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Abstract. Service Oriented Computing (SOC) allows for the composi-
tion of services which communicate using unidirectional notification or
bidirectional request-response primitives. Most of the service orchestra-
tion languages proposed so far provide also primitives to handle faults
and manage the subsequent compensation activities. The interplay be-
tween these two aspects is non trivial since, for instance, faults should be
notified to the request-response communication partners in order to com-
pensate also the remote activities. We first present a simple orchestration
scenario requiring a precise distributed fault handling strategy. We show
that this strategy cannot be programmed using current orchestration
languages; then, we propose a new style for orchestration programming
able to specify the required fault management strategy. Finally, we show
the generality of our approach by analyzing its properties and applying
it to a nontrivial scenario.

1 Introduction

Service Oriented Computing (SOC) intends to provide languages and mecha-
nisms for describing, publishing, retrieving and combining autonomous services.
We are particularly interested in service composition, which is usually dealt with
using orchestration languages such as the de-facto standard WS-BPEL (BPEL
for short) [OAS]. Since both services and the network infrastructure are un-
reliable, orchestration languages have to provide mechanisms to deal with un-
expected situations. BPEL, for instance, permits to specify fault handlers to
manage faults, termination handlers to smoothly terminate an ongoing activity
when an external fault occurs and compensation handlers to (possibly partially)
undo the effect of a completed activity during error recovery.

Besides traditional one-way communication, SOC usually supports also a
bidirectional communication pattern composed by the solicit-response operation
on the client-side, which sends a request and waits for the reply, and the sym-
metric request-response operation on the server-side.

In this paper we investigate the interplay between fault handling and the
request-response pattern. For instance, if a fault occurs on the client-side dur-
ing the execution of a solicit-response operation, the answer from the partner,
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that could be either successful or unsuccessful, should be taken into account in-
side the fault handling activity. In fact, it should be possible to program on the
client-side a fault handler that compensates the activity executed by the server
if and only if the remote activity has been successfully completed. Interestingly,
this rather intuitive behavior is not easily programmable in current service or-
chestration languages such as BPEL. In fact, quoting the BPEL specifications,
“when a synchronous invoke activity (corresponding to a request/reply opera-
tion) is interrupted and terminated prematurely, the response (if received) for
such a terminated activity is silently discarded”. In this way, since the (either
successful or unsuccessful) response is discarded, it is not possible to take it into
account inside the fault handling activity.

A rigorous analysis of the interplay between fault handling and the request-
response service invocation pattern requires the definition of a formal model.
The formal model that we exploit is achieved by adding mechanisms for fault,
termination and compensation handling to SOCK [GLG+06], the unique (to the
best of our knowledge) process calculus for service oriented computing providing
the request-response communication pattern. In order to prove general results
about the interplay between fault handling and the request-response pattern, we
consider a very general and flexible framework for error recovery. In particular,
we assume that fault, termination, and compensation handlers are not statically
defined, but that they can be also updated at runtime. More precisely, we con-
sider a primitive for dynamic handler installation inst(H) which updates the
handlers according to a handlers specification H. We will show in Section 2 that
the dynamic approach is more general than the static one.

Besides being more general, dynamic handler installation provides also an
elegant way to program the dependency between fault handling and the request-
response pattern described above: it is sufficient to permit the update of the
fault handlers upon successful completion of the solicit-response operation.

Another important interplay between fault handling and request-response
communication is the notification to the clients of a server failure occurring in
between the execution of the receive and the reply actions. BPEL, for instance,
does not specify a precise policy to manage this case. We have checked the be-
havior of Active-BPEL [act], one of the most well-known engines for BPEL, and
we have seen that when an engine terminates, a missing-reply exception is
sent to all those clients which are still waiting to complete a request-response
interaction with that engine. Also in this case, we consider a more general ap-
proach: we ensure that the response is always sent to the client and, in case of
fault, the specific fault occurred during the computation is notified so that the
client can adapt its error-recovery procedure.

1.1 Technical contribution

As stated above, we propose a formal model to investigate error-recovery mech-
anisms in the presence of bidirectional request-response communication. This
is achieved extending SOCK [GLG+06] with primitives for the installation of



fault, termination and compensation handlers, for throwing faults, and for com-
pensating successfully completed activities. The main novelties of the proposed
error recovery framework are dynamic handler installation and automatic failure
notification. We first informally describe the key concepts of error handling in
Section 2, then we formalize our approach in Section 3.

In the design of the framework we have been not only driven by the intuitive
interplay between fault handling and request-response communication described
above, but also by five correctness properties that we formalize in Section 4 (the
proofs instead can be found in Appendix B). The first one formalizes the expected
behavior of a scope whose computation can be completed either successfully
returning the compensation handler to be used to undo it, or unsuccessfully
returning a fault. The second property deals with scopes that are terminated
due to the failure of a sibling scope: the termination activity neither returns a
compensation handler (they are not expected to be undone) nor another fault.
The third and fourth properties formalize the expected behavior of request-
response communications from the client and the server perspective, respectively.
Finally, the fifth property concerns dynamic installation: we ensure that the
execution of fault installation cannot be delayed in favor of fault actions. This
last property guarantees that when a fault occurs, it will be managed by the
most updated handlers.

As additional contribution, we present in Section 5 the formalization of a
nontrivial service based scenario, namely the automotive case study of the EU
Project Sensoria. Furthermore, the semantics for the basic mechanisms of
SOCK that we present is equivalent but simpler w.r.t. the one in [GLG+06].
We complete the paper with some conclusive remarks and a detailed comparison
with related work in Section 6.

2 Error handling key concepts

Fault handling in SOC involves four basic concepts: scope, fault, termination
and compensation. A scope is a process container denoted by a unique name and
able to manage faults. A fault is a signal raised by a process towards the en-
closing scope when an error state is reached, in order to allow for its recovering.
Termination and compensation are mechanisms exploited to recover from errors.
Termination is triggered when a scope must be smoothly stopped, whereas com-
pensation is triggered to undo the effect of a scope whose execution has already
successfully terminated. Recovering mechanisms are implemented by exploiting
handlers which contain processes to be executed when faults, terminations or
compensations are triggered. Handlers are defined within a scope which rep-
resents the execution boundaries for their application. There are three kinds of
handlers: fault handlers, termination handlers and compensation handlers. Fault
handlers are executed when a fault is triggered by the internal process of the
scope, termination handlers are executed when a scope is reached by a fault
raised by an external process and, finally, compensation handlers can be explic-
itly invoked by another handler for recovering the activities of a child scope whose
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computation has already successfully finished. Fig. 1 shows all the elements com-
posing a scope. A language managing error recovery via statically defined scopes
(such as BPEL) should provide a primitive like scopeq(P,FH, T H, CH) where
q is the scope name, P the executing process and FH, T H and CH are, re-
spectively, the fault, termination and compensation handlers. When a fault is
raised, it is propagated and it causes the termination of all the other activities
inside the same scope. After that, if the fault handler for that fault is defined,
the scope executes it, otherwise it forwards the fault to the outer scope. It is
worth noting that a terminating activity could be a scope, and in this case its
termination handler should be executed. Also, some linguistic primitive, such as
comp(q), can be used to require the execution of the compensation handler of
the scope named q. Fig. 2 provides an intuitive representation of handler mecha-
nisms where numbers represent ordered events and stm1,stm2,...,stmn represent
a list of generic statements. A scope A encloses a generic process P and two
scopes B and C. At 1 scope C finishes successfully by promoting its compensa-
tion handler to be executable by the enclosing scope A. At 2, process P raises a
fault which is propagated to scope B. We suppose that B is still executing when
reached by the fault so, at 3, it executes its termination handler and terminates.
At 4 the fault handler of scope A is executed and, at 5, it compensates scope C
(supposing that the handler specifies so).

In some cases static declaration of handlers is not enough to easily model
a given scenario. Beyond the case of solicit-response that will be illustrated in



Section 4, consider the following pseudo-code:

scopeq(while(i < 100)(if i%2 = 0 then P else Q),FH, T H, CH)

Scope q contains a loop which executes 100 cycles. Even cycles execute process
P whereas odd cycles execute process Q. If scope q is reached by a fault, in order
to correctly recover its activities, it has to remember their exact sequence and
recover them in the desired order. One can use some bookkeeping variables, but
as far as the complexity of the code increases the bookkeeping becomes more
complex and error-prone. In order to address this problem we propose dynamic
handling, which allows to update handlers as far as the computation progresses.
We associate to each scope a function H associating fault handlers to fault names
and termination and compensation handlers to scope names.

Technically, dynamic handling is addressed by an installing primitive, inst(H),
which updates the current handler function with H. Thus, the handler code can
be updated depending on the current state of the scope. The example above
could be rewritten by exploiting the dynamic handler mechanism as:

scopeq(while(i < 100)
if i%2 = 0 then P ; inst([q 7→ P ′; cH ])
else Q; inst([q 7→ Q′; cH ])

,H)
where cH allows to recover the previously installed handler with the same name.
In this case when P is executed the termination handler is updated with pro-
cess P ′, which specifically recovers process P (inst([q 7→ P ′; cH ])), whereas if
Q is executed the termination handler is updated with Q′. When reached by
a fault, scope q executes the last installed termination handler, thus recovering
the whole sequence of activities. Different strategies can easily be programmed.
Notice that in the example above it should never be the case that an execution
of P has been completed and its compensation has not been installed, since oth-
erwise the compensation would not be up-to-date. This can be obtained in the
dynamic scenario by giving precedence to the inst primitive, while the same can
not be done for the bookkeeping code needed in the static framework.

In this scenario, when a scope successfully terminates, the last defined ter-
mination handler becomes its compensation handler. It is worth noting that
there is no ambiguity between the two handlers since they are triggered in dif-
ferent ways. Termination handler is executed by the scope itself which stops
its normal code (in Fig. 2 scope B stops and executes its termination han-
dler), whereas the compensation handler is always executed by the enclosing
scope (in Fig. 2 the fault handler of the scope A executes the compensation of
scope C) . This allows also to trivially simulate the static approach with the
dynamic one: the construct scopeq(P,FH, T H, CH) can be simply rephrased
as scopeq(inst(FH); inst(T H); P ; inst(CH)) in which the fault and termination
handlers are installed before the execution of the activity, and the compensation
handler at the end.



3 SOCK: the service behavior layer

In order to present a formalization of our approach we extend the syntax and
semantics of SOCK [GLG+06] with the primitives described in the previous
section. SOCK is a calculus for modeling service oriented systems, inspired by
WSDL [Wor] and BPEL [OAS]. In fact, its primitives include both uni-directional
and bi-directional WSDL communication patterns, control primitives from im-
perative languages, and parallel composition and signals from concurrent lan-
guages. A distinctive trait of SOCK is that its definition is structured in three
different layers: (i) the service behaviour layer to specify the actions performed
by a service, (ii) the service engine layer dealing with state, service instances and
correlation sets, and (iii) the services system layer allowing different engines to
interact. Since faults and compensations are managed in the service behaviour
layer we refer to Appendix A for the detailed description of the other layers.
Here instead we present the service behaviour layer, starting from the standard
part and adding then the fault and compensation primitives.

3.1 Syntax

We consider the following (disjoint) sets: Sig, ranged over by s, for signal names,
V ar, ranged over by x, y, for variables, V al, ranged over by v, for values, Faults,
ranged over by f , for faults, Scopes, ranged over by q, for scopes, O, ranged over
by o, for one-way operations, and OR, ranged over by or for request-response
operations. Also, Loc is a subset of V al containing locations, ranged over by l. We
consider a corresponding subset of V ar, V arLoc containing location variables
and ranged over by z. We use q⊥ to range over Scopes ∪ {⊥}. Finally, we use u
to range over Faults, Scopes and {⊥}.

We use the notation ~k = 〈k0, k1, ..., ki〉 for vectors (of variables, values, . . . ).
Let SC be the set of service behavior processes, ranged over by P, Q, . . . . We

use H to denote a function from Faults and Scopes to processes extended with
⊥, i.e. H : Faults ∪ Scopes → SC ∪ {⊥}. In particular, we write the function
associating Pi to ui for i ∈ {1, . . . , n} as [u1 7→ P1, . . . , un 7→ Pn]. Also, we use
σ to range over substitutions and use standard notation [~v/~x] for them.

The syntax of processes is defined in Table 1.
The first part contains the standard constructs. Here 0 is the null process.

Outputs can be signals s, notifications o@z(~y) or solicit-responses or@z(~y, ~x,H)
where s ∈ Sig, o ∈ O, or ∈ OR and z ∈ V arLoc. The two tuples ~y and ~x are
respectively the parameters to be sent in the invocation and the variables where
the received values will be stored (only for solicit-response). Also, H contains the
handlers to be installed to manage error recovery during the solicit-response. Du-
ally, inputs can be input signals s, one-ways o(~x) or request-responses or(~x, ~y, P )
where the notations are as above. Additionally, P is the process to be executed
between the request and the response. Assignment x := e assigns the result of
the expression e to the variable x ∈ V ar (function JeK is used to evaluate a closed
expression e). For the sake of brevity, we do not present the syntax of expressions,
we just assume that they include at least the arithmetic and boolean operators,



ǫ : : = s | o(~x) | or(~x, ~y, P )
ǫ : : = s | o@z(~y) | or@z(~y, ~x,H)

P, Q, . . . : : = processes
0 null process
ǫ input
ǫ output
x := e assignment
χ?P : Q if-then-else
P ;Q sequential composition
P |Q parallel composition
P

i∈W ǫi; Pi non-det. choice
while χ do (P ) iteration

inst(H) install handler
{P}q scope (shortcut for {P : H0 : ⊥}q)
throw(f) throw
comp(q) compensate
cH current handler

Table 1. Service behavior syntax

values in V al and variables. If-then-else is denoted by χ?P : Q, where χ is a
boolean expression. P ; Q and P |Q represent sequential and parallel composition
respectively, whereas

∑

i∈W ǫi; Pi is the non-deterministic choice restricted to be
input-guarded. Such a restriction is due to the fact that we are not interested
in modeling internal non-determinism in service behavior. Our calculus indeed
aims at supplying a language for designing service behaviours where designers
have full control of the internal machinery and the only non-predictable choices
are those driven by the reception of external messages. Also, while χ do (P ) is
the construct to model guarded iteration.

The last five cases concern faults and compensations and are the main nov-
elty. We consider two kinds of handlers: fault handlers to deal with an internal
fault and termination/compensation handlers to deal with compensations of an
activity in case of an external fault. Handlers are installed by inst(H) where H
is a partial function from fault and scope names to processes. {P}q defines a
scope named q to execute process P . This is a shortcut for {P : H0 : ⊥}q where
H0 is the function that evaluates to ⊥ for all fault names and to 0 for all scope
names. Commands throw(f) and comp(q) respectively raises fault f and asks
to compensate scope q. Finally, cH allows to refer to the previously installed
handler during an handler update.

Well-formedness rules: informally, the terms comp(q) and cH can occur
only within a fault handler or a termination handler, and q can only be a child
of the enclosing scope. Also, for each inst(H), H is undefined on all scope names



P, Q, . . . : : = processes
{P : H : u}q⊥ active scope
or(~x,H) response in Solicit
or〈~x,H〉 dead response in Solicit
Exec(P, or, ~y, l) Request-Response execution
〈P 〉 protection
or!f@l sending fault

Table 2. Extended service behavior syntax

q but the one of the nearest enclosing scope, i.e. a process can define the ter-
mination/compensation handler only for its own scope. Finally, we assume that
scope names are unique.

3.2 Semantics

In order to define the semantics we exploit the extended syntax in Table 2.
There {P : H : u}q⊥ is an active scope, i.e. a scope where handlers may have
been installed into H and an handler named u is waiting to be executed (if
u 6= ⊥). Also, the scope name may be ⊥, denoting that the scope has been killed
and is now in a zombie state (i.e., it can no more terminate with success nor
throw faults but it may e.g. wait for some incoming messages). Also, or(~x,H) is
used to wait for the response in a solicit-response interaction. H is installed if and
only if a non faulty response is received, allowing to program the compensation
for the remote activity. or〈~x,H〉 is the corresponding zombie version, which can
not throw faults. Exec(P, or , ~y, l) is a running request-response interaction. 〈P 〉
executes P in a protected way, i.e. not influenced by external faults. This is
needed to ensure that recovery from a fault is completed even if another fault
happens. Finally, or!f@l is used to notify a partner when a fault has happened.

The service behavior layer does not deal with state, leaving this issue to the
service engine layer, but it models all the possible execution paths for all the
possible values of variables. The semantics follows this idea: the labels contain
all the possible actions, together with the necessary requirements on the state.
Formally, let Act be the set of actions, ranged over by a. To simplify the interac-
tion with upper layers (see Appendix A) we use mainly structured labels of the
form ι(σ : θ) where ι is the kind of action while σ and θ are substitutions con-
taining respectively the assumptions on the state that should be satisfied for the
action to be performed and the effect on the state. If the second argument is not
meaningful for the action at hand we write instead. The action kinds can be di-
vided as Kind = In∪Out∪{τ} where In = {o(~v), ↑ or(~v)@l, ↓ or(~v), or(f)} and
Out = {o(~v)@l, ↑ or(~v)@l, ↓ or(~v)@l, or(f)@l}. Furthermore we use the following
unstructured actions: {s, s̄, th(f), cm(q, P ), inst(H)}.

Definition 1 (Service behaviour layer semantics). We define →⊆ SC ×
Act × SC as the least relation which satisfies the axioms and rules of Table 3



(In)

s
s
−→ 0

(Out)

s
s̄
−→ 0

(One-WayOut)

o@z(~x)
o(~v)@l(l/z,~v/~x: )
−−−−−−−−−−−→ 0

(One-WayIn)

o(~x)
o(~v)(∅:~v/~x)
−−−−−−−→ 0

(Assign)

Dom(σ) = Var(e) JeσK = v

x := e
τ(σ:v/x)
−−−−−→ 0

(Solicit)

or@z(~x, ~y,H)
↑or(~v)@l(l/z,~v/~x: )
−−−−−−−−−−−−−→ or(~y,H)

(Request)

or(~x, ~y, P )
↑or(~v)@l(∅:~v/~x)
−−−−−−−−−−→ Exec(P, or, ~y, l)

(Request-Exec)

P
a
−→ P ′

Exec(P, or, ~y, l)
a
−→ Exec(P ′, or, ~y, l)

(Request-Response)

Exec(0, or, ~y, l)
↓or(~v)@l(~v/~y: )
−−−−−−−−−−→ 0

(Solicit-Response)

or(~x,H)
↓or(~v)(∅:~v/~x)
−−−−−−−−−→ inst(H)

(If-then)

Dom(σ) = Var(χ) JχσK = true

χ?P : Q
τ(σ: )
−−−−→ P

(Else)

Dom(σ) = Var(χ) JχσK = false

χ?P : Q
τ(σ: )
−−−−→ Q

(Iteration)

Dom(σ) = Var(χ) JχσK = true

while χ do (P )
τ(σ: )
−−−−→ P ;while χ do (P )

(No-Iteration)

Dom(σ) = Var(χ) JχσK = false

while χ do (P )
τ(σ: )
−−−−→ 0

(Synchro)

P
s
−→ P ′, Q

s
−→ Q′

P | Q
τ(∅: )
−−−−→ P ′ | Q′

(Scope)

P
a
−→ P ′ a 6= inst(H), cm(q′,H′)

{P : H : u}q⊥

a
−→ {P ′ : H : u}q⊥

(Sequence)

P
a
−→ P ′

P ; Q
a
−→ P ′; Q

(Parallel)

P
a
→ P ′

P | Q
a
→ P ′ | Q

(Choice)

ǫi
a
−→ Qi i ∈ I

P

i∈I ǫi; Pi
a
−→ Qi; Pi

Table 3. Rules for service behavior layer, a 6= th(f)

and 5 and closed w.r.t. structural congruence ≡, which is the least congruence
relation satisfying the axioms in Table 4.

The rules in Table 3 describe the standard executions of the system. For this
reason, label th(f) is never considered in this table. Rules In, Out and Synchro

allow CCS-like synchronization between parallel processes of the same service
behavior. Rules One-WayOut and One-WayIn define the one-way operation.
Notice that the output specifies the location of the invoked service. The two
operations are synchronized at the services system level. Similarly rules Solicit

and Request start a solicit-response operation. Notice that the input stores the
location of the invoker, since it is necessary for the response. Notice also that the
solicit-response primitive allows for the specification of some handlers. These are
installed just after the answer has been received, and only in case of success. The
dedicated syntax is needed to ensure that handlers are installed only in case of
success of the remote activity, and in particular that they are not deleted by other
faults. The response is dealt with by rules Request-Response and Solicit-

Response. The computation of the response is executed by rule Request-



P | Q ≡ Q | P P | 0 ≡ P P | (Q | R) ≡ (P | Q) | R 0; P ≡ P 〈0〉 ≡ 0

Table 4. Structural congruence

Exec. This is necessary since in case of failure the ongoing computation should
be treated in a particular way: the partner should be notified of the failure. Rule
Scope allows for standard execution of a process inside a scope. The other rules
in Table 3 are standard.

The rules in Table 5 define the semantics of scopes, faults and compensa-
tions. Notice that we use operator ⊕, defined as follows, for updating the scope
function:

(H⊕H′)(f) =







(H′(f))[H(f)/cH ] if f ∈ Dom(H′) ∩ Dom(H)
(H′(f))[0/cH ] if f ∈ Dom(H′) and f /∈ Dom(H)
H(f) otherwise

where we assume that inst is a binder for cH , i.e. substitutions are not applied
inside the inst primitive.

Intuitively the above definition means that handlers in H′ replace the corre-
sponding handlers in H, and occurrences of cH in the new handlers are replaced
by the old handlers. For instance, inst([q 7→ P |cH ]) adds P in parallel to the
old handler for q. We also use cmp(H) to denote the part of H dealing with
compensations, i.e. cmp(H) = H|Scopes.

Fault and compensation handlers are installed in the nearest enclosing scope
using rules AskInst and Install. According to rule Scope-Success, when
a scope successfully terminates, all its compensation handlers are propagated.
This allows to compensate a terminated activity. A compensation execution is
asked by rule Compensate. Notice that here the actual compensation code is
guessed, and the guess is checked by rule Compensation. Faults are raised by
rule Throw. A fault is catched by rule Catch-Fault when a scope defining
the corresponding handler is met. The name of the handler to be executed is
stored in the third component of the scope construct, to be executed only after a
few activities have been performed. These are individuated by the rules for fault
propagation (rules Throw-Sync, Throw-Seq, ReThrow, Throw-RExec)
and by the partial function killable. This function has a double aim. On one
side it guarentees that handlers are installed before any fault is thrown, i.e.
handlers are always up-to-date (see Proposition 5). Technically this is obtained
by making killable(P, f) undefined (and thus rule Throw-Sync not applicable)
if some handler installation is pending in P . On the other side killable(P, f)
computes the activities that have to be completed before the handler is executed.
In particular, when a sub-scope is terminated his termination handler is marked
as next handler to be executed. Notice that it may substitute a previously marked
fault handler, following the intuition that a request of termination has priority
w.r.t. an internal activity such as a fault processing. Also, if an Exec (i.e., an
ongoing request-response computation) is terminated the fault is notified to the



(Throw)

throw(f)
th(f)
−−−→ 0

(Compensate)

comp(q)
cm(q,P )
−−−−−→ P

(AskInst)

inst(H)
inst(H)
−−−−−→ 0

(Scope-Handle-Fault)

{0 : H : f}q⊥

τ(∅: )
−−−−→ {H(f) : H⊕[f 7→ ⊥] : ⊥}q⊥

(Scope-Success)

{0 : H : ⊥}q
inst(cmp(H))
−−−−−−−−−→ 0

(Scope-Handle-Term)

{0 : H : q}q
τ(∅: )
−−−−→ {H(q) : H⊕[q 7→ 0] : ⊥}⊥

(Scope-Fail)

{0 : H : ⊥}⊥
τ(∅: )
−−−−→ 0

(Install)

P
inst(H)
−−−−−→ P ′

{P : H′ : u}q⊥

τ(∅: )
−−−−→ {P ′ : H′ ⊕H : u}q⊥

(Protection)

P
a
−→ P ′

〈P 〉
a
−→ 〈P ′〉

(Throw-Sync)

P
th(f)
−−−→ P ′, killable(Q, f) = Q′

P |Q
th(f)
−−−→ P ′|Q′

(Throw-Seq)

P
th(f)
−−−→ P ′

P ; Q
th(f)
−−−→ P ′

(Catch-fault)

P
th(f)
−−−→ P ′,H(f) 6= ⊥

{P : H : u}q⊥

τ(∅: )
−−−−→ {P ′ : H : f}q⊥

(Ignore-fault)

P
th(f)
−−−→ P ′,H(f) = ⊥

{P : H : u}⊥
τ(∅: )
−−−−→ {P ′ : H : u}⊥

(ReThrow)

P
th(f)
−−−→ P ′,H(f) = ⊥

{P : H : u}q
th(f)
−−−→ 〈{P ′ : H : ⊥}⊥〉

(Throw-RExec)

P
th(f)
−−−→ P ′

Exec(P, or, ~y, l)
th(f)
−−−→ P ′| 〈or!f@l〉

(Compensation)

P
cm(q,Q)
−−−−−→ P ′,H(q) = Q

{P : H : u}q′
⊥

τ(∅: )
−−−−→ {P ′ : H⊕[q 7→ 0] : u}q′

⊥

(Send-Fault)

or!f@l
or(f)@l(∅: )
−−−−−−−−→ 0

(Receive-Fault)

or(~x,H)
or(f)(∅: )
−−−−−−→ throw(f)

(Dead-Solicit-Response)

or〈~x,H〉
↓or(~v)(∅:~v/~x)
−−−−−−−−−→ inst(H)

(Dead-Receive-Fault)

or〈~x,H〉
or(f)(∅: )
−−−−−−→ 0

Table 5. Rules for service behavior layer: faults and compensation rules



killable({P : H : u}q , f) = 〈{killable(P, f) : H : q}q〉 if P ≡/ 0

killable(P | Q, f) = killable(P, f) | killable(Q, f)
killable(P ; Q, f) = killable(P, f) if P ≡/ 0

killable(Exec(P, or, ~y, l), f) = killable(P, f)| 〈or!f@l〉
killable(〈P 〉 , f) = 〈P 〉 if killable(P, f)
killable(or(~y,H), f) = 〈or〈~y,H〉〉
killable(P, f) = 0 if P ∈ {0, ǫ, ǫ, x := e, χ?P : Q, while χ do (P ), or!f

′@l, or〈~y,H〉,
P

i∈W ǫi; Pi, throw(f), comp(q)}

Table 6. Function killable

partner (this is where the f parameter is needed). Finally, a receive waiting
for the answer of a solicit-response is preserved, thus preserving the pattern of
communication. The 〈P 〉 operator (described by rule Protection) is used in
order to guarentee that the enclosed activity will not be disturbed by external
faults. Rule Scope-Handle-Fault executes an handler for a fault. The fault is
removed from the function H in order to allow throw primitives for the same fault
in the handler to propagate the fault to the outer scope (as in BPEL rethrow).
Notice that a scope that has handled an internal fault can still terminate with
success. Instead a scope that has been terminated (rule Scope-Handle-Term )
or has been unable to handle an internal fault (rule ReThrow) reaches a zombie
state: it can no more terminate with success, nor throw faults. This is denoted
by the ⊥ that substitutes the scope name and obtained by rules Scope-Fail and
Ignore-Fault. Note that this last rule is necessary only for faults thrown by
handlers, since no other fault can be generated by a zombie scope. Rules Send-

Fault and Receive-Fault allow to send a fault notification to a partner, where
it is treated as a fault. Rules Dead-Solicit-Response and Dead-Receive-

Fault define the behavior of operator or〈~x,H〉, which behaves like or(~x,H) but
can not raise any fault.

4 Properties and examples

In this section we give some more insights on the features of the proposed seman-
tics, both via examples and by formal statements (whose proofs are collected in
Appendix B).

As already said, the main building blocks for error handling are scopes. A
scope can either terminate successfully (possibly after some internal error recov-
ery) or not. For instance {throw(f)}q will terminate unsuccessfully (the transi-
tion is derived using rule ReThrow). However,

{inst([q 7→ COMP, f 7→ HANDLE]); throw(f)}q

manages its internal fault by executing HANDLE, and then terminates with
success. In this way compensation COMP will be available if outer scopes need
to invoke it.



In general, an isolated scope either terminates with success or with failure.

Proposition 1. Let P
a1−→ P1

a2−→ P2 . . .
an−−→ Pn be a computation. Suppose that

P = {Q}q. Then there are three possible cases:

1. the scope terminates successfully1: Pi
inst(H)
−−−−−→ 0 for some i, furthermore no

fault is raised before: aj 6= th(f ′) for each j < i and each fault f ′;

2. the scope raises a fault: Pi
th(f)
−−−→ Pi+1, furthermore:

(a) Pi+1 will never terminate with success: aj 6= inst(H) for each j > i and
each H;

(b) no other fault will be raised, i.e. aj 6= th(f ′) for each j > i and each f ′.

3. the scope is still executing: Pn = {P ′ : H : u}q.

In a complex application, a scope can also be terminated because of an ex-
ternal fault. In this case termination will not be successful.

Proposition 2. Let P
a1−→ P1

a2−→ P2 . . .
an−−→ Pn be a computation. Suppose that

P is a scope that has been terminated, i.e. P = killable({P ′ : H : u}q, f). Then:

1. P will never terminate with success: ai 6= inst(H) for each i and each H;

2. no other fault will be raised, i.e. ai 6= th(f ′) for each i and each f ′.

Notice that the two propositions above cover all the possible cases, since the
request of termination is the only effect that a context can have on a process
which is not acknowledged by transitions of the process itself.

Notice that, even in scopes that do not terminate with success, solicit-response
patterns are always preserved: in case of faults in the caller the answer is waited
for and kept into account during error recovery, while in case of fault in the
callee the fault is notified to the caller.

Let us considerthe scenario discussed in the introduction: a remote activity
payr to be compensated if and only if it has been successfully executed. We
consider the most difficult case, namely when a fault f occurs at the client-side:

{payr@z(~x, ~y, [q 7→ UNDO])}q| throw(f)

Let us consider the different cases in which fault f may occur:

– before the solicit-response is started: in this case the solicit-response will
never start and the executed termination handler will be empty as required;

– after the solicit but before the response: handler q will be scheduled for
execution, but the response is waited for, thus when q is executed its value
is empty if a fault has been received by the payment service (i.e. payr has
not succeeded), UNDO otherwise;

1 We identify successful termination for P from the label inst(H): the same label is
also generated by the primitive inst, but this case never occurs if P is a scope.



– after scope q has terminated its activity: in this case the compensation han-
dler for q has been propagated upstream (to a scope not represented) and it
is available, so that the handler for f can use it to compensate the remote ac-
tivity; instead, if the response was a fault notification then no compensation
handler has been propagated, as no compensation is needed.

More in general, the following proposition guarentees that the answer of a
solicit-response is always waited for.

Proposition 3. Let P
a1−→ P1

a2−→ P2 . . .
an−−→ Pn be a computation. Let a1 be

↑ or(~v)@l(l/z, ~v/~x : ), i.e. the start action in a solicit-response. Then there are
two possible cases:

1. the response has been received: ai =↓ or(~v′)(∅ : ~v′/~x′) or ai = or(f)(∅ : )
for some i;

2. the process is waiting for the response: Pn
↓or(~v′)(∅:~v′/~x′)
−−−−−−−−−−→ P ′.

Symmetrically, a request-response will never terminate its execution without
notifying the caller, either sending him a result or notifying him a fault. Before
stating the proposition we need an auxiliary definition, to define when a part of
a process is being executed.

Definition 2 (Enabling contexts). We define enabling contexts by structural
induction as follows:
C[•] = • (1)

C[•]; Q (2)
C[•]|Q (3)
Q|C[•] (4)
{C[•] : H : u}q⊥ (5)
Exec(C[•], or , ~y, l) (6)
〈C[•]〉 (7)
Q; C[•] if Q ≡ 0 (8)

Proposition 4. Let P
a1−→ P1

a2−→ P2 . . .
an−−→ Pn be a computation. Let a1 be

↑ or(~v)@l(∅ : ~v/~x), i.e. the start action in a request-response. Then there are
three possible cases:

1. the response is sent: ai =↓ or(~v′)@l(~v′/~y : ) or ai = or(f)@l(∅ : ) for some
i;

2. the request-response is still executing: Pn = C[Exec(P, or , ~y, l)] for some
enabling context C[•];

3. a fault is ready to be notified to the partner: Pn = C[or!f@l] for some en-
abling context C[•].

Finally, since our handlers are installed dynamically, it is important that
handlers are installed as soon as they are available, and in particular before any
fault is triggered. This is guarenteed by the following proposition.

Proposition 5. If P
th(f)
−−−→ P ′ then it never occurs that P ≡ C[inst(H)] for any

enabling context C[•], i.e. no handler is waiting to be installed.



5 Automotive scenario

This section is devoted to the discussion of the automotive scenario [WCG+06],
which has been chosen as case study inside the EU Project Sensoria [Eur].

In the scenario, a severe car engine failure occurs so that the car is no longer
drivable. The car service system must take care of bookings and payments for
the necessary assistance, calling in particular a car rental, a garage and a towing
truck service. If both garage and tow truck are available, the rented car has to
go to the garage (the client will be brought there by the tow truck), otherwise
the rented car must go directly to the location of the broken car.

While the whole system can be modeled in SOCK, we present here the most
significant part of the behavior of the car service system, as it suffices to show
the suitability of the new compensation and fault handling mechanisms.

The car orchestrator CARP contains three modules: RP interacts with the
car rental service, GP interacts with the garage service and TP interacts with
the towing truck service. GP and TP are sequentially composed, as the tow
truck requires the garage to be available, whereas RP is executed in parallel.
Each module handles both the booking of the corresponding service and the
invocation of the bank service for the payment. We assume that CARP knows
the following pieces of information: the locations of the garage service (G), of
the towing truck service (T ), of the car rental service (R) and of the bank service
(B), their prices and bank accounts (represented, respectively, by the variables
subscripted by price and acc), the faults throwable by them (fG, fT , fR and
fB respectively), and the garage and car coordinates (Gcoords and CARcoords).

The SOCK implementation follows:

CARP ::= {
inst([fG 7→ comp(r), fT 7→ comp(g) | comp(r)]);
( (GP ; TP ) | RP )

}main

GP ::= {
book@G(failure, 〈Gacc, Gid〉 , [fB 7→ revbook@G(Gid); throw(fG)]);
pay@B(〈CARacc, Gacc, Gid〉 , Gpayid, [g 7→ revbook@G(Gid) | revpay@B(Gpayid)])

}g

TP ::= {
book@T (〈CARcoords, G〉 , 〈Tacc, Tid〉 , [fB 7→ revbook@T (Tid); throw(fT )]);
pay@B(〈CARacc, Tacc, Tid〉 , Tpayid, ∅)

}t

RHandlerP ::= book@R(CARcoords, 〈Racc, Rid〉 , ∅); RpayP

RredirectP ::= redirect@R(〈Rid, CARcoords〉 , Rid, ∅)
RpayP ::= pay@B(〈CARacc, Racc, Rid〉 , Rpayid, ∅)
RrevbookP ::= revbook@R(Rid)
RrevpayP ::= revpay@B(Rpayid)



RP ::= {
inst([fR 7→ 0, fB 7→ RrevbookP ; inst([r 7→ 0]), r 7→ RHandlerP ]);
book@R(Gcoords, 〈Racc, Rid〉 , [r 7→ RredirectP ; RpayP ]);
pay@B(〈CARacc, Racc, Rid〉 , Rpayid, [r 7→ RredirectP , fR 7→ RrevpayP ]);
inst([r 7→ {inst([fR 7→ RrevpayP ]); cH ]}rc)

}r

Module GP is a scope containing the solicit-response invocations needed,
respectively, for the booking of the garage and its related payment. The booking
invocation (book) may receive and raise fault fG, which is handled at the higher
level by CARP . The fault from the bank service (fB), instead, is managed by
the local fault handler, which compensates the garage booking and re-throws
the fault upstream as a garage fault fG. Finally, when the last solicit-response
invocation receives a successful response, the specified compensation handler for
the scope is installed. Module TP is analogous, except for the fact that it does
not install a compensation handler as its compensation is never required.

Module RP is more complex since it has to deal with possible interruptions
caused by a fault raised by GP or TP . In this case the rented car, if not already
booked, has to be requested directly at the broken car location (this is achieved
by executing RHandlerP ). Instead, if the rented car has already been booked,
it has to be redirected to the broken car location (by executing RredirectP ).
The termination handler for RP should behave differently according to when it
is invoked: before the invocation of the booking, between the invocation of the
booking and the invocation of the payment service, or after the invocation of the
payment service. This corresponds to the different termination handlers installed
during the execution. We exploit the solicit-response primitive semantics in order
to ensure that, in case the solicit has already been sent, the response from the
partner is waited for and the corresponding handlers are installed if and only if
the response is not a fault, i.e. the operation has been performed successfully. As
in the case of GP both the booking and the payment can fail, but RP provides
local fault handlers for each possible failure, guaranteeing that the faults are
not propagated to the environment. Notice that the handler for fR (the fault
thrown by a booking or redirection failure) is updated in order to reverse the
payment only if it has already been performed (third line of RP ). When the
activity terminates successfully, its compensation handler is defined. It retrieves
via cH the last defined termination handler (which is Rredirect), and makes it
executable inside an auxiliary scope. This is necessary since Rredirect may raise
fault fG, and the old handler specified in scope r will not be available any more.

Finally, CARP handles faults fG and fT , compensating the other success-
fully terminated sub-scopes. Notice in fact that if a sub-scope has not terminated
its execution, calling the comp primitive for its compensation does nothing; how-
ever, its termination handler has been executed during fault propagation.



6 Conclusions

We have investigated the interplay between the request-response service invoca-
tion pattern and the mechanisms for fault and compensation handling that are
usually provided by service orchestration languages. The most relevant language
which combines both aspects is BPEL, the de-facto standard for Web Services
orchestration. BPEL is not equipped with a formal semantics, thus the com-
parison with our formally defined language is done on the basis of the informal
specifications and some experimentations done with the ActiveBPEL engine.

Some basic differences between BPEL and our calculus have been already
discussed in the Introduction, where we have also justified the choice to adopt
dynamic handler installations. Another relevant difference is that dynamic han-
dler installation permits to avoid a syntactic distinction between the termination
and the compensation handlers: the compensation handler is the last termina-
tion handler installed before successful completion of a scope. Moreover, we do
not need any rethrow primitive, used in BPEL to pass a fault to the enclosing
scope, since throw(f), when used inside an handler for f , has the same behavior.
In BPEL this is not possible, as the language allows the activities enclosed in a
scope to throw more than one fault.

Dynamic handler installation distinguishes our calculus w.r.t. other calculi in
the literature, such as πt-calculus [?], webπ [?] and cJoin [?], all featuring stat-
ically defined compensations. Also, since the underlying languages, π-calculus
and Join, do not provide bidirectional interactions, the problem of failure no-
tification never occurs. Actually, cJoin transactions can be used to model bidi-
rectional interactions, and the fact that two interacting transactions are merged
can be seen as a strong form of failure propagation. We decided to just notify
the failure to the partner to model loosely coupled services. Other approaches
for compensation handling are StAC [?], cCSP [?] and Sagas [?], but they are
built on top of models not supporting interprocess communication. Among these
only StAC features a small amount of dynamism, by allowing for the removal of
the currently installed compensation handlers.

In this paper we have formalized our proposal for error handling extending
SOCK as it comprises natively also the request-response pattern, but we think
that it can be applied to many other different frameworks, from basic theoretical
calculi such as π-calculus to applied frameworks such as BPEL. In particular,
it would be interesting to apply these ideas to other calculi for service oriented
computing such as COWS [LPT07], SCC [BBC+06] and SSCC [LVMR07]. We
plan also to further validate our primitives by adding them to JOLIE [?,Ope],
the implementation of SOCK.

Another interesting line for future research is the investigation of the re-
lationship between choreography and orchestration languages. For instance, it
could be interesting to study the impact of fault and compensation primitives
on the notion of conformance as formalized in [BGG+05] or [CHY07].
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A Higher layers of SOCK

We present here the syntax and semantics of the higher layers of SOCK. While
these are necessary to complete the definition of the semantics, they are not
fundamental to understand the new fault and compensation mechanisms.



A.1 Service engine calculus

In a service engine, all the executed sessions of a service behavior are joined
by a state and a correlation set. Furthermore, a service engine always executes
sessions by following the specifications defined within the service declaration.

The service engine calculus syntax is:
I ::= (P,S) | I |I Y ::= c ⊲ P [I]

where P is a service behavior process, S is a state and c is a correlation set, i.e.
a subset of V ar.

A state is for us a substitution of values for variables. Given a state S and a
substitution σ we say that S satisfies σ, written S ⊢ σ, if σ is a subset of S. We
also write S(x) = ⊥ when x is undefined in state S.

Semantics. The lts rules for service engine state layer are as following.

(Engine-State 1)

P
ι(σ:~v/~x)
−−−−−→ P ′,S ⊢ σ, ι 6= τ

(P,S)
ι(~v/~x:S(~x))
−−−−−−−→ (P ′,S ⊕[~v/~x])

(Engine-State 2)

P
ι(σ: )
−−−−→ P ′,S ⊢ σ

(P,S)
ι
−→ (P ′,S)

(Engine-State 3)

P
τ(σ:~v/~x)
−−−−−→ P ′,S ⊢ σ

(P,S)
τ
−→ (P ′,S ⊕[~v/~x])

(Engine-State 4)

P
ι
−→ P ′, ι ∈ {th(f), inst(H)}

(P,S)
ι
−→ (P ′,S)

Rule Engine-State 1 verifies that the condition σ on the state is satisfied
and updates it with [~v/~x]. The old values are tracked in the label since they
are needed to check correlation of messages. The second rule is simpler, since it
deals with actions that do not update the state and do not require correlation.
The third one deals with assignments. Rule Engine-State 4 treats faults or
compensation installations that reach service engine.

When an input is received by a service engine, it is possible that several ses-
sions are waiting on the same operation. The session chosen for message delivery
depends on the values of the correlated variables. Given two values v and w, a
variable x and a correlation set c, v is correlated to x coherently with c, written
v/x ⊢c w, if any of the following conditions hold:

– the variable x belongs to c and its actual value is w = v,
– the variable x belongs to c and w = ⊥,
– the variable x does not belong to c.

Rules for service engine correlation lts layer are as follows.

(Correlated)

I
ι(~v/~x:~w)
−−−−−→ I ′, ~v/~x ⊢c ~w

I
ι,c
−→ I ′

(NotCorrelated)

I
ι
−→ I ′

I
ι,c
−→ I ′

(Par)

I
ι,c
−→ I ′

I|I ′′
ι,c
−→ I ′|I ′′



The first rule ensures that an input is received by a correlated session, while
the second one deals with actions that need no correlation. In this case any
correlation set is fine. The last rule deals with parallel composition.

Service declaration contains all the necessary information for executing ses-
sions. Since this part is not central for this work we consider just the case of
sessions executed in parallel with non persistent state and refer to [GLG+06] for
a description of the other possibilities.

(Exec)

I
ι,c
−→ I ′

c ⊲ P [I]
ι
−→ c ⊲ P [I ′]

(Spawn)

(P,S⊥)
ι,c
−→ (P ′,S), 6 ∃Si ∈ extr(I).(P,Si)

ι,c
−→ (P ′,S′

i), ι ∈ In

c ⊲ P [I]
ι
−→ c ⊲ P [I|(P ′,S)]

In rule Spawn S⊥ is the state undefined on all variables and extr(I) is a function
extracting all states occurring in I.

The first rule allows to execute an existing session, while the second spawns
a new session provided that an input that cannot be handled by the available
sessions is received.

A.2 Services system calculus

The services system calculus allows to compose different engines into a system.
The service engines are composed in parallel and equipped with a location that
allows us to univocally distinguish them. The calculus syntax is:

E ::= Y @l | E ‖ E

A service engine system E can be a located service engine Y @l or a parallel
composition of them. The semantics is defined by the rules in Table 7 and closed
w.r.t. the structural congruence ≡ therein.

Rule Lift propagates an action to a located engine. Rule NormalSync

allows to synchronize an output with the corresponding input (according to
the predicate compl), checking that the location of the receiving process is the
desired one. Rule Solicit-RequestSync additionally checks the correctness of
the guess in the input label about the location of the invoking process. Finally
rule Par-Ext deals with parallel composition.

B Proofs

In this section we show the proofs of the properties stated in Section 4. Some
auxiliary lemmas are presented too.



(Lift)

Y
ι
−→ Y ′

Y @l
ι
−→ Y ′@l

(NormalSync)

Y @l′
λ@l
−−→ Y ′@l′ , Z@l

λ′

−→ Z′@l , compl(λ,λ′)

Y @l′ ‖ Z@l
τ
−→ Y ′@l′ ‖ Z′@l

(Par-Ext)

E1
ι
→ E′

1

E1 ‖ E2
ι
→ E′

1 ‖ E2

(Solicit-RequestSync)

Y @l′
↑or(~v)@l
−−−−−−→ Y ′@l′ , Z@l

↑or(~v)@l′

−−−−−−→ Z′@l

Y @l′ ‖ Z@l
τ
−→ Y ′@l′ ‖ Z′@l

where compl(o(v), o(v)), compl(↓ or(v), ↓ or(v)), compl(or(f), or(f)).

E1 ‖ E2 ≡ E2 ‖ E1 E1 ‖ (E2 ‖ E3) ≡ (E1 ‖ E2) ‖ E3

Table 7. Rules for services system lts layer

Proof (of Proposition 1). The proof is by induction on n. The basic case is
trivially true. To prove the inductive case we show that if P ′ = {P : H : u}q

with u /∈ Scopes and q 6= ⊥ and P ′ a
−→ P ′′ then either a = inst(H) or a =

th(f) or P ′′ has the same structure. There are different cases. If the transition
has been derived using rules Scope, Install, Scope-Handle-Fault, Catch-

Fault or Compensation then the thesis follows by inductive hypothesis. If the
transition has been derived using rules Scope-Success or ReThrow then the
thesis follows directly. Note that rules Scope-Fail and Ignore-Fault can not
be applied because by hypothesis q 6= ⊥. Rule Scope-Handle-Term can not
be applied either since by hypothesis u /∈ Scopes.

We still have to prove that if Pi
th(f)
−−−→ Pi+1 then no other th(f ′) action

will be generated in the computation. Notice that the only rule that causes

Pi
th(f)
−−−→ Pi+1 is ReThrow. Then Pi+1 = 〈{P ′′ : H : u}⊥〉. We can prove the

thesis by induction on the length of the remaining computation. Each transition
is derived using one of the rules for scopes followed by rule Protection. Only
rules Scope, Install, Scope-Handle-Fault, Scope-Fail, Scope-Handle-

Term, Catch-Fault, Ignore-Fault and Compensation can be applied (in
particular, rule ReThrow is not applicable). Since all of them but Scope-Fail

preserve the structure of the process and Scope-Fail terminates the compu-
tation, and no rule generates the label th(f ′) or inst(cmp(H)) then the thesis
follows.

Proof (of Proposition 2). We have P = 〈{killable(P ′, f) : H : q}q〉 for q 6= ⊥.
We will prove the thesis by induction on the nesting of scopes in P ′. We will
prove both the basic case and the inductive case by induction on the length of
the computation. More precisely we will prove that each process of the form
(i) 〈{Q : H : q}q〉 where Q is a derivative of killable(P ′, f) for some P ′ and
q 6= ⊥ or (ii) of the form 〈{Q : H : u}⊥〉 will never terminate with success nor
throw faults and will always move to a process of one of the two forms above.
The transition is derived by applying rule Protection to a rule for scope. For
case (i) the applied rule is Scope, Install, Compensation, Scope-Handle-



Term, Catch-Fault or ReThrow. In the first three cases the thesis follows by
inductive hypothesis. If the applied rule is Scope-Handle-Fault instead the
thesis follows directly. Actually the last two cases never apply since a derivative
of killable(P ′, f) never throw faults. This can be proved by induction on the
structure of P ′. The only difficult case is when P ′ is a scope, but here we can
exploit the induction on the nesting of scopes. For case (ii) the applied rule is
Scope, Install, Scope-Handle-Fault, Scope-Fail, Scope-Handle-Term,
Catch-Fault, Ignore-Fault, Compensation. In all cases but Scope-Fail

the thesis follows by inductive hypothesis. For Scope-Fail it follows directly.

Lemma 1. P ≡ C[•] iff there exists an enabling context C′[•] such that P =
C′[•].

Proof. By hypothesis we know that P =ax P1 =ax . . . =ax Pn = C′[•] where each
=ax is an application of an axiom of structural congruence. If we prove the
thesis for n = 1 then the thesis in the general case follows by induction. All the
axioms can be applied either to the subterms of the productions denoted by Q
in Definition 2 or to the operators. In the first case the thesis follows trivially
since it is enough to choose an enabling context with a suitable Q′ instead of Q
(also for the last production since if Q ≡ 0 then also Q′ ≡ 0). For the second
case let us do a case analysis according to the used axiom.

Commutativity of |: this can be applied only to the cases 3 and 4, and this
corresponds to use the other case;

P |0 ≡ P : this corresponds either to skip one step in the derivation which uses
case 3, or to introduce such a step;

Associativity of |: there are a few cases. Either one step uses cases 3 or 4
with Q = Q1|Q2, and in this case we have to use two separate steps for Q1

and Q2. The opposite case is also possible. Finally, this may correspond to
exchange the order of two subsequent steps that use the cases 3 and 4;

0; P ≡ P : this corresponds either to skip one step in the derivation which uses
the last case, or to introduce such a step;

〈0〉 ≡ 0: this can not be applied outside the Q subterms.

Lemma 2. If P = C[or(~x,H)] or P = C[〈or〈~x,H〉〉] for some enabling con-
text C[•] then killable(P, f), if defined, has either the form C′[or(~x,H)] or
C′[〈or〈~x,H〉〉].

Proof. The proof is an easy induction on the structure of C[•].

Proof (of Proposition 3). The proof is by induction on n. One can prove by

induction on the derivation of P
a1−→ P1 that P = C[or@z(~x, ~y,H)] for some

enabling context C[•]. Also, P1 = C[or(~x,H)]. One can prove by structural in-
duction on enabling contexts C[•] that if P ′ = C[or(~x,H)] or P ′ = C[〈or〈~x,H〉〉]

then P ′ ↓or(~v′)(∅:~v′/~x′)
−−−−−−−−−−→ P ′′ for some P ′′. Thus the basic case is satisfied. We

prove now that each P ′ with the structure above will either do the receive ac-
tion or move to a process with the same structure. The thesis will follow. The
proof is by structural induction on C[•]. Notice that because of Lemma 1 we
have no need to consider structural congruence.



C[•] = •: the thesis holds since both or(~x,H) and 〈or〈~x,H〉〉 have as only pos-
sible actions the desired receive transition.

C[•] = C′[•]; Q: the transition can be derived either using rule Sequence or
using rule Throw-Seq: in both the cases the thesis follows by inductive
hypothesis.

C[•] = C′[•]|Q and symmetric: there are a few cases to consider. If the transi-
tion is derived using rules Synchro or Parallel then the thesis follows by
inductive hypothesis. If the transition has been derived using rule Throw-

Sync there are two cases: either the throw action is from C′[•] and inductive
hypothesis can be applied, or it is from Q. In this case the thesis follows from
Lemma 2.

C[•] = {C′[•] : H : u}q⊥: again different cases have to be considered. If the tran-
sition has been derived using rules Scope, Install, Catch-Fault, Ignore-

Fault, ReThrow and Compensation then the thesis follows by inductive
hypothesis. Note that rules Scope-Success, Scope-Fail, Scope-Handle-

Fault and Scope-Handle-Term instead can not be applied since the left
hand side does not satisfy the hypothesis.

C[•] = Exec(C′[•], or, ~y, l): the transition has been derived using either rule
Request-Exec or rule Throw-RExec. In both the cases the thesis fol-
lows by inductive hypothesis.

C[•] = 〈C′[•]〉: the transition has been derived using rule Protection, and the
thesis follows by inductive hypothesis.

C[•] = Q; C′[•] with Q ≡ 0: this has no derivable transitions.

Lemma 3. If P ′ = C[Exec(P, or , ~y, l)] or P ′ = C[〈or!f@l〉] for some enabling
context C[•] then killable(P, f), if defined, has one of the two forms above too.

Proof. The proof is an easy induction on the structure of C[•].

Proof (of Proposition 4). The proof is by induction on n. One can prove by

induction on the derivation of P
a1−→ P1 that P = C[or(~x, ~y, P )] for some en-

abling context C[•]. Also, P1 = C[Exec(P, or , ~y, l)]. One can prove by structural
induction on enabling contexts C[•] that if (i) P ′ = C[Exec(P, or , ~y, l)] or (ii)
P ′ = C[〈or!f@l〉] then the thesis is satisfied. Thus the basic case is satisfied. We
prove now that each P ′ with the structure above will either do the receive action
or move to a process with the same structure. The thesis will follow. The proof
is by structural induction on C[•]. Notice that because of Lemma 1 we have no
need to consider structural congruence.

C[•] = •: for case (i) there are three possible subcases. If the transition has
been derived using rule Request-Exec then the thesis follows by inductive
hypothesis. If it has been derived using rule Request-Response then the
thesis follows directly since the response is sent. If it has been derived using
rule Throw-RExec then the thesis follows since P ′| 〈or!f@l〉 has the struc-
ture in (ii). For case (ii) the thesis follows since the only possible transition
has label or(f)(∅ : ).



C[•] = C′[•]; Q: the transition can be derived either using rule Sequence or
using rule Throw-Seq: in both the cases the thesis follows by inductive
hypothesis.

C[•] = C′[•]|Q and symmetric: there are a few cases to consider. If the transi-
tion is derived using rules Synchro or Parallel then the thesis follows by
inductive hypothesis. If the transition has been derived using rule Throw-

Sync there are two cases: either the throw action is from C′[•] and inductive
hypothesis can be applied, or it is from Q. In this case the thesis follows from
Lemma 3.

C[•] = {C′[•] : H : u}q⊥: again different cases have to be considered. If the tran-
sition has been derived using rules Scope, Install, Catch-Fault, Ignore-

Fault, ReThrow and Compensation then the thesis follows by inductive
hypothesis. Note that rules Scope-Success, Scope-Fail, Scope-Handle-

Fault and Scope-Handle-Term instead can not be applied since the left
hand side does not satisfy the hypothesis.

C[•] = Exec(C′[•], or, ~y, l): the transition has been derived using either rule
Request-Exec or rule Throw-RExec. In both the cases the thesis fol-
lows by inductive hypothesis.

C[•] = 〈C′[•]〉: the transition has been derived using rule Protection, and the
thesis follows by inductive hypothesis.

C[•] = Q; C′[•] with Q ≡ 0: this has no derivable transitions.

Lemma 4. If killable(P, f) is defined then P 6= C[inst(H)] for each enabling
context C[•].

Proof. By case analysis according to the definition of killable(P, f).

Proof (of Proposition 5). The proof is by rule induction. Thanks to Lemma 1

we need only to prove that if P
th(f)
−−−→ P ′ then P 6= C′[inst(H)] for each enabling

context C′[•].
The thesis holds trivially for all rules with labels different from th(f). Let us

consider the different cases.

Throw: the thesis holds trivially.
Protection: the case is non trivial only for a = th(f). We can have 〈P 〉 =

C′[inst(H)] only if P = C′′[inst(H)], but this is impossible by inductive
hypothesis.

Throw-Sync: we can have P |Q = C′[inst(H)] only if either P = C′′[inst(H)]
or Q = C′′[inst(H)]. The first case is impossible by inductive hypothesis.
The second case is impossible because of Lemma 4.

Throw-Seq: we can have P ; Q = C′[inst(H)] only if either P = C′′[inst(H)] or
if P ≡ 0 and Q = C′′[inst(H)]. The first case is impossible by inductive hy-
pothesis. The second case is impossible since a process structural congruent
to 0 has no transitions, thus the premise of the rule can not hold.

ReThrow: we can have {P : H : u}q = C′[inst(H)] only if P = C′′[inst(H)],
but this is impossible by inductive hypothesis.

ThrowRExec: to have Exec(P, or , ~y, l) = C′[inst(H)] we need P = C′′[inst(H)],
but this is impossible by inductive hypothesis.


