
Service-Oriented Volunteer Computing
for Massively Parallel Constraint Solving

Using Portfolios

Zeynep Kiziltan and Jacopo Mauro

Department of Computer Science, University of Bologna, Italy.
{zeynep,jmauro}@cs.unibo.it

1 Introduction

Recent years have witnessed growing interest in parallelising constraint solving
based on tree search (see [1] for a brief overview). One approach is search-space
splitting in which different parts of the tree are explored in parallel (e.g. [2]).
Another approach is the use of algorithm portfolios. This technique exploits
the significant variety in performance observed between different algorithms and
combines them in a portfolio [3]. In constraint solving, an algorithm can be a
solver or a tuning of a solver. Portfolios have often been run in an interleaving
fashion (e.g. [4]). Their use in a parallel context is more recent ([5], [1]).

Considering the complexity of the constraint problems and thus the compu-
tational power needed to tackle them, it is appealing to benefit from large-scale
parallelism and push for a massive number of CPUs. Bordeaux et. al have inves-
tigated this in [1] . By using the portfolio and search-space splitting strategies,
they have conducted experiments on constraint problems using a parallel com-
puter with the number of processors up to 128. They reported that the parallel
portfolio approach scales very well in SAT, in the sense that utilizing more pro-
cessors consistently helps solving more instances in a fixed amount of time.

As done also in [1], most of the prior work in parallel constraint solving
assumes a parallel computer with multiple CPUs. This architecture is fairly re-
liable and has low communication overhead. However, such a computer is costly
and is not always at our disposal, especially if we want to push for massive par-
allelism. Jaffar et al addressed this problem in [2] by using a bunch of computers
in a network (called “volunteer computing” in what follows). They employed 61
computers in a search-space splitting approach and showed that such a method
is effectively scalable in ILP.

In this paper, we combine the benefits of [1] and [2] when solving constraint
satisfaction problems (CSPs). We present an architecture in which massive num-
ber of volunteer computers can run several (tunings of) constraint solvers in par-
allel in a portfolio approach so as to solve many CSPs in a fixed amount of time.
The architecture is implemented using the service-oriented computing paradigm
and is thus modular, flexible for useful extensions and allows to utilise even the
computers behind a firewall. We report experiments up until 100 computers. As
the results confirm, the architecture is effectively scalable.

2 Service-oriented Volunteer Computing

Volunteer computing is a type of distributed computing which brings together
the computational resources that are often idle and available in a network (e.g.
distributed.net). As it offers a cost effective and large computing capability,
volunteer computing seems to be a good candidate for the basis of a massive
parallel constraint solving architecture using portfolios.

Service-oriented computing (SoC) is an emerging paradigm in which ser-
vices are autonomous computational entities that can be composed to obtain
more complex services for developing massively distributed applications (see
e.g. the Sensoria Project http://www.sensoria-ist.eu/). In the context of
volunteer computing, a service can be for instance the functionality which dis-
tributes jobs to the computers. Our architecture is designed and implemented
in Jolie (http://www.jolie-lang.org/) which is the first full-fledged program-
ming language based on SoC paradigm. The reasons behind the choice of SoC
and thus Jolie can be summarised as follows. First, it is scalable; massive number
of communications with different computers can easily be handled. Second, it is
modular; new services can easily be integrated and organised in a hierarcy. This
is particulary important in an architecture like ours which has several sub ser-
vices. Third, it allows us to deploy the framework in a number of different ways.
Jolie provides interaction between heterogenous services, like in the case of web
services (e.g integrating a google map application in a hotel-search application).
We can therefore easily interact with other services (even graphical ones) in the
future and make our architecture be part of a more complex system.

3 Our Architecture

Fig. 1 depicts our architecture using a notation similar to UML communication
diagrams. When services are used, we can have two kinds of messages: one way
message denoted by the string 〈 message name 〉(〈 data sent 〉) and a request
response message denoted by 〈 message name 〉 (〈 data sent 〉)(〈 data received 〉).
The figure is read as follows. The user utilises the redirecting service to get the
location of the preprocessing service and then sends to the preprocessing service
a problem instance ik to be solved. Once ik is sent, the preprocessing service
contacts the CBR service which runs a case-based reasoning system to provide
the expected solving time tk of ik. The preprocessing server then sends tk and ik
to the instance distributor service. This service is responsible for scheduling the
instances for different (tunings of) solvers and assigning the related jobs to the
volunteer computers. This can be done in a more intelligent way thanks to tk
provided by the CBR service. This value can be used for instance to minimize the
average solving time. Finally, the volunteer service asks the redirecting service
the location of the instance distributor service and then requests a job from it
using a request response message. This is the only way a job can be sent to the
volunteer service. Note that the use of the redirecting service makes it possible
to have multiple preprocessing and instance distributor services in the future.

An input instance of the architecture is specified in XCSP which is a relatively
new format to represent constraint networks using XML (http://www.cril.

http://www.sensoria-ist.eu/
http://www.jolie-lang.org/
 http://www.cril.univ-artois.fr/CPAI08/XCSP2_1.pdf

Fig. 1. Architecture.

univ-artois.fr/CPAI08/XCSP2_1.pdf). The reason of this choice is that (i)
XCSP format has been used in the last constraint solver competitions and thus
many solvers have started to support it; (ii) such a low level representation is
useful to extract the feature vectors needed by a CBR algorithm.

4 Preliminary Experimental Results

In these preliminary experiments, our concern is the scalability. We thus cur-
rently exclude the CBR service and observe how the architecture scales as the
number of computers increases. In the experiments, Dell Optiplex computers of
our labs running Linux with Intel core 2 duo and Pentium 4 processors are used.
Up to 100 of them are employed for the volunteer service and only one for the re-
maining services. We consider the instances of the 2009 CSP Solver Competition
(http://www.cril.univ-artois.fr/CPAI09/), six of its participating solvers
(Abscon 112v4 AC, Abscon 112v4 ESAC, Choco2.1.1 2009-06-10, Choco2.1.1b
2009-07-16, Mistral 1.545, SAT4J CSP 2.1.1) and one solver (bpsolver 2008-06-
27) from the 2008 competition (http://www.cril.univ-artois.fr/CPAI08/).
These solvers are provided as black-box, their tunings is not possible. Hence, an
instance is solved by 7 solvers on 7 different computers. The experiments focus
on the following instances: (i) Easy SAT: 1607 satisfiable instances solved in less
than 1 minute; (ii) Easy UNSAT: 1048 unsatisfiable instances solved in less than
1 minute; (iii) Hard SAT: 207 satisfiable instances solved in between 1 and 30
minutes; (iv) Hard UNSAT: 106 unsatisfiable instances solved in between 1 and
30 minutes. Such times refer to the best solving times of the competition.

In Table 1, we present the number of instances solved in 30 minutes for the
easy instances and in 1 hour for the hard instances. As an experiment is af-
fected by the current work load of the computers, we perform and report three
runs. The results are promising. Even without the CBR service and the differ-
ent tunings of solvers, the number of the instances solved in a fixed amount of

 http://www.cril.univ-artois.fr/CPAI08/XCSP2_1.pdf
http://www.cril.univ-artois.fr/CPAI09/
http://www.cril.univ-artois.fr/CPAI08/

n◦ Easy SAT (30 min) Easy UNSAT (30 min) Hard SAT (1h) Hard UNSAT (1h)
20 15 14 15 17 18 18 3 3 6 7 7 9
40 132 128 135 150 150 150 8 8 7 16 17 13
60 141 140 140 320 318 322 19 15 14 23 23 22
80 144 145 151 335 323 328 25 21 25 29 30 30
100 179 179 192 336 345 334 25 25 25 44 33 36

Table 1. Experimental results.

time increases as the number of computers increases, no matter how busy the
volunteer computers are. Note that only one computer is used to run the prepro-
cessing and the instance distributor services, and yet the system can handle 100
computers without any problems. The main reason for not always obtaining a
linear speed up is that some solvers cannot solve even the easy instances in less
then 30 minutes. Hence, many computers are spending more than 30 minutes
for solving an already solved instance. This has happened 104 times in the tests
of easy SAT instances with 100 volunteer computers. In the same tests, we as
well encountered 35 solver failures. These observations suggest we shall allow the
interruption of a computation if the related instance is already solved.

5 Related Work

There is considerable amount of prior work on parallel constraint solving. We
here discuss only those that use massive parallelism. Our work is similar to the
one described in [1] in the sense that we too use the portfolio approach. However,
there are a number of differences. First, we consider CSP instances and several
different constraint solvers (including SAT and CP solvers), as opposed to SAT
instances and one SAT solver. Second, we create portfolios by running each
instance on several computers and several (tunings of) solvers at the same time.
The solver-independent approach of [1] instead uses only different tunings of the
same solver. Third, whilst we assume a group of independent computers available
in a network, [1] assumes a dedicated cluster of computers.

Jaffar et al [2] as well propose an architecture based on volunteer comput-
ing. Unlike ours, this architecture uses the search-space splitting strategy and
the experiments confirm scalability on ILP instances using 61 computers. There
are however other substantial differences. In many environments like laborato-
ries and home networks, computers stay behind a firewall or network address
translation (NAT) which limit their access from outside. We are able to access
such computers by using only the request response messages instead of using
direct messages as done in [2]. This choice brings further advantages over [2] like
smaller number of messages sent, the applicability to the majority of networks,
and having only the server as a possible bottleneck. The price to pay is the
impossibility of using certain protocols to create a tree of volunteer computers.
This is however not needed in our architecture. Our volunteer computers never
communicate with each other so as to avoid potential scalability problems. This
is not the case in [2]. As the number of computers increases, the overhead of
distribution becomes too high which can lead to significant slowdown.

Our architecture owes a lot to CPHydra [4] , the winner of 2008 CSP Solver
Competition . It combines many CP solvers in a portfolio. CPHydra determines
via CBR the subset of the solvers to use in an interleaved fashion and the time to
allocate for each solver, given a CSP instance. Our work can thus be seen as the
parallel version of CPHydra which eliminates the need of interleaving, giving
the possibility of running several (tunings of) solvers at the same time. This
brings the chance of minimising the expected solving time as there is no order
among the solvers. Moreover, parallelism gives the opportunity of updating the
base case of CBR even in a competition environment.

6 Conclusions and Future Work

We have presented an architecture in which massive number of volunteer com-
puters can run several (tunings of) constraint solvers in parallel in a portfolio
approach. The architecture is implemented in SoC which is becoming the choice
of paradigm for the development of scalable and massively distributed systems.
The initial experimental results confirm the scalibility. Our plans for future are
to make the architecture more efficient, useful and realiable. As for efficiency, we
are currently working on the CBR service and investigating how to best bene-
fit from similar cases in a parallel context. As for usability, we aim at tackling
two limitations. First, our architecture gets XCSP instance format which is too
low level for a CP user. The good news is that the architecture can easily be
integrated to a high level modelling & solving platform such as Numberjack
(http://4c110.ucc.ie/numberjack) which will soon output to XCSP. In this
way, we can obtain a system in which the user states her problem easily at a
high-level of abstraction, then the problem gets converted to XCSP and then
(CBR-based) parallel solver is invoked. Second, our architecture is focused on
the portfolio approach. We intend to investigate how to exploit massive number
of computers in search-space splitting when solving optimisation problems in CP.
Finally, should the computers go off or malfunction, we might want to replicate
the jobs assigned to the computers or redirect them to other computers. We will
study methods to make the architecture more reliable from this perspective.

References
1. Bordeaux, L., Hamadi, Y., Samulowitz, H.: Experiments with massively parallel

constraint solving. In: Proceedings of the 21sth International Joint Conference on
Artificial Intelligence (IJCAI-09). (2009) 443–448

2. Jaffar, J., Santosa, A.E., Yap, R.H.C., Zhu, K.Q.: Scalable distributed depth-first
search with greedy work stealing. In: Proceedings of the 16th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI’04). (2004) 98–103

3. Gomes, C., Selman, B.: Algorithm portfolios. Artificial Intelligence 1-2 (2001)
43–62

4. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: Proceedings of
the 19th Irish Conference on Artificial Intelligence (AICS’08). (2008)

5. Hamadi, Y., Jabbour, S., Sais, L.: Manysat: Solver description. In: SAT-Race 2008.
(2008)

http://4c110.ucc.ie/numberjack

	Service-Oriented Volunteer Computing for Massively Parallel Constraint Solving Using Portfolios

