
Disciplining Orchestration and
Conversation

in Service-Oriented Computing
Ivan Lanese

Vasco T. Vasconcelos
Francisco Martins
António Ravara

DI–FCUL TR–07–3

March 2007

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749–016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The files
are stored in PDF, with the report number as filename. Alternatively, reports are
available by post from the above address.

Disciplining Orchestration and Conversation

in Service-Oriented Computing

Ivan Lanese∗ Vasco T. Vasconcelos† Francisco Martins†

António Ravara‡

March 2007

Abstract

We give a formal account of a calculus for modeling service-based systems, suitable to
describe both service composition (orchestration) and the protocol that services run when
invoked (conversation). The calculus includes primitives for defining and for invoking services,
for isolating conversations between requesters and providers of services, and primitives for
orchestrating services, that is, to make use of existent services as building blocks to accomplish
complex tasks.

The calculus is equipped with a reduction and a labeled transition semantics; an equiv-
alence result relates the two. To give an hint on how the structuring mechanisms of the
language can be exploited for static analysis we present a simple type system guaranteeing
the compatibility between the protocols for service definition and for service invocation, and
ensuring the sequentiality of each protocol.

1 Introduction

Enterprise application integration, either to reuse legacy code, or to combine third-party software
modules, has long been tackled by several middleware proposals, namely using message brokers or
workflow management systems. As the popularity of using the Web to disseminate client-server
applications increased, traditional middleware was forced to provide integration across companies
over the Web. The technologies developed lay in the concept of Web service: a way of exposing
(to the Web) the functionality performed by internal systems and making it discoverable and
accessible through the Web in a controlled manner [1]. Web services emerged as the main paradigm
to program applications on the Web. An important reason is that currently available standards
[2, 3, 4, 11, 15] allow to easily orchestrate different Web services (distributed and belonging to
different organizations) to achieve required business goals. This paradigm allows to maximize
interoperability, a crucial feature in current software systems development.

While standards and programming tools are continuously improving, the formal bases of this
programming model are still uncertain: there is an urgent need for models and techniques allowing
the development of applications in a safe manner, while checking that systems satisfy the required
functionalities. These techniques should be able to deal with the different aspects of services (seen
in the abstract context of global computing [13]), including their dynamic behavior.

In this realm, and abstracting the concepts of service-oriented architectures (SOA), we have
identified the need for defining and for invoking services, for isolating conversations between
requesters and providers of services, and for orchestrating services, i.e. to make use of existent

∗Computer Science Department, University of Bologna, Italy
†Department of Informatics, Faculty of Sciences, University of Lisbon, Portugal
‡Security and Quantum Information Group, Institute of Telecommunications, and Department of Mathematics,

IST, Technical University of Lisbon, Portugal

1

services as building blocks to accomplish complex tasks. This paper proposes SSCC (Stream-
based Service Centered Calculus), a calculus for modeling service-based systems, inspired by SCC
[5] and Orc [17, 21].

The calculus provides primitives for service definition and invocation by simply composing
a service name with an arbitrary process describing the service protocol. In order to isolate
conversations, the calculus syntactically segregates value exchanges between two specific requester-
provider parties (resulting from particular a service invocation) in separate sessions. Finally,
regarding service orchestration, the most challenging aspect of SOA, we propose the concept of
stream as the vehicle to compose services. Streams are shared by two processes that run in parallel;
one of the parties writes in the stream, the other reads from it. The writing operation anonymous
(feeds to the nearest enclosing stream), whereas reading is named; this decision allows describing
complex patterns of interaction [24], while keeping the language simple and amenable to various
static analysis.

SSCC departs from SCC [5] in significant ways: persistent services are replaced by the more
flexible mechanism of recursion over arbitrary processes, service provider and service invocation
have become symmetric, and, most importantly, the return primitive of SCC was replaced by the
stream operations. The return operator makes the values produced by a service invocation available
at the upper level in the session nesting (where they get mixed with the remaining outputs in the
running session), making it difficult to get the results from a service invocation available where
they are needed. The programming style thus induced is both difficult to use and to analyze.

Another source of inspiration was Orc [21], a basic programming model for structured orches-
tration of Web services. Here a few coordination constructs are used to model the most common
patterns, and a satisfying expressiveness is claimed by presenting a formalization of all van der
Aalst workflow patterns [12, 24] However, in order to model the more challenging patterns, special
sites (the basic computation entity in Orc) are required, acting e.g. as semaphores. This is a coor-
dination concern, and in our opinion should be addressed within the coordination language (notice
that Orc does not allow to program such a kind of site). Thus we looked for a few basic primitives
that, when composed, would yield all the required coordination patterns (trying however to be
less general than, e.g., pi-calculus [20]), while ensuring a clean and structured programming style
and helping in the analysis of program properties.

The calculus comes equipped with a simple type system, inspired in works on session types [14,
16, 25] and on protocol compatibility [10]. Our setting is however simpler for two reasons. Conver-
sations within sessions do not explicitly mention session names, hence we do not require polarities
on session names [14, 25]. Also, sessions cannot be passed (neither in conversations nor in streams).
Introducing such a feature is straightforward. Future work includes exploring the additional flex-
ibility introduced by such a mechanism.

The three calculi proposals described below are strongly driven by existing standards or tech-
nologies, albeit achieving different levels of abstraction. Instead we tried to isolate a few primitives
allowing to describe both the orchestration and the conversation in a language amenable to static
analysis.

Carbone et al. [9] aim at capturing the principles behind Web service based business processes.
A global description of communication behavior needs to be complemented by an “endpoint-based”
description of each participant to the protocol, a projection of the global scenario. Such projection
should be sound and complete, in the sense that the global behavior is realized as communications
among endpoints. The main contribution is the identification of principles for global descriptions
which induce a type-preserving endpoint projection that is sound and complete with respect to
their operational semantics.

Lapadula, Pugliese, and Tiezzi introduce CŎWS [18], a processes calculus for Web service
orchestration that permits to express Web services in a primitive form, with special attention
for describing the interactions among Web service instances. For isolating interaction between
partners, CŎWS uses message correlation, the approach of WS-BPEL [2].

Busi et al. [7] propose SOCK, a process calculus that addresses the basic mechanisms of service
communication and composition, inspired in Web services specifications. In SOCK a service is
defined by means of an automaton that distinguishes the set of internal actions from the set of

2

external actions. So, service definition captures the dependencies between services in terms of what
is needed and what is offered by the service under definition. SOCK also uses message correlation
to define client-server interactions.

The contributions of this paper can be summarized as follows.

Clear separation of concerns: conversation and orchestration. The calculus allows for de-
scribing service interaction and service orchestration using distinct mechanisms. The con-
versation between parties engaged in a service interaction is described by a series of value
send/receive, isolated inside a session, while the orchestration of services is performed using
the stream operations. Notice that Orc [21] lacks the conversation primitives, and that both
Orc and SCC [5] feature insufficient orchestration.

Flexible programming. Service orchestration and service conversation are both easily struc-
tured in SSCC. We were able to encode all van der Aalst workflow patterns [24] (apart from
the ones that require termination), in intelligible code.

A type discipline. We provide a simple static analysis tool to check the compatibility between
service definition and service invocation, as well as protocol sequentiality.

The outline of the paper is as follows. The next section motivates the language via an example.
Sections 3 and 4 present the syntax, semantics and type system for the calculus. Further examples,
attesting the flexibility of the language and encoding of van der Aalst workflow patterns [24], can
be found in Section 6. Section 7 concludes the papers and points directions for further work.
The appendixes contain detailed proofs of the technical results. In Appendix A we show that
the labeled transition system coincides with the reduction semantics; in Appendix B we show
Subject-Reduction holds for our type system; finally, Appendix C shows that our type system is
safe.

2 A motivating example

We start with a simple process to deliver the price for a given date at a given hotel.

(date) <query−the−ho t e l−database−to−obta in−p r i c e >. p r i c e

Here, the parenthesis in (date) indicate the reception of a value, and an identifier alone, as in price ,
means publishing a value. Hotel bologna may then turn this conversation into a service definition,
by writing:

bo logna ⇒ (date) <query−the−ho t e l−database >. p r i c e

A client is supposed to meet the expectations of the service by providing a date and requesting
a price. We write it as follows.

bo logna ⇐ 31Dec2006 . (p r i c e) <do−something−with−p r i c e >

When the service provider (⇒) and the service client (⇐) get together, by means, e.g., of
parallel composition, a conversation takes place, and values are exchanged in both directions.

Now suppose that a broker comes to the market trying to provide better deals for its clients.
The behavior of the broker is as follows: it asks prices to three hotels that it knows of, waits for
two results, and publishes the best offer of the two. Calling the services for a given date is as
above:

bo logna ⇐ date . (p r i c e 1) . . . |
a z o r e s ⇐ date . (p r i c e 2) . . . |
l i s b o n ⇐ date . (p r i c e 3) . . .

In order to collect the prices for further processing, we introduce a stream constructor, playing
the role of a service orchestrator. The various prices are fed into the stream; a different process
reads the stream. We write it as follows.

3

stream
bo logna ⇐ date . (p r i c e 1) . feed p r i c e 1 |
a z o r e s ⇐ date . (p r i c e 2) . feed p r i c e 2 |
l i s b o n ⇐ date . (p r i c e 3) . feed p r i c e 3

as f i n
f (x) . f (y).< pub l i s h−the−min−of−x−and−y>

To write price1 into a stream we use the syntax feed price1 . To read a value from stream f we
use f(x).<use−x>. As mentioned in the introduction, writing is an anonymous operation (feeds to
the nearest enclosing stream), whereas reading is named. The above pattern is so common that
we provide a special syntax for it, inspired in Orc [21] (the various abbreviations used in this paper
are summarized in Figure 11.)

(c a l l bo logna (date) |
c a l l a z o r e s (date) |
c a l l l i s b o n (date)) >2 x y > <pub l i s h−the−min−of−x−and−y>

To complete the example we rely on a min service, chaining the first two answers, and publishing
the result.

b roke r ⇒ (date) . (
(c a l l bo logna (date) |
c a l l a z o r e s (date) |
c a l l l i s b o n (date)) >2 x y > c a l l min (x , y) >1 m > m)

Notice that a client interacts with the broker as if it was interacting with a particular hotel
(bologna in the example above). The downside it that the client does not know which hotel offers
the best price; we leave it to the reader to adapt the example as required.

Using call and P>n x1...xn >Q we have avoided explicitly mentioning streams altogether. Direct
stream manipulation can however be quite handy. The following example shows a broker that logs
all three answers, after publishing the best price of the first two (cf. the Discriminator Pattern [24]).

stream . . . as f i n

f (x) . f (y) . c a l l min (x , y) >1 m > (m | f (z) . l o g ⇐ x . y . z)

Our language is equipped with a notion of types, allowing to statically filter programs that
may incur in conversation errors, such as: the service provider expects a value and so does the
client (or the client is terminated). Returning to the hotel example, we can easily see that the
conversation between the service provider (⇒) and the client (⇐) is, from the point of view of the
provider, as follows: expect a date; send a price; terminate. The whole process of querying the
hotel database to obtain the price is opaque to the client, and does not show up in the type. We
write the type for an hotel as:

bo logna : : ?Date . ! P r i c e . end

The protocol with the broker is somewhat more complex, yet its interface with the client is
exactly the same.

b roke r : : ?Date . ! P r i c e . end

All values in a stream are required to be of the same type. The type of a process is a pair
describing the conversation it engages into and the values it writes into its stream. Considering
the part stream P as f in Q of the broker example, we have that P is of type (end, Price), meaning
that P does not engage in any interaction with the client, and that it feeds Price values into the
stream. On the other hand, Q is of type (! Price .end, T), since it communicates a price to the client
(the type of the stream is arbitrary, given that Q does not feed into its stream).

Further examples can be found in Section 6, after presenting the syntax, semantics, and type
system for the language.

4

P,Q ::= Processes
P |Q Parallel composition

| (νa)P Name restriction
| 0 Terminated process
| X Process variable
| rec X.P Recursive process definition
| a ⇒ P Service definition
| a ⇐ P Service invocation
| v.P Value sending
| (x)P Value reception
| stream P as f inQ Stream
| feed v.P Feed the process’ stream
| f(x).P Read from a stream

u, v ::= Values
a Service name

| unit Unit value

Figure 1: The syntax of SSCC

3 SSCC

This section presents the syntax and the semantics of SSCC.

3.1 Syntax

Processes are built using three kinds of identifiers: service names, stream names, and process
variables. Service names are ranged over by a, b, Values, ranged over by u, v, . . . can be either
service names or the unit value1. Values can also be used as variables (bound by value reception
or read from stream), and we use x, y, . . . in this case. Stream names are ranged over by f, g,
Process variables are ranged over by X, Y, . . . and used to define recursive processes.

Definition 3.1 (Syntax). The grammar in Figure 1 defines the syntax of processes.

The first five cases of the grammar introduce standard process calculi operators: parallel com-
position, restriction (notice that only service names can be restricted), the terminated process,
and recursion. We then have two constructs to build services: definition (or provider) and invoca-
tion (or client). Both are defined by their name a and protocol P . Notice that service definition
and service invocation are symmetric (as opposed to [5]). Service protocols are built using value
sending and receiving, allowing bidirectional communication between clients and servers. Finally
there are the three constructs for service orchestration, which constitute the main novelty of our
calculus. The stream construct declares a stream f for communication from P to Q. P can insert
a value v into the stream using feed v.P ′, and Q can read from there using f(x).Q′.

Processes at runtime exploit an extended syntax: the interaction of a service definition and
a service invocation produces an active session. Also, values in the stream are stored together
with the stream definition. We introduce a fourth kind of identifier: session names, use r, s, . . .
to range over them, and use n, m, . . . to range over both session and service names.

1Basic values such as integers and strings can be easily added, and will be used in the examples.

5

P,Q ::= Runtime processes
. . . as in Figure 1

| r B P Server session
| r C P Client session
| (νr)P Session restriction
| stream P as f = ~v inQ Stream with values

Figure 2: The run-time syntax of SSCC

(νn)(νm)P ≡ (νm)(νn)P (S-swap)
r ./ (νa)P ≡ (νa)(r ./ P) (S-extr-sess)

stream (νa)P as f = ~v inQ ≡ (νa)(stream P as f = ~v inQ) if a /∈ fn(Q) ∪ Set(~v)
(S-extr-streamL)

stream P as f = ~v in (νa)Q ≡ (νa)(stream P as f = ~v inQ) if a /∈ fn(P) ∪ Set(~v)
(S-extr-streamR)

(νa)0 ≡ 0 (S-collect)
(νa)P |Q ≡ (νa)(P |Q) if a /∈ fn(Q) (S-extr-par)
rec X.P ≡ P [rec X.P/X] (S-rec)

Figure 3: Structural congruence

Definition 3.2 (Runtime syntax). The grammar in Figure 2 defines the syntax of runtime pro-
cesses.

We use r ./ P to denote either rCP or rBP , and we assume that when multiple ./ appear in the
same rule they are instantiated in the same way, and that ./ denotes the opposite instantiation.
The constructor stream P as f inQ in Figure 1 is an abbreviation of stream P as f = 〈〉 inQ in
Figure 2.

Streams can be considered either ordered or unordered. An unordered stream is a multiset,
while an ordered one is a queue. In most cases the difference is not important. We write w :: ~v for
the stream obtained by adding w to ~v, and ~v :: w for a stream from which w can be removed. In
the latter case ~v is what we get after removing w. The semantics that we present can deal with
both ordered and unordered streams, by just changing the definition of ::.

3.2 Semantics

As for bindings, name x is bound in (x)P and in f(x).P ; name n is bound in (νn)P ; stream f is
bound in stream P as f inQ with scope Q; and process variable X is bound in rec X.P . Notation
fn(P) (resp. bn(P)) denotes the set of free (resp. bound) service or session names in P . We require
processes to have no free process variables.

As usual, to help the definition of the semantics we use a structural congruence relation. The
relation is standard, simply adding to that of the the π-calculus axioms that deal with scope
extrusion for the session and the stream construct (notice that session names are static, thus there
is no need of extrusion rules for them).

Definition 3.3 (Structural congruence). The rules in Figure 3, together with the commutative

6

CJK ::= • | (νn)CJK | CJK|Q | P |CJK | r B CJK | r C CJK
| stream CJK as f = ~v inQ | stream P as f = ~v in CJK

DJ, K ::= CJK|CJK | stream CJK as f = ~v in CJK

Figure 4: Contexts

DJ, K does not bind r or a r /∈ fn(P) ∪ fn(Q)
DJa ⇒ P, a ⇐ QK → (νr)DJr B P, r C QK

(R-sync)

DJ, K, CJK, and C′JK do not bind r or v
CJK and C′JK do not contain sessions around the •

(νr)DJr B CJv.P K, r C C′J(x)QKK → (νr)DJr B CJP K, r C C′JQ[v/x]KK
(R-comm)

CJK does not bind w and its • does not occur in the left part of a stream context
stream CJfeed w.P K as f = ~v inQ → stream CJP K as f = w : :~v inQ

(R-feed)

CJK does not bind w or f

stream P as f = ~v : : w in CJf(x).QK → stream P as f = ~v in CJQ[w/x]K
(R-read)

P → P ′

CJP K → CJP ′K
Q ≡ P → P ′ ≡ Q′

Q → Q′ (R-cong, R-str)

Figure 5: Reduction relation

monoid rules for (P, |,0) and with the α-conversion axiom, inductively define the structural con-
gruence relation on processes.

Interactions can happen in different active contexts. Since all our interactions are binary, we
find it useful to introduce also two-holes contexts, which we call double contexts.

Definition 3.4 (Active contexts). The grammar in Figure 4 generates active and double contexts.

Applying a double context to two processes P1 and P2 produces the process obtained by
replacing the first (in the prefix visit of the syntax tree) hole • with P1 and the second hole • with
P2.

We are now in a position to introduce the reduction semantics.

Definition 3.5 (Reduction semantics). The rules in Figure 5, together with symmetric rules of
R-comm (swapping the processes in the two holes of double context and/or the client and the server
sessions) and of R-sync (swapping the processes in the two holes of double context), inductively
define the reduction relation on processes.

Rule R-sync allows a service invocation to interact with a corresponding service definition.
This interaction produces a pair of complementary sessions, distinguished by a fresh restricted
name. Notice that both the service invocation and the service definition disappear (in particular,
service definition is not persistent as in SCC [5]). Rule R-comm allows communication between
corresponding sessions, created by the previous rule. Symmetric rules are used to take care of all
the possible combinations of value sends/receives and client/server session. Then there are the
two rules dealing with streams: rule R-feed puts a value in the stream while rule R-read takes
a value from the stream. Finally we have rule R-cong that allows reduction to happen inside
arbitrary active contexts, and rule R-str for exploiting structural congruence.

The reduction semantics is intuitive, but a semantics based on a labeled transition system
(henceforth LTS) is more convenient for proofs. Labels are as follows.

7

µ ::= Labels
↑v Value output

| ↓v Value input
| a⇒(r) Service definition activation
| a⇐(r) Service invocation
| ⇑v Stream feed
| f ⇓v Stream read
| r B ↑v Server session output
| r B ↓v Server session input
| r C ↑v Client session output
| r C ↓v Client session input
| rτ Conversation step
| τ Internal step
| (a) ↑a Value extrusion
| (a)r B ↑a Server session extrusion
| (a)r C ↑a Client session extrusion
| (a) ⇑a Stream feed extrusion

Figure 6: The syntax of labels

Definition 3.6 (Transition labels). The grammar in Figure 6 defines the syntax of labels.

We define an LTS in early style.

Definition 3.7 (LTS semantics). The rules in Figure 7, together with symmetric version of rule
L-serv-com-stream, inductively define the LTS semantics of SSCC.

The rules are quite simple. We just explain the meaning of labels and highlight a few more
tricky points. We use µ as metavariable for labels, and extend fn(−) and bn(−) to labels. The
only bound names in labels are r in service definition activation and service invocation and a in
extrusion labels (conventionally, they are all in parenthesis). Label ↑v denotes the output of value
v. Dually, ↓v is the input of value v. We use l v to denote either ↑v or ↓v, and we assume that
when multiple l v appear in the same rule they are instantiated in the same way, and that lv
denotes the opposite instantiation. Also, a⇐ (r) and a⇒ (r) denote respectively the invocation
and the reception of an invocation of a service a. Here r is the (bound) name of the new session
to be created. Also, ⇑v denotes the feeding of v to a stream while f ⇓v is the read of value v from
stream f . Notice that the value taken in input in rules L-receive and L-read is guessed, as we
are working with an early semantics. When an input or an output label crosses a session construct
(rule L-sess-val), we have to add to the label the name of the session and whether it is a server
or client session (for example ↓ v may become r C ↓v). This is useful in the development of the
type system. Notice that we can have two contexts causing interaction: parallel composition and
stream.

The label denoting a conversation step in a free session r is rτ , and a label τ is obtained
only when r is restricted (rule L-sess-res). Thus a τ action can be obtained in four cases: a
communication inside a restricted session, a service invocation, a feed or a read from a stream.
Finally, bound actions (a)µ are like the respective free counterparts µ but here a is extruded.
There is no need to deal explicitly with these actions since, if the interaction is internal to the
system, structural congruence can be used to broaden the scope of a.

8

v.P
↑v−→ P (x)P

↓v−→ P [v/x] (L-send, L-receive)

a ⇐ P
a⇐(r)−−−−→ r C P a ⇒ P

a⇒(r)−−−−→ r B P (L-call, L-def)

feed v.P
⇑v−−→ P f(x).P

f⇓v−−→ P [v/x] (L-feed, L-read)
P

µ−→ P ′ µ /∈ {⇑v, (v) ⇑v} bn(µ) ∩ (fn(Q) ∪ Set(~w)) = ∅
stream P as f = ~w inQ

µ−→ stream P ′ as f = ~w inQ
(L-stream-pass-P)

Q
µ−→ Q′ µ 6= f ⇓v bn(µ) ∩ (fn(P) ∪ Set(~w)) = ∅

stream P as f = ~w inQ
µ−→ stream P as f = ~w inQ′

(L-stream-pass-Q)

P
⇑v−−→ P ′

stream P as f = ~w inQ
τ−→ stream P ′ as f = v : : ~w inQ

(L-stream-feed)

Q
f⇓v−−→ Q′

stream P as f = ~w : : v inQ
τ−→ stream P as f = ~w inQ′ (L-stream-cons)

P
µ−→ P ′ bn(µ) ∩ fn(Q) = ∅

P |Q µ−→ P ′|Q
(L-par)

P
lv−−→ P ′

r ./ P
r./lv−−−−→ r ./ P ′

P
µ−→ P ′ µ /∈ {l v, (v) ↑v} r /∈ bn(µ)

r ./ P
µ−→ r ./ P ′

(L-sess-val, L-sess-pass)

P
r./lv−−−−→ P ′ Q

r./lv−−−−→ Q′

stream P as f = ~w inQ
rτ−−→ stream P ′ as f = ~w inQ′ (L-sess-com-stream)

P
a⇒(r)−−−−→ P ′, Q

a⇐(r)−−−−→ Q′

stream P as f = ~w inQ
τ−→ (νr)stream P ′ as f = ~w inQ′ (L-serv-com-stream)

P
r./lv−−−−→ P ′ Q

r./lv−−−−→ Q′

P |Q rτ−−→ P ′|Q′ (L-sess-com-par)

P
a⇒(r)−−−−→ P ′ Q

a⇐(r)−−−−→ Q′

P |Q τ−→ (νr)(P ′|Q′)
(L-serv-com-par)

P
µ−→ P ′ n /∈ n(µ)

(νn)P
µ−→ (νn)P ′

P
µ−→ P ′ µ ∈ {↑a, r ./↑a,⇑a}

(νa)P
(a)µ−−−→ P ′

(L-res,L-extr)

P
rτ−−→ P ′

(νr)P τ−→ (νr)P ′
P

µ−→ P ′, P ≡ Q, P ′ ≡ Q′

Q
µ−→ Q′

(L-sess-res, L-struct)

Figure 7: LTS semantics

Some processes, such as r C r C P , can be written using the runtime syntax, but they are not
reachable from processes written in the basic syntax of Definition 3.1. We consider these processes
ill-formed, and therefore make the following assumption, which is necessary for most of the results.

Assumption 1. From now on, we will consider only processes that either are in the syntax of
Definition 3.1, or can be obtained from them via reductions or LTS transitions.

The reduction and the LTS semantics coincide. A detailed proof is in Appendix A.

Theorem 3.8. For each P and Q, P → Q iff P
τ−→ Q.

4 Type system

9

T ::= Types
Unit unit type

| [U] service type
U ::= Conversation types

?T.U input
| !T.U output
| end end of conversation
| X type variable
| rec X.U recursive type

Figure 8: The syntax of types

?T.U ,!T.U !T.U ,?T.U end , end X , X rec X.U , rec X.U

Figure 9: Complement of a protocol

SSCC have been developed keeping in mind typing issues. We present here a simple type system
to show the kind of properties (e.g., protocol compatibility) that our language allows to express,
but we do not go into refined typing techniques for proving, e.g., deadlock freedom. This will be
the topic of future work.

Definition 4.1 (Types). The grammar in Figure 8 defines the syntax of types.

The term Unit denotes the only basic type 2, and [U] is the type of a service (and of a session)
with protocol U . The protocol is always seen from the server point of view. Types for streams are
of the form {T} where T is the type of the values the stream carries. Types for processes are of
the form (U, T) where U is the protocol followed by the process, and T is the type of the values
the process feeds into its stream.

The rec operator for types is a binder, giving rise, in the standard way, to notions of bound and
free variables and alpha-equivalence. Similarly to processes, we do not distinguish between alpha-
convertible types. Furthermore, we take an equi-recursive view of types [22], not distinguishing
between a type rec X.U and its unfolding T [rec X.U/X]. We are interested on contractive (not
including subterms of the form rec X.rec X1 . . . rec Xn.X) types only [22].

Since we are interested in protocol compatibility, we need to find whether two protocols are
complementary. To this end we introduce the complement operation in Figure 9. Intuitively, if a
client executes protocol U and a server protocol U , the conversation between them can proceed
without errors.

Typing judgments are as follows,

Γ ` P : (U, T) Processes
Γ ` v : T Values

where Γ is a map with entries a : T , r : T , f : {T}, and X : (U, T). The typing system is defined
by the rules in Figure 4.

The type of a process abstracts its behavior: the first component shows the protocol that
the process wants to follow (provided that it is inserted in a suitable session) while the second
component traces the type of the values fed to its stream. Notice that the properties of internal

2The extension with, say, integers and strings is trivial.

10

Γ, n : T ` n : T Γ, f : {T} ` f : {T} Γ ` unit : Unit
(T-name, T-stream, T-unit)

Γ ` P : (U, T) Γ ` v : T ′

Γ ` v.P : (!T ′.U, T)
Γ, x : T ′ ` P : (U, T)
Γ ` (x)P : (?T ′.U, T)

(T-send, T-receive)

Γ ` P : (U, T) Γ ` a : [U]
Γ ` a ⇒ P : (end, T)

Γ ` P : (U, T) Γ ` a : [U]
Γ ` a ⇐ P : (end, T)

(T-def, T-call)

Γ ` P : (U, T) Γ ` r : [U]
Γ ` r B P : (end, T)

Γ ` P : (U, T) Γ ` r : [U]
Γ ` r C P : (end, T)

(T-sess-s, T-sess-c)

Γ ` P : (U, T) Γ ` v : T

Γ ` feed v.P : (U, T)
Γ, x : T ` P : (U, T ′) Γ ` f : {T}

Γ ` f(x).P : (U, T ′)
(T-feed, T-read)

Γ ` 0 : (end, T)
Γ, n : ` P : (U, T)
Γ ` (νn)P : (U, T)

(T-nil, T-res)

Γ ` P : (U, T) Γ ` Q : (end, T)
Γ ` P |Q : (U, T)

Γ ` P : (end, T) Γ ` Q : (U, T)
Γ ` P |Q : (U, T)

(T-par-l, T-par-r)

Γ ` P : (U, T) Γ, f : {T} ` Q : (end, T ′) w ∈ Set(~v) ⇒ Γ ` w : T

Γ ` stream P as f = ~v inQ : (U, T ′)
(T-stream-l)

Γ ` P : (end, T) Γ, f : {T} ` Q : (U, T ′) w ∈ Set(~v) ⇒ Γ ` w : T

Γ ` stream P as f = ~v inQ : (U, T ′)
(T-stream-r)

Γ, X : (U, T) ` X : (U, T)
Γ, X : (U, T) ` P : (U, T)

Γ ` rec X.P : (U, T)
(T-var, T-rec)

Figure 10: Typing rules

sessions and streams are guaranteed by the typing derivation and the typing assumption in Γ and
they do not influence the type of the process. For instance if the process is a session r B P then
its protocol is end, but the protocol followed by P is traced by an assumption r : [U] in Γ. When
the complementary session is found, the compatibility check is performed.

Our types force protocols to be sequential: we think that this is a good programming style.
Suppose for instance that the protocol contains two parallel outputs: then there should be two
inputs in the complementary protocol, and one can not know which output is matched with each
input. Either this is not important (and in this case one can just sort the outputs in an arbitrary
way) or it is, and in this second case errors could occur. Having parallel protocols also makes the
check for protocol compatibility much more complex. Choices in protocols can be added following
the ideas in [16]. Notice that this does not forbid, e.g., to have two concurrent service invocations,
since sequentiality is only enforced in protocols.

The type system enjoys subject reduction and prevents erroneous behaviours in typable pro-
cesses (a result commonly known as type safety). Appendices B and C contain the proofs of these
results.

Theorem 4.2 (Subject reduction). Let P be a process such that Γ ` P : (U, T) and P → P ′.
Then Γ ` P ′ : (U, T).

Protocols, in general, are not exempt from errors. An example of a protocol failure is rBv.P |rC
0, and this cannot be typed since the two parallel components require different assumptions for
r (r : [!T.U ′] where T is the type of v, and r : [end] respectively). Similarly a non-sequential
conversation is r B (v.P |u.Q), and this cannot be typed since both v.P and u.Q have non end
protocols, thus rules for parallel composition can not be applied.

11

call a(x1 ,..., xn) , a ⇐ x1...xn.(y) feed y

P >n x1 ... xn > Q , stream P as f in f(x1)... f(xn)Q

P > x > Q , stream P as f in rec X.f(x)(P | X)

a * ⇒ P , rec X. a ⇒ (P | X)

if b then P , b ⇐ (x)(y) x ⇐ feed unit >1 > P

if ¬b then P , b ⇐ (x)(y) y ⇐ feed unit >1 > P

if b then P else Q , if b then P | if ¬b then Q

[?T1...?Tn.!T.end] , T1 → ... → Tn → T

[!T.end] , ε → T

Bool , [![end].![end].end]

Figure 11: Derived constructs

Theorem 4.3 (Type Safety). Let P be a typable process. Then P has no subterm of the following
forms.

Protocol:

DJr ./ CJv.P K, r ./ C′Ju.QKK Two outputs
DJr ./ CJv.P K, r ./0K Output and finished protocol
DJr ./ CJ(x)P K, r ./ C′J(y)QKK Two inputs
DJr ./ CJ(x)P K, r ./0K Input and finished protocol

where in all the cases DJ, K does not bind r and CJK and C′JK do not contain sessions around
the •.

Sequentiality:

DJv.P, u.QK Parallel outputs
DJ(x)P, u.QK Parallel input and output
DJv.P, (y)QK Parallel output and input
DJ(x)P, (y)QK Parallel inputs

where in all cases DJ, K does not contain sessions around the •.

5 Further examples

This section explores examples that highlight the versatility of SSCC. Services in SSCC are
ephemeral: they don’t survive invocation. Recursion can be used to provide for persistent services:
a service a ⇒ P can be made persistent by writing instead rec X.a ⇒ (P | X), which we abbreviate
to a * ⇒ P. Figure 11 gathers all the abbreviations used in the paper.

The first example shows that naming streams can be handy. Fork-join is a pattern that spawns
two threads, and resumes computation after receiving a value from each thread. In the example
below, services a and b are run in parallel; call a feeds the first result produced by the service into
stream f, and similarly for call b and stream g.

f o rk−and− j o i n : : ? (! T1 . end) . ? (! T2 . end) . ! T1 . ! T2 . end
f o rk−and− j o i n ∗⇒ (a) (b) (

stream c a l l a as f i n
stream c a l l b as g i n

f (x) . g (y) . x . y)

The example is inspired in Orc [21, 17], but here we do not kill service invocations a and b,
instead let them run to completion. Orc is not able to match our semantics: reading a single value
from an expression can only be performed via the where construct, and that necessarily means

12

terminating the evaluation of the expression. We feel that termination should be distinct from
normal orchestration; we leave for further work termination (and the corresponding compensation).
Notice however that the declared type makes sure that services a and b produce each a single value.

The second example describes an idiom where for each value x produced by a process P, a
second process Q is started. If process P produces its values by feeding into its stream, then, in
the process below a new copy of process Q is spawned for each value read from the stream. Process

stream P as f i n rec X. f (x) . (Q | X)

can be abbreviated to P > x > Q (x can be dropped if it does not occur in Q), so that a service
that reads news from sites CNN and BBC and emails each to a given address can be written as:

emai l−news : : ? Address . end
emai l−news ∗⇒ (a) ((c a l l CNN | c a l l BBC) > x > ema i l ⇐ a . x)

The example and the short syntax is again from Orc. In this case we are faithful to the Orc
semantics.

The third example describes stateful services, that is services that produce values influenced
over time by other computations. Examples abound in the literature, from data-structures to we-
blog update [5]. Contrary to SCC [5], our language allows writing stateful services without exploit-
ing service termination. Here we concentrate on a rather distilled example: a one place buffer-cell
with read and write operations. Inspired in the encoding of objects in the pi-calculus [23], we
set up a simple, ephemeral, service to produce a value: buffer ⇒ v. Service get calls the buffer
service to obtain its value (thus consuming the service provider), replies the value to the client,
and replaces the buffer service.

get : : ! I n t . end

get ∗⇒ c a l l b u f f e r >1 v > (v | b u f f e r ⇒ v)

Service set calls the buffer service (in order to consume the service provider), then gets the new
value from the client and replaces the buffer with this value.

s e t : : ? I n t . end

s e t ∗⇒ c a l l b u f f e r >1 > (w) (b u f f e r ⇒ w)

Finally, the cell service sets up three services—get, set, and buffer—sends the first two to the
client, and keeps buffer locally with initial value 0.

c e l l : : ! (! I n t . end) . ! (? I n t . end) . end
c e l l ∗⇒ (ν bu f f e r , get , s e t) . ge t . s e t . (b u f f e r ⇒ 0 |

get ∗⇒ c a l l b u f f e r >1 v > (v | b u f f e r ⇒ v) |
s e t ∗⇒ c a l l b u f f e r >1 > (w) (b u f f e r ⇒ w))

The last example simulates buffers that can be read and written on the same side of the stream

construct, thus overcoming the apparent limitation of anonymous buffer writing. A back service
relays the values from the right to the left part of a stream construct, where they are fed into the
stream. The technique is embodied in the interleaved parallel routing pattern of van der Aalst [24],
where a set of activities is executed in arbitrary order, and no two activities are executed at the
same moment. We assume that each service (a1 to an) signals termination by sending a value, as
witnessed by their types. Contrary to Orc [12], SSCC is expressive enough to describe the pattern
within the language.

i n t e r l e a v e : : ? (! T1 . end) . . . ? (! Tn . end) . end
i n t e r l e a v e ⇒ (a1) . . . (an) (ν back) (

stream
back ∗⇒ (x) feed x

as l o c k i n
back ⇐ un i t |
l o c k () . a1 ⇐ (x) (back ⇐ un i t) | . . . |
l o c k () . an ⇐ (x) (back ⇐ un i t))

13

6 Programming workflow patterns in SSCC

In this section we illustrate the expressiveness of SSCC by implementing the Workflow Patterns
(WP) from Van der Aalst et. al [24]. This allows to contrast our approach with SCC and Orc [12],
which have similar aims. While Workflow Patterns are an interesting benchmark, they are aimed
at workflow description languages, not at calculi for SOC. For these reason some of the patterns are
not meaningful (WP11) in our contexts, while others are redundant (e.g., WP12 is analogous to
WP2, since process calculi can obviously handle multiple instances). Also, some patterns require
the ability to kill processes, which has not yet been introduced in SSCC, and thus are out of our
possibilities. On the contrary WPs consider only “activities”, i.e., services that receive one value
and give back one result, while our calculus can model complex protocols.

All patterns (in reference [24]) are described as services; we also present their types. Those
that have multiple entry points (the various merges, for example) are modeled with a vector of
boolean values, describing which services should be invoked.

An activity is a service that writes at most a value on the client side (replies at most a value).
The simplest activity is the null service.

n u l l S e r v i c e : : ε → Unit
n u l l S e r v i c e ∗⇒ un i t

Most of the patterns below allow definitions in SSCC that do not directly use neither the stream
operations (stream, feed, and f(x)P) nor recursion. To allow a comparison we also show how the
patterns can be implemented in SCC. Services in SCC have always one parameter: we exploit it
as first input for the server if the server protocol should start with an input, and we assume it is
unused otherwise and use unit as invocation value.

In what follows we give a brief description of each workflow pattern and present an illustrative
example, both taken from [24].

WP1: Sequence

“An activity in a workflow process is enabled after the completion of another activity in the same
process. Example: an insurance claim is evaluated after the client’s file is retrieved.”

seq : : (ε → T1) → (ε → T2) → T2

seq ∗⇒ (a1) (a2) c a l l a1 >1 > c a l l a2 >1 x > x

In Orc the implementation is similar. In SCC the most direct implementation is:

seq ⇒ (a1) (a2) a2 ⇐ a1 ⇐ un i t

This implementation is fine for activities (actually here a2 is invoked with the value from a1

rather than of unit), but if a1 is not an activity then a2 is called for each value returned by a1,
and this is not the expected semantics. In SSCC this can not happen since the remaining values
returned by a1 stay forever in the stream. If one wants to enforce correct behavior one should
write:3

seq ⇒ (a1) (a2) (ν r) (r B (a1 ⇐ un i t | (r e s) re tu rn r e s) |
r B (v) a2 ⇐ un i t)

Also the problem of which value to use for invoking a2 is solved in SSCC. Notice that the most
intuitive encoding of this pattern in SCC uses a conversation (a process of the form r B P |r B Q),
which we view as runtime syntax in SSCC. However sessions can be avoided also in SCC using
“fake” service invocations and definitions (however service definitions stay there afterward since
they are persistent).

3This can be done also by type checking the protocol for a1: this feature is not yet available in SCC but it can
be easily transferred there.

14

WP2: Parallel Split

“A point in the workflow process where a single thread of control splits into multiple threads of
control which can be executed in parallel, thus allowing activities to be executed simultaneously or
in any order. Example: after registering an insurance claim two parallel subprocesses are triggered:
one for checking the policy of the customer and one for assessing the actual damage.”

Parallel composition is built-in. The same in SCC and in Orc.

WP3: Synchronization

“A point in the workflow process where multiple parallel subprocesses/activities converge into one
single thread of control, thus synchronizing multiple threads. It is an assumption of this pattern
that each incoming branch of a synchronizer is executed only once. Example: insurance claims
are evaluated after the policy has been checked and the actual damage has been assessed.”

sync : : (ε → T) → . . . → (ε → T) → Unit
sync ∗⇒ (a1) . . . (an) (c a l l a1 | . . . | c a l l an) >n > un i t

Orc uses the where and SCC uses sessions (or “fake services”):

sync ⇒ (a1) . . . (an) (ν r) (r B (a1 ⇐ un i t | . . . | an ⇐ un i t) |
r B (x1) . . . (xn) re tu rn un i t)

WP4: Exclusive Choice

“A point in the workflow process where, based on a decision or workflow control data, one of
several branches is chosen. Example: based on the workload, a processed tax declaration is either
checked using a simple administrative procedure or is thoroughly evaluated by a senior employee.”

xo r : : Bool → (ε → T) → (ε → T) → T

xor ∗⇒ (b) (a1) (a2) i f b then c a l l a1 >1 x > x e l s e c a l l a2 >1 x > x

Notice that if-then-else cannot be typed with the current system unless both branches have
the empty protocol (since they occur in parallel). One should add a dedicated rule to exploit the
knowledge that only one of the branches is actually executed.

In SCC we can implement true and false in a similar way. Then we have:

i f b then P = (ν s) s B b {(−) (x) (y) re tu rn x} ⇐ un i t
| s B (x1) (ν r) r B x1 {(−) re tu rn un i t } ⇐ un i t

| r B (z) P
i f ¬b then P = (ν s) s B b {(−) (x) (y) re tu rn y} ⇐ un i t

| s B (x1) (ν r) r B x1 {(−) re tu rn un i t } ⇐ un i t
| r B (z) P

Notice that while in SSCC feeds from P are not intercepted by the if context, in SCC the
returns are lost since P is executed inside a subsession. To forward the results to the caller extra
programming effort is required. Actually since P can not be executed at top level (since in order
to start it when a trigger coming from a subsession is received, the trigger should be transmitted
using a return, that either goes to the other side, or executes P inside a session) a forward of values
is needed, but we are able to specify only a finite amount of forwarding. Thus if P can give back
an unbounded number of replies this can not be programmed. Anyway in the following example
we always suppose to have the if with forwarding of the results. Since we deal only with activities
(one result) then it can be implemented.

The if-then-else is as in SSCC.

xo r ⇒ (b) (a1) (a2) i f b then a1 ⇐ un i t e l s e a2 ⇐ un i t

Because of the above observation the xor in SCC (with the above implementation of if) gives
back no value.

15

WP5: Simple Merge

“A point in the workflow process where two or more alternative branches come together without
synchronization. It is an assumption of this pattern that none of the alternative branches is ever
executed in parallel. Example: after the payment is received or the credit is granted the car is
delivered to the customer.”

merge : : Bool → (ε → T) → . . .→ Bool → (ε → T) → Unit
merge ∗⇒ (b1) (a1) . . . (bn) (an)

(i f b1 then c a l l a1 | . . . | i f bn then c a l l an) >1 > un i t

More in line with van der Aalst [24] than patterns in Orc, since the fact that only some of
the activities are activated is modeled. Notice that >1 > can be replaced by > >, given the
assumptions.

WP6: Multi-Choice

“A point in the workflow process where, based on a decision or workflow control data, a number
of branches are chosen. Example: after executing the activity evaluate damage the activity con-
tact fire department or the activity contact insurance company is executed. At least one of these
activities is executed. However, it is also possible that both need to be executed.”

mu l t iCho i c e ∗⇒ (b1) (a1) . . . (bn) (an)

(i f b1 then c a l l a1 >1 x > x | . . . |
i f bn then c a l l an >1 x > x)

Not an activity (multiple replies). Not typable since there are many parallel outputs.
A similar implementation is possible in Orc and in SCC.

WP7: Synchronizing Merge

“A point in the workflow process where multiple paths converge into one single thread. If more
than one path is taken, synchronization of the active threads needs to take place. If only one
path is taken, the alternative branches should reconverge without synchronization. It is an as-
sumption of this pattern that a branch that has already been activated, cannot be activated
again while the merge is still waiting for other branches to complete. Example: extending the
example of WP6 (Multi-choice), after either or both of the activities contact fire department and
contact insurance company have been completed (depending on whether they were executed at
all), the activity submit report needs to be performed (exactly once).”

syncMerge : : (ε → Bool) → (ε → Unit) → . . .→
(ε → Bool) → (ε → Unit) → Unit

syncMerge ∗⇒ (b1) (a1) . . . (bn) (an)
c a l l sync (i f S i g n a l b 1 a 1 , . . . , i f S i g n a l b n a n) >n > un i t

i f S i g n a l b i a i : : ε → Unit

i f S i g n a l b i a i ⇒ I f S i g n a l (b i , c a l l a i >1 x > x)

where

I f S i g n a l (b ,P) = i f b then P e l s e un i t

Similar to Orc and SCC.

WP8: Multi-Merge

“A point in a workflow process where two or more branches reconverge without synchroniza-
tion. If more than one branch gets activated, possibly concurrently, the activity following the
merge is started for every activation of every incoming branch. Example: two activities au-
dit application and process application running in parallel which should both be followed by an
activity close case.”

16

Replace, in WP5, >1 > by > >. Not an activity (multiple replies). Not typable, since there are
many outputs in parallel (remember that > > unfolds in a recursion with a parallel composition
inside).

Similar to the Orc implementation. In SCC we can use the technique of WP1. Notice also that
now the behavior of the synchronization is the expected one (one instance is launched for each
value).

WP9: Discriminator

“The discriminator is a point in a workflow process that waits for one of the incoming branches to
complete before activating the subsequent activity. From that moment on it waits for all remaining
branches to complete and “ignores” them. Once all incoming branches have been triggered, it resets
itself so that it can be triggered again (which is important otherwise it could not really be used in
the context of a loop). Example: to improve query response time, a complex search is sent to two
different databases over the Internet. The first one that comes up with the result should proceed
the flow. The second result is ignored.”

d i s c r i m i n a t o r : : (ε → T) → . . .→ (ε → T) → Unit
rec X. d i s c r i m i n a t o r ⇒ (a1) . . . (an)

stream c a l l a1 | . . . | c a l l an as f i n
f (x1) . un i t . f (x2) . . . f (xn) .X

In SCC, we can not control the point where the service discriminator becomes available again.

d i s c r i m i n a t o r ⇒ (a1) . . . (an)
(ν r) r B a1 ⇐ un i t | . . . | an ⇐ un i t

r B (x1) . re tu rn un i t . (x2) . . . (xn)

Here the Orc implementation supposes the existence of a basic site S, with methods put and get,
acting as a buffer. This site can not be described in Orc (Orc does not deal with site programming).
We think that sites should deal only with computation, while all the coordination should be done
at the coordination language level. This implementation fails to satisfy this separation of concerns.
We are not aware of better implementations in Orc.

WP10: Arbitrary Cycles

“A point in a workflow process where one or more activities can be done repeatedly.”
Arbitrary cycles can be obtained via mutual invocations among services.
We show here how an example of structured cycle can be programmed: call service a while

service c returns true.

wh i l e : : (ε → Bool) → (ε → T) → Unit

wh i l e ∗⇒ (c) (a) c a l l c >1 b >

I f S i g n a l (b , c a l l a >1 > c a l l wh i l e (c , a)) >1 x > x

Programmed as in Orc.

WP11: Implicit Termination

“A given subprocess should be terminated when there is nothing else to be done. In other words,
there are no active activities in the workflow and no other activity can be made active (and at the
same time the workflow is not in deadlock).”

This is not a real pattern. Processes should be terminated only when they have finished their
activity, not when a final state is reached by one of their components. This is what happens in
our case and in SCC. This is the standard thing in calculi, as opposed to workflow managers.

17

WP12: Multiple Instances without Synchronization

“Within the context of a single case (i.e., workflow instance) multiple instances of an activity
can be created, i.e., there is a facility to spawn new threads of control. Each of these threads of
control is independent of other threads. Moreover, there is no need to synchronize these threads.
Example: a customer ordering a book from an electronic bookstore such as Amazon may order
multiple books at the same time. Many of the activities (e.g., billing, updating customer records,
etc.) occur at the level of the order. However, within the order multiple instances need to be
created to handle the activities related to one individual book (e.g., update stock levels, shipment,
etc.). If the activities at the book level do not need to be synchronized, this pattern can be used.”

Multiple instances of the same service can be executed concurrently without any particular
problem. Thus, this is the same as WP2. The same in SCC.

WP13: Multiple Instances with a Priory Design Time Knowledge

“For one process instance an activity is enabled multiple times. The number of instances of a given
activity for a given process instance is known at design time. Once all instances are completed
some other activity needs to be started. Example: the requisition of hazardous material requires
three different authorizations.”

s ync n : : (ε → T) → Unit

s ync n ∗⇒ (a) c a l l sync (a , . . . , a) >1 x > x

There are n arguments to service sync. The number of instances (calls to) of service a is known
to be n.

In SCC:

s ync n ⇒ (a) sync {a a . (x) re tu rn x} ⇐ a

WP14: Multiple Instances with a Priory Runtime Knowledge

“For one case an activity is enabled multiple times. The number of instances of a given activity for
a given case varies and may depend on characteristics of the case or availability of resources, but
is known at some stage during runtime, before the instances of that activity have to be created.
Once all instances are completed some other activity needs to be started. Example: when booking
a trip, the activity book flight is executed multiple times if the trip involves multiple flights. Once
all bookings are made, the invoice is to be sent to the client.”

We treat this case as particular example of WP15. See below for the discussion.

WP15: Multiple Instances without a Priory Runtime Knowledge

“For one case an activity is enabled multiple times. The number of instances of a given activity
for a given case is not known during design time, nor is it known at any stage during runtime,
before the instances of that activity have to be created. Once all instances are completed some
other activity needs to be started. The difference with WP14 is that even while some of the
instances are being executed or already completed, new ones can be created. Example: for the
processing of an insurance claim, zero or more eyewitness reports should be handled. The number
of eyewitness reports may vary. Even when processing eyewitness reports for a given insurance
claim, new eyewitnesses may surface and the number of instances may change.”

Invoke service a as long as service c replies true. Instances are executed in parallel: the first
instance is launched in parallel with parloop c a . Termination of an instance is checked together
with the termination of the parloop launched together.

p a r l o o p c a : : ε → Unit

p a r l o o p c a ∗⇒ c a l l c >1 b >

I f S i g n a l (b , c a l l sync (a , p a r l o o p c a)) >1 x > x

18

For simplicity we have chosen a loop service specific for a and c. To write a generic loop
service that accepts two parameters (c and a) we have to customize sync to invoke services with
parameters. We leave the exercise to the reader.

Similar implementations can be done in Orc and in SCC.
As far as WP 14 is concerned, the main choice is how to represent the runtime knowledge

about the required number of instances to be executed, i.e. how to represent state. Possibilities
include taking advantage of the number of values in a stream, of the number of instances of a
service available, or of the number of values in a protocol.

WP16: Deferred Choice

“A point in the workflow process where one of several branches is chosen. In contrast to the XOR-
split, the choice is not made explicitly (e.g. based on data or a decision) but several alternatives are
offered to the environment. However, in contrast to the AND-split, only one of the alternatives is
executed. This means that once the environment activates one of the branches the other alternative
branches are withdrawn. It is important to note that the choice is delayed until the processing in
one of the alternative branches is actually started, i.e. the moment of choice is as late as possible.
Example: after receiving products there are two ways to transport them to the department. The
selection is based on the availability of the corresponding resources. Therefore, the choice is
deferred until a resource is available.”

Requires a means to kill unwanted computations (cf. FIRST in [12]).

WP17: Interleaved Parallel Routing

“A set of activities is executed in an arbitrary order: each activity in the set is executed, the
order is decided at run-time, and no two activities are executed at the same moment (i.e. no two
activities are active for the same workflow instance at the same time). Example: the Navy requires
every job applicant to take two tests: physical test and mental test. These tests can be conducted
in any order but not at the same time.”

See the last example of Section 5. Ephemeral services are crucial here. This cannot be imple-
mented in SCC (even with the kill, since the kill can delete the resource but not atomically with
the service invocation, thus concurrent invocations may succeed).

Orc here exploits a basic site M implementing a lock with methods acquire and release. This
site cannot be programmed inside Orc (see discussion in WP9).

7 Conclusion and further work

SSCC is a typed language aiming at flexibly describing services, conversation, and orchestration,
with a restricted set of constructors. The expressivity of the language is witnessed by the simple
implementation of all workflow patterns in [24] (except for the ones that require some form of
explicit process termination).

There is a close relationship between the calculus here proposed (and of SCC [5] without
session termination) and the pi-calculus with session types [16, 25]. However, the emphasis of the
pi-calculus with sessions is on conversations and not on orchestration. Rather than using the full
pi-calculus as a coordination tool, our approach is more constrained (for example, streams are
never communicated), what should help analysis.

Future work includes the incorporation of termination and compensation primitives to model
long-running transactions. Some existent process calculi proposals include basic primitives to
interrupt running conversations and program compensations [5, 6, 7, 8, 18, 19].

Also, we have clearly separated in the language three potential sources of deadlock—service
invocation, protocols (that is conversations within sessions), and streams—hoping to establish
a basis suitable to develop further analysis tools. Finally, the labeled transition system here
developed may be used as basis to develop equivalences and logics for the world of services.

19

Acknowledgments. This work was partially supported by the EU FEDER and the Portuguese
FCT (via the Center for Logic and Computation and the project SpaceTimeTypes, POSC/EIA/-
55582/2004), and the EU IST proactive initiative FET-Global Computing (project Sensoria, IST-
2005-16004). We thank L. Caires, R. Bruni, D. Sangiorgi and G. Zavattaro for valuable comments
and suggestions.

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services—Concepts, Architectures
and Applications. Springer, 2003.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process Execution Language
for Web Services. Version 1.1, 2003.

[3] A. Banerji, C. Bartolini, D. Beringer, V. Chopella, K. Govindarajan, A. Karp, H. Kuno,
M. Lemon, G. Pogossiants, S. Sharma, and S. Williams. Web Services Conversation Language
(WSCL) 1.0, 2002.

[4] T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, M. Hondo, Y. L. Husband,
K. Januszewski, S. Lee, B. McKee, J. Munter, and C. von Riegen. UDDI Version 3.0, 2002.

[5] M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins, U. Montanari,
A. Ravara, D. Sangiorgi, V. Vasconcelos, and G. Zavattaro. SCC: a service centered calculus.
In Proc. of WS-FM’06, volume 4184 of Lecture Notes in Computer Science, pages 38–57.
Springer, 2006.

[6] R. Bruni, H. Melgratti, and U. Montanari. Theoretical foundations for compensations in flow
composition languages. In Proc. of POPL’05, pages 209–220. ACM Press, 2005.

[7] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. SOCK: a calculus for service
oriented computing. In Proc. of ICSOC’06, volume 4294 of Lecture Notes in Computer
Science, pages 327–338. Springer, 2006.

[8] M. Butler, T. Hoare, and C. Ferreira. A trace semantics for long-running transactions. In
Proceedings of 25 Years of CSP, volume 3525 of Lecture Notes in Computer Science, pages
133–150. Springer, 2005.

[9] M. Carbone, K. Honda, N. Yoshida, and R. Milner. Structured communication-centred
programming for web services. In Proc. of ESOP’07, Lecture Notes in Computer Science.
Springer, 2007. To appear.

[10] S. Carpineti, G. Castagna, C. Laneve, and L. Padovani. A formal account of contracts for
web services. In Proc. of WS-FM’06, volume 4184 of Lecture Notes in Computer Science,
pages 148–162. Springer, 2006.

[11] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. WSDL: Web Services Defi-
nition Language. World Wide Web Consortium, 2004.

[12] W. R. Cook, S. Patwardhan, and J. Misra. Workflow patterns in orc. In Proc. of COOR-
DINATION’06, volume 4038 of Lecture Notes in Computer Science, pages 82–96. Springer,
2006.

[13] FET-GC2 Workprogramme text. http://www.cordis.lu/ist/fet/gc.htm.

[14] S. J. Gay and M. J. Hole. Subtyping for session types in the pi calculus. Acta Informatica,
42(2–3):191–225, 2005.

20

http://www.cordis.lu/ist/fet/gc.htm

[15] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and H. F. Nielsen. Simple Object Access
Protocol (SOAP) 1.2. World Wide Web Consortium, 2003.

[16] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disciplines for
structured communication-based programming. In Proc. of ESOP’98, volume 1381 of Lecture
Notes in Computer Science, pages 22–138. Springer, 1998.

[17] D. Kitchin, W. R. Cook, and J. Misra. A language for task orchestration and its semantic
properties. In Proc. of CONCUR’06, volume 4137 of Lecture Notes in Computer Science,
pages 477–491. Springer, 2006.

[18] A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web services. In Proc.
of ESOP’07, Lecture Notes in Computer Science. Springer, 2007. To appear.

[19] M. Mazzara and I. Lanese. Towards a unifying theory for web services composition. In Proc.
of WS-FM’06, volume 4184 of Lecture Notes in Computer Science, pages 257–272. Springer,
2006.

[20] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Journal of Information
and Computation, 100:1–77, 1992.

[21] J. Misra and W. R. Cook. Computation orchestration: A basis for wide-area computing.
Journal of Software and Systems Modeling, 2006. To appear. A preliminary version of this
paper appeared in the Lecture Notes for NATO summer school, held at Marktoberdorf in
August 2004.

[22] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[23] B. C. Pierce and D. N. Turner. Concurrent objects in a process calculus. In Proc. of TPPP’94,
volume 907 of Lecture Notes in Computer Science, pages 187–215. Springer, 1995.

[24] W. van der Aalst, B. Hofstede, and A. Kiepuszewski. Advanced workflow patterns. In Proc. of
CoopIS’00, volume 1901 of Lecture Notes in Computer Science, pages 18–29. Springer, 2000.

[25] N. Yoshida and V. T. Vasconcelos. Language primitives and type discipline for structured
communication-based programming revisited: Two systems for higher-order session commu-
nication. In Proc. of 1st International Workshop on Security and Rewriting Techniques,
ENTCS. Elsevier, 2006.

21

A Equivalence between LTS and reduction semantics

Theorem A.1. For each P and Q, P → Q if and only if P
τ−→ Q.

Proof. To prove the forward implication we have to show that for each reduction we have a
corresponding derivation with label τ . The proof is by induction on the length of the derivation
of the reduction.

We have a case analysis for the different rules.

R-comm: From rule L-send we have v.P
↑v−→ P while from rule L-receive we have (x)Q

↓v−→
Q[v/x]. By case analysis one can see that both these labels can traverse all active contexts
satisfying the side conditions using rules L-res (actually it is not required that the context
does not bind r), L-par, L-stream-pass-P and L-stream-pass-Q, thus the two contexts
have the same transitions. Then using rule L-sess-val one can derive transitions with labels
rB ↑ v and rC ↓ v. Again these transitions can traverse active contexts satisfying the side
conditions (same rules as before). When the toplevel double context is reached then there
are two cases according to its form. If the topmost operator is a parallel composition then
rule L-sess-com-par is used, otherwise rule L-sess-com-stream is used. This allows to
derive a transition with label rτ . Finally rule L-sess-res can be applied to have the desired
transition.

R-sync: The structure of the derivation is similar to the one above. Using rule L-call one can

derive a ⇐ P
a⇐(r)−−−−→ r C P and using rule L-def one can derive a ⇒ Q

a⇒(r)−−−−→ r B Q.
Again, these labels can traverse all active contexts satisfying the side conditions (using rules
L-res, L-par, L-stream-pass-P, L-stream-pass-Q and L-sess-pass). When the toplevel
double context is reached we have three cases corresponding to rules L-serv-com-par,
L-serv-com-stream and its symmetric.

R-feed: Using rule L-feed one can derive feed w.P
⇑w−−→ P . This label can traverse all contexts

satisfying the side conditions (using the same rules as above). When the stream context is
reached one can apply rule L-stream-feed.

R-read: Using rule L-read one can derive f(x).Q
f⇓w−−−→ Q[w/x]. This can traverse each context

satisfying the side conditions (note that L-stream-pass-Q can be applied if the stream
name is different from f , while if it is f then the context binds f against the hypothesis).
The derivation can be concluded using rule L-stream-cons.

R-cong: It is enough to check that all the active contexts are transparent to labels τ .

R-str: The same structural congruence can be used also in the LTS, thus there is nothing to
prove.

To prove the opposite direction one has to check that for each way to produce τ in the LTS
there is a corresponding reduction.

Again we have an induction on the length of the derivation, and a case analysis according to
the last used rule.

L-send, L-receive, L-call, L-def, L-feed, L-read: these rules can not produce τ , thus the the-
orem is trivially true.

L-sess-val, L-sess-com-stream, L-sess-com-par, L-extr: these rules can not produce τ too,
thus the theorem is trivially true.

L-stream-pass-P,L-stream-pass-Q,L-par,L-sess-pass,L-res: these rules can produce tran-
sitions with label τ only if the premise has a transition with label τ , thus they can be
simulated by context closure.

22

L-stream-feed: This rule requires that the argument has a transition with label ⇑v. This label
can be produced only by feed v.P

⇑v−−→ P . Notice also that this label is propagated exactly
by the contexts that satisfy the side conditions of rule R-feed. Thus R-feed can be used
to generate the required reductions.

L-stream-cons: This rule requires that the argument has a transition with label f ⇓ v. This
label can be produced only by f(x).P

f⇓v−−→ P [v/x]. Notice also that this label is propagated
exactly by the contexts that satisfy the side conditions of rule R-read. Thus R-read can
be used to generate the required reductions.

L-serv-com-stream: This rule requires that the two arguments have transitions with labels
a⇒ (r) and a⇐ (r) respectively (the opposite for the symmetric, but the proof is similar).

These labels can be produced only by a ⇒ P
a⇒(r)−−−−→ r B P and a ⇐ P

a⇐(r)−−−−→ r C P
respectively and propagated by the contexts satisfying the side conditions of rule R-sync
concerning DJ, K (which are actually applied to the unary subcontexts, since the toplevel
context is a the stream in rule L-serv-com-stream). Thus the term has the structure
required to apply rule R-sync.

L-serv-com-par: the proof is analogous to the one above, with the only difference that now the
toplevel double context is a parallel composition (and structural congruence can be used to
swap the arguments if needed).

L-sess-res: This rule requires the argument to have a transition with label rτ . Two cases are
possible: either it is produced by rule L-sess-com-stream or by rule L-sess-com-par. Let
us consider the first case.

Rule L-sess-com-stream requires that the two arguments have transitions with labels
r ./l v and r./lv respectively. These labels can be produced only by two sessions r with
opposite polarities applied to labels ↑v and ↓v respectively, and propagated by the contexts
satisfying the side conditions of rule R-comm concerning DJ, K (which are actually applied to
the unary subcontexts, since the toplevel context is the stream in rule L-sess-com-stream).

Labels ↑v and ↓v can be produced only by v.P
↑v−→ P and (x)Q

↓v−→ Q[v/x] respectively
and propagated by the contexts satisfying the side conditions of rule R-comm concerning
CJK and C′JK. Thus the term has the structure required to apply rule R-comm.

The proof for rule L-sess-com-par is analogous to the one above, with the only difference
that now the toplevel double context is a parallel composition.

L-struct: structural congruence is available also for reduction semantics, thus the proof is trivial.

B Subject reduction

Lemma B.1. For each session r and each process P , at most two session constructs appear in
P , and if they are exactly two then they are not nested, they have opposite polarities and there is
a restriction binding them. These are the only allowed occurrences of r in P .

Proof. By induction on the length of the computation creating P . The thesis is true for compu-
tations of length 0 (sessions do not appear in the syntax). When a session is created its name is
bound, thus it is checked that it is different from other names, thus different service invocations
can not create sessions with the same name. A service invocation can create at most a pair of non
nested sessions with opposite polarities (and if two are created then a restriction for the session
name is added too), and no other occurrences of the session name are allowed.

23

Lemma B.2 (Substitution lemma). Let Γ, x : T ′ ` P : (U, T). If Γ ` v : T ′ then Γ ` P [v/x] : (U, T).

Proof. By induction on the typing proof. All the cases are simple.

Lemma B.3. If Γ ` P : (end, T) then P has no transitions of the form P
mu−−→ P ′ with µ ∈ {↑

v, ↓v, (v) ↑v}.

Proof. The only way to have such transitions is to have processes of the form CJv.P K or CJ(x)P K
where CJ−K is composed only by streams, parallel compositions and restrictions. Let us consider
four cases according to the toplevel operator in CJK.

In the base case we have to use rule T-send or T-receive. These rules do not allow (end, T)
as resulting type.

In the case of stream we have to use rule T-stream-r or T-stream-l. We consider just the
first case, the second being symmetric. The stream has type (end, T) only if the second argument
has the same type. Since also the first argument has type (end, T ′) we know by induction that
neither of the arguments can do the communication transitions, thus P cannot do them too.

In the case of parallel composition we have to use rule T-par-r or T-par-l. We consider the
first case, the second one being symmetric. P has type (end, T) only if the second argument has
the same type. Since also the first argument has type (end, T) we know by induction that neither
of the arguments can do the communication transitions, thus P cannot do them too.

In the case of restriction we have to use rule T-res. P has type (end, T) only if the restricted
process has the same type. We know by induction that the argument cannot do the communication
transitions, thus P cannot do them too.

Lemma B.4 (Weakening). If Γ ` P : (U, T) and n 6∈ fn(P) then Γ, n : T ′ ` P : (U, T), for all T ′.

Proof. Simple, by induction on the derivation of the typing judgement.

Lemma B.5 (Strengthening). If Γ, n : T ′ ` P : (U, T) and n /∈ fn(P) then Γ ` P : (U, T).

Proof. Simple, by induction on the derivation of the typing judgement.

Lemma B.6 (Subject congruence). If Γ ` P : (U, T) and P ≡ Q then Γ ` Q : (U, T).

Proof. It is enough to show that structural congruent terms can be given the same type using
the same assumptions. This is enough to show this for the LHS and the RHS for each structural
congruence rule, then the thesis follows by induction (the congruence axioms are simple). All the
cases but the one for recursion are easy. We show just this case. Suppose that Γ ` rec X.P : (U, T).
Then by hypothesis Γ, X : (U, T) ` P : (U, T). By structural induction on P we can prove that if
Γ, X : (U, T) ` P : (U, T) then Γ ` P [rec X.P/X] : (U, T). This holds for the case of P = X and is
preserved by all the contexts (notice in fact that the assumptions about different occurrences of
the same variable are compatible). The proof is similar in the opposite direction.

Let Γ[[U ′]/r] denote the substitution on Γ of [U ′] for Γ(r).

Theorem B.7. Let P be a process such that Γ ` P : (U, T). Then:

• if P
↑v−−→ P ′ then U =!T ′.U ′, Γ ` v : T ′ and Γ ` P ′ : (U ′, T);

• if P
(v)↑v−−−→ P ′ then U =!T ′.U ′ and Γ, v : T ′ ` P ′ : (U ′, T);

• if P
↓v−−→ P ′ then U =?T ′.U ′ and Γ, v : T ′ ` P ′ : (U ′, T);

24

• if P
a⇐(r)−−−−→ P ′ then Γ ` a : [U ′] and Γ, r : [U ′] ` P ′ : (U, T);

• if P
a⇒(r)−−−−→ P ′ then Γ ` a : [U ′] and Γ, r : [U ′] ` P ′ : (U, T);

• if P
⇑v−−→ P ′ then Γ ` v : T and Γ ` P ′ : (U, T);

• if P
(v)⇑v−−−−→ P ′ then Γ, v : T ` P ′ : (U, T);

• if P
f⇓v−−−→ P ′ then Γ ` f : {T} and Γ, v : T ` P ′ : (U, T);

• if P
rB↑v−−−→ P ′ then Γ ` r : [!T ′.U ′], Γ ` v : T ′ and Γ[[U ′]/r] ` P ′ : (U, T);

• if P
(v)rB↑v−−−−−→ P ′ then Γ ` r : [!T ′.U ′] and Γ[[U ′]/r], v : T ′ ` P ′ : (U, T);

• if P
rB↓v−−−→ P ′ then Γ ` r : [?T ′.U ′] and Γ[[U ′]/r], v : T ′ ` P ′ : (U, T);

• if P
rC↑v−−−→ P ′ then Γ ` r : [?T ′.U ′], Γ ` v : T ′ and Γ[[U ′]/r] ` P ′ : (U, T);

• if P
(v)rC↑v−−−−−→ P ′ then Γ ` r : [?T ′.U ′] and Γ[[U ′]/r], v : T ′ ` P ′ : (U, T);

• if P
rC↓v−−−→ P ′ then Γ ` r : [!T ′.U ′] and Γ[[U ′]/r], v : T ′ ` P ′ : (U, T);

• if P
rτ−−→ P ′ then Γ ` r : [!T ′.U ′] or Γ ` r : [?T ′.U ′] and Γ[[U ′]/r] ` P ′ : (U, T);

• if P
τ−→ P ′ then Γ ` P ′ : (U, T);

Proof. The proof is by induction on the derivation of the transition. A case analysis according to
the last used rule is needed.

L-send: P has the form v.P ′. This can be typed only using rule T-send and this requires
U =!T ′.U ′, Γ ` P ′ : (U ′, T) and Γ ` v : T ′. This is exactly as desired.

L-receive: P has the form (x)P ′′ and P ′ = P ′′[v/x]. P can be typed only using rule T-receive
and this requires U =?T ′.U ′ and Γ, x : T ′ ` P ′ : (U ′, T). Thanks to Lemma B.2 we also have
Γ, v : T ′ ` P ′[v/x] : (U ′, T).

L-call: P has the form a ⇐ P ′′ and P ′ = r C P ′′. P can be typed only using rule T-call and
this requires U = end, Γ ` P ′′ : (U ′, T) and Γ ` a : [U ′]. Using rule T-sess-c (and thanks
to Lemma B.4) one can derive Γ, r : [U ′] ` r C P ′′ : (end, T).

L-def: P has the form a ⇒ P ′′ and P ′ = r B P ′′. P can be typed only using rule T-def and this
requires U = end, Γ ` P ′′ : (U ′, T) and Γ ` a : [U ′]. Using rule T-sess-s (and thanks to
Lemma B.4) one can derive Γ, r : [U ′] ` r B P ′′ : (end, T).

L-feed: P has the form feed v.P ′. This can be typed only using rule T-feed and this requires
Γ ` P ′ : (U, T) and Γ ` v : T . This is exactly as required.

L-read: P has the form f(x).P ′′ and P ′ = P ′′[v/x]. P can be typed only using rule T-read and
this requires Γ, x : T ′ ` P ′′ : (U, T) and Γ ` f : {T ′}. From Lemma B.2 we have Γ, v : T ′ `
P ′′[v/x] : (U, T) as required.

L-stream-pass-P: P has the form stream P ′′ as f = ~v inQ with P ′′ µ−→ P ′′′ and we have
P ′ = stream P ′′′ as f = ~v inQ. There are two cases according to the last rule used to type
P . We consider rule T-stream-r first and rule T-stream-l later. Thanks to Lemma B.3
µ /∈ {↑ v, ↓ v, (v) ↑ v}. Also, µ /∈ {⇑ v, (v) ⇑ v}. By hypothesis all the assumptions on f , ~v
and Q are satisfied. By inductive hypothesis in all the cases but r ./↑ v, (v)r ./↑ v, r ./↓ v

25

and rτ we have that Γ′ ` P ′′′ : (end, T) for some extension Γ′ of Γ. Thanks to Lemma B.4
Γ′ can be used to derive Γ′ ` P ′ : (U, T) as required. Notice also that the assumptions on
Γ′ are satisfied by inductive hypothesis since the label is unchanged. For the other cases the
problem is that the assumption about r is changed. However, thanks to Lemma B.1 there
are two cases. If there is just one occurrence of r, thus the assumption is never used outside
P ′′′, Lemma B.5 can be used to drop the old assumption and Lemma B.4 to add the new
one, and the thesis follows. If there are three occurrences two should be in opposite session
constructs and the third in a restriction binding them. The only label of these that can cross
the restriction is rτ , thus no occurrence of r can be in Q, since otherwise we can not obtain
this label. Thus r is not used in Q and we can derive Γ′ ` Q : (U, T) as required, using again
lemmas B.5 and B.4. Thus we can also derive Γ′ ` P ′ : (U, T) and the thesis follows.

Let us consider the second case. Notice that µ /∈ {⇑ v, (v) ⇑ v}. Now both U and µ are
preserved from the premise, thus in most of the cases the thesis follows immediately from the
inductive premise (when a new assumption is needed in Γ, such as in extrusions, Lemma B.4
can be used, and the compatibility of the new assumption is guaranteed by the side condition
on bound names of the typing rule). The only tricky cases concern labels r ./↑v, (v)r ./↑v,
r ./↓v and rτ , but the same reasoning above applies. The thesis follows.

L-stream-pass-Q: P has the form stream P ′′ as f = ~v inQ with Q
µ−→ Q′ and we have P ′ =

stream P ′′ as f = ~v inQ′. By hypothesis all the assumptions on P , f and ~v are satisfied. Also,
Γ, f : {T ′} ` Q : (U, T). By inductive hypothesis Γ′, f : {T ′} ` Q′ : (U ′, T) where Γ′ and U ′

are defined by the statement of the theorem. Notice that Γ′ verifies all the assumptions of
rule T-stream-l (resp. T-stream-r) since it is either an extension of Γ (and in this case
Lemma B.4 can be used), or it changes the assumption about some session r, and in this
case the same reasoning done for rule L-stream-pass-P can be used. Thus one can use rule
TStreamL (resp. T-stream-r) to derive Γ′ ` P ′ : (U ′, T) as required.

L-stream-feed: P has the form stream P ′′ as f = ~w inQ with P ′′ ⇑v−−→ P ′′′ and we have P ′ =
stream P ′′′ as f = v : : ~w inQ. There are two cases corresponding to rules T-stream-r and
T-stream-l. We consider just the first one, the second being similar. By hypothesis
Γ ` P ′′ : (end, T ′), Γ, f : {T ′} ` Q : (U, T) and w′ ∈ Set(~w) ⇒ Γ ` w′ : T ′. By inductive
hypothesis Γ ` v : T ′ and Γ ` P ′′′ : (end, T ′). Thus using rule T-stream-r we can prove
Γ ` P ′ : (U, T) (notice in particular that the assumption about v : : ~w can be proved from the
assumptions about v and ~w).

L-stream-cons: P has the form stream P ′′ as f = ~w : : v inQ with Q
f⇓v−−→ Q′ and P ′ =

stream P ′′ as f = ~w inQ′. There are two cases corresponding to rules T-stream-r and
T-stream-l. We consider just the first the second being symmetric. By hypothesis Γ `
P ′′ : (end, T ′), Γ, f : {T ′} ` Q : (U, T) and w′ ∈ Set(~w : : v) ⇒ Γ ` w′ : T ′. By induc-
tive hypothesis Γ, f : {T ′}, v : T ′ ` Q′ : (U, T). Since Γ, v : T ′ is an extension of Γ we can
use it (thanks to Lemma B.4) in all the premises of rule T-stream-r and finally derive
Γ, v : T ′ ` P ′ : (U, T).

L-par: the reasoning is as for rule L-stream-pass-P, but there is no stream here.

L-sess-val: we consider just the cases for C, the other being simpler. P has the form r C P ′′. By
hypothesis U = end, Γ ` P ′′ : (U ′, T) and Γ ` r : [U ′].

Let us consider the case P ′′ ↑v−→ P ′′′ before. This implies P ′ = r C P ′′′. By inductive
hypothesis U ′ =!T ′.U ′′, Γ ` v : T ′ and Γ ` P ′′′ : (U ′′, T). Using rule T-sess-c we can prove
Γ[[U ′′]/r] ` r C P ′′′ : (end, T) as required since this is the only place where the assumption
about r is used inside the term thanks to Lemma B.1, thus it can be changed using lemmas
B.5 and B.4.

Let us now consider the case P ′′ ↓v−→ P ′′′. Again P ′ = r C P ′′′. By inductive hypothesis
U ′ =?T ′.U ′′, Γ, v : T ′ ` P ′′′ : (U ′′, T). Using rule T-sess-c we can prove Γ[[U ′′]/r], v : T ′ `

26

r C P ′′′ as required since this is the only place where the assumption about r is used inside
the term thanks to Lemma B.1, thus it can be changed using lemmas B.5 and B.4.

L-sess-pass: we consider just the cases for C, the others being simpler. P has the form r C P ′′

with P ′′ µ−→ P ′′′ and P ′ = r C P ′′′. By hypothesis U = end, Γ ` P ′′ : (U ′, T) and
Γ ` r : [U ′]. Notice that µ 6=l v. Thus for all the cases but session communication labels we
have Γ′ ` P ′′′ : (U ′, T) for some extension Γ′ of Γ. In the case of session communication labels
instead the assumption about r′ is changed from Γ to Γ′. Notice that thanks to Lemma B.1
r 6= r′, thus in both the cases we can use rule T-sess-c to derive Γ′ ` r C P ′′′ : (end, T) as
required since the label of the new transition is equal to the label of the premise, thus the
assumptions on Γ′ are the same ones.

L-sess-com-stream: P has the form stream P ′′ as f = ~w inQ with P ′′ rB↑v−−−→ P ′′′, Q
rC↓v−−−→ Q′

and P ′ = stream P ′′′ as f = ~w inQ′ (the other cases are similar). There are two cases corre-
sponding to rules T-stream-r and T-stream-l. We consider just the first one, the second
being similar. By hypothesis Γ ` P : (end, T ′) and Γ, f : {T ′} ` Q : (U, T). By inductive hy-
pothesis on the first transition Γ ` r : [!T ′′.U ′], Γ ` v : T ′′ and Γ[[U ′]/r] ` P ′′′ : (U, T). From
the second transition we have a redundant hypothesis on r and Γ[[U ′]/r], f : {T ′}, v : T ′ `
Q′ : (U, T). Notice that Γ[[U ′]/r], f : {T ′}, v : T ′ = Γ[[U ′]/r], f : {T ′} since Γ[[U ′]/r], f : {T ′} `
v : T ′. Thus we can apply rule T-stream-r to derive Γ[[U ′]/r] ` P ′ : (U, T) as required.

L-serv-com-stream: P has the form stream P ′′ as f = ~w inQ with P ′′ ↓a(r)−−−−→ P ′′′, Q
↑a(r)−−−−→

Q′ and P ′ = (νr)stream P ′′′ as f = ~w inQ′ (the symmetric case is similar). There are two
cases corresponding to rules T-stream-r and T-stream-l. We consider just the first one,
the second being similar. By hypothesis Γ ` P ′′ : (end, T ′) and Γ, f : {T ′} ` Q : (U, T). By
inductive hypothesis (on both the transitions) Γ ` a : [U ′] and Γ, r : [U ′] ` P ′′ : (end, T ′)
and Γ, f : {T ′}, r : [U ′] ` Q′ : (U, T). Using rule T-stream-r we can derive Γ, r : [U ′] `
stream P ′′′ as f = ~w inQ′ : (U, T). Then we can use rule T-res to derive Γ ` P ′ : (U, T) as
desired.

L-sess-com-par: the reasoning is as for rule L-sess-com-stream, but there is no stream here.

L-serv-com-par: the reasoning is as for rule L-serv-com-stream, but there is no stream here.

L-res: P has the form (νn)P ′′ with P ′′ µ−→ P ′′′ and P ′ = (νn)P ′′′. By hypothesis Γ, n : `
P ′′ : (U, T). By inductive hypothesis Γ′, n : ` P ′′′ : (U ′, T) where Γ′ and U ′ are as defined by
the statement of the theorem. Thus we can apply rule T-res to derive Γ′ ` (νn)P ′′′ : (U ′, T)
since the label is unchanged thus Γ′ and U ′ are as before.

L-extr: P has the form (νa)P ′′ with P ′′ µ−→ P ′. By hypothesis Γ, a : T ′ ` P ′′ : (U, T). Thanks
to the inductive hypothesis Γ′, a : T ′ ` P ′ : (U ′, T) where Γ′ and U ′ are as described in
the statement of the theorem. This is exactly as required, given the different requirements
between each action and the corresponding extruding action.

L-sess-res: P has the form (νr)P ′′ with P ′′ rτ−−→ P ′′′ and P ′ = (νr)P ′′′. By hypothesis
Γ, r : [U ′] ` P ′′ : (U, T) (the type of r should be a protocol since r is a session). By inductive
hypothesis Γ, r : [U ′′] ` P ′′′ : (U, T). Then we can use rule T-res to derive Γ ` P ′′′ : (U, T)
as required.

L-struct: By Lemma B.6.

Theorem 4.2 (Subject Reduction)

Proof. The thesis follows from Theorem B.7 and the characterization of reductions as transitions
with labels τ given in Theorem 3.8.

27

C Type safety

Theorem 4.3 (Type Safety)

Proof. The proofs of all the cases are by contradiction. We suppose that such a subterm exists
and we show that it is not typable. We consider the three different cases:

Protocol: let us consider the first case. Here v.P and u.Q have types of the form ([!T.U], T ′′) and
([!T ′.U ′], T ′′′) respectively. One can prove by structural induction on the context that the
protocol part of the type is preserved (only the session construct can change it, but the side
condition forbids sessions around the hole). Thus the two session constructs require r : [!T.U]
and r : [?T ′.U ′] (supposing that the first one is a server session, the symmetric otherwise).
Since DJ, K does not bind r the assumptions are preserved, and at top level they should agree
since the Γ used to type the two sides of parallel composition or stream is the same. This is
not the case and we have the required contradiction.

The other cases are similar, with just end protocol for 0 and ([?T.U], T ′′) for input.

Sequentiality: in all the cases the two terms inserted into the double context have non end
protocol. The property is preserved by the context (since there are no sessions around the
hole). At top level we have two non end protocols, but the rules for parallel composition
and stream can not be applied because of this. Since no other rules can type a parallel
composition or a stream we have the desired contradiction.

28

	Introduction
	A motivating example
	SSCC
	Syntax
	Semantics

	Type system
	Further examples
	Programming workflow patterns in SSCC
	Conclusion and further work
	Equivalence between LTS and reduction semantics
	Subject reduction
	Type safety

