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Abstract

Constraint Handling Rules (CHR) is a committed-choice declarative lan-
guage which has been originally designed for writing constraint solvers and
which is nowadays a general purpose language.

Recently the language has been extended by introducing user-definable
(static or dynamic) rule priorities. The resulting language allows a better
control over execution while retaining a declarative and flexible style of pro-
gramming.

In this paper we study the expressive power of this language. We first
show that, in the presence of priorities, differently from the case of standard
CHR, considering more than two atoms in the heads of rules does not aug-
ment the expressive power of the language. Next we show that also dynamic
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priorities do not augment the expressive power w.r.t. static priorities. These
results are proved by providing explicitly a translation of one language into
another one, which preserves a reference semantics.

Finally we show that CHR with priorities is strictly more expressive than
standard CHR (under the theoretical operational semantics). This result is
obtained by adapting to the CHR case a notion of language encoding which
allows to compare Turing powerful languages.

Keywords: Expressive power, language encoding, constraints.

1. Introduction

Constraint Handling Rules (CHR) [7] is a committed-choice declarative
language which has been originally designed for writing constraint solvers and
which is nowadays a general purpose language. A CHR program consists of
a set of multi-headed guarded (simplification, propagation and simpagation)
rules which allow one to rewrite constraints into simpler ones until a solved
form is reached. The language is parametric w.r.t. an underlying constraint
theory CT which defines the meaning of basic built-in constraints.

The original theoretical operational semantics for CHR, denoted by ωt,
is non-deterministic, as usual for rule based and concurrent languages. Such
non-determinism has to be resolved in the implementations by choosing a
suitable execution strategy. Most implementations like SWI Prolog, Yap
Prolog, and K.U.Leuven JCHR indeed use the, so called, refined operational
semantics [6] called ωr which fixes most of the execution strategy. This
semantics, unlike the theoretical one, offers a good control over execution,
however it is quite low-level and lacks flexibility.

For this reason De Koninck et al. [3] proposed an extension of CHR,
called CHRrp , for supporting a high-level, explicit form of execution con-
trol which is more flexible and declarative than the one offered by the ωr
semantics. This is obtained by introducing explicitly in the syntax of the
language rule annotations which allow one to specify the priority of each
rule. The operational semantics, in the following denoted by ωp, is changed
accordingly: Rules with higher priority are chosen first. Priorities can be
either static, when the annotations are completely defined at compile time,
or dynamic, when the annotations contain variables which are instantiated at
run-time. We denote with static CHRrp the sublanguage of CHRrp obtained
by allowing static priorities only.
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Even though Sneyers et al. in [14] have shown that any algorithm can be
implemented in CHR preserving time and space complexity, yet De Koninck
et al. in [3] claimed that “priorities do improve the expressivity of CHR”.

In this paper we provide a formal ground for this informal claim by us-
ing a notion of expressivity coming from the field of concurrency theory to
prove several expressivity results relating CHR, CHRrp and static CHRrp .
In fact, in this field the issue of the expressive power of a language has re-
ceived considerable attention in the last years and several techniques and
formalisms have been proposed for separating the expressive power of differ-
ent languages which are Turing powerful (and therefore cannot be properly
compared by using the standard tools of computability theory). Such a sep-
aration is meaningful both from a theoretical and a pragmatic point of view,
since different (Turing complete) languages can provide quite different tools
for implementing algorithms. Indeed, some existing techniques for compar-
ing the expressive power of two languages take into account the translation
process, trying to formalize how difficult such a process is.

One of these techniques, that we use in this paper, is based on the notion
of language encoding, first formalized by De Boer et al. in [2, 12, 15]1 and
can be described as follows. Intuitively, a language L is more expressive
than a language L′ or, equivalently, L′ can be encoded in L, if each program
written in L′ can be translated into an L program in such a way that: (1)
the intended observable behavior of the original program is preserved, under
some suitable decoding; (2) the translation process satisfies some additional
restrictions which indicate how easy this process is and how reasonable the
decoding of the observables is. For example, typically one requires that the
translation is compositional w.r.t. (some of) the syntactic operators of the
language (see for example De Boer et al. [2]).

More precisely, in this paper we use the notion of acceptable encoding,
defined in the next section, which imposes the following requirements on
the translation. First, similarly to the previous cases, we require that the
translation of the goal (in the original program) and the decoding of the
results (in the translated program) are homomorphic w.r.t. the conjunction
of atoms. This assumption essentially means that our encoding and decoding
functions respect the structure of the original goal and of the results (recall
that for CHR programs these are constraints, that is, conjunction of atoms).

1The original terminology of these papers was “language embedding”.
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Next we assume that the results to be preserved are the, so called, qualified
answers. Also this is a rather natural assumption, since these are the typical
CHR observables for many CHR reference semantics.

To simplify the treatment we assume that both the source and the target
language use the same built-in constraints, semantically described by a theory
CT , which is not changed in the translation process. It is worth noticing
on the other hand that we do not impose any restriction on the program
translation.

Our first result shows that, in the presence of static priorities, allowing
two or more atoms in the head of rules does not change the expressive power
of the language. This result is obtained by providing an acceptable encoding
of static CHRrp into static CHRrp

2 , where the latter notation indicates the
static CHRrp language where at most two atoms are allowed in the heads of
rules.

We also show that when considering a slightly different notion of answers,
namely data sufficient answers, there exists an acceptable encoding from
static CHRrp to static CHRrp

2 even if we add also the requirement that the
goal encoding and output decoding functions are the identity. It is worth
noting that such a result does not hold for CHR without priorities, as shown
by Di Giusto et al. in [4].

Next we prove that dynamic priorities do no augment the expressive power
of the language w.r.t. static priorities. This result is obtained by providing an
acceptable encoding of CHRrp (with dynamic priorities) into static CHRrp .

Finally, we prove a separation result showing that (static) priorities aug-
ment the expressive power of CHR, that is CHRrp is strictly more expressive
than CHR, in the sense that there exists no acceptable encoding of CHRrp

into CHR (with the ωt semantics).
The remainder of the paper is organized as follows. The next section

introduces the languages under consideration with the related semantics and
some preliminary notions on language encodings. In Section 3.1 we prove that
static CHRrp can be encoded in static CHRrp

2 . In Section 3.2 we provide the
translation of dynamic priorities into static ones. In Section 4 we prove the
separation result while Section 5 concludes by discussing some related works.

A preliminary version of this paper appeared in [10], however that paper
considered also a different semantics (the refined one) and did not contain
some of the results presented here. In particular Theorems 1 and 3 are new.
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2. Syntax and semantics

In this section we give an overview of CHR syntax with its operational
semantics following [7], [6] and [3].

2.1. Syntax of CHR

We first need to distinguish the constraints handled by an existing solver,
called built-in (or predefined) constraints, from those defined by the CHR
program, called user-defined (or CHR) constraints. Therefore we assume a
signature Σ on which program terms are defined and two disjoint sets of
predicate symbols Πb for built-in and Πu for user-defined constraints.

Definition 1 (Built-in constraint). A built-in constraint p(t1, . . . , tn) is an
atomic predicate where p is a predicate symbol from Πb and t1, . . . , tn are
terms over the signature Σ.

For built-in constraints we assume a (first order) theory CT which de-
scribes their meaning.

Definition 2 (User-defined constraint). A user-defined (or CHR) constraint
p(t1, . . . , tn) is an atomic predicate where p is a predicate symbol from Πu and
t1, . . . , tn are terms over the signature Σ.

We use c, d to denote built-in constraints, h, k to denote CHR constraints
and a, b, f, g to denote both built-in and user-defined constraints (we call
these generally constraints). The capital versions of these notations will
be used to denote multiset of constraints. We also denote by false any
inconsistent conjunction of constraints and with true the empty multiset of
built-in constraints.

We use “,” rather than ∧ to denote conjunction and we often consider
a conjunction of atomic constraints as a multiset of atomic constraints. We
prefer to use multisets rather than sequences (as in the original CHR papers)
because our results do not depend on the order of atoms in the rules. In
particular, we use this notation based on multisets in the syntax of CHR.

The notation ∃V φ, where V is a set of variables, denotes the existential
closure of a formula φ w.r.t. the variables in V , while the notation ∃−V φ de-
notes the existential closure of a formula φ with the exception of the variables
in V which remain unquantified. Fv(φ) denotes the free variables appearing
in φ. Finally, we denote by t̄ and X̄ a sequence of terms and of distinct
variables, respectively.

5



In the following, if t̄ = t1, . . . , tm and t̄′ = t′1, . . . , t
′
m are sequences of

terms then the notation p(t̄) = p′(t̄′) represents the set of equalities t1 =
t′1, . . . , tm = t′m if p = p′, and it is false otherwise. This notation is extended
in the expected way to multiset of constraints. Moreover we use ++ to denote
sequence concatenation and ] for multi-set union.

We follow the logic programming tradition and indicate the application
of a substitution σ to a syntactic object t by σt.

To distinguish between different occurrences of syntactically equal con-
straints, a CHR constraint can be labeled by a unique identifier. The re-
sulting syntactic object is called identified CHR constraint and is denoted
by k#i, where k is a CHR constraint and i is the identifier. We also use
the functions defined as chr(k#i) = k and id(k#i) = i, possibly extended
to sets and sequences of identified CHR constraints in the obvious way, to
obtain a set or a sequence of identifiers.

2.2. CHR program

A CHR program is defined as a sequence of three kinds of rules: simplifica-
tion, propagation and simpagation rules. Intuitively, simplification rewrites
constraints into simpler ones, propagation adds new constraints which are
logically redundant but may trigger further simplifications, simpagation com-
bines in one rule the effects of both propagation and simplification rules. For
simplicity we consider simplification and propagation rules as special cases
of a simpagation rule. The general form of a simpagation rule is:

r @Hk\Hh ⇐⇒ D | B

where r is a unique identifier of a rule, Hk and Hh (the heads) are multi-sets
of CHR constraints, D (the guard) is a possibly empty multi-set of built-in
constraints and B is a possibly empty multi-set of (built-in and user-defined)
constraints. If Hk is empty then the rule is a simplification rule. If Hh is
empty then the rule is a propagation rule. At least one of Hk and Hh must
be non-empty.

In the following when the guard D is empty or true we omit D |. Also
the names of rules are omitted when not needed. For a simplification rule we
omit Hk\ while we write a propagation rule as Hk ⇒ D | B. A CHR goal
is a multi-set of (both user-defined and built-in) constraints. An example
of a CHR program is shown in Figure 1. This program implements the
less or equal predicate, assuming that we have only the equality predicate
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reflexivity leq(X, Y )⇐⇒ X = Y | true
antisymmetry leq(X, Y ), leq(Y,X)⇐⇒ X = Y

transitivity leq(X, Y ), leq(Y, Z)⇒ leq(X,Z)

Figure 1: A program for defining ≤ in CHR

in the available built-in constraints. The first rule, a simplification, deletes
the constraint leq(X, Y ) if X = Y . Analogously the second rule deletes the
constraints leq(X, Y ) and leq(Y,X) adding the built-in constraint X = Y .
The third rule of the program is a propagation rule and it is used to add a
constraint leq(X,Z) when the two constraints leq(X, Y ) and leq(Y, Z) are
found.

2.3. Traditional operational semantics

The theoretical operational semantics of CHR, denoted by ωt, is given in
[6] as a state transition system T = (Conf ,

ωt→P ): Configurations in Conf are
tuples of the form 〈G,S,B, T 〉n, whereG is the goal (a multi-set of constraints
that remain to be solved), S is the CHR store (a set of identified CHR
constraints), B is the built-in store (a conjunction of built-in constraints),
T is the propagation history (a set of sequences of identifiers used to store
the rule instances that have fired) and n is the next free identifier (it is used
to identify new CHR constraints). The propagation history is used to avoid
trivial non-termination that could be introduced by repeated application of
the same instance of a propagation rule. The transition rules of ωt are shown
in Table 1.

Given a program P , the transition relation
ωt→P⊆ Conf × Conf is the

least relation satisfying the rules in Table 1. The Solve transition rule allows
to update the constraint store by taking into account a built-in constraint
contained in the goal. The Introduce transition rule is used to move a user-
defined constraint from the goal to the CHR constraint store, where it can be
handled by applying CHR rules. The Apply transition rule allows to rewrite
user-defined constraints (which are in the CHR constraint store) by using
rules from the program. As usual, in order to avoid variable name clashes,
this transition rule assumes that all variables appearing in a program clause
are fresh ones. The Apply transition rule is applicable when the current store
(B) is strong enough to entail the guard of the rule (D), once the parameter
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Solve 〈(c,G), S, C, T 〉n
ωt→P 〈G,S, c∧C, T 〉n where c is a built-

in constraint

Introduce 〈(k,G), S, C, T 〉n
ωt→P 〈G, {k#n} ∪ S,C, T 〉n+1 where k

is a CHR constraint

Apply 〈G,H1∪H2∪S,C, T 〉n
ωt→P 〈(B,G), H1∪S, θ∧D∧C, T ∪

{t}〉n where P contains a (renamed apart) rule

r @H ′1\H ′2 ⇐⇒ D | B

and there exists a matching substitution θ s.t.
chr(H1) = θH ′1, chr(H2) = θH ′2, CT |= C →
∃−Fv(C)(θ ∧D) and t = id(H1) ++ id(H2) ++ [r] /∈ T

Table 1: Transition rules of ωt

passing has been performed. Note also that, as previously mentioned, the
condition id(H1) ++ id(H2) ++ [r] /∈ T which avoids repeated application of
the same instance of a propagation rule and therefore trivial non-termination.

An initial configuration has the form 〈G, ∅, true, ∅〉1 while a final config-
uration has either the form 〈G,S, false, T 〉k, when it is failed, or the form
〈∅, S, B, T 〉k, when it is successfully terminated because there are no appli-
cable rules.

Given a goal G, the operational semantics that we consider observes the
non-failed final stores of terminating computations. This notion of observable
is the most used in the CHR literature and is captured by the following.

Definition 3. [Qualified answers [7]] Let P be a program and let G be a goal.
The set QAP (G) of qualified answers for the query G in the program P is
defined as:

QAP (G) = {∃−Fv(G)(K ∧ d) | CT 6|= d↔ false,

〈G, ∅, true, ∅〉1
ωt→P

∗
〈∅, K, d, T 〉n

ωt9P}

We also consider the following different notion of answer, obtained by
computations terminating with a user-defined constraint which is empty. We
call these observables data sufficient answers slightly deviating from the ter-
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minology of [7] (a goal which has a data sufficient answer is called a data-
sufficient goal in [7]).

Definition 4. [Data sufficient answers] Let P be a program and let G be
a goal. The set SAP (G) of data sufficient answers for the query G in the
program P is defined as:

SAP (G) = {∃−Fv(G)(d) | CT 6|= d↔ false,

〈G, ∅, true, ∅〉1
ωt→P

∗
〈∅, ∅, d, T 〉n}

Both previous notions of observables characterize an input/output be-
haviour, since the input constraint is implicitly considered in the goal. Clearly
in general SAP (G) ⊆ QAP (G) holds, since data sufficient answers can be
obtained by setting K = ∅ in Definition 3.

2.4. CHR with priorities

De Koninck et al. [3] extended CHR with user-defined priorities. This
new language, denoted by CHRrp , provides an high-level alternative for con-
trolling program execution that is more appropriate for the needs of CHR
programmers than other low level approaches.

The syntax of CHR with priorities is compatible with the syntax of CHR.
A simpagation rule has now the form

p :: r @Hk\Hh ⇐⇒ D | B

where r , Hk, Hh, D,B are defined as in the CHR simpagation rule in Section
2.2, while p is an arithmetic expression, with Fv(p) ⊆ (Fv(Hk) ∪ Fv(Hh)),
which expresses the priority of rule r. If Fv(p) = ∅ then p is a static priority,
otherwise it is called dynamic.

The formal semantics of CHRrp , defined by [3], is an adaptation of the
traditional semantics to deal with rule priorities. Formally this semantics,

denoted by ωp, is a state transition system T = (Conf ,
ωp→P ) where P is a

CHRrp program while configurations in Conf , as well as the initial and final
configurations, are the same as those introduced for the traditional semantics

in Section 2.3. The transition relation
ωp→P⊆ Conf ×Conf is the least relation

satisfying the rules in Table 2. The Solve and Introduce transition rules are
equal to those defined for the traditional semantics. The Apply transition
rule instead is modified in order to take into account priorities. In fact, a
further condition is added which requires that a rule can be fired only if no
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1 :: source(V ) =⇒ dist(V, 0)
1 :: dist(V,D1)\dist(V,D2)⇐⇒ D1 ≤ D2|true

D + 2 :: dist(V,D), edge(V,C, U) =⇒ dist(U,D + C)

Figure 2: A program for computing the shortest path in CHRrp

other rule that can be applied has a smaller value for the priority annotation
(as usual in many systems, smaller values correspond to higher priority; For
simplicity in the following we use the terminology “higher” or “lower” priority
rather than considering the values).

An example of a CHRrp program (from [3]) is shown in Figure 2. This
program can be used to compute the length of the shortest path between a
source node and all the other nodes in the graph. We assume that the source
node n is defined by using the constraint source(n) and that the graph is
represented by using the constraints edge(V,C, U) for every edge of length
C between two nodes V and U . When the program terminates we obtain a
constraint dist(U,C) iff the length of the shortest path between the source
node and U is C.

The qualified and data sufficient answers for CHRrp can be defined anal-
ogously to those of the standard language.

2.5. Language encoding

In this work we consider the following languages and semantics:

• CHRωt : this is standard CHR, where the theoretical semantics is used,

• CHRrp : this is CHR with priorities, where both dynamic and static
priorities can be used, the semantics is that one defined in the previous
section (ωp);

• static CHRrp : this is CHR with static priorities only, with the ωp se-
mantics;

• static CHRrp
2 : this is CHR with static priorities only, with the ωp se-

mantics, where we allow at most two constraints in the head of a rule.

Since all these languages are Turing powerful [14] in principle one can
always encode a language into another one. The question is how difficult and
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Solve 〈(c,G), S, C, T 〉n
ωp→P 〈G,S, c∧C, T 〉n where c is a built-

in constraint

Introduce 〈(k,G), S, C, T 〉n
ωp→P 〈G, {k#n} ∪ S,C, T 〉n+1 where k

is a CHR constraint

Apply 〈∅, H1∪H2∪S,C, T 〉n
ωp→P 〈B,H1∪S, θ∧D∧C, T ∪{t}〉n

where P contains a (renamed apart) rule

p :: r @H ′1\H ′2 ⇐⇒ D | B

and there exists a matching substitution θ s.t.
chr(H1) = θH ′1, chr(H2) = θH ′2, CT |= C →
∃−Fv(C)(θ∧D), θp is a ground arithmetic expression and
t = id(H1) ++ id(H2) ++ [r] /∈ T . Furthermore no rule
of priority p′ and substitution θ′ exists with θ′p′ < θp
for which the above conditions hold

Table 2: Transition rules of ωp

how natural such an encoding is. As mentioned in the introduction, depend-
ing on the answer to this question one can discriminate different languages.
Indeed, several approaches which compare the expressive power of concur-
rent languages impose the condition that the translation is compositional
w.r.t. some operator of the language, because compositionality is considered
a natural property of the translation. Moreover, usually one wants that some
observable properties of the computations are preserved by the translation,
which is also a natural requirement.

In the following we then make similar assumptions on our encoding func-
tions for CHR languages. We formally define a program encoding as any
function PROG : PL → PL′ which translates an L program into a (finite) L′
program (PL and PL′ denote the set of L and L′ programs, respectively). To
simplify the treatment we assume that both the source and the target lan-
guage use the same built-in constraints semantically described by a theory
CT . Next we have to define how the initial goal and the observables should
be translated by the encoding and the decoding functions, respectively. We
require that these translations are compositional w.r.t. the conjunction of
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atoms. This assumption essentially means that the encoding and the decod-
ing respect the structure of the original goal and of the observables. More-
over, since the source and the translated programs use the same constraint
theory, it is natural to assume also that these two functions do not modify
or add built-in constraints (in other words, we do not allow to simulate the
behaviour and the effects of the constraint theory).

We do not impose any restriction on the program translation, hence we
have the following definition.

Definition 5 (Acceptable encoding). Suppose that C is the class of all the
possible multisets of constraints. An acceptable encoding (of L into L′) is
a tern of mappings (PROG, INP ,OUT ), where PROG : PL → PL′ is the
program encoding, INP : C → C is the goal encoding, and OUT : C → C is
the output decoding, which satisfy the following conditions:

1. the goal encoding function is compositional, that is, for any goal (A,B) ∈
C, INP(A,B) = INP(A), INP(B) holds. We also assume that the
built-ins present in the goal are left unchanged and no new built-ins can
be added;

2. the output decoding function is compositional, that is, for any qualified
answer (A,B) ∈ C, OUT (A,B) = OUT (A),OUT (B) holds. We also
assume that the built-ins present in the answer are left unchanged and
no new built-ins can be added;

3. Qualified answers are preserved for the class C, that is, for all P ∈ PL
and G ∈ C, QAP (G) = OUT (QAPROG(P )(INP(G))) holds.

Moreover we define an acceptable encoding for data sufficient answers of L
into L′ exactly as an acceptable encoding, with the exception that the third
condition above is replaced by the following:

3’. Data sufficient answers are preserved for the class C, that is, for all
P ∈ PL and G ∈ C, SAP (G) is equal to the data sufficient answers in
OUT (QAPROG(P )(INP(G))).2

Further weakening these conditions and requiring, for instance, that the
translation of A,B is some form of composition (rather than the conjunction)

2Note that in 3. and in 3′. the function OUT () is extended in the obvious way to sets
of qualified answers.
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of the translation of A and B does not seem reasonable, as conjunction is
the only form for goal composition available in CHR.

Note that, according to the previous definition, if there exists an accept-
able encoding then there exists also an acceptable encoding for data sufficient
answers. This is an immediate consequence of the fact that data sufficient
answers are a subset of qualified answers.

In the following, given a program P , we denote by Pred(P ) and Head(P )
the set of all the predicate symbols p s.t. p occurs in P and in the head of a
rule in P , respectively.

3. Positive results

In this section we present some (acceptable) encodings for the four lan-
guages described at the beginning of Section 2.5. We first present some
immediate results which derive directly from the language definitions. Then
we describe two of the main results of this paper, namely that there exists
acceptable encodings from static CHRrp to static CHRrp

2 and from CHRrp to
static CHRrp . The combination of these results shows that static CHRrp

2 is
as powerful as the full CHRrp , that is, a program with dynamic priorities can
be (acceptably) encoded into one with static priorities and this, in its turn,
can be encoded into a program which does not use more than two constraints
in the head of rules.

We first observe that static CHRrp
2 is a sublanguage of static CHRrp that,

in its turn, is a sublanguage of CHRrp . Moreover, when a language L is a
sublanguage of L′ then a tern of identity functions provides an acceptable
encoding between the two languages. Therefore we have the following.

Fact 1. There exists acceptable encodings from static CHRrp
2 to static CHRrp,

and from static CHRrp to CHRrp.

As far as CHRωt is concerned, at a first glance it could be considered as a
sublanguage of static CHRrp where all the rules have equal priority. However
this is not completely true since in the ωp semantics, for the application of an
Apply transition, the goal multiset of the configuration must be empty while
in the ωt semantics it is possible to fire a rule even though some constraints
have not being introduced into the CHR store by a Solve or an Introduce
transition. However it is easy to see that from the monotonicity of ωt it
follows that for every computation reaching a non-failed final configuration
there is one computation reaching the same final configuration where the
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Solve and Introduce transitions are performed as soon as they can be exe-
cuted. Hence every final configuration reached by a CHRωt program P can
be reached by the static CHRrp program having the same rules as P with a
fixed and constant priority. Therefore we have the following.

Fact 2. There exists an acceptable encoding from CHRωt to static CHRrp.

As previously mentioned, the existence of an acceptable encoding implies
the existence of an acceptable encoding for data sufficient answers. Hence
we have the following immediate corollary.

Corollary 1. There exists acceptable encodings for data sufficient answers
from CHRωt to static CHRrp, from static CHRrp

2 to static CHRrp, and from
static CHRrp to CHRrp.

3.1. Encoding static CHRrp into static CHRrp
2

In this section we provide an acceptable encoding from static CHRrp to
static CHRrp

2 . We assume that P is a static CHRrp program composed by
m rules and that the i-th rule (with i ∈ {1, . . . ,m}) has the form:

pi :: rulei @ h(i,1)(t̄1), . . . , h(i,li)(t̄li)\h(i,li+1)(t̄li+1
), . . . , h(i,ri)(t̄ri)⇔ Gi|Ci.

Moreover we denote by pmax the lowest priority (i.e. the biggest pi).
First, we require that the goal encoding (the second component of our

acceptable encoding) is a non surjective function. The reason for this require-
ment is that the program encoding (first component of the triple) needs to
use, in the translated program, some fresh constraints which do not appear
in the initial (translated) goal. A simple goal encoding that satisfies this
requirement is the one that does not change built-in constraints and adds a
letter, say “a”, at the beginning of the other constraints, as shown below

INP(b(t̄)) =

{
b(t̄) if b(t̄) is a built-in constraint
ab(t̄) otherwise

In the rest of this section, by a slight abuse of notation, we use the
notation INP also to indicate a function from predicate symbols to predicate
symbols.

The main ingredient of an acceptable encoding is the program encod-
ing. In the following we define an encoding that produces a program that
simulates the execution of a static CHRrp by using only rules having static
priorities and at most two constraints in the head.
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Intuitively, the constraint identifier introduced by an Introduce transition
rule in the original program is simulated by adding a unique term as an
argument to a new kind of constraint.
The simulation process can be divided in the following three phases:

1. Initialization. In the initialization phase, for each k ∈ INP(Head(P ))
we replace a constraint k(t̄) by newk(n, t̄) where n is a fresh constant.
This allows the encoded program to simulate the Introduce transition
rules.

2. Main. In the main phase the encoded program determines what rules
of the original program can fire. If there is one rule that can fire its
firing is simulated and then all the constraints that are used to simulate
the firing of the rule are deleted. This phase is repeated until no rule
of the original program can fire.

3. Termination. The termination phase starts at the end of the main
phase. In this case all the constraints produced during the computation
for the simulation purposes are deleted.

In order to define the program encoding we introduce the following con-
straints:

• id(t); used to simulate an Introduce transition rule step; t is a term
that will be used as a constraint identifier.

• end; used to delete the constraint added in the process of simulating
the firing of the rules.

• rC[N ]i(t̄) with N ∈ {1, . . . , ri} where ri is the number of constraints
in the head of the i-th rule; used to check if the rule rulei can fire.

• rAi(t̄) is a constraint which is added to the store when the i-th rule is
fired; the t̄ are the identifiers of the constraints which are consumed by
the application of the i-th rule and therefore should be removed from
the store.

• newk(V, ū) where V is a term, ū is a sequence of terms and k is a
predicate symbol in INP(Pred(P )); this new constraint will be used
to add to a constraint k(ū) a new identifier V .

Note that since no constraint in this list starts with an “a”, the previous
assumption on the goal encoding function INP implies that these constraints
can not be in any goal produced by INP .
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In the following, in order to simplify the notation, when we are not inter-
ested in the arguments of a predicate we simply use an underscore to indicate
them (thus writing, for example, p( ), q( )).

Formally the program encoding, denoted by α, is a function that given a
static CHRrp program P , returns the program constructed as follows:

for every predicate name k ∈ INP(Head(P ))
1 :: rule(1 ,k) @ id(V ), k(X̄)⇔ id(V + 1), newk(V, X̄)

2 :: rule(2 ,k) @ k(X̄)⇔ id(2), newk(1, X̄)

for every i ∈ {1, . . . ,m}, N ∈ [2, ri − 1]
3 :: rule(3 ,i ,N ) @ end\rC[N ]i( )⇔ true

for every predicate name k ∈ INP(Head(P )), i ∈ {1, . . . ,m}
3 :: rule(4 ,i ,k) @ rAi(V̄ )\newk(V ′, X̄)⇔ V ′ ∈ V̄ |true

for every i, j ∈ {1, . . . ,m}, N ∈ [2, ri − 1]
3 :: rule(5 ,j ,i ,N ) @ rAj(V̄ )\rC[N ]i(V̄

′, X̄)⇔ V̄ ∩ V̄ ′ 6= ∅|true

for every i ∈ {1, . . . ,m}
4 :: rule(6 ,i) @ rAi( )⇔ true

for every i ∈ {1, . . . ,m}CHECK RULE(i)

for every i ∈ {1, . . . ,m}
6 + pi :: rule(7 ,i) @ rC[ri]i(V1, . . . , Vri , t̄1, . . . , t̄ri), id(V )⇔

Gi|Update(INP(Ci), V ), rAi(Vli+1, . . . , Vri)

7 + pmax :: rule8 @ id( )⇔ end
7 + pmax :: rule9 @ end⇔ true

where CHECK RULE(i) are the following rules

for every N ∈ [2, ri]
5 :: rule ′(i ,N ) @ rC[N − 1]i(V̄1, X̄1), newINP(h(i,N))(V2, X̄2)⇒

V2 6∈ V̄1|rC[N ]i(V̄1, V2, X̄1, X̄2)

where by convention, rC[1]i(V, X̄) = newINP(h(i,1))(V, X̄) and
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Update(C, V ) is defined as follows

Update(k(t̄), V ) = newk(V, t̄)
if k(t̄) is a CHR constraint

Update(c(t̄), V ) = c(t̄)
if c(t̄) is a built-in constraint

Update([ ], V ) = id(V )

Update([d(X̄) | Ds], V ) =
Update(d(X̄), V ), Update(Ds, V + 1).

Example 1. As an example for the application of the program encoding α
let us consider the simple program P composed by the following rule:

1 :: h1(X), h2(Y )\h′(Z)⇔ X = Y |h

α(P ) is the following program:

1 :: rule(1 ,ah1 ) @ id(V ), ah1(X)⇔ id(V + 1), newah1
(V,X)

1 :: rule(1 ,ah2 ) @ id(V ), ah2(X)⇔ id(V + 1), newah2(V,X)
1 :: rule(1 ,ah′) @ id(V ), ah′(X)⇔ id(V + 1), newah′(V,X)

2 :: rule(2 ,ah1 ) @ ah1(X)⇔ id(2), newah1
(1, X)

2 :: rule(2 ,ah2 ) @ ah2(X)⇔ id(2), newah2
(1, X)

2 :: rule(2 ,ah′) @ ah′(X)⇔ id(2), newah′(1, X)

3 :: rule(3 ,1 ,2) @ end\rC21(V1, V2, X1, X2)⇔ true

3 :: rule(4 ,1 ,ah1 ) @ rA1(V )\newah1
(V ′, X)⇔ V ′ = V |true

3 :: rule(4 ,1 ,ah2 ) @ rA1(V )\newah2
(V ′, X)⇔ V ′ = V |true

3 :: rule(4 ,1 ,ah′) @ rA1(V )\newah′(V ′, X)⇔ V ′ = V |true

3 :: rule(5 ,1 ,1 ,1) @ rA1(V )\rC21(V1, V2, X1, X2)⇔
V 6∈ {V1, V2}|true

3 :: rule(5 ,1 ,1 ,2) @ rA1(V )\rC31(V1, V2, V3, X1, X2, X3)⇔
V 6∈ {V1, V2, V3}|true
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4 :: rule(6 ,1) @ rA1(V )⇔ true

5 :: rule ′(1 ,2) @ newah1
(V1, X1), newah2

(V2, X2)⇒
V2 6= V1|rC21(V1, V2, X1, X2)

5 :: rule ′(1 ,3) @ rC21(V1, V2, X1, X2), newah′(V3, X3)⇒
V3 /∈ {V1, V2}|rC31(V1, V2, V3, X1, X2, X3)

7 :: rule(7 ,1) @ rC31(V1, V2, V3, X, Y, Z), id(V )⇔
X = Y |newah(V ), id(V + 1), rA1(V3)

8 :: rule8 @ id(V )⇔ end
8 :: rule9 @ end⇔ true

In the following, in order to better clarify the execution order of the rules,
we describe how they are used in the three phases of the encoded program.

1. Initialization. The first rule to be fired is a rule rule(2 ,k) that triggers
the firing of rules rule(1 ,k). This allows the replacing of every constraint
k in INP(Head(P )) by the constraint newk(n, t̄). The predicate sym-
bol id is used to memorize the highest identifier used.

2. Main. The main phase can be divided into three sub-phases. The first
sub-phase is the evaluation that starts when the init phase terminates
(at this point all the constraints k(t̄), with k ∈ INP(Head(P )) have
been converted into newk(l, t̄)). Rules rule ′(i ,N ) determine what rules
belonging to the original program can fire. The second sub-phase is the
activation. During this sub-phase if rulei can be fired in the original
program P then rule(7 ,i) can be fired in the program α(P ). If the
original program has not reached the final state then one of the rules
rule(7 ,i) fires, starting the deletion sub-phase. In this last sub-phase
rules rule(4 ,i ,k), rule(5 ,j ,i ,N ) and rule(6 ,i) delete all the constraints that
are used to simulate the constraints deleted by the application of the
i-th rule in the original program P .

3. Termination. The termination phase is triggered by rule rule8 that is
used to detect when no rule rule(7 ,i) can fire (this happens iff the original
program has reached a final state). Rules rule(3 ,i ,N ) and rule9 delete
all the constraints produced during the computation for the simulation
purpose, that is id, rC[N ]i and end.

It is worth noting that the operators ∈, 6∈ and ∩ written in the guards can
be replaced by equalities and inequalities. In rules rule ′(i ,N ), for instance, the
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guards V ′ 6∈ V̄ , where V̄ = V1, . . . , Vn can be replaced by V ′ 6= V1, . . . , V
′ 6=

Vn. Rules

3 :: rule(4 ,i ,k) @ rAi(V̄ )\newk(V ′, X̄)⇔ V ′ ∈ V̄ |true

where V̄ = Vli+1
, . . . , Vri can be rewritten by the set of rules

{3 :: rule(4 ,i ,k ,o) @ rAi(V̄ )\newk(V ′, X̄)⇔ V ′ = Vo|true | o ∈ [li+1, ri]}

and finally rules

3 :: rule(5 ,j ,i ,N ) @ rAj(V̄ )\rC[N ]i(V̄
′, X̄)⇔ V̄ ∩ V̄ ′ 6= ∅|true

where V̄ = Vli+1
, . . . , Vri and V̄ ′ = V ′1 , . . . , V

′
N can be rewritten by the set of

rules

{3 :: rule(5 ,j ,i ,N ,o,p) @ rAj(V̄ )\rC[N ]i(V̄
′, X̄)⇔ Vo = V ′p |true |

o ∈ [li+1, ri] and p ∈ [1, N ] }.

Even though it is common to have a constraint theory CT supporting the
equality and inequality as built-ins, this assumption is not technically needed
and the α encoding can be obtained also without the use of equalities and
inequalities (for more details on this point please see Appendix A).

To conclude the definition of the acceptable encoding we need the last
ingredient: the output decoding function. If we run the goal INP(G) in the
program α(P ) we obtain the same qualified answers obtained by running G
in the program P , with the only difference that if in the qualified answer of
P there is a CHR constraint k(t̄) then in the corresponding qualified answer
of the encoded program α(P ) there will be either a constraint newak(V, t̄) (if
k ∈ Head(P ) or k(t̄) is introduced by an Apply transition rule step) or a
constraint ak(t̄) (if k 6∈ Head(P ) and k(t̄) is in the initial goal G).

Therefore the decoding function that we need is:

OUT (b(t̄)) =


b(t̄) if b(t̄) is a built-in constraint
k(t̄′) if b(t̄) = newak(V, t̄

′)
k(t̄) if b(t̄) = ak(t̄).

The following Theorem, whose proof is in Appendix B, shows that the
triple (α, INP ,OUT ) that we have defined indeed provides the desired en-
coding.
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Theorem 1. The triple (α, INP ,OUT ) provides an acceptable encoding
from static CHRrp into static CHRrp

2 .

Note that, as mentioned after Definition 5, if there exists an acceptable
encoding then there exists also an acceptable encoding for data sufficient an-
swers. Hence the previous result implies that there is an acceptable encoding
for data sufficient answers from static CHRrp into static CHRrp

2 .
Moreover, if data sufficient answers are considered it is possible to strength-

en the previous Theorem by requiring that the goal encoding and the output
decoding functions are the identity functions. This does not hold if we con-
sider the program encoding α presented in the previous session. Intuitively
the reason is that when the goal encoding function is the identity function,
such constraints as id, end, rC[N ]i could be in the initial goal of the encoded
program. However, when we are focusing on data sufficient answers, we can
overcome this problem and use the same program encoding as a base for a
new program encoding for data sufficient answers. For the interested reader
the definition of such an encoding is presented in Appendix C.

3.2. Encoding CHRrp into static CHRrp

In this section we prove that the CHRrp language, which allows dynamic
priorities, is not more expressive than static CHRrp , which allows static pri-
orities only. This result is obtained by providing an (acceptable) encoding of
CHRrp into static CHRrp .

As usual, we assume that P is a CHRrp program composed of m rules
and we also assume that the i-th rule (with i ∈ {1, . . . ,m}) has the form:

pi :: rulei @ Hi\H ′i ⇔ Gi|Bi

Moreover, given a multiset of CHR constraints H̄ = h1(t̄1), . . . , hn(t̄n) and
a sequence of (distinct) variables V̄ = V1, . . . , Vn, we denote by new′(H̄, V̄ )
the multiset of atoms newh1(V1, t̄1), . . . , newhn(Vn, t̄n).

As for the goal encoding and the output decoding functions we use here
the same functions INP and OUT defined in Section 3.1.3

In the following, we define the program encoding T (P ) from CHRrp into
static CHRrp that produces a program that simulates the execution of a

3In the rest of this section, by a slight abuse of notation, we use the function INP also
as a function from predicate symbols to predicate symbols.
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CHRrp program with only rules having static priorities. The simulation pro-
cess can be divided in the following three phases:

1. Initialization. In the initialization phase, for each (user-defined) pred-
icate symbol ak ∈ INP(Head(P )) we replace a constraint ak(t̄) by
newak(V, t̄) where V is a new variable. This allows the encoded pro-
gram to simulate the Introduce transition rules.

2. Main. The main phase consists of the rules EVALUATE PRIORITIES(i)
and ACTIVATE RULE(i), for i ∈ {1, . . . ,m}. The first set of rules deter-
mines what rules of the original program can fire, while the rules of the
second set are used to simulate the firing of the original rules that can
fire.

3. Termination. The termination phase starts at the end of the main
phase. In this case all the constraints produced during the computation
for the simulation purposes are deleted.

Formally, the program encoding, denoted by T (P ), is a function that given
a CHRrp program P , returns the program constructed as follows:

for every predicate name ak ∈ INP(Head(P ))
1 :: rule(1 ,k) @ start\id(V ), ak(X̄)⇔ id(V + 1), newak(V, X̄)

2 :: rule(2 ,k) @ ak(X̄)⇒ start, id(0)

2 :: rule3 @ start⇔ highest priority(inf)

for every i ∈ {1, . . . ,m}
3 :: rule(4 ,i) @ end\instancei( )⇔ true

4 :: rule5 @ end⇔ true

for every i ∈ {1, . . . ,m} EVALUATE PRIORITIES(i)

7 :: rule9 @ highest priority(inf), id(V )⇔ end

for every i ∈ {1, . . . ,m} ACTIVATE RULE(i)

If rulei is not a propagation rule then EVALUATE PRIORITIES(i) are the
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following rules

6 :: rule(7 ,i) @ new′(INP(Hi), Z̄), new′(INP(H ′i), Ū)\highest priority(inf)
⇔ Gi|highest priority(pi)

6 :: rule(8 ,i) @ new′(INP(Hi), Z̄), new′(INP(H ′i), Ū)\highest priority(P )
⇔ Gi, pi < P |highest priority(pi)

if rulei is a propagation rule then EVALUATE PRIORITIES(i) are the fol-
lowing rules

5 :: rule(6 ,i) @new′(INP(Hi), Z̄)⇒ Gi|instancei(Z̄)

6 :: rule(7 ,i) @ instancei(Z̄), new′(INP(Hi), Z̄)\highest priority(inf)
⇔ Gi|highest priority(pi)

6 :: rule(8 ,i) @ instancei(Z̄), new′(INP(Hi), Z̄)\highest priority(P )
⇔ Gi, pi < P |highest priority(pi)

if rulei is a propagation rule then ACTIVATE RULE(i) is the following rule

8 :: rule(10 ,i) @ new′(INP(Hi), Z̄)\instancei(Z̄), highest priority(P ), id(V )
⇔ Gi, pi = P |Update(INP(Bi), V ), highest priority(inf)

if rulei is not a propagation rule then ACTIVATE RULE(i) is the following
rule

8 :: rule(10 ,i) @ new′(INP(Hi), Z̄)\new′(INP(H ′i), Ū), highest priority(P ),
id(V )⇔ Gi, pi = P |

Update(INP(Bi), V ), highest priority(inf)

In the above encoding we assume that the constraint theory CT allows to
use equalities and inequalities (so we can evaluate whether pi = h and pi > h
where h ∈ Z and pi is an arithmetic expression). We also assume inf is a
conventional constant which is bigger than all pi (i.e. it represents the lowest
priority). The Update function is exactly the one defined in Section 3.1.

Example 2. Let us consider as P the shortest path program depicted in
Figure 2. The corresponding T (P ) is the following program:
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1 :: rule(1 ,asource) @ start\id(V ), asource(X̄)⇔ id(V + 1), newasource(V, X̄)
1 :: rule(1 ,adist) @ start\id(V ), adist(X̄)⇔ id(V + 1), newadist(V, X̄)

1 :: rule(1 ,aedge) @ start\id(V ), aedge(X̄)⇔ id(V + 1), newaedge(V, X̄)

2 :: rule(2 ,asource) @ asource(X̄)⇒ start, id(0)
2 :: rule(2 ,adist) @ adist(X̄)⇒ start, id(0)
2 :: rule(2 ,aedge) @ aedge(X̄)⇒ start, id(0)

2 :: rule3) @ start⇔ highest priority(inf)

3 :: rule(4 ,1) @ end\instance1(Z̄)⇔ true
3 :: rule(4 ,2) @ end\instance2(Z̄)⇔ true
3 :: rule(4 ,3) @ end\instance3(Z̄)⇔ true

4 :: rule5 @ end⇔ true

5 :: rule(6 ,1) @ newasource(V,X)⇒ instance1(V )
6 :: rule(7 ,1) @ newasource(V,X)\highest priority(inf)

⇔ highest priority(1)
6 :: rule(8 ,1) @ newasource(V,X)\highest priority(P )

⇔ 1 < P |highest priority(1)

6 :: rule(7 ,2) @ newadist(V1, X1, X2), newadist(V2, Y1, Y2)\highest priority(inf)
⇔ X2 ≤ Y2|highest priority(1)

6 :: rule(8 ,2) @ newadist(V1, X1, X2), newadist(V2, Y1, Y2)\highest priority(P )
⇔ X2 ≤ Y2, 1 < P |highest priority(1)

5 :: rule(6 ,3) @ newadist(V1, X1, X2), newaedge(V2, Ȳ )
⇒ instance3(V1, V2)

6 :: rule(7 ,3) @ newadist(V1, X1, X2), newaedge(V2, Ȳ )\highest priority(inf)
⇔ highest priority(X2 + 2)

6 :: rule(8 ,3) @ newadist(V1, X1, X2), newaedge(V2, Ȳ )\highest priority(P )
⇔ X2 + 2 < P |highest priority(X2 + 2)

7 :: rule9 @ highest priority(inf), id(V )⇔ end

8 :: rule(10 ,1) @ newasource(V,X)\instance1(V ), highest priority(P ), id(V ′)
⇔ 1 = P |newadist(V ′, X, 0), id(V ′ + 1), highest priority(inf)

8 :: rule(10 ,2) @ newadist(V1, X,X1)\newadist(V2, X,X2), highest priority(P ), id(V ′)
⇔ X1 ≤ X2, 1 = P |id(V ′), highest priority(inf)
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8 :: rule(10 ,3) @ newadist(V1, X,X1), newaedge(V2, X,X2, X3)\instance3(V1, V2),
highest priority(P ), id(V ′)⇔ X1 + 2 = P |newadist(V ′, X3, X1 +X2),

id(V ′ + 1), highest priority(inf)

In the following, to better clarify the execution order of the rules, we
describe how they are used in the three phases of the encoded program.

1. Initialization. In the init phase, for each (user-defined) predicate
symbol ak ∈ INP(Head(P )) we introduce a rule rule(1 ,k), which re-
places ak(t̄) by newak(V, t̄) where V is a variable which will be used
to simulate the identifier used in identified constraints. Moreover we
use the id predicate symbol to memorize the highest identifier used.
Rules rule(2 ,k) (one for each predicate symbol ak ∈ INP(Head(P )),
as before) are used to fire rules rule(1 ,k) and also to start the following
phase (via rule3 ). Note that rules rule(1 ,k) have maximal priority and
therefore are tried before rules rule(2 ,k).

2. Main. The main phase is divided into two phases: the evaluation phase
starts when the init phase adds the constraint highest priority(inf).
Rules rule(6 ,i), . . . , rule(8 ,i) store in highest priority the highest prior-
ity on all the rule instances that can be fired. After the end of the
evaluation phase the activation starts. During this phase if a rule can
be fired one of the rules rule(10 ,i) is fired. After the rule has been fired
the constraint highest priority(inf) is produced which starts a new
evaluation phase.

3. Termination. The termination phase is triggered by rule rule9 . This
rule fires when no instance from the original program can fire. During
the termination phase all the constraints produced during the compu-
tation (namely id, instancei, highest priority, end) are deleted.

In the following we now provide some more details on the two crucial
points in this translation: the evaluation and the activation phases.

• Evaluation. The rules in the set denoted by

EVALUATE PRIORITIES(i)

are triggered by the insertion of highest priority(inf) in the constraint
store.
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In the case of a propagation rule rulei ∈ P , the rules in

EVALUATE PRIORITIES(i)

should consider the possibility that there is an instance of rulei that can
not be fired because it has been previously fired. When an instance of a
propagation rule can fire, rule rule(6 ,i) adds a constraint instancei(v̄),
where v̄ are the identifiers of the CHR atoms which can be used to
fire rulei . The absence of the constraint instancei(v̄) in the constraint
store means that either rulei can not be fired by using the CHR atoms
identified by v̄ or has already fired for the CHR atoms identified by v̄.

The evaluation of the priority for a simpagation or a simplification rule
is instead more simple because the propagation history does not affect
the execution of these two types of rules.

Rules rule(7 ,i) and rule(8 ,i) replace the constraint highest priority(p)
with the constraint highest priority(p′) if a rule of priority p′ can be
fired and p > p′.

• Activation. When the evaluation phase ends, if a rule can fire then
one of the rules rule(10 ,i) is fired since highest priority(inf) has been
removed from the constraint store.

The only difference between a propagation rule and a simpagation/sim-
plification rule is that when a propagation rule is fired the correspond-
ing constraint instancei(v̄) is deleted to avoid the execution of the same
propagation rule in the future.

It is worth noting that the non-determinism in the choice of the rule
to be fired provided by the ωp semantics is preserved, since all the
priorities of ACTIVATE RULE(i) are equal.

The following result shows that the qualified answers are preserved by our
encoding. Its proof, in Appendix, follows the lines of the reasoning informally
explained above. The functions INP and OUT are those defined in Section
3.1, while T is defined before.

Theorem 2. The triple (T , INP, OUT ) provides an acceptable encoding
between CHRrp and static CHRrp.

Analogously to the case of previous section, previous result implies that
there exists an acceptable encoding for data sufficient answers from CHRrp

into static CHRrp .
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3.3. Complexity of the encodings

In this section we discuss the complexity of the encodings that we have
presented in the previous sections, by taking into account both the size of
the translated program and the efficiency of the simulation of the original
program.

3.3.1. Encoding static CHRrp into static CHRrp
2

Assume that P is a static CHRrp program with m rules, that p is the
cardinality of the set of all the predicates symbols which occur in the head of
a rule in P and that r is the maximal number of constraints appearing in a
head of a rule in P . Let us denote by s be the maximum among the quantities
m, p and r. From the definition of the encoding it follows immediately that
the size of the encoded program α(P ) is O(s3), assuming that equalities and
inequalities can be used as built-in constraints. Thus, even though it is larger,
the encoded version has still a size which is reasonable when compared with
that one of the original program. On the other hand, the execution of the
encoded program can be quite inefficient, as shown by the following example.

Example 3. Let us consider the static CHRrp program P :

1 :: r1 @∅\c(0)⇔ true
2 :: r2 @c(X1), . . . , c(Xh)⇒ c(0)

By definition α(P ) is the following program

1 :: rule(1 ,ac) @ id(V ), ac(X)⇔ id(V + 1), newac(V,X)

2 :: rule(2 ,ac) @ ac(X)⇔ id(2), newac(1, X)

3 :: rule(3 ,2 ,2) @ end\rC[2]2( )⇔ true
...

3 :: rule(3 ,2 ,h−1) @ end\rC[h− 1]2( )⇔ true

3 :: rule(4 ,1 ,ac) @ rA1(V )\newac(V ′, X)⇔ V ′ = V |true

3 :: rule(5 ,1 ,2 ,1) @ rA1(V )\rC[2]2(V̄ ′, X̄)⇔ V ∈ V̄ ′|true
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...
3 :: rule(5 ,1 ,2 ,h−1) @ rA1(V )\rC[h− 1]2(V̄ ′, X̄)⇔ V ∈ V̄ ′|true

4 :: rule(6 ,1) @ rA1(V )⇔ true
4 :: rule(6 ,2) @ rA2 ⇔ true

5 :: rule ′(2 ,2) @ newac(V1, X1), newac(V2, X2)⇒ V2 6= V1|rC[2]2(V1, V2, X1, X2)
...

5 :: rule ′(2 ,h) @ rC[h− 1]2(V̄1, X̄1), newac(V2, X2)⇒ V2 6∈ V̄1|rC[h]2(V̄1, V2, X̄1, X2)

7 :: rule(7 ,1) @ rC[1]1(V1, 0), id(V )⇔ rA1(V1), id(V )
8 :: rule(7 ,2) @ rC[h]2(V1, . . . , Vh, X1, . . . , Xh), id(V )⇔ newac(V, 0), id(V + 1), rA2

9 :: rule8 @ id(V )⇔ end
9 :: rule9 @ end⇔ true

where by convention, for i ∈ {1, 2} rC[1]i(V,X) = newac(V,X).
Starting with the goal c(1), . . . , c(h) the program P fires only once the rule

r2 generating the constraint c(0) that is then immediately removed by rule
r1. On the other hand, in the encoded program α(P ) when the equivalent
of the constraint c(0) is added rules rule′(2, N) fire, for N ∈ [2, h]. Since all
the constraints in the store can match every constraint of rule r2 and there
are h + 1 of them, the rules rule′(2, N) fire O(h!) times. The simulation
of a static CHRrp program P can therefore be extremely inefficient, since
the simulation of one rule in the original program can require the firing of
O(n!/(n − h)!) rules in the encoded program, where n is the number of
constraints in the store (which can be very large) and h the maximal number
of constraints in a rule head. This is essentially due to the fact that the
encoded program needs to consider all the possible propagation rules that
can fire after the addition of a constraint and, as we have shown, in the worst
case it may involve the firing of a factorial number of rules.

3.3.2. Encoding CHRrp into static CHRrp

Like in the previous case, also when considering the encoding of CHRrp

into static CHRrp the size of the encoded program T (P ) is polynomial (ac-
tually, linear) w.r.t. the size of P . This is due to the fact that the number of
new rules added is never greater than the number of constraints in Head(P )
or the number of rules of P (multiplied by a constant).
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As for the execution time of the encoded program we distinguish two
cases: if there are no propagation rules then the encoded program can sim-
ulate the firing of a rule in the original program by using O(D) rule firings,
where D is the priority of the rule with minimal priority. Indeed the encoded
program needs to select, among all the rules that can be fired, which rule has
higher priority. This is done by the rules EVALUATE PRIORITIES that can fire
D − 1 times, in the worst case, because the highest priority constraint can
not be decreased less then the value of the lowest priority, which is D − 1.

In case propagation rules are used, analogously to the case of previous
sub-section, it is possible that for simulating a single rule of the original
program a factorial number of rules need to be fired in the encoded program.
Consider for instance the program of Example 3 with the goal c(1), . . . , c(h).
By definition the encoded program T (P ) is the following:

1 :: rule(1 ,c) @ start\id(V ), ac(X)⇔ id(V + 1), newac(V,X)
2 :: rule(2 ,c) @ ac(X)⇒ start, id(0)

2 :: rule3 @ start⇔ highest priority(inf)

3 :: rule(4 ,1) @ end\instance1( )⇔ true
3 :: rule(4 ,2) @ end\instance2( )⇔ true

4 :: rule5 @ end⇔ true

6 :: rule(7 ,1) @ newac(0, Z)\highest priority(inf)⇔ highest priority(1)

6 :: rule(8 ,1) @newac(0, Z)\highest priority(P )⇔ 1 < P |highest priority(1)

5 :: rule(6 ,2)@ newac(X1, Z1), . . . , newac(Xh, Zh)⇒ instance2(Z1, . . . , Zh)

6 :: rule(7 ,2) @ instance2(Z1, . . . , Zh), newac(X1, Z1), . . . , newac(Xh, Zh)\
highest priority(inf)⇔ highest priority(2)

6 :: rule(8 ,2) @ instance2(Z1, . . . , Zh), newac(X1, Z1), . . . , newac(Xh, Zh)\
highest priority(P )⇔ 2 < P |highest priority(2)

7 :: rule9 @ highest priority(inf), id(V )⇔ end
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8 :: rule(10 ,1) @ newac(0, Z), highest priority(P ), id(V )⇔
1 = P |id(V ), highest priority(inf)

8 :: rule(10 ,2) @ newac(X1, Z1), . . . , newac(Xh, Zh)\instance2(Z1, . . . , Zh),
highest priority(P ), id(V )⇔ 2 = P |newac(0, V ),

id(V + 1), highest priority(inf)

In this case, when the equivalent of the constraint c(0) is added, the en-
coded program T (P ) starts to fire rules rule(6 ,2 ) and, similarly to what hap-
pens to rules rule′(2, N) for the α(P ) encoding, a factorial number of rules
could be fired. Hence, when propagation rules are added the encoded pro-
gram may be extremely inefficient w.r.t. the original program, since simulat-
ing a rule firing of the original program may involve the firing ofO(n!/(n−h)!)
rules in the encoded program, where n is the number of constraint in the store
and h the maximal number of constraint in a rule head.

4. Separation results

In this section we prove that priorities do augment the expressive power
of CHR. To do so we prove that there exists no acceptable encoding from
static CHRrp into CHRωt .

In order to prove this separation result we need the following lemma
which states a key property of CHR computations under the ωt semantics.
Essentially it says that, given a program P and goal G, if there exists a
derivation for G in P which produces a qualified answer (d,K) where d is a
built-in constraint, then when considering the goal (d,G) we can perform a
derivation in P , which is essentially the same as the previous one, with the
only exception of a Solve transition step (in order to evaluate the constraint
d). Hence it is easy to observe that such a new computation for (d,G) in P
terminates producing the same qualified answer (d,K).

The proof of the following Lemma is then immediate.

Lemma 1. Let P be a CHRωt program and let G be a goal. Assume that
G in P has the qualified answer (d,K). Then the goal (d,G) has the same
qualified answer (d,K) in P .

Lemma 1 is not true anymore if we consider CHRrp programs. Indeed if
we consider the program P consisting of the rules

1 :: h(X)⇔ X = yes|false
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2 :: h(X)⇔ X = yes

then the goal h(X) has the qualified answer X = yes in P , while the goal
X = yes, h(X) has no qualified answer in P . With the help of the previous
lemma we can now prove our main separation result.

Theorem 3. There exists no acceptable encoding for data sufficient answers
from CHRrp into CHRωt.

Proof. The proof is by contradiction. Consider the following program P in
CHRrp

1 :: h(X)⇔ X = yes|false

2 :: h(X)⇔ X = yes

and assume that (γ, INP ,OUT ) is an acceptable encoding for data sufficient
answers from CHRrp into CHRωt .

Let G be the goal h(X). Then SAP (G) = {X = yes}. Since the goal
h(X) has the data sufficient answer X = yes in the program P and since the
encoding preserves data sufficient answers, QAγ(P )(INP(h(X))) contains a
qualified answer S such that OUT (S) = (X = yes). Moreover, since the
output decoding function is such that the built-ins appearing in the answer
are left unchanged, we have that S is of the form (X = yes,K), where K is
a (possibly empty) multiset of CHR constraints.

Then since the goal encoding function is such that the built-ins present in
the goal are left unchanged INP(X = yes, h(X)) = (X = yes, INP(h(X)))
and therefore from previous Lemma 1, it follows that the program γ(P ) with
the goal INP(X = yes, h(X)) has the qualified answer S.

However (X = yes, h(X)) has no data sufficient answer in the original
program P . This contradicts the fact that (γ, INP ,OUT ) is an acceptable
encoding for data sufficient answers from CHRrp into CHRωt , thus concluding
the proof.

Since the existence of an acceptable encoding implies the existence of
an acceptable encoding for data sufficient answers we have the following
immediate corollary:

Corollary 2. There exists no acceptable encoding from CHRrp into CHRωt.
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Figure 3: Graphical summary:
99K: absence of an acceptable en-
coding
→: presence of an acceptable
encoding

5. Conclusions

We have studied the expressive power of CHR with priorities and we have
shown that, differently from the case of standard CHR, allowing more than
two atoms in the head of rules does not augment the expressive power of
the language. We have also proved that dynamic priorities do not increase
the expressive power w.r.t. static ones. These results are proved by provid-
ing translations from static CHRrp into static CHRrp

2 and from CHRrp into
static CHRrp which preserve the standard observables of CHR computations
(qualified answers).

Actually these translations would allow to prove stronger results, since
each computational step of the original program is simulated precisely by
several steps of the translated program. This means that if for example
the rule bodies would have non-pure observable side-effects, the encoding
would still correctly capture them.4 We have also discussed the complexity
of our encodings, showing that the translated programs have a size which
is polynomial (in one case linear) in the size of the original one, while their
execution can be quite inefficient in time when propagation rules are allowed.

Concerning negative (i.e. separation) results instead, we have proved
that, when considering the theoretical semantics, there exists no acceptable
encoding of CHR with (static) priorities into standard CHR. This means
that, even though both languages are Turing powerful, priorities augment
the expressive power of the language in a quite reasonable sense, as discussed
in the introduction.

This paper was inspired by the work of De Koninck et al. [3], where the
CHRrp language was introduced and where it was shown that static CHRrp

programs can be translated into CHR with the refined semantics. However

4This observation was made by a reviewer of this paper.
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that paper did not provide the formal results that we have shown here.
Among the other few papers which consider the expressive power of CHR

a quite relevant one is [14], where the authors show that it is possible to
implement any algorithm in CHR in an efficient way, i.e. with the best
known time and space complexity. This result is obtained by introducing a
new model of computation, called the CHR machine, and comparing it with
the well-known Turing machine and RAM machine models. Earlier works
by Frühwirth [8, 9] studied the time complexity of simplification rules for
naive implementations of CHR. In this approach an upper bound on the
derivation length, combined with a worst-case estimate of (the number and
cost of) rule application attempts, allows to obtain an upper bound of the
time complexity. The aim of all these works is different from ours, even
though they can be used to state that, in terms of classical computation
theory, CHRrp is equivalent to CHR.

Another paper which studies the expressive power of CHR is [13], where
the author shows that several subclasses of CHR are still Turing-complete,
while single-headed CHR without host language and propositional abstract
CHR are not Turing-complete. Recently these results have been further
extended in [5].

Our notion of acceptable encoding has been recently used in [1] to justify
a source-to-source transformation.

When moving to the more general field of concurrent languages one can
find several works related to the present one. In particular, concerning priori-
ties, Versari et al. [17] show that the presence of priorities in process algebras
does augment the expressive power. More precisely the authors show, among
other things, that a finite fragment of asynchronous CCS with (global) pri-
ority can not be encoded into π-calculus nor in the broadcast based b−π
calculus. This result is related to our separation result for CHRrp and CHR,
even though the formal setting is completely different.

More generally, often in process calculi and in distributed systems sep-
aration results are obtained by showing that a problem can be solved in a
language and not in another one (under some additional hypothesis, similar
to those used here). For example, in [11] the author proves that there exists
no reasonable encoding from the π-calculus to the asynchronous π-calculus
by showing that the symmetric leader election problem has no solution in
the asynchronous version of the π-calculus. A survey on separation results
based on this problem can be found [18].

Our work could be continued by investigating some conjectures. In par-
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ticular, the priorities seem related to negation as absence [16] in the sense
that, as mentioned in Section 4, by using priorities one can check the absence
of information. Therefore it seems that one can encode negation as absence
in CHRrp .
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Appendix A. α encoding without equalities or inequalities

The rules in the α encoding can be written also without the support of
a constraint theory allowing equality and inequality as built-ins. In fact,
rules rule ′(i ,N ) can be translated into rules having inequalities in their guards.
These rules have a structure similar to the following rule:

p :: c1(V, X̄), c2(V1, . . . , Vn, Ȳ )⇒ V 6= V1, . . . , V 6= Vn|c3(V, V1, . . . , Vn, X̄, Ȳ )

Since we know that V, V1, . . . , Vn will always be matched with ground
terms t, t1, . . . , tn, such that t1, . . . , tn are all different from each other, we
can replace the previous rule with the following rules:

p1 :: eq(Z̄)\c3(Z̄)⇔ true
p2 :: c1(V, X̄), c2(V1, . . . , Vn, Ȳ )⇒ V = V1|eq(V, V1, . . . , Vn, X̄, Ȳ )

. . .
p2 :: c1(V, X̄), c2(V1, . . . , Vn, Ȳ )⇒ V = Vn|eq(V, V1, . . . , Vn, X̄, Ȳ )

p3 :: c1(V, X̄), c2(V1, . . . , Vn, Ȳ )⇒ c3(V, V1, . . . , Vn, X̄, Ȳ )

where p1, p2, p3 are priorities s.t. p1 < p2 < p3 and eq is a new constraint.
Thus we have removed inequalities. Equalities instead can be removed by
simply changing the name of terms in the head of the rules. For instance the
equality X = Y in a rule like

k1(X), k2(Y )⇔ X = Y |C

can be removed replacing the previous rule with the following one

k1(X), k2(X)⇔ C.

Appendix B. Theorem 1

Theorem 1. The triple (α, INP ,OUT ) provides an acceptable encoding
from static CHRrp into static CHRrp

2 .

Proof. By definition, we have to prove that for all static CHRrp programs P
and goals G,

QAP (G) = OUT (QAα(P )(INP(G)))

holds.

35



By construction, the functions INP and OUT are compositional and
defined as:

INP(b(t̄)) =

{
b(t̄) if b(t̄) is a built-in constraint
ab(t̄) otherwise

OUT (b(t̄)) =


b(t̄) if b(t̄) is a built-in constraint
k(t̄′) if b(t̄) = newak(V, t̄

′)
k(t̄) if b(t̄) = ak(t̄).

Let P be a static CHRrp program and let G be a goal. From definition of
INP we have that the predicate symbols id, end, rC[N ]i, rAi, newk (with
k ∈ INP(Head(P ))) can not be in the encoded goal INP(G).

Therefore if G = ∅ or G does not contain predicate symbols that are in
Head(P ) we have that QAP (G) = OUT (QAα(P )(INP(G))) since no rule
from both the two programs can be applied. If however the goal G contains
a predicate symbol in Head(P ) (and therefore INP(G) contains a predicate
symbol in INP(Head(P ))) then rule(2 ,k) ∈ α(P ) is fired first. At this point,
each constraint k(t̄) in G, such that k ∈ Head(P ), is transformed by rule
rule(1 ,k) into the constraint newINP(k)(n, t̄), where n is a unique identifier
(intuitively this identifier can be considered as the identifier assigned to the
original constraint by the Introduce transition step). Let us define the map-
ping between the original constraint k(t̄) with the corresponding n identifier
of the newINP(k)(n, t̄) constraint as ϕ.

After this phase we obtain a new goal G′ in α(P ) and the rules rule(2 ,k)
and rule(1 ,k) are no longer used in this derivation in α(P ). Since there is
no end or rAi predicate symbol in G′, the next rules that are applied in the
derivation in α(P ) are rules rule ′(i ,N ). By definition of these rules a constraint

rC[N ]i(V1, . . . , VN , t̄) is generated if in the original program the constraints
ϕ−1(V1), . . . , ϕ

−1(VN) in G can be used as a match for the application of the
rule rulei in P . Thus a constraint rC[ri]i(V̄ , t̄) is created for every possible
match of constraints that can fire rule rulei .

When all the possible rule ′(i ,N ) have fired there are two possibilities:

1. if in the original program a rule can fire then at least one rule rule(7 ,i)
fires. The firing of this rule corresponds to the firing of a rule rulei
in the original program. For every constraint k(t̄) in the body of the
original rule a new newINP(k)(V, t̄) constraint is added to the store of
the derivation in the encoded program, with its new unique identifier
V . This rule also adds to the store the constraint rAi(V̄ ) where V̄
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are the identifiers ϕ(k(t̄)) of all the constraints k(t̄) that are removed
from the store by the application of rulei in the original program P .
The removal of this constraints in the encoded program is done by
rules rule(4 ,i ,k) that are eventually fired immediately after rule rule(7 ,i).
Rules rule(5 ,j ,i ,k) are then fired for removing all the constraints rC[N ]i
that have no more sense to exist since one of the constraints identi-
fied by their arguments has been removed. After that, the constraint
rAi(V̄ ) is no longer useful and it is removed by rule rule(6 ,i). When
the constraint rAi(V̄ ) is removed other rules rule ′(i ,N ) can fired (new

newINP(k)( ) constraints have potentially been added to the store by
rule(7 ,i)) repeating the cycle.

2. if in the original program no rule can fire then no rule rule(7 ,i) in α(P )
can fire and therefore rule8 fires. This removes the constraint id and
adds the constraint end that triggers the rules rule(3 ,i ,N ). These rules
remove all the constraints rC[N ]i and when all these constraints are
removed the end constraint is removed too by rule9. After the firing
of this rule, no rule of the program can fire anymore.

For every rule rulei that can fire in the original program there is a cor-
responding rule rule(7 ,i) that can fire in the encoded program. Moreover for
every CHR constraint k(t̄) in every configuration during the execution of the
goal G in P we have two possibilities. If k 6∈ Head(P ) and k(t̄) is in the initial
goal G, then there is a INP(k)(t̄) constraint in the correspondent configu-
ration during the execution of INP(G) in α(P ). If k ∈ Head(P ) or k(t̄) is
introduced by an Apply transition step, then there is a newINP(k)(V, t̄) con-
straint in the correspondent configuration during the execution of INP(G)
in α(P ). The built-in constraints are not modified and are processed in the
same way by both the two programs.

When the encoded program terminates no id, end, rC[N ]i, rAi are in
the store.5 Hence applying the decoding function to the qualified answer of
the encoded program produces the equivalent qualified answer of the original
program.

5Technically speaking rules rule(3 ,i,N ), rule8 and rule9 are not needed because the
constraints can be removed using the decoding function. We chose to add them to exploit
the same encoding also for the Theorem 3
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Appendix C. β encoding

If data sufficient answers are considered it is possible to strengthen Theo-
rem 1 by requiring that the goal encoding and the output decoding functions
are the identity functions. To do so it is possible to use the α encoding
as a base for a new program encoding for data sufficient answers exploiting
the fact that when a fresh constraint for a program P is in a goal then the
program has no data sufficient answers for that goal.

Below we exploit this idea and we first define a program translation
β(P, q) that, given a static CHRrp program P and a predicate symbol q pro-
duces a modified program P ′ which has the same data sufficient answers as
P for every goal that does not contain the predicate symbol q, and produces
a failure otherwise.6

Let us then consider a static CHRrp program P composed from m rules

pi :: rulei @ Hi\H ′i ⇔ Gi|Bi

where 1 ≤ pi ≤ pmax. W.l.o.g., we can assume that start and init are
not contained in Head(P ). Moreover, let f be an injective function that
maps predicate symbols into predicate symbols which are not in Pred(P ) ∪
{start, init, q}. f can be extended to a multiset of constraints in the obvious
way.

The transformation β(P, q) produces the following program

1 :: rulem+1 @ start, q( )⇔ false

for every predicate name k ∈ Head(P )
1 :: rule(m+2 ,k) @ start, f(k( ))⇔ false

1 :: rulem+3 @ start, init⇔ false

2 :: rulem+4 @ start⇔ init

for every predicate name k, k′ ∈ Head(P )

6Note that we are not requiring that the presence of a constraint of the form q(t̄) always
leads to a failure. We allow for instance the use of q(t̄) during the execution. The program
fails only if a constraint of the form q(t̄) is in the original goal.
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3 :: rule(m+5 ,k) @ k( )⇒ start
3 :: rule(m+6 ,k ,k ′) @ k( )\k′(Ȳ )⇔ f(k′(Ȳ ))

for every predicate name k ∈ Head(P )
4 :: rule(m+7 ,k) @ k(X)⇒ f(k(X̄))

for every i ∈ {1, . . . ,m}
4 + pi :: rule ′i @ f(Hi)\f(H ′i),⇔ Gi|f(Bi), init

5 + pmax :: rule(m+8 ) @ init, init⇔ init

for every predicate name k ∈ Head(P )
6 + pmax :: rule(m+9 ,k) @ k( ), init⇔ true

The following lemma shows that indeed the transformed program has the
behaviour that we have described before.

Lemma 2. Let P be a static CHRrp program and let q be a predicate symbol.
For every goal G, if G does not contain the predicate symbol q then SAP (G) =
SAβ(P,q)(G), SAβ(P,q)(G) = ∅ otherwise.

Proof. By our assumptions, start and init are not contained in Head(P ).
Moreover, by construction, f is a function that maps predicate symbols into
fresh predicate symbols (i.e. not in Pred(P ) ∪ {start, init, q}).

The proof is by cases on the form of the goal G.
If G = ∅ or G does not contain predicate symbols that are in Head(P ) we

have that SAP (G) = ∅. Moreover since in β(P, q) there is no rule which pro-
duces an atom of the form k(t̄), with k ∈ Head(P ), we have that rule(m+9 ,k)

cannot be used and therefore SAβ(P,q)(G) = ∅.
Now, let us to assume that the goal G contains a predicate symbol in

Head(P ). We have the following cases.

(G = start, G′) In this case, since by our assumptions start 6∈ Head(P ) we
have that SAP (G) = ∅. Moreover we have the following possibilities

1. (init ∈ G′ or q( ) ∈ G′ or f(k)( ) ∈ G′, with k ∈ Head(P )). In
this case

〈G, ∅, true, ∅〉1
ωp→β(P,q)

∗
〈∅, G′′, false, T 〉n

by using one of the three clauses with priority 1.
Therefore SAβ(P,q)(G) = SAP (G) = ∅.
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2. (init 6∈ G′, q( ) 6∈ G′, f(k)( ) 6∈ G′ with k ∈ Head(P ), and
start ∈ G′). In this case

〈G, ∅, true, ∅〉1
ωp→β(P,q)

∗
〈∅, (G′′, start#l, start#p), B, T 〉k

ωp→β(P,q)

〈∅, (G′′, start#l, init#n), B, T ′〉n+1
ωp→β(P,q)

∗
〈∅, G′′, false, T ′′〉n+1

by using in the order the rules rulem+4 and rulem+3 and therefore
SAβ(P,q)(G) = SAP (G) = ∅.

3. (G′ = k1(t̄1), . . . , kr(t̄r), with ki ∈ Head(P ), for i = 1, . . . , r). In
this case, after some Solve and Introduce transition steps and an
Apply transition step we have that

〈G, ∅, true, ∅〉1
ωp→β(P,q)

∗
〈∅, G′, B, T 〉n

where

• either G′ is of the form (G′′, start#l, start#p) if the Apply
transition step uses rule(m+5 ,k)

• or G′ is of the form (G′′, start#l, f(k′(t̄′))#p) if the Apply
transition step uses a rule rule(m+6 ,k ,k ′).

By using the same arguments of the cases 1 and 2, we have that
SAβ(P,q)(G) = SAP (G) = ∅.

(start 6∈ G) We have two further cases.

1. (G contains an atom of the form init or f(k(t̄)) with k ∈ Head(P )).
Since by our hypothesis init, f(k) 6∈ Head(P ) we have that
SAP (G) = ∅ and since G contains at least an atom of the form
k(t̄), with k ∈ Head(P ), it is easy to check that

〈G, ∅, true, ∅〉1
ωp→β(P,q)

∗
〈∅, (G′, start#p), B, T 〉n

by using some Apply transition steps with rule(m+6 ,k ,k ′) and then
an Apply transition step with rule(m+5 ,k), where G′ contains an
atom of the form init or f(k(t̄)) with k ∈ Head(P ). In this case,
analogously to point 1 of the case (G = start, G′), we have that the
derivation ends in a failed configuration and then SAβ(P,q)(G) =
SAP (G) = ∅.

2. (G contains an atom of the form q(t̄)). Then, analogously to the
previous point, we have that the derivation of G in β(P, q) ends
in a failed configuration and then SAβ(P,q)(G) = ∅.
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3. (G = k1(t̄1), . . . , kn(t̄n)). Let us consider a derivation δ for G in
β(P, q). We distinguish two cases:

(the first Apply transition step uses a rule rule(m+6 ,k ,k ′)).
In this case, analogously to point 3 of the case (start ∈ G),
we have that δ ends in a failed configuration.

(the first Apply transition step uses a rule rule(m+5 ,k)).
W.l.o.g., we can assume that rule(m+5 ,kl ) rewrites an atom of
the form kl(t̄l). Then we have that

δ = 〈G, ∅, true, ∅〉1
ωp→β(P,q)

∗
〈∅, G′, B, ∅〉n

ωp→β(P,q)

〈∅, (G′, start#n), B, {[s, rule(m+5 ,kl )]}〉n+1

〈∅, (G′, init#n+ 1), B, {[s, rule(m+5 ,kl )], [n, rulem+4 ]}〉n+2 · δ′

Now, we have two further possibilities.

(a) There exists an atom in G′, which is rewritten by using a
clause rule(m+5 ,j ).
In this case

δ′ = 〈∅, (G′, init#n+ 1), B, {[s, rule(m+5 ,kl )], [n, rulem+4 ]}〉n+2
ωp→β(P,q)

∗
〈∅, (G′′, init#n+ 1, start#n′), B′, T ′〉n′+1

ωp→β(P,q)

∗
〈∅, G1, false, T

′〉n′+1

where the last Apply transition step uses either rule(m+2 ,k)

or rulem+3

(b) There exists no atom in G′, which is rewritten by using a
clause rule(m+5 ,k).
In this case

〈∅, (G′, init#n+ 1), B, {[s, rule(m+5 ,kl )], [n, rulem+4 ]}〉n+2
ωp→β(P,q)

∗
〈∅, (G′′, init#n+ 1, kl(t̄l)#s,B

′, T ′〉n′′

where chr(G′′) = f(k1(t̄1)), . . . , f(kn(t̄n)), all the Apply
transition steps except the last one use one of the rules
rule(m+6 ,k ,k ′), [s, rule(m+5 ,kl )] ∈ T ′ and the last Apply tran-
sition step rewrites the atom kl(t̄l)#s by using the rule
rule(m+7 ,kl ) (and therefore [s, rule(m+7 ,kl )] ∈ T ′). From
this point the only applicable rules are rule ′i , rule(m+8 ,k)

and rule(m+9 ,k).

Then the proof is immediate by previous results and by defi-
nition of rulei , rule ′i , rule(m+8 ,k) and rule(m+9 ,k).
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Now let us denote with β′ the extensions of β to a list of predicate symbols
(β′(P, []) = P and β′(P, [X|XS]) = β(β′(P,XS), X)).

Suppose that New Symbols(P ) is the list of the new predicate symbols
introduced by α(P ) (namely id, end, rC[N ]i, rAi, newak) and w.l.o.g. sup-
pose that these predicate symbols are fresh in P .

Using the Lemma we can prove that if data sufficient are considered it is
possible to obtain an acceptable encoding where the goal encoding and the
output decoding functions are the identity functions.

Theorem 3. The triple (β′(α(P ), New Symbols(P )), id, id), where id is the
identity function and α is defined as before, provides an acceptable encoding
for data sufficient answers from static CHRrp into static CHRrp

2 .

Proof. The proof derives from Lemma 2 using the program encoding of The-
orem 1. Indeed given a program P w.l.o.g. we can assume that id, end,
rC[N ]i, rAi and newak (with k ∈ Head(P )) are not contained in Head(P ).
Therefore for every goal G containing at least one of them, we have that

SAP (G) = ∅.

By using the same arguments of Theorem 1, for each goal G s.t. no predi-
cate symbol in New Symbols(P ) is in G we have that SAP (G) = SAα(P )(G).
Moreover, by construction, α(P ) ∈ static CHRrp

2 . By Lemma 2 for every
goal G, if G does not contain the predicate symbols in New Symbols(P )
then SAP (G) = SAβ′(P,New Symbols(P ))(G), SAβ′(P,New Symbols(P ))(G) = ∅ oth-
erwise. Therefore we have that for each goal G, SAβ′(α(P ),New Symbols(P ))(G) =
SAP (G). Moreover, since α(P ) ∈ static CHRrp

2 , by definition of β′() we have
that β′(α(P ), New Symbols(P )) ∈ static CHRrp

2 and then the thesis.

It is worth noting that Theorem 3 does not hold when the traditional
semantics is considered, as shown in [5].

Appendix D. Theorem 2

Theorem 2. The triple (T , INP, OUT ) provides an acceptable encoding
between CHRrp and static CHRrp.

Proof. By definition, we have to prove that for all CHRrp programs P and
goals G,

QAP (G) = OUT (QAT (P )(INP(G)))
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holds.
By construction, the functions INP and OUT are compositional and

defined as:

INP(b(t̄)) =

{
b(t̄) if b(t̄) is a built-in constraint
ab(t̄) otherwise

OUT (b(t̄)) =


b(t̄) if b(t̄) is a built-in constraint
k(t̄′) if b(t̄) = newak(V, t̄

′)
k(t̄) if b(t̄) = ak(t̄).

Let P be a CHRrp program and let G be a goal.
For the definition of INP we have that the constraints start, id, end,

instancei, highest priority, newak (where ak ∈ INP(Head(P ))) can not be
in the encoded goal INP(G).

Therefore if G = ∅ or G does not contain constraints that are in Head(P )
we have that QAP (G) = OUT (QAT (P )(INP(G))) since no rule from both
the two programs P and T (P ) can be applied. If however the goal G contains
a constraint in Head(P ) then rule(2 ,k) is fired first. At this point each con-
straint ak(t̄) in INP(G) (corresponding to a constraint k(t̄) in G) such that
k ∈ Head(P ) is transformed by rules rule(1 ,k) into the constraint newak(V, t̄)
where V is a unique identifier (intuitively this identifier can be considered as
the identifier assigned to the original constraint by the Introduce transition
step). Let us define the mapping between the original constraint k(t̄) ∈ G
with the corresponding V identifier of the newak constraint as ϕ.

After this phase the rules rule(2 ,k) and rule(1 ,k) are no longer used in a
derivation in T (P ) and the configuration S is generated. Since there is no
start, end or instancei constraint in S (they can not be in the encoded goal
INP(G) due to the goal encoding function) the next rules that are applied
in T (P ) are rules in EVALUATE PRIORITIES(i). By definition of these rules,
if in the original program P it is possible to fire the j-th rule starting from
G, the constraint highest priority(pj) can added to the CHR store of S in
T (P ) after all the possible rules in EVALUATE PRIORITIES(i) have fired.

Note that, after all the possible rules in EVALUATE PRIORITIES(i) (for
i = 1, . . . , n) have fired at most a constraint highest priority(pj) is present
in the constraint store.

When all the possible EVALUATE PRIORITIES(i) (for i = 1, . . . , n) have
fired there are two possibilities:
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1. if in the original program a rule can fire then at least one rule
ACTIVATE RULE(i) (for i = 1, . . . , n) fires. The firing of the rule rule(10 ,j )
in T (P ) corresponds to the firing of the j-th rule in the original pro-
gram P . Moreover, the application of the rule rule(10 ,j ) in T (P ) uses
the atoms p1(V1, t̄1), . . . , pm(Vm, t̄m), highest priority(pj), id(l) if and
only if in the original program rulej in P can fire by using the atoms
ϕ−1(V1), . . . , ϕ

−1(Vm).
For every constraint k(t̄) in the body of the original rule a newak(V, t̄)
constraint is added with its new unique identifier V . This rule also
adds to the store the constraint highest priority(inf) and then the
computation starts from EVALUATE PRIORITIES(i) (for i = 1, . . . , n),
repeating the cycle.

2. if in the original program no rule can fire then no rule
EVALUATE PRIORITIES(i) (for i = 1, . . . , n) can fire and therefore rule9
fires. This removes the constraints highest priority(inf) and id(V )
from the constraint store. It also adds the constraint end that triggers
the rules rule(4 ,i) (for i = 1, . . . , n). These rules remove all the con-
straints instancei(V̄ ) and when all these constraints are removed the
end constraint is removed too by rule5 . After the firing of this rule no
rule of the program can fire anymore.

For every rule rulei that can fire in the original program P there is a corre-
sponding rule rule(10 ,i) that can fire in the encoded program T (P ). Moreover
for every CHR constraint k(t̄) in every configuration during the execution of
the goal G in P we have two possibilities. If k ∈ Head(P ) or k(t̄) is intro-
duced by an Apply transition step then there is a newak(V, t̄) constraint in
the correspondent configuration during the execution of INP(G) in T (P ).
If k 6∈ Head(P ) and k(t̄) is in the initial goal G then there is a ak(t̄) con-
straint in the correspondent configuration during the execution of INP(G)
in T (P ). The built-in constraints are not modified and are processed in the
same way by both the two programs. When the execution of INP(G) in
T (P ) terminates no id, start, highest priority, end, instancei are in the
store.7 Hence applying the decoding function to the qualified answer of the
encoded program produces the equivalent qualified answer of the original
program.

7Technically speaking rules rule(4 ,i), rule5 and rule9 are not needed because the con-
straints can be removed using the decoding function.
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