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Abstract
Constraint Handling Rules (CHR) is a committed-choice declara-
tive language which has been originally designed for writing con-
straint solvers and which is nowadays a general purpose language.

Recently the language has been extended by introducing user-
definable (static or dynamic) rule priorities. The resulting language,
called CHRrp, allows a better control over execution while retain-
ing a declarative and flexible style of programming.

In this paper we study the expressive power of this language
from the view point of the concurrency theory. We first show that
dynamic priorities do not augment the expressive power by pro-
viding an encoding of dynamic priorities into static ones. Then we
show that, when considering the theoretical operational semantics,
CHRrp is strictly more expressive than CHR. This result is obtained
by using a problem similar to the leader-election to show that, un-
der some conditions, there exists no encoding of CHRrp into CHR.
We also show, by using a similar technique, that the CHR language
with the, so called, refined semantics is more expressive power than
CHR with theoretical semantics and we extend some previous re-
sults showing that CHR can not be encoded into Prolog.

Categories and Subject Descriptors D.3.1 [Programming lan-
guages]: Formal Definitions and Theory; D.3.2 [Programming
Languages]: Language Classifications—Concurrent, distributed,
and parallel languages; D.3.2 [Programming Languages]: Lan-
guage Classifications - Constraint and logic languages; F.3.2
[Logic and meanings of programs]: Semantics of Programming
Languages

General Terms Languages, Theory.

Keywords Constraint, expressive power.

1. Introduction
Constraint Handling Rules (CHR) [Frühwirth 1991, Frühwirth
1998b] is a committed-choice declarative language which has been
originally designed for writing constraint solvers and which is
nowadays a general purpose language. A CHR program consists
of a set of multi-headed guarded (simplification and propagation)
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rules which allow one to rewrite constraints into simpler ones until
a solved form is reached. The language is parametric w.r.t. an un-
derlying constraint theory CT which defines the meaning of basic
built-in constraints.

The original theoretical operational semantics for CHR (ωt) is
non deterministic, as usual for many other rule based and concur-
rent languages. Such a non determinism has to be resolved in the
implementations by choosing a suitable execution strategy. Most
implementations indeed use the, so called, refined operational se-
mantics (ωr) which has been formalized in [Duck et al. 2004] and
fixes most of the execution strategy. This semantics, differently
from the theoretical one, offers a good control over execution, how-
ever it is quite low-level and lacks flexibility.

For this reason in [De Koninck et al. 2007] an extension of CHR,
called CHRrp, was proposed for supporting a high-level, explicit
form of execution control which is more flexible and declarative
than the one offered by the ωr semantics. This is obtained by in-
troducing explicitly in the syntax of the language rule annotations,
which allow to specify the (static or dynamic) priority of each rule.
The operational semantics (called ωp) is changed accordingly: rules
with higher priority are chosen first. Priorities can be either static
(the annotations are completely defined at compile time) or dy-
namic (the annotations contain variables which are instantiated at
run-time). Even though in [Sneyers et al. 2009] it is shown that any
algorithm can be implemented in CHR preserving time and space
complexity, yet in [De Koninck et al. 2007] it is claimed that “pri-
orities do improve the expressivity of CHR”.

We provide a formal ground for this informal claim by using a
notion of expressivity coming from the field of concurrency theory.
In fact, in this field the issue of the expressive power of a language
has received a considerable attention in the last years and several
techniques and formalisms have been proposed for separating dif-
ferent languages which are Turing powerful (and therefore can not
be properly compared by using the standard tools of computability
theory). One of these techniques, that we use in this paper, is based
on the notion of language encoding [de Boer and Palamidessi 1994,
Shapiro 1989, Vaandrager 1993]1 and can be described as follows.
Intuitively, a language L is more expressive than a language L′ or,
equivalently, L′ can be encoded in L, if each program written in
L′ can be translated into an L program in such a way that: (1) the
intended observable behavior of the original program is preserved
(under some suitable decoding); (2) the translation process satisfies
some additional restrictions which indicate how easy this process
is and how reasonable the decoding of the observables is. For ex-
ample, typically one requires that the translation is compositional

1 The original terminology of these papers was “language embedding”.



w.r.t. (some of) the syntactic operators of the language [de Boer and
Palamidessi 1994].

In this paper we first show that dynamic priorities do no aug-
ment the expressive power of CHRrp. This result is shown by pro-
viding an encoding of CHRrp programs with dynamic priorities
into programs which use only static priorities.

Hence in the following we consider only static priorities and
we prove that, when considering the theoretical semantics, CHRrp

can not be encoded into CHR under the following two assump-
tions. First we assume that the observable properties to be pre-
served are the constraints computed by a program for a goal (more
precisely the data sufficient answers). Since these are the typical
CHR observables for many CHR reference semantics, assuming
their preservation is rather natural. Secondly we require that the
translation of a goal is compositional w.r.t. conjunction of goals,
that is, we assume that [[A,B]]g = [[A]]g , [[B]]g for any conjunctive
goal A,B, where [[ ]]g denotes the translation of a goal. We believe
this notion of compositionality to be reasonable as well, since es-
sentially it means that the translated program is not specifically de-
signed for a single goal. It is worth noticing that we do not impose
any restriction on the translation of the program rules.

In a similar way we also show that the, so called, refined seman-
tics augments the expressive power of CHR w.r.t. the theoretical
semantics. This is somehow expected, as this semantics allows ad-
ditional control over execution and, as shown in [De Koninck et al.
2007] it allows to simulate static priorities (however this simulation
does not imply directly our result, as we explain later).

Finally we prove that CHR can not be encoded into Prolog while
preserving data sufficient answers, thus extending a previous result
provided in [Di Giusto et al. 2009] where only pure Prolog (without
built-ins) was considered and where the naive semantics (without
token store) rather than the theoretical one was considered.

The remainder of the paper is organized as follows. Next sec-
tion introduces the languages under consideration with the related
semantics and some preliminary notions on language encodings.
In Section 3 we provide the translation of dynamic priorities into
static ones. In Section 4 we prove that static priorities augment the
expressive power of CHR and we also show that the refined se-
mantics augments the expressive power of the language. Section 5
contains the separation result for CHR and Prolog, while Section 6
concludes by discussing some related works.

2. Syntax and semantics
In this section we give an overview of CHR and CHRrp syntax with
their operational semantics following [Frühwirth 1998a, Duck et al.
2004, De Koninck et al. 2007].

2.1 Syntax of CHR
A constraint c(t1, . . . , tn) is an atom predicate c/n with ti a host
language value (e.g. a Herbrand term in Prolog) for 1 ≤ i ≤ n.
There are two types of constraints: built-in (or predefined) con-
straints that are handled by an existing solver and CHR constraints
(or user-defined). Therefore we assume that the signature contains
two disjoint sets of predicate symbols for built-in and CHR con-
straints. For built-in constraints we assume that a (first order) theory
CT describes their meaning.

The notation ∃V φ, where V is a set of variables, denotes the
existential closure of a formula φ w.r.t. the variables in V , while
the notation ∃−V φ denotes the existential closure of a formula φ
with the exception of the variables in V which remain unquantified.
Fv(φ) denotes the free variables appearing in φ.

We use [H | T ] to denote the first H and remaining elements
T of a sequence, ++ for sequence concatenation, ] for multi-set
union.

reflexivity leq(X,Y )⇐⇒ X = Y | true
antisymmetry leq(X,Y ), leq(Y,X)⇐⇒ X = Y

transitivity leq(X,Y ), leq(Y,Z)⇒ leq(X,Z)

Figure 1. A program for defining ≤ in CHR

We follow the logic programming tradition and indicate the
application of a substitution σ to a syntactic object t by σt.

To distinguish between different occurrences of syntactically
equal constraints, CHR constraints are extended with a unique
identifier. An identified CHR constraint is denoted by c#i with c
a CHR constraint and i the identifier. We write chr(c#i) = c and
id(c#i) = i, possibly extended to sets and sequences of identified
CHR constraints (or tokens) in the obvious way.

2.2 CHR program
A CHR program is defined as a sequence of three kinds of rules:
simplification, propagation and simpagation rules. Intuitively, sim-
plification rewrites constraints into simpler ones, propagation adds
new constraints which are logically redundant but may trigger fur-
ther simplifications, simpagation combines in one rule the effects
of both propagation and simplification rules. For simplicity we con-
sider simplification and propagation rules as special cases of a sim-
pagation rule. The general form of a simpagation rule is:

r @Hk\Hh ⇐⇒ g | B

where r is a unique identifier of a rule, Hk and Hh (the heads) are
multi-sets of CHR constraints, g (the guard) is a possibly empty
multi-set of built-in constraints and B is a possibly empty multi-
set of (built-in and user-defined) constraints. If Hk is empty then
the rule is a simplification rule. If Hh is empty then the rule is a
propagation rule. At least one of Hk and Hh must be non empty.

In the following when the guard g is empty or true we omit
g |. Also the names of rules are omitted when not needed. For a
simplification rule we omit Hk\ while we will write a propagation
rule as Hk ⇒ g | B. A CHR goal is a multi-set of (both user-
defined and built-in) constraints. An example of a CHR program is
shown in Figure 1.

2.3 Traditional operational semantics
The theoretical operational semantics of CHR, denoted ωt is given
in [Duck et al. 2004] as a state transition system T = (Conf ,

ωt→P )
where configurations in Conf are tuples of the form 〈G,S,B, T 〉n,
where G is the goal (a multi-set of constraints that remain to be
solved), S is the CHR store (a set of identified CHR constraints),
B is the built-in store (a conjunction of built-in constraints), T is
the propagation history (a sequence of identifiers used to store the
rule instances fired) and n is the next free identifier (it is used to
identify new CHR constraints). The transitions of ωt are shown in
Table 1.

Given a program P , the transition relation ωt→P⊆ Conf ×Conf
is the least relation satisfying the rules in Table 1. The Solve tran-
sition allows to update the constraint store by taking into account
a built-in constraint contained in the goal. The Introduce transi-
tion is used to move a user-defined constraint from the goal to the
CHR constraint store, where it can be handled by applying CHR
rules. The Apply transition allows to rewrite user-defined con-
straints (which are in the CHR constraint store) by using rules from
the program. As usual, in order to avoid variable name clashes, this
transition assumes that all variables appearing in a program clause
are fresh ones. The Apply transition is applicable when the current
store (B) is strong enough to entail the guard of the rule (g), once
the parameter passing has been performed.



Solve 〈{c} ] G,S,B, T 〉n
ωt→P 〈G,S, c ∧ B, T 〉n where c is a

built-in constraint
Introduce 〈{c} ] G,S,B, T 〉n

ωt→P 〈G, {c#n} ∪ S,B, T 〉n+1

where c is a CHR constraint
Apply 〈G,H1∪H2∪S,B, T 〉n

ωt→P 〈C ]G,H1∪S, θ∧B, T ∪
{t}〉n where P contains a (renamed apart) rule

r @H ′1\H ′2 ⇐⇒ g | C
and there exists a matching substitution θ s.t. chr(H1) = θH ′1,
chr(H2) = θH ′2, CT |= B → ∃−Fv(B)(θ ∧ g) and t =
id(H1) ++ id(H2) ++ [r] /∈ T

Table 1. Transitions of ωt

An initial configuration has the form 〈G, ∅, true, ∅〉1 while a
final configuration has either the form 〈G,S, false, T 〉k when it is
failed, or the form 〈∅, S,B, T 〉k when it is successfully terminated
because there are no applicable rules.

Given a goalG, the operational semantics that we consider only
observes the non failed final stores of computations terminating
with an empty goal and an empty user-defined constraint store.
Following the terminology of [Frühwirth 1998a], we call such
observables data sufficient answers.

Definition 1 (Data sufficient answers). Let P be a program and let
G be a goal. The set SAP,ωt(G) of data sufficient answers for the
query G in the program P is defined as:

SAP,ωt(G) = {∃−Fv(G)d |CT 6|= d↔ false ∧

∧〈G, ∅, true, ∅〉1
ωt→P
∗
〈∅, ∅, d, T 〉n

ωt9P }
The previous notion of observables characterizes an input/output

behavior, since the input constraint is implicitly considered in the
goal.

2.4 Refined operational semantics
The refined operational semantics of CHR, denoted by ωr is intro-
duced in [Duck et al. 2004] to model the execution mechanism of
the current CHR implementations. The refined semantics is based
on active constraints. The active constraint is a constraint that is
used to find a rule to fire (if any). Only one constraint at the time can
be active. The active constraint tries rules in textual order. When a
rule instance fires its body is processed from left to right.

We denote the identified constraint that only matches with the
j-th occurrence of the constraint c in the program by c#i : j.
In the following we will refer to this type of constraints with the
name occurrence identified CHR constraints. We will define as
execution stack a sequence of constraints, identified constraints and
occurrence identified CHR constraints.

The ωr semantics of CHR is given as a state transition system
T = (Conf ′,

ωr→P ) where configurations in Conf ′ are tuples of the
form 〈A,S,B, T 〉n, where A is an execution stack and S,B, T, n
are like in the configurations Conf defined for the traditional se-
mantics.

Given a program P , the transition relation ωr→P⊆ Conf ′ ×
Conf ′ is the least relation satisfying the rules in Table 2.

Like in the traditional semantics an initial configuration has
the form 〈G, ∅, true, ∅〉1 while a final configuration has either the
form 〈G,S, false, T 〉k when it is failed, or the form 〈[ ], S,B, T 〉k
when it is successfully terminated because there are no applicable
rules. The difference between these configurations is that while
in the traditional semantics the goal is a multi-set of constraints,
here the goal is a sequence of constraints. Therefore while in the
traditional semantics there is no order between the goal constraints,
in the refined semantics the order of the goal constraints is relevant.

Solve 〈[c|A], S0∪S1, B, T 〉n
ωr→P 〈S1 ++ A,S0∪S1, c∧B, T 〉n

where c is a built-in constraint and Fv(S0) ⊆ fixed(B) where
fixed(B) are the variables fixed by B

Activate 〈[c|A], S,B, T 〉n
ωr→P 〈[c#n : 1|A], {c#n} ∪

S,B, T 〉n+1 where c is a CHR constraint
Reactivate 〈[c#i|A], S,B, T 〉n

ωr→P 〈[c#i : 1|A], S,B, T 〉n
where c is a CHR constraint

Drop 〈[c#i : j|A], S,B, T 〉n
ωr→P 〈A,S,B, T 〉n where c#i : j

is an occurence identified constraint and there is no occurrence
j in P

Simplify 〈[c#i : j|A], {c#i} ∪H1 ∪H2 ∪H3 ∪ S,B, T 〉n
ωr→P

〈C ++ A,H1 ∪ S, θ ∧ B, T 〉n where the jth occurrence of a
CHR predicate of c in a (renamed apart) rule in P is

r @H ′1\H ′2, dj , H ′3 ⇐⇒ g | C
and there exists a matching substitution θ s.t. c = θdj ,
chr(H1) = θH ′1, chr(H2) = θH ′2, chr(H3) = θH ′3,
CT |= B → ∃−Fv(B)(θ ∧ g)

Propagate 〈[c#i : j|A], {c#i}∪H1∪H2∪H3∪S,B, T 〉n
ωr→P

〈C ++ [c#i : j|A], {c#i} ∪H1 ∪H2 ∪ S, θ ∧B, T ∪ {t}〉n
where the jth occurrence of a CHR predicate of c in a (renamed
apart) rule in P is

r @H ′1, dj , H
′
2\H ′3 ⇐⇒ g | C

and there exists a matching substitution θ s.t. c = θdj ,
chr(H1) = θH ′1, chr(H2) = θH ′2, chr(H3) = θH ′3,
CT |= B → ∃−Fv(B)(θ ∧ g) and t = 〈id(H1) ++ [i] ++
id(H2) ++ id(H3) ++ [r]〉 /∈ T

Default 〈[c#i : j|A], S,B, T 〉n
ωr→P 〈[c#i : j + 1|A], S,B, T 〉n

where c#i : j if no other transition applies

Table 2. Transitions of ωr

Given a goal G, the operational semantics that we consider
observes the non failed final stores of computations terminating
with an empty goal and an empty user-defined constraint.

Definition 2 (Data sufficient answers). Let P be a CHR program
and let G be a goal. The set SAP,ωr (G) of data sufficient answers
for the query G in the program P is defined as:

SAP,ωr (G) = {∃−Fv(G)d |CT 6|= d↔ false ∧

∧〈G, ∅, true, ∅〉1
ωr→P
∗
〈[ ], ∅, d, T 〉n

ωr9P }

2.5 CHR with priorities
CHRrp is a language introduced in [De Koninck et al. 2007] that
extends CHR with user-defined priorities. CHRrp forms an high
level alternative for execution control that better suits the need of
CHR programmers.

The syntax of CHRrp is compatible with the syntax of CHR. A
simpagation rule in CHRrp has the form

p :: r @Hk\Hh ⇐⇒ g | B

where r , Hk, Hh, g, B are defined as in the CHR simpagation
rule in Section 2.2 and p is an arithmetic expression s.t. Fv(p) ⊆
(Fv(Hk) ∪ Fv(Hh)). A rule where Fv(p) = ∅ is called static
priority rule, otherwise it is called dynamic. The priority of a static
rule is known at compile time while the priority of a dynamic rule
is only known at run time.

The formal semantics for CHRrp defined in [De Koninck et al.
2007] is a refinement of the traditional semantics adapted to deal
with rule priorities. Formally the semantics of CHRrp, denoted by



Solve 〈{c} ] G,S,B, T 〉n
ωp→P 〈G,S, c ∧ B, T 〉n where c is a

built-in constraint
Introduce 〈{c} ] G,S,B, T 〉n

ωp→P 〈G, {c#n} ∪ S,B, T 〉n+1

where c is a CHR constraint
Apply 〈∅, H1∪H2∪S,B, T 〉n

ωp→P 〈C,H1∪S, θ∧B, T ∪{t}〉n
where P contains a (renamed apart) rule

p :: r @H ′1\H ′2 ⇐⇒ g | C
and there exists a matching substitution θ s.t. chr(H1) = θH ′1,
chr(H2) = θH ′2, CT |= B → ∃−Fv(B)(θ ∧ g) and t =
id(H1) ++ id(H2) ++ [r] /∈ T . Furthermore no rule of
priority p′ and substitution θ′ exists with θ′p′ < θp for which
the above conditions hold

Table 3. Transitions of ωp

ωp, is given as state transition system T = (Conf ,
ωp→P ) where

configurations Conf , as well as the initial and final configurations
are the same as those introduced for the traditional semantics in
Section 2.3.

Given a CHRrp program P , the transition relation
ωp→P⊆

Conf × Conf is the least relation satisfying the rules in Table
3. The Solve and Introduce transitions are equal to the ones de-
fined for the traditional semantics while the Apply transitions is
modified by adding a condition that imposes that a rule can be
fired if no other rule that can be applied has a smaller value for
the priority annotation (as usual in many systems, smaller values
correspond to higher priority: for simplicity in the following we
will use the terminology “higher” or “lower” priority rather than
considering the values).

The data sufficient answers for CHR with priorities can be
defined analogously to those of the standard language:

Definition 3 (Data sufficient answers). Let P be a CHRrp program
and let G be a goal. The set SAP,ωp(G) of data sufficient answers
for the query G in the program P is defined as:

SAP,ωp(G) = {∃−Fv(G)d |CT 6|= d↔ false ∧

∧〈G, ∅, true, ∅〉1
ωp→P

∗
〈∅, ∅, d, T 〉n

ωp9P }

2.6 Language encoding
Since all the variants of CHR that we consider here are Turing
powerful [Sneyers et al. 2009], in principle one can always encode
a language into another one. The question is how difficult and
how acceptable such an encoding is, and depending on the answer
to this question one can discriminate different languages. Indeed,
CHRrp has been proposed to improve the expressive power of CHR
by supporting a high-level form of execution control needed for
implementing highly efficient constraint programming systems [De
Koninck et al. 2007].

In the fields of distributed algorithms and concurrency the ex-
pressiveness issue has received a considerable attention and there
exist several techniques that can be used for formally separat-
ing different (Turing powerful) languages. The language encoding
technique has been discussed in the introduction. Another, related,
technique consists in showing that a problem can be solved in a lan-
guage and not in another. For example, various models of compu-
tation have been compared by using the symmetric leader election
problem, which consists in requiring the members of a symmetric
network to elect one of them as their leader (see [Vigliotti et al.
2007] for a survey).

In all these approaches usually one imposes specific (and hope-
fully natural) conditions on the encoding which guarantee its mean-

ingfulness. For example, in order to solve the leader election prob-
lem the main difficulty is in breaking the initial symmetry, and one
does not want that this is achieved by the encoding function. Hence
one often requires that the encoding is compositional w.r.t. the op-
erators of the language. Moreover, of course one usually wants that
some observable properties of the computations are preserved by
the translation.

In the following we will then make similar assumptions on
our encoding functions for CHR languages. We formally define
a program encoding as any function [[ ]] : PL → PL′ which
translates an L program into a (finite) L′ program (PL and PL′

denote the set of L and L′ programs, respectively). We do not
impose any restriction on the program translation.

Next we have to define how the initial goal of the source pro-
gram has to be translated into the target language. Here we require
that the translation is compositional w.r.t. the conjunction of atoms.
This assumption essentially means that our encoding respects the
structure of the original goal and does not introduce new relations
among the variables which appear in the goal. We also require that
data sufficient answers are preserved.

Hence we have the following definition where we denote by GL
and GL′ the class of L and L′ goals, respectively (we differentiate
these two classes because, for example, a L′ goal could use some
user defined predicates which are not allowed in the goals of the
original program2). Note also that the following definition is para-
metric w.r.t. a class G of goals: clearly considering different classes
of goals could affect our encodability results. Such a parameter
will be instantiated when the notion of acceptable encoding will
be used.

Definition 4 (Acceptable encoding). Let G ⊆ GL be a class of L
goals. An acceptable encoding (of L into L′, for the class of goals
G) is a pair of mappings [[ ]] : PL → PL′ and [[ ]]g : GL → GL′

which satisfy the following conditions:

• for any goal (A,B) ∈ G, [[A,B]]g = [[A]]g , [[B]]g holds.
• Data sufficient answers are preserved for the class of goals G,

that is, for all G ∈ G, SAP (G) = SA[[P ]]([[G]]g) holds3.

Note that, by a slight abuse of notation, with the first condition
in the above definition we actually indicate two cases: when goals
are considered as multisets, as in the ωp semantics and when goals
are sequences, as in the refined semantics. In both cases, we only
require that the translation of a non atomic goal A,B is the con-
junction of the translation of A and of B.

Further weakening this condition and requiring that the transla-
tion of A,B is some form of composition of the translation of A
and ofB does not seem reasonable, as conjunction is the only form
for goal composition available in CHR with theoretical semantics,
which is the considered target language.

Note that, as previously mentioned, we do not impose any
restriction on the program translation (which, in particular, could
also be non compositional).

3. Dynamic vs Static Priorities
In this section we prove that the CHRrp language which allows dy-
namic priorities is not more expressive than the language with static
priorities only. This result is obtained by providing an (acceptable)

2 This means that in principle the signatures of (languages of) the original
and the translated program are different.
3 By a slight abuse of notation here we write SAP without indicating the
parameter ωi which refers to the semantics used. Such a parameter will
be introduced, in the obvious way, when instantiating this definition with
specific cases.



encoding of CHRrp programs with dynamic priorities into CHRrp

programs which use only static priorities.
Before showing the encoding T (P ) we need some preliminary

notations. We consider a CHRrp program P composed by m rules
and we assume that the i-th rule (with i ∈ {1, . . . ,m}) has the
form:

pi :: rulei @ Hi\H ′i ⇔ Gi|Ci

We suppose thatHead(P ) are all the names c/n s.t. c(t1, . . . , tn)
is in the head of a rule in P .

In the following we denote by t̄ and X̄ a sequence of terms (i.e.
host language values) and distinct variables, respectively. More-
over, given H = c1(t̄1), . . . , cn(t̄n) we use H(t′1, . . . , t

′
n) for the

sequence of constraints c′1(t′1, t̄1), . . . , c′n(t′n, t̄n).
Given a CHRrp program P which uses dynamic priorities,

its encoding T (P ) into CHRrp with static priorities only is the
program consisting of the rules ti and ti,j defined as follows:

for every predicate name c/n ∈ Head(P )
1 :: t1,c/n @ start\state id(Z), c(X̄)⇔

c′(Z, X̄), state id(Z + 1)

for every predicate name c/n ∈ Head(P )
2 :: t2,c/n @ c(X̄)⇒ start, state id(0)

2 :: t3 @ start⇔ highest priority(inf)

for every i ∈ {1, . . . ,m}
3 :: t4,i @ end\instancei(V̄ )⇔ true

4 :: t5 @ end⇔ true

for every i ∈ {1, . . . ,m} EVALUATE PRIORITIES(i)

7 :: t9 @ highest priority(inf), state id(Z)⇔ end

for every i ∈ {1, . . . ,m} ACTIVATE RULE(i)

If i is not a propagation rule then EVALUATE PRIORITIES(i)
are the following rules

6 :: t7,i @ Hi(Ū), H ′i(V̄ )\highest priority(inf)⇔
Gi|highest priority(pi)

6 :: t8,i @ Hi(Ū), H ′i(V̄ )\highest priority(P )⇔
Gi, pi < P |highest priority(pi)

if i is a propagation rule then EVALUATE PRIORITIES(i) are the
following rules

5 :: t6,i @Hi(V̄ )⇒ Gi|instancei(V̄ )

6 :: t7,i @ instancei(V̄ ), Hi(V̄ )\highest priority(inf)⇔
Gi|highest priority(pi)

6 :: t8,i @ instancei(V̄ ), Hi(V̄ )\highest priority(P )⇔
Gi, pi < P |highest priority(pi)

if i is a propagation rule then ACTIVATE RULE(i) is the follow-
ing rule

8 :: t10,i @ Hi(V̄ )\instancei(V̄ ), highest priority(P ),
state id(Z)⇔ Gi, pi = P |

Update(Ci, Z), highest priority(inf)

if i is not a propagation rule then ACTIVATE RULE(i) is the
following rule

8 :: t10,i @ Hi(Ū)\H ′i(V̄ ), highest priority(P ),
state id(Z)⇔ Gi, pi = P |

Update(Ci, Z), highest priority(inf)

where Update(C,Z) is defined as follows

Update(c(X̄), Z) = c′(Z, X̄)
if c is a CHR constraint

Update(b(X̄), Z) = b(X̄)
if b is a built-in constraint

Update([ ], Z) = state id(Z)

Update([d(X̄) | Xs], Z) =
Update(d(X̄), Z), Update(Xs,Z + 1)

In the above encoding we assume that the constraint theory
CT allows to use equalities and inequalities (so we can evaluate
whether pi = h and pi > h where h ∈ Z and pi is an arithmetic
expression). We also assume inf is a conventional constant which
is bigger than all pi (i.e. it represents the lowest priority). We also
assume that New names(P ) =

{highest priority, start, end, state id}∪
∪{c′ | c ∈ Head(P )} ∪ {instancei | i ∈ {1, . . .m}}

is a set of fresh predicate names, that we use in our encoding,
which are not used elsewhere in programs and goals (note that this
assumption is a weak restriction, since our programs are finite and
we can always chose a set of predicates which do not appear in a
program).

We now provide some explanations for the above encoding.
Intuitively the result of the encoding can be divided in three

phases: The first one is the init phase and is composed by rules
t1,c/n . . . t3; the second one, called main, is in its turn composed
by two phases: evaluate containing rules t6,i . . . t8,i and activation
which contains rules t10,i; the third phases is the termination one
and is composed by rules t4,i, t5, t9.

We first describe these three phases in general.

Init; In the init phase, for each (user defined) constraint predicate c
which appears in the head of a rule in the original programP we
introduce a rule t1,c/n which replaces c(X̄) (where X̄ is a tuple
of distinct variables) by c′(Z, X̄) where c′ is a new predicate
in New names (P) and Z is a variable which will be used to
simulate the identifier used in identified constraints (to be used
in the propagation history of the ωp semantics). Moreover we
use a state id predicate to memorize the highest identifier used.
Rules t2,c/n (one for each predicate c, as before) are used to fire
rules t1,c/n and also to start the following phase (via rule t3).
Note that rules t1,c/n have maximal priority and therefore are
tried before rules t2,c/n.

Main; As previously mentioned, the main is divided into two
phases: the evaluation phase starts when the init phase adds the
constraint highest priority(inf). In this part rules t6,i . . . t8,i
store in highest priority the highest priority on all the rule
instances that can be fired. After the end of the evaluation phase
the activation starts. During this phase if a rule can be fired
one of the rules t10,i is fired. After the rule has been fired the
constraint highest priority(inf) is produced which starts a
new evaluation phase.

Termination; The termination phase is triggered by rule t9. This
rule fires when no instance from the original program can
fire. During the termination phase all the constraints pro-



duced during the computation (namely state id, instancei,
highest priority, end) are deleted.

In the following we now provide some more details on the two
crucial points in this translation, namely the evaluation and the
activation phases (contained in the Main phase).

Evaluation; The rules in the set denoted by

EVALUATE PRIORITIES(i)

are triggered by the insertion of highest priority(inf) in the
constraint store. We describe below first the case of propagation
rules and then the one of simpagation and simplification ones.
In the case of a propagation rule i, the rules in

EVALUATE PRIORITIES(i)

should consider the possibility that there is an instance of i that
can not be fired because it has been previously fired. When an
instance of a propagation rule can fire, rule t6,i adds a constraint
instancei(v̄), where v̄ are the identifiers of the rule instance.
The absence of the constraint instancei(v̄) in the constraint
store means that the rule i can not be fired or has already fired
for the CHR atoms identified by v̄.
The evaluation of the priority for a simpagation or a simplifi-
cation rule is simpler because the propagation history does not
affect the execution of these two types of rules.
Rules t7,i and t8,i replace the constraint highest priority(p)
with the constraint highest priority(p′) if a rule of priority p′

can be fired and p > p′.

Activation; When the evaluation phase ends if a rule can fire then
one of the rules t10,i is fired since highest priority(inf) can
not be in the store.
The only difference between a propagation rule and a simpaga-
tion/simplification rule is that when a propagation rule is fired
the corresponding constraint instancei(V̄ ) is deleted to avoid
the execution of the same propagation rule in the future.
It is worth noting that the non-determinism in the choice of the
rule to be fired provided by the semantics ωp is preserved, since
all the priorities of ACTIVATE RULE(i) are equal.

The following result shows that the data sufficient answers are
preserved by our encoding. Its proof follows the lines of the rea-
soning informally explained above.

Theorem 1. Assume that the predicate symbols in New name(P )
are not used in a CHRrp program P and in a goal G. Then
SAP,ωp(G) = SAT (P ),ωp(G) holds.

Since the translation of the goal is compositional (it is the iden-
tity function) and the translated program does not contain dynamic
priorities, we have the following immediate corollary.

Corollary 1. Assume that the predicate symbols in New name(P )
are not used in CHRrp programs with dynamic priorities and in
goals, then T (P ), together with the identity on goals, is an accept-
able encoding of CHRrp with dynamic priorities into CHRrp with
static priorities.

It is worth noting that if the original program is confluent then
also its translation T (P ) is confluent.

4. CHR vs CHRrp

In order to prove our first separation result we need the following
lemma which states a key property of CHR computations under
the ωt semantics. Essentially it says that if the goal G produces a
data sufficient answer d, then if the goal is replicated there exists a

computation that will terminate producing the same data sufficient
answer d.

Lemma 1. Let P be a CHR program. Then SAP,ωt(G) ⊆
SAP,ωt(G ∪G).

Proof. If SAP,ωt(G) = ∅ then the lemma holds trivially. Con-
versely if d is in SAP,ωt(G) then there is a derivation

〈G, ∅, true, ∅〉1
ωt→
∗
P 〈∅, ∅, B, T 〉k

s.t. CT 6|= B ↔ false and d = ∃−Fv(G)B. Then the lemma
holds because starting from a state 〈G, ∅, true, T 〉k the first apply
transition is executable only after at least an introduce transition
that increases the state identifier. Since T cannot contain a sequence
[i1, . . . , il, r] s.t. ij is either greater than or equal to k for all
j ∈ {1, . . . , l} then all the transactions in 〈G, ∅, true, ∅〉1

ωt→
∗
P

〈∅, ∅, B, T 〉k can be executed starting from the state 〈G, ∅, B, T 〉k.

Lemma 1 is not true anymore if we consider CHRrp programs.
Indeed if we consider the program P consisting of the rules

1 :: a, a⇔ false

2 :: a⇔ true

then the goal a has the data sufficient answer true in P , while the
goal (a, a) has no data sufficient answer in P . With the help of the
previous lemma we can now prove our main separation result. This
is obtained by showing that, given a goal consisting of n repeated
atoms, in CHRrp one can write a program which answers “yes” if
n = 1 and “no” otherwise. This is similar to the, so called, Last
Man Standing problem which has been introduced in [Versari et al.
2007]: a set of n processes composing a network must realize, in a
distributed way, if n = 1 or n > 1. Clearly our setting is differ-
ent, since while in [Versari et al. 2007] a process algebraic view is
considered, hence the problem has to be solved by using explicit
communications among processes, here we consider a rule based
language where communication among different “processes” (i.e.
different atoms in the goal) happens indirectly through a common
store. However it is worth noting that, in both cases, the presence
of priorities does augment the expressive power because it allows
to check for absence rather than presence of information. For ex-
ample, considering CHR with the ωt semantics, if the guard of a
rule r is not satisfied in the present store (and is not inconsistent
with it) then the computation for r is blocked and there is no way
to specify that some alternative action must be taken (of course one
could use another rule r′ whose guard is satisfied, but then such a
rule can be used also when the guard of r is satisfied). So, one can
not express something like “if c is not present then do the follow-
ing”. On the contrary this can be expressed by using priorities and
a suitable ordering of clauses, as appears from the program in the
proof of the following.

Theorem 2. Let G be a class of goals such that if H is a head of
a rule then H ∈ G. There exists no acceptable encoding of CHRrp

in CHR for the class G.

Proof. The proof is by contradiction. Consider the following pro-
gram P in CHRrp

1 :: a(X), a(X)⇔ X = no

2 :: a(X)⇔ X = no|true
3 :: a(X)⇔ X = yes

and assume that [[P ]] is the translation of P in CHR.
Let G be a non empty goal of the form a(X), . . . , a(X). Then

SAP,ωp(G) = {{X = yes}} iff G contains only one occurrence
of the atom a(X) and SAP,ωp(G) = {{X = no}} otherwise.



Since the goal a(X) has the data sufficient answer {X = yes}
in the program P and since the encoding preserves data suffi-
cient answers, the goal [[a(X)]]g has the data sufficient answer
{X = yes} also in the program [[P ]]. From the compositional-
ity of the translation of goals and previous Lemma 1 it follows that
the goal [[a(X), a(X)]]g = [[a(X)]]g, [[a(X)]]g has the data suffi-
cient answer {X = yes} in the encoded program [[P ]]. However
a(X), a(X) has only the data sufficient answer {X = no} in the
original program P . This contradicts the fact that [[P ]] is an accept-
able encoding for P , thus concluding the proof.

4.1 Considering the refined semantics
In [De Koninck et al. 2007] it was shown that CHRrp programs
with static priorities can be translated into CHR, provided that for
the latter language one considers the refined semantics (ωr) rather
than the theoretical one (ωt). Indeed, as discussed in that paper,
the refined semantics provides an additional control over execution
(even though at a low level) and it therefore allows to simulate
(static) priorities.

Here we prove that indeed the refined semantics does augment
the expressive power of CHR w.r.t. the theoretical semantics. In fact
we show that there is no acceptable encoding of CHR language
with the ωr semantics (denoted by CHRωr in the following) into
CHR with the ωt semantics (denoted by CHRωt ). The proof is
analogous to that one of the previous theorem. Note however that
Theorem 2, together with the translation of CHRrp into CHRωr

provided in [De Koninck et al. 2007] does not imply the following
result, since that translation does not consider compositionality4.

Theorem 3. Let G be a class of goals such that if H is a head of
a rule then H ∈ G. There exists no acceptable encoding of CHRωr

into CHRωt for the class G.

Proof. The proof is by contradiction. Consider the following pro-
gram P in CHRωr

5

a(X)⇔ X = no|true

a(X)⇔ X = yes|false

d(X), b(X), a(X)⇔ X = no

a(X)⇔ b(Y ), b(X), c(X)

c(X), b(Y )⇔ Y = yes, d(X)

d(X), b(Y )⇔ X = yes|true
and assume that [[P ]] is the translation of P in CHRωt .
Let G be a non empty goal of the form a(X), . . . , a(X). Then

SAP,ωr (G) = {{X = yes}} if G contains only one occurrence
of the atom a(X), SAP,ωr (G) = {{X = no}} otherwise.

Since the goal a(x) has the data sufficient answer {X = yes}
in the program P and since the encoding preserves data sufficient
answers, {X = yes} ∈ SA[[P ]],ωt([[a(X)]]g). As in Theorem 2,
from the compositionality of the translation of goals and Lemma
1 it follows that {X = yes} ∈ SA[[P ]],ωt([[a(X), a(X)]]g). This
contradicts the fact that [[P ]] is an acceptable encoding for P , thus
concluding the proof.

4 Moreover the correctness result for the translation given by Theorem 4 in
[De Koninck et al. 2007] shows only that the derivations in the translated
program correspond to derivations in the original program, and not vice
versa.
5 To prove Theorem 3 it is possible to use programs with fewer rules. We
chose instead to use a program that solves the Last Men Standing problem
like in Theorem 2

5. CHR vs Prolog
We prove now that CHR can not be encoded into Prolog while pre-
serving data sufficient answers. We extend a previous result pro-
vided in [Di Giusto et al. 2009] where only pure Prolog (without
built-ins) was considered. In fact, such a result was based on a prop-
erty of computations (Lemma 1 in [Di Giusto et al. 2009] ) which
does not hold for some Prolog built-ins such as var. Moreover, in
[Di Giusto et al. 2009] the naive semantics (without token store)
was considered, while here we assume that CHR uses the ωt se-
mantics. Here we provide a direct, more general result which holds
for Prolog systems that do not have dynamic procedures (i.e. it is
not possible to use built-ins like assert, retract, clause, . . . ) consid-
ering the semantics based on computed answers.

First we have to define more precisely what is an acceptable
encoding of CHRωt (CHR with the ωt semantics) into Prolog. In
fact, since constraints are computed in CHR while substitutions are
computed in Prolog, one has to define the decoding functions which
allow to transform an observable into the other, hence slightly
modifying the second condition of Definition 4. Here we impose
a very weak requirement on such decodings, namely we assume
that they can not transform an empty set of observables into a non
empty one. This is a rather reasonable assumption, since clearly a
function, which creates an answer from an empty set, appears to be
“suspicious”. Hence we have the following definition where, for the
convenience of the reader, we repeat also the unchanged part of the
previous Definition 4. We denote by CAP (G) the set of computed
answer substitutions for the goal G in the (Prolog) program P .

Definition 5 (Acceptable encoding of CHR into Prolog). Let G
be a class of CHRωt goals. An acceptable encoding of CHRωt

into Prolog, for the class of goals G, is a pair of mappings [[ ]] :
PCHRωt

→ PProlog and [[ ]]g : GCHRωt
→ GProlog which satisfy

the following conditions:

• for any goal (A,B) ∈ G, [[A,B]]g = [[A]]g ,[[B]]g ,
• CA[[P ]]([[G]]g) = ∅ if and only if SAP,ωt(G) = ∅.

Hence we have the following separation result.

Theorem 4. Let G be a class of CHRωt goals such that if H is a
head of a rule then H ∈ G. There exists no acceptable encoding of
CHRωt in Prolog for the class G.

Proof. The proof is by contradiction. Consider the following
CHRωt program P :

a, b⇔ true

where a, b are CHR constraints, and assume that [[P ]] is the transla-
tion of P in Prolog.

We have that SAP,ωt(a) = ∅ while SAP,ωt((a, b)) =
{{true}}. By previous definition of acceptable encoding it fol-
lows that the goal [[a]]g in the Prolog program [[P ]] has no computed
answer substitution, while the goal [[a, b]]g in [[P ]] has at least one
computed answer substitution. From the compositionality of [[ ]]g ,
we have that [[a]]g, [[b]]g = [[a, b]]g has an answer substitution in
[[P ]].

Without loss of generality, let us consider the standard leftmost
selection rule of Prolog (i.e the atom chosen for the SLD resolution
is always the leftmost in the goal). Starting from the goal [[a]]g, [[b]]g
there exists a successful derivation

[[a]]g, [[b]]g →∗[[P ]] [[b′]]g →∗[[P ]] �

where all the sub-goal derived from [[a]]g have been reduced to the
empty goal before considering the (possibly instantiated version of)
[[b]]g (here � is the empty goal and→[[P ]] is an SLD resolution step
in the program [[P ]]).



This implies that there exists a successful derivation

[[a]]g →∗[[P ]] �

and therefore the goal [[a]]g in the Prolog program [[P ]] has one
computed answer substitution. However the goal a has no data
sufficient answer in P , thus contradicting the fact that [[P ]] was an
acceptable encoding for P .

6. Conclusions
We have studied the expressive power of CHR with priorities and
we have shown that dynamic priorities do not increase the expres-
sive power of static ones. On the other hand we have proved that,
when considering the theoretical semantics, CHR with (static) pri-
orities can not be encoded into standard CHR under quite reason-
able assumptions. A similar result shows also that the refined se-
mantics allows to augment the expressive power of CHR w.r.t. the
theoretical one. Finally we have shown that CHR can not be en-
coded in Prolog, thus extending a previous result provided in [Di
Giusto et al. 2009] where only pure Prolog (without built-ins) was
considered. Indeed the present work can be seen as a continuation
of that paper where it was also shown that CHR can not be encoded
into CHR with single heads.

As mentioned in the introduction, this paper is also based on [De
Koninck et al. 2007], where the CHRrp language was introduced
and where it was shown that CHRrp programs with static priorities
can be translated into CHR with the refined semantics. However
that paper did not provide the formal results that we have shown
here.

Among the other few papers which consider the expressive
power of CHR a quite relevant one is [Sneyers et al. 2009], where
the authors show that it is possible to implement any algorithm
in CHR in an efficient way, i.e. with the best known time and
space complexity. This result is obtained by introducing a new
model of computation, called the CHR machine, and comparing
it with the well-known Turing machine and RAM machine models.
Earlier works by Frühwirth [Frühwirth 2002, 2001] studied the
time complexity of simplification rules for naive implementations
of CHR. In this approach an upper bound on the derivation length,
combined with a worst-case estimate of (the number and cost of)
rule application attempts, allows to obtain an upper bound of the
time complexity. The aim of all these works is different from ours,
even though they can be used to state that, in terms of classical
computation theory, CHRrp is equivalent to CHR.

Another recent paper which studies the expressive power of
CHR is [Sneyers 2008], where the author shows that several sub-
classes of CHR are still Turing-complete, while single-headed
CHR without host language and propositional abstract CHR are
not Turing-complete.

In the field of concurrent languages one can find several works
related to the present one. In particular, concerning priorities, a re-
cent paper [Versari et al. 2007] shows that the presence of priorities
in process algebras does augment the expressive power. More pre-
cisely the authors show, among other things, that a finite fragment
of asynchronous CCS with (global) priority can not be encoded
into π-calculus nor in the broadcast based b-π calculus. This result
is proved by introducing a formalization of the Last Man Stand-
ing problem which is somehow similar to the problem that we have
used to separate CHRrp and CHR, even though the formal setting
is rather different.

More generally, often in process calculi and in distributed sys-
tems separation results are obtained by showing that a problem can
be solved in a language and not in another one (under some ad-
ditional hypothesis, similar to those used here). For example, in
[Palamidessi 2003] the author proves that there exists no reason-
able encoding from the π-calculus to the asynchronous π-calculus

by showing that the symmetric leader election problem has no so-
lution in the asynchronous version of the π-calculus. A survey on
separation results based on this problem can be found [Vigliotti
et al. 2007].

We are extending this work along several lines. First we are
considering similar results for qualified answers. Moreover we are
considering whether some complexity results can be obtained for
our translation of dynamic into static priorities.

Finally we plan to investigate the relation between priorities and
negation as absence [Van Weert et al. 2006]. In fact, as mentioned
in Section 4, by using priorities one can check the absence of
information. Threfore it seems that one can encode negation as
absence in CHRrp.
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