
Under consideration for publication in Theory and Practice of Logic Programming 1

Decidability properties for fragments of CHR

MAURIZIO GABBRIELLI

Dipartimento di Scienze dell’Informazione and Lab. Focus INRIA, Università di Bologna
(e-mail: gabbri@cs.unibo.it)

JACOPO MAURO

Dipartimento di Scienze dell’Informazione, Università di Bologna
(e-mail: jmauro@cs.unibo.it)

MARIA CHIARA MEO

Dipartimento di Scienze, Università di Chieti Pescara
(e-mail: cmeo@unich.it)

JON SNEYERS

Departement Computerwetenschappen, K.U.Leuven

(e-mail: jon.sneyers@cs.kuleuven.be)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

We study the decidability of termination for two CHR dialects which, similarly to the
Datalog like languages, are defined by using a signature which does not allow function
symbols (of arity > 0). Both languages allow the use of the = built-in in the body of
rules, thus are built on a host language that supports unification. However each imposes
one further restriction. The first CHR dialect allows only range-restricted rules, that is,
it does not allow the use of variables in the body or in the guard of a rule if they do not
appear in the head. We show that the existence of an infinite computation is decidable for
this dialect. The second dialect instead limits the number of atoms in the head of rules to
one. We prove that in this case, the existence of a terminating computation is decidable.
These results show that both dialects are strictly less expressive1 than Turing Machines.
It is worth noting that the language (without function symbols) without these restrictions
is as expressive as Turing Machines.

KEYWORDS: Constraint programming, Expressivity, Well-structured transition systems.

1 Introduction

Constraint Handling Rules (CHR) (Frühwirth 1998; Frühwirth 2009) is a declara-

tive general-purpose language. A CHR program consists of a set of multi-headed

1 As we clarify later, “less expressive” here means that there exists no termination preserving
encoding of Turing machines in the considered language.

guarded (simplification, propagation and simpagation) rules which allow one to

rewrite constraints into simpler ones until a solved form is reached. The language

is parametric w.r.t. an underlying constraint theory CT which defines basic built-in

constraints. For a recent survey on the language see Sneyers et al. (2010).

In the last few years, several papers have investigated the expressivity of CHR,

however very few decidability results for fragments of CHR have been obtained.

Three main aspects affect the computational power of CHR: the number of atoms

allowed in the heads, the nature of the underlying signature on which programs are

defined, and the constraint theory. The latter two aspects are often referred to as the

“host language” since they identify the language on which a CHR system is built.

Some results in (Di Giusto et al. 2009) indicate that restricting to single-headed

rules decreases the computational power of CHR. However, these results consider

Turing complete fragments of CHR, hence they do not establish any decidability

result. Indeed, single-headed CHR is Turing-complete (Di Giusto et al. 2009), pro-

vided that the host language allows functors and unification. On the other hand,

when allowing multiple heads, even restricting to a host language which allows only

constants does not allow to obtain any decidability property, since even with this

limitation CHR is Turing complete (Sneyers 2008; Di Giusto et al. 2009). The only

(implicit) decidability results concern propositional CHR, where all constraints have

arity 0, and CHR without functors and without unification, since these languages

can be translated to (colored) Petri Nets (Betz 2007) — see also Section 5.

Given this situation, when looking for decidable properties it is natural to consider

further restrictions of the above mentioned CHR language which allows the only

built-in = (interpreted in the usual way as equality on the Herbrand universe) and

which, similarly to Datalog, is defined over a signature which contains no function

symbol of arity > 0. We denote such a language by CHR(C).

In this paper we provide two decidability results for two fragments of CHR(C).

The first fragment allows range-restricted rules only, that is, it does not allow the use

of a variable in the body or in the guard if it does not appear in the head. We show,

using the theory of well-structured transition systems (Finkel and Schnoebelen

2001; Abdulla et al. 1996), that in this case the existence of an infinite computa-

tion is decidable. The second fragment that we consider is single-headed CHR(C),

denoted by CHR1(C). We prove that, for this language, the existence of a termi-

nating computation is decidable. In this case we provide a direct proof, since no

reduction to Petri Nets can be used (the language introduces an infinite states sys-

tem) and well-structured transition system can not be used (they do not allow to

prove this kind of decidability properties).

These results show that both CHR fragments are strictly less expressive than

Turing Machines. As previously mentioned, CHR(C) is as expressive as Turing Ma-

chines. So these results obviously imply that both restrictions lower the expressive

power of CHR(C).

2

2 Syntax and semantics

In this section we give an overview of CHR syntax and its operational semantics

following (Frühwirth 1998; Duck et al. 2004). A constraint c(t1, . . . , tn) is an atomic

formula constructed on a given signature Σ in the usual way. There are two types

of constraints: built-in constraints (predefined) that are handled by an existing

solver and CHR constraints (user-defined) which are defined by a CHR program.

Therefore we assume that the signature Σ contains two disjoint sets of predicate

symbols for built-in and CHR constraints. For built-in constraints we assume that

a first order decidable theory CT is given which describes their meaning. Often

the terminology “host language” is used to indicate the language consisting of the

built-in predicates, because indeed often CHR is implemented on top of such an

existing host language.

To distinguish between different occurrences of syntactically equal constraints,

CHR constraints are extended with a unique identifier. An identified CHR con-

straint is denoted by c#i with c a CHR constraint and i the identifier. We write

chr(c#i) = c and id(c#i) = i, possibly extended to sets and sequences of identified

CHR constraints in the obvious way.

A CHR program is defined as a sequence of three kinds of rules: simplification,

propagation and simpagation rules. Intuitively, simplification rewrites constraints

into simpler ones, propagation adds new constraints which are logically redundant

but may trigger further simplifications, and simpagation combines in one rule the

effects of both propagation and simplification rules. For simplicity we consider sim-

plification and propagation rules as special cases of a simpagation rule. The general

form of a simpagation rule is:

r @ Hk \ Hh ⇐⇒ g | B

where r is a unique identifier of a rule, Hk and Hh (the heads) are multi-sets of

CHR constraints, g (the guard) is a conjunction of built-in constraints and B is a

multi-set of (built-in and user-defined) constraints. If Hk is empty then the rule is

a simplification rule. If Hh is empty then the rule is a propagation rule. At least

one of Hk and Hh must be non-empty. When the guard g is empty or true we omit

g |. The names of rules are omitted when not needed. For a simplification rule we

omit Hk\ while we write a propagation rule as Hk =⇒ g | B. A CHR goal is a

multi-set of (both user-defined and built-in) constraints.

We also use the following notation: ∃V φ, where V is a set of variables, denotes

the existential closure of a formula φ w.r.t. the variables in V , while ∃−V φ denotes

the existential closure of a formula φ with the exception of the variables in V which

remain unquantified. Fv(φ) denotes the free variables appearing in φ and tσ the

application of a substitution σ to a syntactic object t.

CHR dialects. As mentioned before, the computational power of CHR depends

on several aspects, including the number of atoms allowed in the heads, the under-

lying signature Σ on which programs are defined, and the constraint theory CT ,

defining the built-ins. We use the notation CHR(X), where the parameter X indi-

cates the signature and the constraint theory (in other words, the host language).

3

Solve 〈{c}]G,S,B, T 〉n
ωt→P 〈G,S, c ∧B, T 〉n where c is a built-in constraint

Introduce 〈{c}]G,S,B, T 〉n
ωt→P 〈G, {c#n} ∪ S,B, T 〉n+1 where c is a CHR constraint

Apply 〈G,H1 ∪H2 ∪ S,B, T 〉n
ωt→P 〈C]G,H1 ∪ S, θ ∧B, T ∪ {t}〉n where P contains a

(renamed apart) rule r @H ′1\H ′2 ⇐⇒ g | C and there exists a matching substitution θ
s.t. chr(H1) = H ′1θ, chr(H2) = H ′2θ, CT |= B → ∃−Fv(B)(θ ∧ g)
and t = id(H1) ++ id(H2) ++ [r] /∈ T

Table 1. Transitions of ωt

More precisely, the language under consideration in this paper is CHR(C) and

has been defined in the introduction. We will also use the notation CHR(P) to

denote propositional CHR, that is the language where all constraints have arity

zero. This corresponds to consider a trivial host language without any data type.

Finally CHR(F) indicates the (usual) CHR language which allows functor symbols

and the = built-in. Thus in this case the host language allows arbitrary Herbrand

terms and supports unification among them.

The number of atoms in the heads also affects the expressive power of the lan-

guage. We use the notation CHR1, possibly combined with the notation above, to

denote single-headed CHR, where heads of rules contain one atom.

Operational semantics of CHR. We consider the theoretical operational se-

mantics, denoted by ωt and the abstract semantics, denoted by ωo. The semantics

ωt is given by Duck et al. (2004) as a state transition system T = (Conf ,
ωt→P)

where configurations in Conf are tuples of the form 〈G,S,B, T 〉n, where G is the

goal (a multi-set of constraints that remain to be solved), S is the CHR store (a

set of identified CHR constraints), B is the built-in store (a conjunction of built-in

constraints), T is the propagation history (a sequence of identifiers used to store

the rule instances fired) and n is the next free identifier (it is used to identify new

CHR constraints). The transitions of ωt are shown in Table 1.

Given a program P , the transition relation
ωt→P⊆ Conf × Conf is the least re-

lation satisfying the rules in Table 1. The Solve transition allows to update the

constraint store by taking into account a built-in constraint contained in the goal.

The Introduce transition is used to move a user-defined constraint from the goal

to the CHR constraint store, where it can be handled by applying CHR rules. The

Apply transition allows to rewrite user-defined constraints (which are in the CHR

constraint store) using rules from the program. The Apply transition is applicable

when the current built-in store (B) entails the guard of the rule (g).

An initial configuration has the form 〈G, ∅, true, ∅〉1 while a final configuration

has either the form 〈G,S, false, T 〉k when it is failed, or the form 〈∅, S,B, T 〉k when

it is successfully terminated because there are no applicable rules. A computation

is called terminating if it ends in a final configuration, infinite otherwise.

The first CHR operational semantics defined in (Frühwirth 1998) differs from the

traditional semantics ωt. Indeed this original, so called, abstract semantics denoted

by ωo, allows the firing of a propagation rule an infinite number of times. For

this reason ωo can be seen as the abstraction of the traditional semantics where the

propagation history is not considered. It is identical to ωt, except that configurations

4

are of the form 〈G,S,B〉n (they do not contain a propagation history) and the

Apply transition does not have the last condition that t 6∈ T .

3 Range-restricted CHR(C)

In this section we consider the (multi-headed) range-restricted CHR(C) language

described in the introduction. We call a CHR rule range-restricted if all the variables

which appear in the body and in the guard appear also in the head of a rule. More

formally, if V ar(X) denotes the variables used in X, the rule r @Hk\Hh ⇐⇒ g | B
is range-restricted if V ar(B) ∪ V ar(g) ⊆ V ar(Hk\Hh) holds. A CHR language is

called range-restricted if it allows range-restricted rules only.

We prove that in range-restricted CHR(C) the existence of an infinite computa-

tion is a decidable property when considering the ωo semantics. This shows that

this language is less expressive than Turing Machines and than CHR(C). Our result

is based on the theory of well-structured transition systems (WSTS) and we refer

to (Finkel and Schnoebelen 2001; Abdulla et al. 1996) for this theory. Here we only

provide the basic definitions on WSTS, taken from (Finkel and Schnoebelen 2001).

Recall that a quasi-order (or, equivalently, preorder) is a reflexive and transitive

relation. A well-quasi-order (wqo) is defined as a quasi-order ≤ over a set X such

that, for any infinite sequence x0, x1, x2, . . . in X, there exist indexes i < j such

that xi ≤ xj .
A transition system is defined as usual, namely it is a structure TS = (S,→),

where S is a set of states and →⊆ S × S is a set of transitions. We define Succ(s)

as the set {s′ ∈ S | s→ s′} of immediate successors of s. We say that TS is finitely

branching if, for each s ∈ S, Succ(s) is finite. Hence we have the key definition.

Definition 3.1 (Well-structured transition system with strong compatibility)

A well-structured transition system with strong compatibility is a transition system

TS = (S,→), equipped with a quasi-order ≤ on S, such that the two following

conditions hold:

1. ≤ is a well-quasi-order;

2. ≤ is strongly (upward) compatible with →, that is, for all s1 ≤ t1 and all

transitions s1 → s2, there exists a state t2 such that t1 → t2 and s2 ≤ t2
holds.

The next theorem is a special case of a result in (Finkel and Schnoebelen 2001)

and will be used to obtain our decidability result.

Theorem 3.2

Let TS = (S,→,≤) be a finitely branching, well-structured transition system with

strong compatibility, decidable ≤ and computable Succ(s) for s ∈ S. Then the

existence of an infinite computation starting from a state s ∈ S is decidable.

Decidability of divergence. Consider a given goal G and a (CHR) program P

and consider the transition system T = (Conf ,
ωo→P) defined in Section 2. Obviously

the number of constants and variables appearing in G or in P is finite. Moreover,

5

observe that since we consider range-restricted programs, the application of the

transitions
ωo→P does not introduce new variables in the computations. In fact, even

though rules are renamed (in order to avoid clash of variables), the definition of the

Apply rule (in particular the definition of θ) implies that in a transition s1
ωo→P s2 we

have that V ar(s2) ⊆ V ar(s1) holds. Hence an obvious inductive argument implies

that no new variables arise in computations. For this reason, given a goal G and a

program P , we can assume that the set Conf of all the configurations uses only a

finite number of constants and variables. In the following we implicitly make this

assumption. We define a quasi-order on configurations as follows.

Definition 3.3

Given two configurations s1 = 〈G1, S1, B1〉i and s2 = 〈G2, S2, B2〉j we say that

s1 ≤ s2 if

• for every constraint c ∈ G1 |{c ∈ G1}| ≤ |{c ∈ G2}|
• for every constraint c ∈ {d . d#i ∈ S1} |{i . c#i ∈ S1}| ≤ |{i . c#i ∈ S2}|
• B1 is logically equivalent to B2

The next Lemma, with proof in (Gabbrielli et al. 2010), states the relevant prop-

erty of ≤.

Lemma 3.4

≤ is a well-quasi-order on Conf .

Next, in order to obtain our decidability results we have to show that the strong

compatibility property holds. This is the content of the following lemma whose

proof is in (Gabbrielli et al. 2010).

Lemma 3.5

Given a CHR(C) program P , (Conf ,
ωo→P ,≤) is a well-structured transition system

with strong compatibility.

Finally we have the desired result.

Theorem 3.6

Given a range-restricted CHR(C) program P and a goal G, the existence of an

infinite computation for G in P is decidable.

Proof

First observe that, due to our assumption on range-restricted programs, T =

(Conf ,
ωo→P) is finitely branching. In fact, as previously mentioned, the use of rule

Apply can not introduce new variables (and hence new different states). The thesis

follows immediately from Lemma 3.5 and Theorem 3.2.

The previous Theorem implies that range-restricted CHR(C) is strictly less ex-

pressive than Turing Machines, in the sense that there can not exist a termination

preserving encoding of Turing Machines into range-restricted CHR(C). To be more

precise, we consider an encoding of a Turing Machine into a CHR language as a

function f which, given a machine Z and an initial instantaneous description D

for Z, produces a CHR program and a goal. This is denoted by (P,G) = f(Z,D).

Hence we have the following.

6

Definition 3.7 (Termination preserving encoding)

An encoding f of Turing Machines into a CHR language is termination preserving2

if the following holds: the machine Z starting with D terminates iff the goal G in

the CHR program P has only terminating computations, where (P,G) = f(Z,D).

The encoding is weak termination preserving if: the machine Z starting with D

terminates iff the goal G in the CHR program P has at least one terminating

computation.

Since termination is undecidable for Turing Machines, we have the following

immediate corollary of Theorem 3.6.

Corollary 3.8

There exists no termination preserving encoding of Turing Machines into range-

restricted CHR(C).

Note that the previous result does not exclude the existence of weak encodings.

For example, in (Busi et al. 2004) it is showed that the existence an infinite com-

putation is decidable in CCS!, a variant of CCS, yet it is possible to provide a weak

termination preserving encoding of Turing Machines in CCS! (essentially by adding

spurious non-terminating computations). We conjecture that such an encoding is

not possible for CHR(C). Note also that previous results imply that range-restricted

CHR(C) is strictly less expressive than CHR(C): in fact there exists a termination

preserving encoding of Turing Machines into CHR(C) (Sneyers 2008; Di Giusto

et al. 2009).

4 Single-headed CHR(C)

As mentioned in the introduction, while CHR(C) and CHR1(F) are Turing com-

plete languages (Sneyers 2008; Di Giusto et al. 2009), the question of the expressive

power of CHR1(C) is open. Here we answer to this question by proving that the

existence of a terminating computation is decidable for this language, thus showing

that CHR1(C) is less expressive than Turing machines. Throughout this section,

we assume that the abstract semantics ωo is considered (however see the discussion

at the end for an extension to the case of ωt). The proof we provide is a direct one,

since neither well-structured transition systems nor reduction to Petri Nets can be

used here (see the introduction).

4.1 Some preparatory results

We introduce here two more notions, namely the forest associated to a computation

and the notion of reactive sequence, and some related results. We will need them

for the main result of this section.

First, we observe that it is possible to associate to the computation for an atomic

2 For many authors the existence of a termination preserving encoding into a non-deterministic
language L is equivalent to the Turing completeness of L, however there is no general agreement
on this, since for others a weak termination preserving encoding suffices.

7

goal G in a program P a tree where, intuitively, nodes are labeled by constraints (re-

call that these are atomic formulae), the root is G and every child node is obtained

from the parent node by firing a rule in the program P . This notion is defined pre-

cisely in the following, where we generalize it to the case of a generic (non atomic)

goal, where for each CHR constraint in the goal we have a tree. Thus we obtain a

forest Fδ = (V,E) associated to a computation δ, where V contains a node for each

repetition of identified CHR constraints in δ. Before defining the forest we need the

concept of repetition of an identified CHR atom in a computation.

Definition 4.1 (Repetition)

Let P be a CHR program and let δ be a computation in P . We say that an occur-

rence of an identified CHR constraint h#l in δ is the i-th repetition of h#l, denoted

by h#li, if it is preceded in δ by i Apply transitions of propagation rules whose

heads match the atom h#l. We also define

r(δ, h#l) = max{i | there exists a i-th repetition of h#l in δ}

Definition 4.2 (Forest)

Let δ be a terminating computation for a goal in a CHR1(C) program. The forest

associated to δ, denoted by Fδ = (V,E) is defined as follows. V contains nodes

labeled either by repetitions of identified CHR constraints in δ or by �. E is the

set of edges. The labeling and the edges in E are defined as follows:

(a) For each CHR constraint k which occurs in the first configuration of δ there

exists a tree in Fδ = (V,E), whose root is labeled by a repetition k#l0, where k#l

is the identified CHR constraint associated to k in δ.

(b) If n is a node in Fδ = (V,E) labeled by k#li and the rule r @h�g | C, k1, . . . , km
is used in δ to rewrite the repetition h#li, where � ∈ {⇐⇒,=⇒}, the k′is are CHR

constraints while C contains built-ins, then we have two cases:

1. If � is =⇒ then n has m + 1 sons, labeled by kj#lj
0, for j ∈ [1,m], and by

h#li+1, where the kj#lj
0 are the repetitions generated by the application of

the rule r to h#li in δ.

2. If � is ⇐⇒ then:

• if m > 0 then n has m sons, labeled by kj#lj
0, for j ∈ [1,m], where

kj#lj
0 are the repetitions generated by the application of the rule r to

h#li in δ.

• if m = 0 then n has 1 son, labeled by �.

Note that, according to the previous definition, nodes which are not leaves are

labeled by repetitions of identified constraints k#li, where either i < r(δ, h#l) or

h#l does not occur in the last configuration of δ. On the other hand, the leaves of

the trees in Fδ are labeled either by � or by the repetitions which do not satisfy

the condition above. An example can help to understand this crucial definition.

Example 4.3

Let us consider the following program P :

8

r1 @ c(X,Y) <=> c(X,Y),c(X,Y)

r2 @ c(X,Y) <=> X = 0

r3 @ c(0,Y) ==> Y = 0

r4 @ c(0,0) <=> true

There exists a terminating computation δ for the goal c(X,Y) in the program P ,

which uses the clauses r1, r2, r3, r4 in that order and whose associated forest Fδ is

the following tree:

c(X,Y)#10

''ww
c(X,Y)#20

��

c(X,Y)#30

��
� c(X,Y)#31

��
�

Note that the left branch corresponds to the termination obtained by using rule

r2, hence the superscript is not incremented. On the other hand, in the right branch

the superscript 0 at the second level becomes 1 at the third level. This indicates

that a propagation rule (rule r3) has been applied.

Given a forest Fδ, we write Tδ(n) to denote the subtree of Fδ rooted in the node

n. Moreover, we identify a node with its label and we omit the specification of

the repetition, when not needed. The following definition introduces some further

terminology that we will need later.

Definition 4.4

• Given a forest Fδ, a path from a root of a tree in the forest to a leaf is called

a single constraint computation, or sc-computation for short.

• Two repetitions h#li and k#mj of identified CHR constraints are called r-

equal, indicated by h#li == k#mj , iff there exists a renaming ρ such that

h = kρ.

• a sc-computation σ is p-repetitive if p = maxh#li∈σ |{k#mj ∈ σ | h#li ==

k#mj}|.
• The degree of a p-repetitive sc-computation σ, denoted by dg(σ) is the car-

dinality of the set P REP which is defined as the maximal set having the

following properties:

— contains a repetition h#li in σ iff p = |{k#mj ∈ σ | h#li == k#mj}|
— if h#li is in P REP then P REP does not contain a repetition k#mj

s.t. h#li == k#mj

• A forest Fδ is l-repetitive if one of its sc-computation σ is l-repetitive and

there is no l′-repetitive sc-computation σ′ in Fδ with l′ > l.

9

• The degree dg(Fδ) of an l-repetitive forest Fδ is defined as

dg(Fδ) =
∑
σ

{dg(σ) | σ is an l-repetitive sc-computation in Fδ}.

After the forest, the second main notion that we need to introduce is that one of

reactive sequence3.

Given a computation δ, we associate to each (repetition of an) occurrence of

an identified CHR atom k#l in δ a, so called, reactive sequence of the form

〈c1, d1〉 . . . 〈cn, dn〉, where, for any i ∈ [1, n], ci, di are built-in constraints.

Intuitively each pair 〈ci, di〉 of built-in constraints represents all the Apply tran-

sition steps, in the computation δ, which are used to rewrite the considered occur-

rence of the identified CHR atom k#l and the identified atoms derived from it. The

constraint ci represents the input for this sequence of Apply computation steps,

while di represents the output of such a sequence. Hence one can also read such a

pair as follows: the identified CHR constraint k#l, in δ, can transform the built-

in store from ci to di. Different pairs 〈ci, di〉 and 〈cj , dj〉 in the reactive sequence

correspond to different sequences of Apply transition steps. This intuitive notion

is further clarified later (Definition 4.9), when we will consider a reactive sequence

associated to a repetition of an identified CHR atom.

Since in CHR computations the built-in store evolves monotonically, i.e. once a

constraint is added it can not be retracted, it is natural to assume that reactive

sequences are monotonically increasing. So in the following we will assume that,

for each reactive sequence 〈c1, d1〉 . . . 〈cn, dn〉, the following condition holds: CT |=
dj → cj and CT |= ci+1 → di for j ∈ [1, n], i ∈ [1, n − 1]. Moreover, we denote

the empty sequence by ε. Next, we define the strictly increasing reactive sequences

w.r.t. a set of variables X.

Definition 4.5 (Strictly increasing sequence)

Given a reactive sequence s = 〈c1, d1〉 · · · 〈cn, dn〉, with n ≥ 0 and a set of variables

X, we say that s is strictly increasing with respect to X if the following holds for

any j ∈ [1, n], i ∈ [1, n− 1]

• Fv(cj , dj) ⊆ X,

• CT |= di 6→ ci+1 and CT |= ci 6→ di.

Given a generic reactive sequence s = 〈c1, d1〉 · · · 〈cn, dn〉 and a set of variables

X, we can construct a new, strictly increasing sequence η(s,X) with respect to a

set of variables X as follows. First the operator η restricts all the constraints in

s to the variables in X (by considering the existential closure with the exception

of the variables in X). Then η removes from the sequence all the stuttering steps

(namely the pairs of constraints 〈c, d〉, such that CT |= c ↔ d) except the last.

Finally, in the sequence produced by the two previous steps, if there exists a pair

of consecutive elements 〈cl, dl〉〈cl+1, dl+1〉 which are “connected”, in the sense that

3 This notion is similar to that one used in the (trace) semantics of concurrent languages, see,
for example, (de Boer and Palamidessi 1990; de Boer et al. 2000) for the case of concurrent
constraint programming. The name comes from this field.

10

cl+1 does not provide more information than dl, then such a pair is “fused” in (i.e.,

replaced by) the unique element 〈cl, dl+1〉 (and this is repeated inductively for the

new pairs). This is made precise by the following definition.

Definition 4.6 (Operator η)
Let s = 〈c1, d1〉 · · · 〈cn, dn〉 be a sequence of pairs of built-in stores and let X be a

set of variables. The sequence η(s,X) is the obtained as follows:

1 First we define s′ = 〈c′1, d′1〉 · · · 〈c′n, d′n〉, where for j ∈ [1, n] c′j = ∃−Xcj and

d′j = ∃−Xdj .
2 Then we define s′′ as the sequence obtained from s′ by removing each pair of

the form 〈c, d〉 such that CT |= c ↔ d, if such a pair is not the last one of the

sequence.
3 Finally we define η(s,X) = s′′′, where s′′′ is the closure of s′′ w.r.t. the following

operation: if 〈cl, dl〉〈cl+1, dl+1〉 is a pair of consecutive elements in the sequence

and CT |= dl → cl+1 holds then such a pair is substituted by 〈cl, dl+1〉.

The following Lemma states a first useful property. The proof is in (Gabbrielli

et al. 2010).

Lemma 4.7
Let X be a finite set of variables and let s = 〈c1, c2〉 · · · 〈cn−1, cn〉 be a strictly

increasing sequence with respect to X. Then n ≤ |X|+ 2.

Next we note that, given a set of variables X the possible strictly increasing

sequences w.r.t. X are finite (up to logical equivalence on constraints), if the set of

the constants is finite. This is the content of the following lemma, whose proof is in

(Gabbrielli et al. 2010). Here and in the following, with a slight abuse of notation,

given two reactive sequences s = 〈c1, d1〉 · · · 〈cn, dn〉 and s′ = 〈c′1, d′1〉 · · · 〈c′n, d′n〉, we

say that s and s′ are equal (up to logical equivalence) and we write s = s′, if for

each i ∈ [1, n] CT |= ci ↔ c′i and CT |= di ↔ d′i holds.

Lemma 4.8
Let Const be a finite set of constants and let S be a finite set of variables such that

u = |Const| and w = |S|. The set of sequences s which are strictly increasing with

respect to S (up to logical equivalence) is finite and has cardinality at the most

2w(u+w)(w+3) − 1

2w(u+w) − 1
.

Finally, we show how reactive sequences can be obtained from a forest associated

to a computation. First we need to define the reactive sequence associated to a

repetition of an identified CHR atom in a computation. In this definition we use

the operator η introduced in Definition 4.6.

Definition 4.9
Let δ be a computation for a CHR1(C) program, h#lj be a repetition of an identified

CHR atom in δ and r1, . . . , rn the sequence of the Apply transition in δ that

rewrite h#lj and all the repetitions derived from it. If s
ri→P s′ let pair(ri) be the

pair (
∧
B1,

∧
B2) where B1 and B2 are all the built-ins in s and s′. We will denote

with seq(h#lj , δ) the sequence η(pair(r1) . . . pair(rn), Fv(h))

11

Finally we define the function SFδ which, given a node n in a forest associated to

a computation δ (see Definition 4.2), returns a reactive sequence. Such a sequence

intuitively represents the sequence of the Apply transition steps which have been

used in δ to rewrite the repetition labeling n and the repetitions derived from it.

Definition 4.10 (Sequence associated to a node in a forest)
Let δ be a terminating computation and let Fδ = (V,E) be the forest associated to

it. Given a node n in Fδ we define:

• if the label of n is h#li, then SFδ(n) = seq(h#li, δ);
• if the label of n is � then SFδ(n) = ε.

Example 4.11
Let us consider for instance the forest shown in Example 4.3. The sequences asso-

ciated to the nodes of this forest are:

• SF (δ)(c(X,Y)#10) = 〈true,X = 0 ∧ Y = 0〉
• SF (δ)(c(X,Y)#20) = 〈true,X = 0〉
• SF (δ)(c(X,Y)#30) = 〈X = 0, X = 0 ∧ Y = 0〉
• SF (δ)(c(X,Y)#31) = 〈X = 0 ∧ Y = 0, X = 0 ∧ Y = 0〉

4.2 Decidability of termination

We are now ready to prove the main result of the paper. First we need the following

Lemma which has some similarities to the pumping lemma of regular and context

free grammars. Indeed, if the derivation is seen as a forest, this lemma allows us to

compress a tree if in a path of the tree there are two r-equal constraints with an

equal (up to renaming) sequence. The lemma is proved in (Gabbrielli et al. 2010).

Here and in the following given a node n in a forest F we denote by AF (n) the

label associated to n.

Lemma 4.12
Let δ be a terminating computation for the goal G in the CHR1(C) program P .

Assume that Fδ is l-repetitive with p = dg(Fδ) and assume that there exists an l-

repetitive sc-computation σ of Fδ and a repetition k#li ∈ σ such that l = |{h#nj ∈
σ | h#nj == k#li}|.
Moreover assume that there exist two distinct nodes n and n′ in σ such that n′ is

a node in Tδ(n), AFδ(n) = k#li, AFδ(n
′) = k′#l′

i′
and ρ is a renaming such that

SFδ(n) = SFδ(n
′)ρ and k = k′ρ.

Then there exists a terminating computation δ′ for the goal G in the program P ,

such that either Fδ′ is l′-repetitive with l′ < l, or Fδ′ is l-repetitive and dg(F ′δ) < p.

Finally we obtain the following result, which is the main result of this paper.

Theorem 4.13 (Decidability of termination)
Let P be a CHR1(C) program an let G be a goal. Let u be the number of distinct

constants used in P and in G and let w be the maximal arity of the CHR constraints

which occur in P and in G.

G has a terminating computation in P if and only if there exists a terminating

computation δ for G in P s.t. Fδ is m-repetitive and m ≤ 2w(u+w)(w+3)−1
2w(u+w)−1 = L.

12

Proof

We prove only that if G has a terminating computation in P then there exists a

terminating computation δ for G in P s.t. Fδ is m-repetitive and m ≤ L. The proof

of the converse is straightforward and hence it is omitted.

The proof is by contradiction. Assume G has a terminating computation δ in P

s.t. Fδ is m-repetitive, m > L and there is no terminating computation δ′ for G in

P such that Fδ′ is m′-repetitive and m′ < m. Moreover, without loss of generality,

we can assume that the degree of Fδ is minimal, namely there is no terminating

computation δ′ for G in P such that Fδ′ is m-repetitive and dg(Fδ′) < dg(Fδ).

Let σ be a m-repetitive sc-computation in Fδ. By definition, there exist m repe-

titions of identified CHR constraints k1#l1
i1 , ..., kr#lm

im in σ, which are r-equal.

Therefore there exist renamings ρs,t such that ks = ktρs,t for each s, t ∈ [1,m].

By Lemma 4.8 for each CHR constraint k which occurs in P or in G, the set

of sequences s which are strictly increasing with respect to Fv(k) (up to logical

equivalence) is finite and has cardinality at the most L. Then there are two distinct

nodes n and n′ in σ and there exist s, t ∈ [1,m] such that A(n) = ks#ls
is and

A(n′) = kt#lt
it and SFδ(n) = SFδ(n

′)ρs,t. Then we have a contradiction, since

by Lemma 4.12 this implies that there exists a terminating computation δ′ for

G in P s.t. either Fδ′ is m′-repetitive with m′ < m or Fδ′ is m-repetitive and

dg(Fδ′) < dg(Fδ) and then the thesis.

As an immediate corollary of the previous theorem we have that the existence

of a terminating computation for a goal G in a CHR1(C) program P is decidable.

Then we have also the following result, which is stronger than Corollary 3.8 since

here weak encodings are considered.

Corollary 4.14

There is no weak termination preserving encoding of Turing Machines into CHR1(C).

As mentioned at the beginning of this section, the previous result is obtained

when considering the abstract semantics ωo. However it holds also when considering

the theoretical semantics ωt. In fact Lemma 4.12 holds if we require that two r-equal

constraints have the same sequence and have fired the same propagation rules. Since

the propagation rules are finite Theorem 4.13 is still valid if m ≤ 2r · 2
w(u+w)(w+3)−1
2w(u+w)−1

where r is the number of propagation rules.

5 Conclusions

We have shown two decidability results for two fragments of CHR(C), the CHR

language defined over a signature which does not allow function symbols. The first

result, in Section 3, assumes the abstract operational semantics, while the second

one, in Section 4, holds for both semantics (abstract and theoretical). These results

are not immediate. Indeed, CHR(C), without further restrictions and with any of

the two semantics, is a Turing complete language (Sneyers 2008; Di Giusto et al.

2009). It remains quite expressive also with our restrictions: for example, CHR1(C),

the second fragment that we have considered, allows an infinite number of different

states, hence, for example, it can not be translated to Petri Nets.

13

Host language X Operational semantics k = 1 k > 1

P (propositional) abstract No No

range-restricted C (constants)
(cf. Section 3)

abstract No No

C (constants), without = any No Yes

C (constants) (cf. Section 4) any No Yes

F (functors) any Yes Yes

Table 2. Termination preserving encoding of Turing Machines into CHRk(X)

These results imply that range-restricted CHR(C) and CHR1(C), the two con-

sidered fragments, are strictly less expressive than Turing Machines (and therefore

than CHR(C)). Also, it seems that range-restricted CHR(C) is more expressive

that CHR1(C), since the decidability result for the second language is stronger.

However, a direct result in this sense is left for future work. Also, we leave to future

work to establish a decidability result for range-restricted CHR(C) under an opera-

tional semantics which includes a propagation history. This is not easy, since in this

case it appears difficult to apply the theory of well-structured transition systems

(the well-quasi-order we have defined does not work).

Several papers have considered the expressive power of CHR in the last few years.

In particular, Sneyers (2008) showed that a further restriction of CHR1(C), which

does not allow built-ins in the body of rules (and which therefore does not allow

unification of terms) is not Turing complete. This result is obtained by translat-

ing CHR1(C) programs (without unification) into propositional CHR and using

the encoding of propositional CHR intro Petri Nets provided in (Betz 2007). The

translation to propositional CHR is not possible for the language (with unifica-

tion) CHR1(C) that we consider. Betz (2007) also provides a translation of range-

restricted CHR(C) to Petri nets. However in this translation, differently from our

case, it is also assumed that no unification built-in can be used in the rules, and only

ground goals are considered. Related to this paper is also (Di Giusto et al. 2009),

where it is shown that CHR(F) is Turing complete and that restricting to single-

headed rules decreases the computational power of CHR. However, these results are

based on the theory of language embedding, developed in the field of concurrency

theory to compare Turing complete languages, hence they do not establish any de-

cidability result. Another related study is (Sneyers et al. 2009), where the authors

show that it is possible to implement any algorithm in CHR in an efficient way,

i.e. with the best known time and space complexity. Earlier works by Frühwirth

(Frühwirth and Abdennadher 2001; Frühwirth 2002) studied the time complexity

of simplification rules for naive implementations of CHR. In this approach an up-

per bound on the derivation length, combined with a worst-case estimate of (the

number and cost of) rule application attempts, allows to obtain an upper bound of

the time complexity. The aim of all these works is clearly different from ours.

A summary of the existing results concerning the computational power of several

dialects of CHR is shown in Table 2. In this table, “no” and “yes” refer to the exis-

14

tence of a termination preserving encoding of Turing Machines into the considered

language, while “any” means theoretical or abstract. The new results shown in this

paper are indicated in a bold font.

Acknowledgments.

We would like to thank the reviewers for their precise and helpful comments. This

research was partially supported by the MIUR PRIN 20089M932N project: ”Inno-

vative and multi-disciplinary approaches for constraint and preference reasoning”.

References

Abdulla, P. A., Cerans, K., Jonsson, B., and Tsay, Y.-K. 1996. General decidability
theorems for infinite-state systems. In in Proceedings, 11th Annual IEEE Symposium
on Logic in Computer Science, LICS’96. 313–321.

Betz, H. 2007. Relating coloured Petri nets to Constraint Handling Rules. In 4th Work-
shop on Constraint Handling Rules, K. Djelloul, G. J. Duck, and M. Sulzmann, Eds.
Porto, Portugal, 33–47.

Busi, N., Gabbrielli, M., and Zavattaro, G. 2004. Comparing recursion, replication,
and iteration in process calculi. In ICALP, J. Dı́az, J. Karhumäki, A. Lepistö, and
D. Sannella, Eds. Lecture Notes in Computer Science, vol. 3142. Springer, 307–319.

de Boer, F. S., Gabbrielli, M., and Meo, M. C. 2000. A timed concurrent constraint
language. Inf. Comput. 161, 1, 45–83.

de Boer, F. S. and Palamidessi, C. 1990. On the asynchronous nature of communi-
cation in concurrent logic languages: A fully abstract model based on sequences. In
CONCUR, J. C. M. Baeten and J. W. Klop, Eds. Lecture Notes in Computer Science,
vol. 458. Springer, 99–114.

Di Giusto, C., Gabbrielli, M., and Meo, M. C. 2009. Expressiveness of multiple heads
in CHR. In SOFSEM, M. Nielsen, A. Kucera, et al., Eds. Lecture Notes in Computer
Science, vol. 5404. Springer, 205–216.

Duck, G. J., Stuckey, P. J., Garćıa de la Banda, M., and Holzbaur, C. 2004. The
refined operational semantics of Constraint Handling Rules. In ICLP ’04, B. Demoen
and V. Lifschitz, Eds. LNCS, vol. 3132. Springer, Saint-Malo, France, 90–104.

Finkel, A. and Schnoebelen, P. 2001. Well-structured transition systems everywhere!
Theor. Comput. Sci. 256, 1-2, 63–92.

Frühwirth, T. 1998. Theory and practice of Constraint Handling Rules. J. Logic Pro-
gramming, Special Issue on Constraint Logic Programming 37, 1–3, 95–138.

Frühwirth, T. 2009. Constraint Handling Rules. Cambridge University Press.

Frühwirth, T. W. 2002. As time goes by: Automatic complexity analysis of simplification
rules. In KR, D. Fensel, F. Giunchiglia, D. L. McGuinness, and M.-A. Williams, Eds.
Morgan Kaufmann, 547–557.

Frühwirth, T. W. and Abdennadher, S. 2001. The Munich rent advisor: A success
for logic programming on the internet. TPLP 1, 3, 303–319.

Gabbrielli, M., Mauro, J., Meo, M. C., and Sneyers, J. 2010. Decidability properties
for fragments of CHR. Tech. rep. Available from http://www.cs.unibo.it/~jmauro/

papers/tech_report_iclp_2010.

Sneyers, J. 2008. Turing-complete subclasses of CHR. In ICLP, M. G. de la Banda and
E. Pontelli, Eds. Lecture Notes in Computer Science, vol. 5366. Springer, 759–763.

15

Sneyers, J., Schrijvers, T., and Demoen, B. 2009. The computational power and
complexity of Constraint Handling Rules. ACM Trans. Program. Lang. Syst. 31, 2.

Sneyers, J., Van Weert, P., De Koninck, L., and Schrijvers, T. 2010. As time goes
by: Constraint Handling Rules — A survey of CHR research between 1998 and 2007.
Theory and Practice of Logic Programming 10, 1 (January).

16

