

({t} ∪ k̃) ∩ fn(C,P′[P ], P′[Q]) = ∅ , J ∩ J ′ = ∅ , J ∪ J ′ = {1, . . . , n} ,

k̃ = {k, k′} ∪ {ki | 1 ≤ i ≤ n} , corr(m̃1, m̃2, k̃) , C closed configuration context}

where condition corr(m̃1, m̃2, k̃) stipulates the following:

– m1
iR = [k1

i−1 : t〈YP′[R]〉 | k
2
i−1 : YP′[R]; ki]

– k1
0 = k and k1

0 = k′

– m2
iR = [ηi : c | k

0
i : c ⊲ P′[R]; li] for some ηi, li

Fig. 8. Candidate relation for case P = a〈P′〉÷C of Lemma 3

– P = •. This is just the lemma’s assumption.

– P = νa.P′. Reductions involving only the configuration context are easily
matched. The only possible reduction involving P is C[k : P[P ]] −→ C[νa. k :
P′[P ]]. By inductive hypothesis we know that for each configuration context
K we have K[k : P′[P ]] ≈ K[k : P′[Q]]. The thesis follows by choosing K =
C[νa. •].

– P = R | P′. Reductions involving only the configuration context are easily
matched. The only possible reduction involving P is C[k : P[P ]] = C[k :
R | P′[P ]] −→ C[νh1, h2. k ≺ (h1, h2) | h1 : R | h2 : P′[P ]]. C[k : P[Q]]
has an analogous transition. By inductive hypothesis we know that for each
configuration context K we have K[h2 : P′[P ]] ≈ K[h2 : P′[Q]]. The thesis
follows by choosing K = C[νh1, h2. k ≺ (h1, h2) | h1 : R | •].

– P = a(X) ⊲γ P
′. We prove that the relation S defined below progresses to

S ≈, i.e. if 〈P,Q〉 ∈ S, the weak observables of P and Q coincide, if P −→ P ′

then there exists Q′ such that Q =⇒ Q′ and P ′ S ≈ Q′, and if Q −→ Q′,
then there exists P ′ such that P =⇒ P ′ and P ′ ≈ S Q′.

S = S1 ∪ S2

S1 = {〈U, V 〉 | U ≡ C[k : P[P ]], V ≡ C[k : P[Q]],C conf. context}

S2 = {〈U, V 〉 | U ≡ C[mP ], U ≡ C[mQ],C conf. context}



where configurations mP (resp. mQ) are of the form [k′ : a〈R〉 | k : P[P ];h]
(resp. [k′ : a〈R〉 | k : P[Q];h]), for some k′, R, h.
We check the clauses for weak barbed simulation for the different pairs of
configurations in S to prove that S progresses to S ≈. Since S is symmet-
ric, this will ensure that S progresses to S ≈, and hence is a weak barbed
bisimulation.
Consider first a pair 〈U, V 〉 ∈ S1. Let C = νũ. • | M be the configuration
context such that U = C[k : P[P ]], V = C[k : P[Q]]. Observables of U and
V are observables of νũ.M , and thus coincide. Assume U −→ U ′. We have
two cases to consider:
• U ′ ≡ νũ. k : P[P ] | M ′ and M −→ M ′.
We then have V −→ V ′ = νũ. k : P[Q] | M ′, and 〈U ′, V ′〉 ∈ S1.

• M ≡ k′ : a〈R〉 | M ′ and U ′ = νũ. (νh.mP | h : P′[P ]) | M ′, with
mP = [k′ : a〈R〉 | k : P′{R/X}[P ];h].
We then have V −→ νũ. (νh.mQ | h : P′[Q]) | M ′ = V ′, where mQ =
[k′ : a〈R〉 | k : P′{R/X}[Q];h].
Let C′ = νũ, h. • | M ′. By induction hypothesis, we have K[h : P′[P ]] ≈
K[h : P′[Q]] for all K. We thus have V ′ = C′[mQ | h : P′[Q]] ≈ C′[mQ |
h : P′[P ]], U ′ = C′[mP | h : P′[P ]], and 〈U ′, V ′〉 ∈ S2 ≈.

Consider now a pair 〈U, V 〉 ∈ S2. Observables of C[mP ] and of C[mQ] coin-
cide. Assume now that U −→ U ′. We have two cases to consider:
• U ′ = C′[mP ], in which case we have V −→ V ′ = C′[mQ], and 〈U ′, V ′〉 ∈
S2.

• U ′ = C′[k : P[P ]], resulting from the application of rule S.Roll with
target memory mP (the case where the target is an ancestor such that
the trigger is not a descendant of the key of the roll is similar), in which
case we have V −→ V ′ = C′[k : P[Q]], by applying S.Roll to mQ, and
〈U ′, V ′〉 ∈ S1.

– P = a〈P′〉 ÷C. By Lemma 9, we have for all closed configuration contexts
C, k, k′, t, c 6∈ fn(C,P′[P ]),

C[h : a〈P′[P ]〉 ÷C] ≈ C[νc, t, k, k′. h : a〈c〉÷C | k : t〈YP′[P ]〉 | k
′ : YP′[P ]]

and similarly for P′[Q]. It therefore suffices to prove that for all closed con-
figuration contexts C and all k, k′, t 6∈ fn(C,P′[P ],P′[Q]) we have

C[νt, k, k′. k : t〈YP′[P ]〉 | k
′ : YP′[P ]] ≈ C[νt, k, k′. k : t〈YP′[Q]〉 | k

′ : YP′[Q]]

under the induction hypothesis that for all C, and all h 6∈ fn(P′[P ],P′[Q])
we have C[h : P′[P ]] ≈ C[h : P′[Q]].
To prove this, we show that the relation S defined below progresses to S ≈,
which will ensure that S is a weak barbed bisimulation. Let S the relation
in Figure 8. We now check the different clauses for weak progress to S ≈.
Since S is symmetric, we only need to check the clauses for weak simulation.
Notice first that for all pairs 〈U, V 〉 ∈ S, observables of U are the same as
those of V .
Consider now a pair 〈U, V 〉 ∈ S2 (the case 〈U, V 〉 ∈ S1 is similar, but sim-
pler). We have the following different cases:



1. U −→ U ′ = C′[U0], derived from applying a reduction rule with no im-
plication of terms from U0. In this case, we can apply the same reduction
rule to get V −→ V ′ = C

′[V0], and 〈U ′, V ′〉 ∈ S2.
2. C = C′[[µ;h] | kr : roll h | •], and U −→ U ′ derived using rule S.Roll

with U ′ = C
′[U ′

0], and

U ′
0 =νt, k̃. (

n
∏

i=1

m1
iP | ki ≺ (ki1, k

i
2, k

i
3)) | (

∏

j∈K

ki0 : c ⊲ P′[P ]) | (
∏

j∈K′

m2
jP ) |

k1 : t〈YP′[P ]〉 | k2 : YP′[P ]

with J ⊆ K, K ′ ⊆ J ′, K ∩K ′ = ∅, and K ∪K ′ = {1, . . . , n}, noting that
the receipts on t that led to the creation of memory m1

i are independent
from any other action in the context, and thus are never rolled back. In
this case, we can apply S.Roll to get V  V ′ = C′[V ′

0 ] with

V ′
0 =νt, k̃. (

n
∏

i=1

m1
iQ | ki ≺ (ki1, k

i
2, k

i
3)) | (

∏

j∈K

ki0 : c ⊲ P′[Q]) | (
∏

j∈K′

m2
jQ) |

k1 : t〈YP′[Q]〉 | k2 : YP′[Q]

and 〈U ′, V ′〉 ∈ S2.
3. C = C′[η : c | •], with U ′ = C′[U ′

0]

U ′
0 ≡ νt, k̃, l. U ′

1 | [η : c | ke0 : c ⊲ P′[P ]; l] | l : P′[P ]

U ′
1 = (

n
∏

i=1

m1
iP | ki ≺ (ki1, k

i
2, k

i
3)) | (

∏

j∈J\{e}

ki0 : c ⊲ P′[P ]) | (
∏

j∈J′

m2
jP ) |

k1 : t〈YP′[P ]〉 | k2 : YP′[P ]

obtained by applying rule S.Com to η : c and ke0 : YP′[P ]. Noting that
[η : c | ke0 : c ⊲ P′[P ]; l] is of the form given above in the definition of
predicate corr, we have:

U ′
0 ≡νt, k̃, l. l : P′[P ] | (

n
∏

i=1

m1
iP | ki ≺ (ki1, k

i
2, k

i
3)) | (

∏

j∈J\{e}

ki0 : c ⊲ P′[P ]) |

(
∏

j∈J′∪{e}

m2
jP ) | k1 : t〈YP′[P ]〉 | k2 : YP′[P ]

In this case, we can apply S.Com to obtain likewise V ։ V ′ = C′[V ′
0 ]

with:

V ′
0 ≡νt, k̃, l. l : P′[Q] | (

n
∏

i=1

m1
iQ | ki ≺ (ki1, k

i
2, k

i
3)) | (

∏

j∈J\{e}

ki0 : c ⊲ P′[Q]) |

(
∏

j∈J′∪{e}

m2
jQ) | k1 : t〈YP′[Q]〉 | k2 : YP′[Q]



Define K = C′[νl. •], K = J \ {e}, K ′ = J ′ ∪ {e}. We have

U ′ ≡ K[l : P′[P ] | U ′
2]

U ′
2 ≡ (

n
∏

i=1

m1
iP | ki ≺ (ki1, k

i
2, k

i
3)) | (

∏

j∈K

ki0 : c ⊲ P′[P ]) | (
∏

j∈K′

m2
jP ) |

k1 : t〈YP′[P ]〉 | k2 : YP′[P ]

V ′ ≡ K[l : P′[Q] | V ′
2 ]

V ′
2 ≡ (

n
∏

i=1

m1
iQ | ki ≺ (ki1, k

i
2, k

i
3)) | (

∏

j∈K

ki0 : c ⊲ P′[Q]) | (
∏

j∈K′

m2
jQ) |

k1 : t〈YP′[Q]〉 | k2 : YP′[Q]

By induction hypothesis, we have V ′ ≈ V ′′ = K[l : P′[P ] | V ′
2 ]. Define

now K′ = C′[νl. l : P′[P ] | •]. We have U ′ ≡ K′[U ′
2] S2 K′[V ′

2 ] = V ′′ ≈ V ′,
and thus 〈U ′, V ′〉 ∈ S2 ≈.

– P = a〈R〉÷ b〈P′〉÷ 0. Handled in the same way as the previous case.

We finally deal with contexts of the form C[T] (dealing with contexts of the
form C[M] is similar). By Lemma 9, we have

C[T[P ]] ≡ νṽ.T[P ] | L ≈c νṽ, c, t, k, k
′.T[c] | L | k : t〈YP 〉 | k

′ : YP

But we just proved in the previous case that k : t〈YP 〉 ≈c k : t〈YQ〉 and that
k′ : YP ≈c k

′ : YQ. Hence

C[T[P ]] ≈c νṽ, c, t, k, k
′.T[c] | L | k : t〈YQ〉 | k

′ : YQ = C[T[Q]]

for ≈c is a congruence. ⊓⊔

A process context P is closing for a set of processes Pi iff P[Pi] are all closed.
A substitution σ is closing for a set of processes Pi iff Piσ are all closed.

(Reminder) Lemma 4. (Context lemma for open processes). Let P and Q be
(possibly open) processes. We have P ≈o

c Q if and only if, for all closed configu-
ration contexts C, for all substitutions σ closing for P and Q, k 6∈ fn(P,Q), we
have C[k : Pσ] ≈ C[k : Qσ].

Proof. Let us prove the only if part.
We have to prove that for each closing σ we have C[k : Pσ] = C[k : Qσ]. We

proceed by induction on the number of bindings in σ. The case of zero bindings
follows from Lemma 3. We have to consider bindings of the form {R/X} and
bindings of the form {k

′

/γ}.
Let us start from bindings of the form {R/X}. Consider the process context

P = a〈R〉 | a(X) ⊲ P′[•] where a is fresh. If P′ closes the other variables, this
is a closing context. By hypothesis C[k : a〈R〉 | a(X) ⊲ P′[P ]] ≈ C[k : a〈R〉 |



a(X) ⊲ P′[Q]]. By performing the communication on both sides we have:
C[νk′, h1, h2. k ≺ (h1, h2) | [h1 : a〈R〉 | h2 : a(X) ⊲ P′[P ]; k′] | k′ : P′{R/X}[P{R/

X}]] ≈ C[νk′, h1, h2. k ≺ (h1, h2) | [h1 : a〈R〉 | h2 : a(X) ⊲ P
′[Q]; k′] | k′ : P′{R/

X}[Q{R/X}]].

Note that replacing the memory in the second configuration by substituting
it with the one in the first configuration will not change the behavior since the
content of the memory is never liberated since both the processes are dependent
on any key k′′ such that a roll k′′ may involve the memory, and there is no roll k′.
Thus we have:
C[νk′, h1, h2. k ≺ (h1, h2) | [h1 : a〈R〉 | h2 : a(X) ⊲ P′[P ]; k′] | k′ : P′{R/X}[P{R/

X}]] ≈ C[νk′, h1, h2. k ≺ (h1, h2) | [h1 : a〈R〉 | h2 : a(X) ⊲ P′[P ]; k′] | k′ :
P′{R/X}[Q{R/X}]]. We show now that: C[k : P′{R/X}[P{R/X}]] ≈ C[k : P′{R/

X}[Q{R/X}]]. Communications cannot involve the memory, thus they have to
be matched by the process. Considering rollbacks, the memory would have been
removed in the original process if involved, and the continuation is the same in
the old and new process. Thus corresponding actions are done.

Note now that P′{R/X}[•] is an arbitrary context closing for P{R/X} and
Q{R/X}, and that we have here one less binding needed for a closing substitu-
tion, thus we can apply inductive hypothesis to get that for each closing σ′ we
have C[k : P{R/X}σ′] = C[k : Q{R/X}σ′]. Since every σ can be expressed as
{R/X}σ′ the thesis follows.

Let us consider now bindings of the form {k
′

/γ}. Consider the process context
P = a〈R〉 | a(X) ⊲γ P

′[•] where a is fresh and X never occurs in the continu-
ation. If P′ closes the other variables, this is a closing context. By hypothesis
C[k : a〈R〉 | a(X) ⊲γ P′[P ]] ≈ C[k : a〈R〉 | a(X) ⊲γ P′[Q]]. By performing the
communication on both sides we have:
C[νk′, h1, h2. k ≺ (h1, h2) | [h1 : a〈R〉 | h2 : a(X)⊲γP

′[P ]; k′] | k′ : P′{k
′

/γ}[P{k
′

/

γ}]] ≈ C[νk′, h1, h2. k ≺ (h1, h2) | [h1 : a〈R〉 | h2 : a(X) ⊲γ P′[Q]; k′] | k′ : P′{k
′

/

γ}[Q{k
′

/γ}]].

Note that replacing the memory in the second process with a copy of the
memory in the first process does not change the behavior: the only case where
the content of the memory is freed is during a rollback, but then we go to the
first process which is known to be equivalent to the second. Thus we have:
C[νk′, h1, h2. k ≺ (h1, h2) | [h1 : a〈R〉 | h2 : a(X) ⊲γ P

′[P ]; k′] | k′ : P
′{k

′

/

γ}[P{k
′

/γ}]] ≈ C[νk′, h1, h2. k ≺ (h1, h2) | [h1 : a〈R〉 | h2 : a(X) ⊲γ P′[P ]; k′] |

k′ : P′{k
′

/γ}[Q{k
′

/γ}]]. We show now that: C[k′ : P′{k
′

/γ}[P{k
′

/γ}]] ≈ C[k′ :

P
′{k

′

/γ}[Q{k
′

/γ}]]. Communications cannot involve the memory, thus they have
to be matched by the process. Concerning rollbacks, rollback of k′ has to be
matched by a rollback of k′, since this is the only move that makes the barb at a
observable. The rolled-back memory should be in the context, and should be the
same in both the cases, thus we go to the identity. Other rollbacks are trivially
matched. The thesis follows.

For the if part, we prove that if for each closing σ and each closed context
C we have C[k : Pσ] ≈ C[k : Qσ] then for each closing P we have C[k : P[P ]] ≈
C[k : P[Q]] (the case for thread contexts C[T[•]] and memory contexts C[M[•]]



R =R1 ∪R2 ∪ Id

R1 ={〈C[k : a(X) ⊲γ P
′′[P ]] ; C[k : a(X) ⊲γ P

′′[Q]]〉}

R2 ={〈C[νk′. [k : a(X) ⊲γ P
′′[P ] | k1 : a〈R〉;k′] | P′′{R/X}{k

′

/γ}[P{R/X}{k
′

/γ}]] ;

C[νk′. [k : a(X) ⊲γ P
′′[Q] | k1 : a〈R〉;k′] | P′′{R/X}{k

′

/γ}[Q{R/X}{k
′

/γ}]]〉}

Fig. 9. Candidate relation of Lemma 4

is handled similarly). Note that only triggers can bind variables. The proof is
by induction on the number of triggers. If the number of triggers is 0 then the
thesis follows from Lemma 3. For the inductive case consider the outermost
trigger around the bullet. We have: P[•] = P′[a(X) ⊲γ P′′[•]].

We would need to consider pairs of the form: (C[k : P′[a(X) ⊲γ P′′[P ]]],C[k :
P′[a(X) ⊲γ P′′[Q]]]).

Since a(X) ⊲γ P′′[P ] and a(X) ⊲γ P′′[P ] are closed we may assume that P′ is
empty thanks to Lemma 3.

Let us consider the relation R defined in Figure 9. Moves involving only C

are trivially matched. Note that P′′[P ] and P′′[Q] cannot move since they are
not enabled. Moves involving a rollback at k will lead to the identity. The only
other possibility is an interaction with a message k1 : a〈R〉. This leads to a pair
in R2.

Let us consider R2. We know that for each closing substitution σ we have
C[k : Pσ] ≈ C[k : Qσ]. This implies that for each closing substitution σ′ we have
C[k : P{R/X}{k

′

/γ}σ′] ≈ C[k : Q{R/X}{k
′

/γ}σ′]. Consider the process context

P′′{R/X}{k
′

/γ}[•] which is closing for P{R/X}{k
′

/γ} and Q{R/X}{k
′

/γ}. Since
this has one less trigger around the bullet by inductive hypothesis we know that
C[k : P′′{R/X}{k

′

/γ}[P{R/X}{k
′

/γ}]] ≈ C[k : P′′{R/X}{k
′

/γ}[Q{R/X}{k
′

/γ}]].
Let us go back to the pair in R2. Equality of barbs follows from weak barbed
congruence of the pair above. Let us consider transitions. Transitions involving
only C are trivially matched. Rollback sends us back to R1 or to the identity.
Communications involving P′′{R/X}{k

′

/γ}[P{R/X}{k
′

/γ}] are matched because
of the equivalence above, since the only difference between the two contexts,
given by the content of the memory, has no effect on communications. This
concludes the if part. ⊓⊔

(Reminder) Theorem 1. (Context Lemma). Two processes P and Q are weak
barbed congruent, P ≈o

c Q, if and only if for all substitution σ closing P and Q,
all closed configurationsM , and all keys k we have:M | (k : Pσ) ≈ M | (k : Qσ).

Proof. A direct consequence of Lemma 4 and Lemma 2. ⊓⊔



C.2 Proofs of Section 4.2

(Reminder) Theorem 2. There is no encoding L•M from croll-π to roll-π such
that:

1. If M has a computation performing at least a backward step, then LMM has
a computation performing at least a backward step;

2. If M has only finite computations, then LMM has only finite computations.

Proof. Take configuration M = νk. k : a ÷ b | a ⊲γ roll γ. This configuration
has a computation composed by one forward step followed by one backward
step, which then stops. This is the only possible computation. Assume towards
a contradiction that an encoding exists and consider LMM. LMM should have at
least a computation including a backward step. From roll-π loop lemma, if we
have a backward step, we are able to go forward again, and then there is a looping
computation. This is in contrast with the second condition of the encoding, then
the thesis follows. ⊓⊔

D Proofs of Section 4

D.1 Arbitrary alternatives

(Reminder) Lemma 5. For each configuration M k-dependent and complete
such that k′, t, k1, k2 /∈ fn(M) we have M ≈c νk′, t, k1, k2. k ≺ (k1, k2) | [k1 :
t〈Q〉 ÷C | k2 : t(X) ⊲ R; k′] | M{k

′

/k}.

Proof. Thanks to Lemma 2 from Appendix B, we only need to prove that for all
closed configurations L we have νt.M | L ≈ νk′, t, k1, k2. k ≺ (k1, k2) | [N ; k′] |
M | L where M and N are defined as in the statement of the lemma.

We will consider the relation R below and prove that it is a weak barbed
bisimulation.

R ={〈νt.M | L ; νk′, t, k1, k2. k ≺ (k1, k2) | [N ; k′] | M{k
′

/k} | L〉 |

L closed, k′ /∈ fn(M), k <: M , complete(M)} ∪ Id

The barbs coincide and interactions involving only L are trivially matched. The
same for interactions involving only M and communications involving M and
L. We thus only have to consider roll k1 for some k1 ancestor of k or for k1 = k.
This leads to the identity, since all the terms in M are involved. Note that terms
which are not k-dependent inside memories are equal in both the terms, since the
only difference is given by the substitution on key k. Also, the memory [N ; k′] is
completely removed and the restriction on k′ and h̃ can be garbage collected. ⊓⊔



R =R1 ∪R2 ∪R3 ∪ R4 ∪ Id

R1 ={〈k : a〈P 〉 | L ; k : (νt. Y | a〈P 〉÷ t〈Y 〉) | L〉 | L closed, k /∈ fn(P )}

R2 ={〈νk′. [k : a〈P 〉 | kt : a(X) ⊲γ Q; k′] | L ; νk′, t, k1, k2. k ≺ (k1, k2) |

k1 : Y | [k2 : a〈P 〉÷ t〈Y 〉 | kt : a(X) ⊲γ Q; k′] | L〉 | closed, k /∈ fn(P )}

R3 ={〈νk′. k : a〈P 〉 | L ; νk′, t, k1, k2. k ≺ (k1, k2) | k1 : Y | k2 : t〈Y 〉 | L〉 | L closed, k /∈ fn(P )}

R4 ={〈νk′. k : a〈P 〉 | L ; νk′, t, k′′, k1, k2. k ≺ (k1, k2) | [k1 : Y | k2 : t〈Y 〉; k′′] | k′′ : Y | a〈P 〉÷ t〈Y 〉 | L〉 |

L closed, k /∈ fn(P )}

Fig. 10. Candidate relation for Proposition 2

D.2 Endless retries

(Reminder) Proposition 2. For any closed process P with roll-π messages,
P ≈c LP Mer .

Proof. We consider just one instance of roll-π message, the thesis will follow by
transitivity.

We prove that for each P , for all closed process contexts P closing for P , all
closed configuration contexts C, and all k 6∈ fn(P ), we have C[k : P[a〈P 〉]] ≈
C[k : P[νt. Y | a〈P 〉÷ t〈Y 〉]] where Y = t(Z) ⊲ Z | a〈P 〉 ÷ t〈Z〉.

Thanks to Lemma 4 and Lemma 2 from Appendix B, we only need to prove
that for all closed configurations L and k 6∈ fn(P ), we have k : a〈P 〉 | L ≈ k :
(νt. Y | a〈P 〉 ÷ t〈Y 〉) | L.

We will consider the relation R in Figure 10 and prove that it is a weak
barbed congruence. For R1 it is easy to see that barbs coincide. Moves involving
only L are easily matched. Moves involving k : a〈P 〉 require to apply structural
congruence to the second term. We will consider k : (νt. Y | a〈P 〉 ÷ t〈Y 〉) ≡
νt. k ≺ (k1, k2) | k1 : Y | k2 : a〈P 〉÷t〈Y 〉. The only possible interaction involving
k : a〈P 〉 is a communication on a or a rollback. Communication requires that
L = kt : a(X) ⊲γ Q | L′. With this assumption the communication leads to
a pair in R2. Note that using structural congruence we can assume that the
restriction on k′ is at top level. Note also that L has changed. Rollback instead
completely removes the parts of the configuration which are different on the
two sides, leading to the identity. There is no other possible reduction from
k : (νt. Y | a〈P 〉 ÷ t〈Y 〉) | L) thus this concludes the proof for R1.

Let us consider R2. Again the barbs are the same and reductions involving
only L are trivially matched. The only reductions that may involve the memory
are that the memory is part of a rollback concerning an ancestor of k′ or k′

itself. For the first case we have three possibilities: either the ancestor of k′ is an
ancestor of k, or of kt, or both. If it is an ancestor of k (or of both) we go to the
identity. If it is an ancestor of kt but not of k the process is released and we go
back to R1. The second case sends us to a pair in R3 since the released trigger
is the same in both the cases.



R =R1 ∪R2 ∪R3 ∪ R4 ∪R5 ∪R6 ∪ Id

R1 ={〈k : a(X) ⊲γ Q÷C | L ; k : νc, d. c÷ d÷ 0 | c ⊲γ a(X) ⊲ Q | d ⊲ C | L〉}

R2 ={〈k : a(X) ⊲γ Q÷C | L ; νc, d, k1, h1, h2, h3. k ≺ (h1, h2, h3) | [h1 : c÷ d÷ 0 | h2 : c ⊲γ a(X) ⊲ Q;k1] |

k1 : a(X) ⊲ Q{k1/γ} | h3 : d ⊲ C | L〉}

R3 ={〈νk2. [k
′ : a〈R〉 | k : a(X) ⊲γ Q÷C; k2] | k2 : Q{R,k2/X,γ} | L ; νc, d, k1, k2, h1, h2, h3. k ≺ (h1, h2, h3) |

[h1 : c÷ d÷ 0 | h2 : c ⊲γ a(X) ⊲ Q; k1] | [k
′ : a〈R〉 | k1 : a(X) ⊲ Q;k2] | k2 : Q{R,k1/X,γ} | h3 : d ⊲ C | L〉}

R4 ={〈νk2. [k
′ : a〈R〉 | k : a(X) ⊲γ Q÷C; k2] | M{k2/γ} | L ; νc, d, k1, k2, h1, h2, h3. k ≺ (h1, h2, h3) |

[h1 : c÷ d÷ 0 | h2 : c ⊲γ a(X) ⊲ Q; k1] | [k
′ : a〈R〉 | k1 : a(X) ⊲ Q;k2] | M{k1/γ} | h3 : d ⊲ C | L〉 |

k2 <: M}

R5 ={〈k : C | L ; νc, d, h1, h2, h3. k ≺ (h1, h2, h3) | h1 : d÷ 0 | h2 : c ⊲γ a(X) ⊲ Q | h3 : d ⊲ C | L〉}

R6 ={〈M | L ; νc, d, k3, h1, h2, h3. k ≺ (h1, h2, h3) | [h1 : d÷ 0 | h3 : d ⊲ C; k3] | M{k3/k} |

h2 : c ⊲γ a(X) ⊲ Q | L〉 | k <: M}

Fig. 11. Candidate relation for Proposition 3

Let us consider R3. We have an internal reduction on the right leading us to
R4, thus to match the barb at a we refer to R4.

Let us consider R4. Thanks to Lemma 5 the right configuration is equivalent
to the one in R1. ⊓⊔

D.3 Triggers with Alternative

(Reminder) Proposition 3. For any closed process P with triggers with
alternative, P ≈c LP Mat.

Proof. We can consider just one instance of the trigger with alternative, and the
thesis in the general case will follow from transitivity. Thanks to Lemma 4 and
Lemma 2 we only have to prove that for each closed configuration L and each
k /∈ fn(Q,C) we have k : a(X)⊲γQ÷C | L ≈ k : νc, d. c÷d÷0 | c⊲γa(X)⊲Q | d⊲C.

We will consider the relation R in Figure 11 and prove that it is a weak
barbed congruence. In all the relations, L is closed and k /∈ fn(Q,C).

For R1, barbs coincide and moves involving just L are trivially matched. For
any other move, we assume to execute first the extrusion of c and d, the split of
the parallel composition and the communication on c on the right side, moving
to R2.

For R2, the most interesting case is a communication on a with a message
a〈R〉 inside L, leading to R3. The other moves lead to the identity or to staying
in the relation.

For R3, we generalize the tuple to the one in R4.



For R4, barbs and moves of L are easily matched. Communications of M
(possibly with L) are easily matched. Execution of rolls of k2 are matched by
execution of rolls of k1. The corresponding rollbacks lead to R5. Other rollbacks
lead to the identity.

For R5, we execute the communication at d going to R6 to match all the
challenges. Actually R6 is a generalization of the resulting term.

For R6 note that the trigger at c can never execute. Communications are
easily matched. Rollbacks on k or its ancestors lead to the identity. ⊓⊔

E Proofs of Section 6

To prove a behavioral correspondence between TransCCS and the corresponding
croll-π configurations, we have to consider the different shapes that a running
transaction can take at runtime. In fact, the possible evolutions of computation
in croll-π allow different croll-π configurations to represent the same TransCCS
process. For instance, JP ⊲k QK can be represented in different ways according
to whether components in P and Q were inside the transaction since the very
beginning or entered later, and different memories may track different past in-
teractions leading to the same process.

For this reason we generalize the concept of translation to the one of possible
translation. Given a TransCCS process P , its set of possible translations LP Mp

contains all the configurations corresponding to P . Writing LP Mp inside a context
is a shortcut for writing all the configurations obtained by putting the different
configurations in LP Mp inside the same context.

Definition 11 (Possible translations). The set of possible translations LP Mp

of a TransCCS process P is defined by structural induction on P , and then closed
using some closure operations. For inductive definition, all the clauses are defined
as in Definition 8, but the one for transaction which includes, in addition to:

LJP ⊲l QKM
p = νa, c. a÷ c | a ⊲γ (νl. LP Mp | l〈roll γ〉 | l(X) ⊲ X) | c ⊲ LQMp

also, whenever the transaction can be written as JP | R1⊲lQ | R2K, configurations
of the form:

LJP | R1 ⊲l Q | R2KM
p = νa, c, k′, l, h̃, h̃′. k ≺ (h1, h4) | h4 ≺ (h2, h3) | k

′ ≺ (h′
1, h

′
4) |

h′
4 ≺ (h′

2, h
′
3) | [h1 : a÷ c | h2 : a ⊲γ (νl. LP ′Mp | l〈roll γ〉 | l(X) ⊲ X); k′] | MP |

h′
2 : l〈roll k′〉 | h′

3 : l(X) ⊲ X | MR | h3 : c ⊲ LQMp

In the last clause we have h̃ = {h1, h2, h3, h4}, and h̃′ = {h′
1, h

′
2, h

′
3, h

′
4}. AlsoMP

is h′
1-dependent and complete and MP ∈ LP Mp. MR instead is not h′

1 dependent,
and MR ∈ LR1M

p. Furthermore, R2 =⇒ R3 for some R3 such that MP k′ | MR ∈
LR3M

p.
In possible translations any process R can be replaced by a message c and

a trigger c ⊲ R, modeling the fact that the process may be a compensation not
released yet.



Keys and memories and connectors are mostly undefined in possible transla-
tions. This means that we have different possible translations for each assignment
of keys to toplevel processes and for each set of connectors compatible with the
constraints above and such that the obtained configuration is coherent, and that
we can freely add memories tracking interactions occurring outside transactions.
This may include adding toplevel restrictions for keys.

Possible translations are also closed under structural congruence.

Note that the translation νk. k : LP M of the TransCCS process P belongs to
LP Mp. We now discuss the relation between a process P and its possible transla-
tions LP Mp from both a static and a dynamic point of view.

From the static point of view, given a process P , all the configurations in
LP Mp have the same set of weak barbs of P .

Lemma 10. Let P be a TransCCS process and let M ∈ LP Mp. Then:

– if P ↓a then M =⇒↓a;
– if M ↓a then P =⇒↓a.

Proof. The proof is by structural induction on P . All the cases are easy. Just note
that barbs in JP ⊲k QK, if not yet visible in a possible translation LJP ⊲k QKMp,
become visible as soon as the communication at a starting the transaction is
executed. ⊓⊔

From a dynamic point of view we show that for each TransCCS process P ,
P and all its possible translations LP Mp have related evolutions.

Lemma 11. Let P be a TransCCS process and LP Mp the set of its possible trans-
lations. If P −→ P1 then for each possible translation LP Mp we have:

1. either LP Mp =⇒≈ M and M is a possible translation of P1 or;
2. P −→ P1 is derived using rule (R-Ab), LP Mp =⇒≈ M , P1 =⇒ P2 and M is

a possible translation of P2.

Proof. The proof is by case analysis on the rule applied to derive P −→ P1.
For matching the challenge we can always assume that all the communications
starting the relevant transactions have already been executed, thus considering
only possible transactions of the second form in Definition 11. Similarly, we
can assume all the compensations have been released, thus there is no need to
consider closure under communications at c.

(R-Comm): a possible translation of a | a.P has the form k1 : a | k2 : a ⊲ LP Mp.
The transition can be matched by k1 : a | k2 : a ⊲ LP Mp −→ νk′. [k1 : a | k2 :
a ⊲ LP Mp; k′] | k′ : LP Mp. If the interaction occurs at top-level, i.e. outside of
any transaction, nothing else has to be proved since memories and top-level
restrictions can be freely added. If instead the interaction happened inside a
transaction, we have to show that the constraints imposed by transactions
on keys and on memories are preserved. In this case, both the interacting



processes have to be inside the body of the same transaction. We have dif-
ferent cases according to whether they belong to MP or to MR. If they both
belong to MP the resulting configuration is still k′-dependent and complete.
If both the interacting processes are inMR then the resulting process is again
in MR, and R2 could evolve to a R3 matching the transition. If they are one
in MP and the other one in MR then the continuation will belong to MP ,
and the process in R3 is retrieved by projection since it is not k′-dependent,
thus R3 is unchanged.

(R-Ab): a possible translation of the left-hand side is

νa, c, k′, l, h̃, h̃′. k ≺ (h1, h4) | h4 ≺ (h2, h3) | k
′ ≺ (h′

1, h
′
4) | h

′
4 ≺ (h′

2, h
′
3) |

[h1 : a÷ c | h2 : a ⊲γ (νl. LP ′Mp | l〈roll γ〉 | l(X) ⊲ X); k′] |

MP | h′
2 : l〈roll k′〉 | h′

3 : l(X) ⊲ X | MR | h3 : c ⊲ LQMp

By executing the communication at l we get

νa, c, k′, l, h̃, h̃′, k′′. k ≺ (h1, h4) | h4 ≺ (h2, h3) | k
′ ≺ (h′

1, h
′
4) | h

′
4 ≺ (h′

2, h
′
3) |

[h1 : a÷ c | h2 : a ⊲γ (νl. LP ′Mp | l〈roll γ〉 | l(X) ⊲ X); k′] |

MP | [h′
2 : l〈roll k′〉 | h′

3 : l(X) ⊲ X ; k′′] | k′′ : roll k′ | MR | h3 : c ⊲ LQMp

Now by executing roll k′ we get:

νa, c, h̃. k ≺ (h1, h4) | h4 ≺ (h2, h3) | h1 : c | h2 : a ⊲γ (νl. LP ′Mp | l〈roll γ〉 | l(X) ⊲ X) |

MP k′ | MR | h3 : c ⊲ LQMp

Note that the trigger at a cannot be activated any more. It is easy to show
that this process is thus strong barbed equivalent to:

νc, h̃. k ≺ (h1, h2) | h1 : c | MP k′ | MR | h2 : c ⊲ LQMp

where now h̃ contains just {h1, h2}. By executing communication at c we
get:

νc, h̃, k′′. k ≺ (h1, h2) | [h1 : c | h2 : c ⊲ LQMp; k′′] | k′′ : LQMp | MP k′ | MR

Thanks to Lemma 5 and by garbage collecting restriction of c this is strong
barbed equivalent to:

k : LQMp | MP k′ | MR

The thesis follows since R2 can evolve to R3 such that MP k′ | MR ∈ LR3M
p.

This is the only case where the second case of the thesis applies.
(R-Co): a possible translation of the left-hand side is

νa, c, k′, l, h̃, h̃′. k ≺ (h1, h4) | h4 ≺ (h2, h3) | k
′ ≺ (h′

1, h
′
4) | h

′
4 ≺ (h′

2, h
′
3) |

[h1 : a÷ c | h2 : a ⊲γ (νl. LP ′Mp | l〈roll γ〉 | l(X) ⊲ X); k′] |

MP | h′
2 : l〈roll k′〉 | h′

3 : l(X) ⊲ X | MR | h3 : c ⊲ LQMp



where MP ≡ M ′
P | kc : Lco lMp = M ′

P | kc : l(X) ⊲ 0. This trigger can take
l〈roll k′〉 leading to:

νa, c, k′, l, h̃, h̃′, k′′. k ≺ (h1, h4) | h4 ≺ (h2, h3) | k
′ ≺ (h′

1, h
′
4) | h

′
4 ≺ (h′

2, h
′
3) |

[h1 : a÷ c | h2 : a ⊲γ (νl. LP ′Mp | l〈roll γ〉 | l(X) ⊲ X); k′] | M ′
P |

[h′
2 : l〈roll k′〉 | kc : l(X) ⊲ 0; k′′] | k′′ : 0 | h′

3 : l(X) ⊲ X | MR | h3 : c ⊲ LQMp

Message l〈roll k′〉 will never be released by a rollback, since there is no roll k′′

and other rolls target an ancestor transaction, from whose key both kc and
h′
2 are descendants. Since there is no other roll k′, no such rollback will ever

be executed. We can thus garbage collect the compensation c, and, as a
consequence, the trigger at c and c itself getting:

νa, k′, l, h̃, h̃′, k′′. k ≺ (h1, h2) | k
′ ≺ (h′

1, h
′
4) | h

′
4 ≺ (h′

2, h
′
3) |

[h1 : a | h2 : a ⊲γ (νl. LP ′Mp | l〈roll γ〉 | l(X) ⊲ X); k′] | M ′
P |

[h′
2 : l〈roll k′〉 | kc : l(X) ⊲ 0; k′′] | k′′ : 0 | h′

3 : l(X) ⊲ X | MR

Note that M ′
P | [h′

2 : l〈roll k′〉; k′′ | kc : l(X) ⊲ 0] | k′′ : 0 | h′
3 : l(X) ⊲ X is

k′-dependent and complete thus thanks to Lemma 5 the configuration above
is equivalent to:

νa, l, h̃, h̃′, k′′. k ≺ (h′
1, h

′
4) | h

′
4 ≺ (h′

2, h
′
3) | M

′
P |

[kc : l(X) ⊲ 0 | h′
2 : l〈roll k′〉; k′′] | k′′ : 0 | h′

3 : l(X) ⊲ X | MR

which is a possible translation of P | R1 as desired.
(R-Emb): the process R is simply inserted into MR. No computation is per-

formed in croll-π. ⊓⊔

We show now that all the reductions of LP Mp in croll-π are related to the
reductions of P . A main difference is that in croll-π all the processes can interact,
while in TransCCS only processes inside the same transaction can. The lemma
below shows that this constraint can always be verified by a suitable sequence
of reductions derived using rule (R-Emb).

Lemma 12. Let P be a TransCCS process. Given two process inside P there
always is a sequence of reductions derived using rule (R-Emb) moving them
inside the same transaction.

Proof. If the two processes are already inside the same transaction then the thesis
follows. Otherwise, take their common ancestor A in the hierarchy of transaction
nesting. If A directly contains one of the two processes, move this process using
(R-Emb) down in the hierarchy to the transaction containing the other process.

Otherwise take one of the child transactions of A that contains one of the
processes, say P , and move this transaction inside the one containing the other
process, say Q, via a sequence of applications of (R-Emb). Now we are back to
the first case and we can embed Q into the transaction containing P . ⊓⊔



We can now prove the other direction of the relation between TransCCS
process P and croll-π configurations in LP Mp.

Lemma 13. Let P be a TransCCS process and LP Mp one of its possible trans-
lations. If LP Mp −→ M then M ∈ LP1M

p for some P1 such that P −→ P1 or
P = P1.

Proof. The proof is by case analysis on the applied rule.
Let us consider rule (S.COM). We have two cases to consider: auxiliary com-

munications on channels a, c or l according to the notation of Definition 11, or
normal communications on channels that correspond to TransCCS channels.

If the communication is on a private channel a of some transaction then it
is matched by P by staying idle, and we go from a possible translation of the
first form in Definition 11 to one of the second form. If the communication is
on a private channel c of some transaction then it is matched by P by stay-
ing idle, using closure under communications on c. If the communication is on
channel l, it has to be followed by the corresponding roll, and the pair of reduc-
tions is matched by rule (R-Ab), using closure under communications on c. The
behavioral correspondence is as described in the proof of Lemma 11.

The other possibility is that the communication is on a channel that corre-
sponds to a channel in TransCCS. In this case the communication is matched by
rule (R-Comm). For the rule to be applicable the two interacting terms should
belong to the same transaction. We can always make this condition satisfied
by executing a sequence of reductions derived from rule (R-Emb) as shown by
Lemma 12. Note that applying these reductions does not change the set LP Mp,
thus the behavioral correspondence is as described in the proof of Lemma 11.

Let us consider the case of rule (H-ROLL). This is never directly enabled in
a possible translation, but it is always preceded by the corresponding communi-
cation at l, which has already been discussed above. ⊓⊔

We can now put the results together to prove Theorem 3.

(Reminder) Theorem 3. For each TransCCS process P , P t≈cπ νk. k : LP M.

Proof. We show that the relation:

R = {(P,M) | M ∈ LP Mp}

is a weak barbed bisimulation.
Condition on barbs follows from Lemma 10. Conditions dealing with chal-

lenges from P are matched thanks to Lemma 11 while challenges from M are
matched thanks to Lemma 13. ⊓⊔


