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Abstract. A fundamental aspect which affects the efficiency and the
performance of Service-Oriented Architectures is the mechanism which
allows to manage sessions and, in particular, to assign incoming messages
to the correct sessions (also known as service instances). A relevant mech-
anism for solving this problem, first introduced by BPEL and then used
in other languages (e.g. Jolie) is that one based on correlation sets. The
BPEL and Jolie languages are currently allowing the use of messages
whose target is only one session. However there are a lot of scenarios
where being able to send a broadcast message to more than one session
could be useful. Supporting such a broadcast primitive means to allow
correlation sets which can contain unspecified variables and this can be
very inefficient, since usual implementations in terms of hash tables can-
not be used in this case.
In this paper we propose a data structure, based on radix trees and
an algorithm for managing a correlation mechanism that supports the
broadcast primitive, without degrading the performances.

1 Introduction

Service-Oriented Computing (SOC) is a paradigm for programming distributed
applications by means of the composition of services. Services are autonomous,
self-descriptive computational entities that can be dynamically discovered and
composed in order to build more complex functionalities. The resulting systems,
called Service-Oriented Architectures (SOA), have a wide diffusion; as of today
the most prominent technology in this context consist of Web Services, a set of
open specifications that focuses on interoperability and compatibility with ex-
isting infrastructures. This is mainly obtained through the adoption of the XML
document format and by using HTTP as the underlying transport protocol for
communications.
In a SOA services are loosely coupled, i.e. they stress a minimality on the de-
pendencies that each service has w.r.t. the others, and can be stateful; this last



point is the case of orchestrators which maintain a state for each created session.
Usually, in a stateful service a session is created at the first client invocation.
But, differently from the object-oriented approach, SOC does not guarantee ref-
erences for identifying the new session. Thus a fundamental aspect which affects
the efficiency and the performance of SOAs is the mechanism which allows to
manage sessions. In fact, in a typical pattern of interaction, a service may manage
many different sessions, corresponding to different clients. Since communications
are usually supported with stateless protocols (e.g. SOAP on HTTP), when a
service receives a message from a client C the system must be able to iden-
tify which is the session corresponding to C and that, therefore, must receive
the message. In other words, sessions usually need to be accessed only by those
invokers (messages) which hold some specific rights.

A relevant mechanism for solving this problem, first introduced by BPEL [1]
and then used in JOLIE [8, 9], COWS [6] and in other languages, is that based
on correlation sets. Intuitively a correlation set is a set of variables whose values
allow to distinguish sessions initiated by different clients. More precisely, both
the sessions and the incoming messages contain some specific “correlation values”
defining the variables in the correlation set. When a message m arrives it is routed
to the session which has the same values as m for the correlation variables.

As a simple example of correlation set consider the case of a service S used
for buying goods. Suppose that S handles all the communication of a specific
customer using a unique session, while different customers have different ses-
sions. Assuming that a customer is uniquely determined by her name and sur-
name we can use a correlation set consisting of the two variables name and
surname for determining the customer’s session. Now let us suppose that S
can receive the following three types of messages (with the obvious meaning):
buy(name, surname, product id); delete order(name, surname, product id);
pay(name, surname, product id, credit card info). When a customer, say John
Smith, wants to buy product 1 he can send a message of the form buy(John, Smith, 1).
When this message is received the service checks whether there is a session that
correlates with it, i.e. whether there exists a session whose variables name and
surname are respectively instantiated to the values John and Smith. If this
is the case message m is assigned to such session. On the other hand, if John
Smith is a new customer and no session correlates with m then the message is
not delivered (note however, that in this case a new session could be created
which correlates with the message, see for example [2, 1, 5]).

The BPEL and Jolie languages are currently allowing the use of messages
whose target is only one session. However there are a lot of scenarios where being
able to send a broadcast message to more than one session could be useful. Let’s
consider for instance a cloud environment where every user can start, control
and terminate a virtual machine on the cloud (a framework similar for instance
to Amazon EC2). Let’s suppose that we would like a unique entry point to this
system and this entry point is a service that can receive and send messages to the
users and the administrators of the cloud. We could consider to have a session



for every virtual machine and control the virtual machine through this session.
The key to identify a session can be the union of the following fields:

– the name, surname and date of birth of the user (we assume that these values
univocally determine the user);

– the kind of virtualized operating system (i.e Ubuntu, Windows, . . . );
– the version of the operating system;
– the priority of the virtual machine (high, medium, low).

Having this key a user (say John Smith born on the 1st of Jan 1970) can start
a Windows 7 machine with low priority sending for instance a message like
start(John,Smith,19700101,windows,7,low). Later he can control and terminate
the session (and therefore the virtual machine) simply sending messages like
execute or terminate specifying every time all the fields of the key.

On the other hand suppose now that an administrator wants to apply a patch
to all the Windows virtual machines. Without a broadcast primitive he/she
should retrieve all the keys of sessions controlling a Windows machine and later
send them the message that triggers the application of the patch. For the pro-
grammer point of view this usually involves the definition of a session or service
that keeps the log of all the sessions. This session/service often slows down the
performances due to the creation or deletion of new sessions. On the other hand
having a broadcast primitive an administrator could send:

– a message like get location() that will be sent to every session for asking to
the session which hardware machine is used to run the virtual machine;

– a message like patch(operating system, operating system version, . . . ) to patch
all the virtual machines with a certain operating system and version;

– a messages like terminate(name, surname, birthday date) that can terminate
all the virtual machines belonging to a user;

– messages like stop(priority) or stop(operating system, priority) can be used
to stop every virtual machine having a specific priority or operating system
+ priority.

These are only few examples of the use of broadcast primitives. Another
important application for these messages is for the implementation of a pub-
lish/subscribe pattern: This is a messaging pattern where senders (publishers)
of messages do not send the messages directly to specific receivers (subscribers).
The messages are instead divided into classes and the subscribers subscribe for
the reception of messages of a given class. The system is responsible for sending
every message belonging to a certain class to every subscriber that has sub-
scribed for that class. Publisher may not know who are the subscribers and vice
versa.
This pattern can be easily implemented using broadcast and a service having
a correlation set that contains the class identifier. Whenever a subscriber sub-
scribes for a class, a new session responsible for the forwarding of the message
is created. The publisher now can send a broadcast message specifying in the
message its class. The correlation mechanism will check this value and route the



message to every session that has subscribed for that class. The session can later
forward the message to the real subscriber.

The aim of this paper is to present a data structure and an implementation
of the correlation mechanism that supports the broadcast primitive without
degrading the performances of the correlation of normal messages.
The operations that a correlation mechanism has to support can be seen as the
select, insert and delete operations of a relational database, where every tuple
of the relation is a session. The correlation set is a key of a relation. When
a normal message arrives it always contains a key that determine the target
session. In the database analogy the correlation operation is then a “select”
operation, and in the case of normal messages the (complete) key is used to
retrieve the target session. On the contrary, a broadcast message specifies only
part of the key, indeed its target is potentially a set of sessions. Continuing in
the database analogy, the broadcast operation can be efficiently implemented by
adding an index for every type of broadcast messages. However, since increasing
the number of indexes decrease the performances of the insert and delete queries
(i.e. creation and deletion of sessions), the less indexes we have the better it is.
We will then define a solution that uses the minimal number of indexes needed
to correlate the messages to the right sessions. The indexes will be implemented
using radix trees.

We would like to underline that in this work we have taken as a starting point
the correlation mechanism of Jolie. We made this choice because we find that
Jolie correlation mechanism is more flexible than the BPEL one. For instance
Jolie correlation variables are normal variables and not a late-bound constant
like in BPEL. While in BPEL the values of a correlation set are defined only
by a specially marked send or receive message and once defined they can not
change, in Jolie the programmer can decide to instantiate or change the values
of a correlation set at run time. In BPEL all the fields (correlation proprieties or
correlation tokens) of a message key should be always defined. Jolie instead allows
partially defined keys. This flexibility comes with a price: the implementation of
the search of a correlating session is linear w.r.t. the number of session while in
BPEL it is constant (usually hash table are used).

The correlation mechanism can be seen as a special case of the well know
content-based publish/subscribe mechanism [11]. Indeed the correlation mecha-
nism can be seen as a simpler content-based publish/subscribe mechanism where
messages are notifications, sessions are subscriptions and correlation variables
are attributes. The correlation mechanism exploits however two constraints that
usually a content-based publish/subscribe mechanism does not have. In correla-
tion, few attributes need to be considered and only equality predicates are used
to compare the attributes. Hence, this work could be considered as an improve-
ment over publish/subscribe algorithms such as [4, 3] for scenarios where the
previous two constraints hold.

After having provided some background in Section 2 we explain the idea
of the algorithm in Section 3. In Section 4 we show how the data structure is
created and used, while in Section 5 we prove the correctness of the algorithm



and we perform some complexity analysis. Finally Section 6 concludes describing
some future work.

2 Background

In this section we formally define the main concepts that we will use in the rest
of the paper. A correlation set, c-set for short, can be seen as a key that can
be used to retrieve a session. For our purposes a c-set can be seen as a set of
variables names (in BPEL these correspond to c-set proprieties) that can assume
values in a domain. To simplify the notation we assume that the variables of a
c-set can assume values in the domain D defined as the set of strings on a given
signature.

Definition 1 (c-set). Given a service S, a correlation set for S is a finite set of
variables names. When these variables are defined their values uniquely identify
a session of S.

Sessions may define the variables of a c-set. The definition of variables be-
longing to a c-set is captured with the following definition.

Definition 2 (c-instance). Given a c-set c we say that a c-instance for c is a
total function that maps every variable of c to a value in D.
We will say that a session s has a c-instance ϕ if for every variable v in c the
variable v has been assigned and its value is ϕ(v).

Services, especially those having multi-party sessions, may need more than
one c-set because the users may need to use different keys to identify a session.
These services, also known as multi correlation services, do not require to have a
c-instance for every c-set. However since c-sets are used to identify a session we
require that a session must have at least a c-instance. Moreover we do not allow
the starting of a session having the same c-instance of another existing session.

Every message that is exchanged will contain some arguments associated
to a c-set. Usually these arguments are called correlation tokens or correlation
values and are used to find the recipient of the message. BPEL and other service
engines allow the use of potentially one correlation token (c-token for short) for
every c-set of the service. For example a multi-party session can be initialized
submitting a message having as correlation tokens the values for all the c-sets
of the service. In this work instead we will consider messages having only one c-
token. This restriction is however insignificant since the behaviour that is caused
by the exchange of messages with more than one c-token can be easily simulated
in our framework. This is due to the fact that differently from BPEL we do not
need the exchange of a message to change the value of a correlation variable.

Formally we can define a c-token in the following way.

Definition 3 (c-token). Given a message m a c-token is a pair (c, ϕ) where

– c is a c-set containing the variables used to specify the message recipients



– if m is a normal message then ϕ is a total function that maps a variable of
c into a value in D

– if m is a broadcast message then ϕ is a partial function that maps a variable
of c into a value in D. Moreover ϕ is not total.

For instance the service for buying goods has only one c-set c = {name, surname}
and the c-instance of John’s session is the function ϕ s.t. ϕ(name) = John and
ϕ(surname) = Smith. The message buy(John, Smith, 1) has instead as c-token
the couple (c, ϕ). If we want to send a message m to every person named John
for wishing him a happy name day we can use a broadcast message whose c-
token will be the couple (c, ϕ′) where ϕ′(name) = John and ϕ(surname) is not
defined.

As it can be seen in the previous definition the introduction of the broad-
cast primitive allows the user to not define all the variables of a c-set. Normal
messages, like c-instances, need to define all the variables of a c-set because they
need to identify their (unique) target session. On the other hand, broadcast
messages can specify only a part of the key, indeed their target can be a set of
sessions. Note that, in case of multi correlation services, the c-token definition
does not allow to consider part of two different keys to determine the targets
of a broadcast message. We do not allow this possibility since we haven’t find a
significant example that justifies this increased power. However we could easily
extend our framework to treat also this case. Now we can formally define when a
message correlates with a session. Intuitively a message correlates with a session
when the values of the correlation token match the c-instance of a session. In
the following ϕm(v) ↑ denotes that ϕm is not defined in v.

Definition 4 (Correlation). Given a service S, a session s and a message m
with c-token (cm, ϕm) we will say that s correlates with m iff s has a c-instance
ϕ for the c-set cm and ∀v ∈ cm. ϕm(v) = ϕ(v) ∨ ϕm(v) ↑.

3 The idea

As we have discussed above the current mechanisms for assigning a message
to the correct session does not support the possibility of identifying a set of
sessions. A naive implementation for the support of broadcast messages would
use an associative array for every c-set variable. However, if this solution is
used, for finding the targets of a broadcast message we have to compute a set
intersection whose complexity depends on the number of sessions. Another naive
solution is using an associative arrays for every subsets of correlation variables
that can be used in a broadcast message. If we consider a c-set with n variables
this means that for the support of the broadcast primitive we could have 2n− 1
associative arrays, since with n variables we can use up to 2n − 1 different kind
of broadcast messages (one for every subset of the c-set variables). Our key idea
in order to improve on this is to use radix trees to memorize the c-instances of
all the sessions and therefore for routing messages to the correct session. In this



section we will explain intuitively the idea, while its formalization and complexity
analysis are contained in the next sections.

A trie, or a prefix tree, is an ordered tree for storing strings, in which there is
one node for every common prefix. Edges are labeled with characters, while the
strings are stored in extra leaf nodes. Tries are extremely useful for constructing
associative arrays with keys that can be expressed as strings, since the time
complexity of retrieving the element with a given key is linear time in the length
of the key. In fact, looking up for a key of length k consists in following a path
in the trie, from the root to a leaf, guided by the characters in the key. A radix
tree (or Patricia tree, [10]) is essentially a compact representation of a trie in
which any node that has no siblings is merged with its parent (so, each internal
node has at least two children). Unlike in regular tries, edges can be labeled with
sequences of characters as well as single characters. This makes radix tree more
efficient than tries for storing sets of strings (keys) that share long prefixes. The
operations of lookup (to determine whether a string is in the set represented by
a radix tree), insert (of a string in the tree), and delete (of a string from the
tree) have all worst case complexity of O(l), where l is the maximal length of
the strings in the set.

Intuitively our idea is to use radix trees to map incoming messages to sessions,
by using the values of the c-set variables as keys. In other words, the session
pointers can be seen as elements stored in an associative array, while the values
of the variables of the c-sets, conveniently organized as strings, are the keys.
Our radix trees implements such a structure by memorizing the values of the
c-set variables which appear in the existing sessions. In particular, since every
broadcast message can define only part of the c-set variables, to be able to
process every message we could use a radix tree for every subset of the c-set
variables. This however is not an optimal solution. For example if a service has
two c-set variables name and surname we could receive the following kind of
messages

1. broadcast messages s.t. their c-tokens do not define any variable
2. broadcast messages s.t. their c-tokens define only the field name
3. broadcast messages s.t. their c-tokens define only the field surname
4. normal messages s.t. their c-tokens define both name and surname

With the naive approach we need to use 4 associative arrays (one for every
message type). Using radix trees is however possible to use a unique radix tree
for 1st, 2nd and 4th types since the c-tokens of the 1st and 2nd kind of messages
can be considered as prefix of the c-tokens of the 4th type of messages. For the
message of the 3th type instead we have to use a different radix tree, since in
this case the c-tokens are not a prefix of those for the 4th type of messages. So
it is sufficient to use two radix trees to cover all the possible cases.

To better explain the idea let us consider some more examples. In the follow-
ing we use a special character, denoted by # and not used elsewhere, to denote
in a string the termination of the values of c-set variables.

We first consider a unique c-set variable with only one field: name. When
there exist no session for such a variable we have a radix tree consisting of the
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Fig. 1. Example of radix trees

only root (recall that in radix trees the root is associated with the empty string).
We represent such a radix tree as a �. If now a session s1 is created which is
identified by the value John for the c-set variable name then the radix tree
became as the one depicted in Figure 1(a). The value John allows to reach s1
by an (obvious) lookup in the tree.

Next assume that two more sessions are created: a session s2, which is identi-
fied by the value Joseph for the variable name and a session s3 which is identified
by Josh. The radix tree we obtain is the one depicted in Figure 1(b). Notice that
the longest common prefixes of the three key values are associated to edges of
the tree. When a message arrives, the value that it carries for the name variable
allows one to select a root-leaf path in the tree, so reaching the correct session.

Assume now that our correlation set is composed by the two variables name
and surname and consider four sessions s1−s4 identified as follows by the values
of the c-set variables:

s1 : name = John, surname = Smith; s2 : name = John, surname = Smirne
s3 : name = Josh, surname = Smith; s4 : name = John, surname = Smithson

Correspondingly we have the radix tree depicted in Figure 2(a). In this case,
as mentioned before, we need more that one radix tree to store the values of
c-sets variables of the sessions. This because in a broadcast message the value of
some c-set variables could be not specified. For example, in the case above, let
us consider a broadcast message which contains the token Smith for surname
and no token for name. If we have only a radix tree like the one depicted in
Figure 2(a) we can not find with a lookup which session correlate with it. This is
due to the fact that the first part of the key of the radix tree is the value of the
variable name. Hence we need an additional radix tree like the one depicted in
Figure 2(b) that can be used to retrieve sessions for messages that do not define
the variable name.

It is easy to see that these two radix trees allow to cover all the possible cases.
First consider what happens if we receive a message m where name = John and
surname = Smith, hence we consider the string John#Smith#. In this case,
by using the 2(a) radix tree, we see that the message m will be assigned to
s1, since this is the session which correlates with m. However, note that this
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Fig. 2. Example or radix trees for c-set with 2 variables

first tree covers also the case in which no value for surname is provided by the
message, hence we do not need a further radix tree to keep only the sessions
that define only the variable name. For example, if we receive a message m with
name = John, that is we consider the string John#, then the 2(a) radix tree
shows that m correlates to the sessions s1, s2, s4.

On the other hand, if we receive a broadcast message m′ where name is not
defined and surname = Smith we will use the 2(b) radix tree (with the string
Smith#) to find that the session correlating with m′ are s1, s3.

4 Building the radix trees

As previously discussed, with our approach every c-set of the service has a group
of radix trees that can be used for checking the correlation of a message to a
session. We have also shown that, if we assume that the c-set has n variables,
one does not need to consider 2n different radix trees, because a radix tree for
a sequence of variables cover also all the cases given by the prefixes of such a
sequence.

In this section we provide an algorithm that, given a c-set with n variables,
in the worst case constructs a set containing

(
n

dn/2e
)
(= n!

dn/2e! bn/2c! ) radix trees.

In the next section we will prove that such set allow us to route all the possible
messages to a service. We also prove that this set is minimal, in the sense that
any other set of radix trees which allow to route correctly all the messages has
at least the same cardinality. So our algorithm cannot be improved w.r.t. the
number of radix trees generated.

In the following we assume that the c-set c has n variables and the set V
contains all and only these variables. We denote by seqi a sequence x1, . . . , xhi

of
variables of c. Given a list of sequences of variables seq1, . . . , seqm such that seqi



is a prefix of seqi+1, for i ∈ [1,m − 1], we use the notation RT (seq1, . . . , seqm)
to indicate any radix tree whose keys are strings of the form d1# . . .#dhi

#
where dj = ϕ(xj), for j ∈ [1, hi], and for some c-set-instance ϕ. In other
words, RT (seq1, . . . , seqm) is a kind of schema which can be instantiated by
considering the values of the variables for one specific sequence seqi, with i ∈
[1,m] (and using # as separator of values), to obtain a specific concrete radix
tree. As previously discussed, a radix tree (described by) RT (seq1, . . . , seqm)
allows us to check the existence of a session defining all the variables in one of
the sequences seqi. For example the radix tree in Figure 2(a) can be denoted
by RT (〈〉, 〈name〉, 〈name, surname〉) while the radix tree 2(b) is denoted by
RT (〈surname〉) 5. By using this notation our problem can be stated as follows:
we need to find the minimum number h of radix trees schemas RT1(seq1,1, . . . seq1,l1),
. . . , RTh(seqh,1, . . . seqh,lh) such that, for each set X ⊆ V , there exists a sequence
seqk,o that contains all and only the variables in X.

We find convenient to formulate this problem in terms of a graph represen-
tation. Indeed, given a set of variables V , we can create a labeled direct graph
G(V ) where:

– the nodes are (labeled by) elements in P(V ). Intuitively we will consider all
the set of variables that can be defined by a c-token;

– there is an arc from u to v if u ⊂ v;
– the arc (u, v) is labeled with the variables v \ u (where \ denotes set differ-

ence).

Fig. 3. Example of the graph
obtained for with three vari-
ables: x, y, z (note that for
convenience only few arc la-
bels are reported)
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For example, in Figure 3 we see the graph constructed by considering the
three variables x, y and z where we can receive all the possible 7 broadcast
messages. A path on this graph corresponds to a radix tree schema (see definition
5). Hence, with this graph representation our problem can be stated as follows:
we have to find the minimum number of paths that cover all the nodes of the

graph where, as usual, we say that a path u1

x1
''
u2

x2

%%. . .
xn

))
un+1

covers

the nodes u1, . . . , un+1.

5 Note that the order of the cset variables is important and therefore for instance
RT (〈name, surname〉) 6= RT (〈surname, name〉)



The algorithm that produces this minimum number of paths is Algorithm
1 and its intuition is the following. Consider the graph G(V ) associated to a
c-set V , as explained above. We first partition all the nodes of G(V ) into levels
according to the number of variables of the nodes, so level i contains all the nodes
that have exactly i variables. Then starting from the lowest levels (i.e. level 0 and
1) we consider two next levels at a time, say level i and i+1. These two levels are
seen as a bipartite graph where the nodes of each level form an independent set.
We then use a maximum bipartite matching algorithm for selecting a set of arcs
between the nodes of these two levels. Next we repeat the same procedure with
levels i+1 and i+2, and we continue until we reach the level n. At this point we
take the graph G′(V ) obtained by considering all the nodes in the original graph
G(V ) and only the edges which have been selected by the matching algorithm.
As we prove in the next section, the maximal paths6 on the graph G′(V ) form
a minimum set of paths covering all the nodes of P .

Before providing the algorithm we need to introduce some notation. We as-
sume that each node is (labeled by) an element of P(V ) (n = |V |), as mentioned
above and we denote by levelV (i) the set of nodes in the i-th level, i.e. the
set of elements in P(V ) which have cardinality i. Moreover graph(A,B) de-
notes the bipartite direct graph (A ∪ B,E) where (u, v) ∈ E iff u ⊂ v. Finally
maximal matching(G) is one of the maximal matchings of the bipartite graph
G chosen in a non deterministically way. Algorithm 1 takes as input the set
P ⊆ P(V ) and returns the graph containing a minimum set of paths covering
all the nodes of P . Once we have obtained a graph by using the Algorithm 1 it

Algorithm 1 radix trees(P )

1: i = 0
2: V = levelP (i)
3: M = ∅
4: while (i < n) do
5: i = i + 1
6: V ′ = levelP (i)
7: G = graph(V, V ′)
8: M ′ = maximal matching(G)
9: V = V − {v | (v, x) is an edge in M ′, for some x}

10: V = V ∪ V ′

11: M = M ∪M ′

12: end while
13: return (P,M)

is possible to compute the radix trees by simply finding all the maximal paths,
as shown below.

Definition 5. Given P ⊆ P(V ) we say that a radix tree schema RT (u′
1, u

′
2 . . . , u

′
m)

is produced by the algorithm radix tree(P ) if u1

x1
''
u2

x2

%%. . .
xm

))
um+1

is

a maximal path in the graph G = radix tree(P ) and

6 A maximal path is a path that can not be a proper part of another path.



– u′
i is a sequence of all the variables in the set ui, for each i ∈ [1,m];

– u′
i is a prefix of u′

i+1, for each i ∈ [1,m− 1].

We now consider an example of application of the previous algorithm to the
graph in Figure 3. In Figure 4 we have reported the three steps denoting by
⇒ the arcs selected by the maximal matching algorithm (i.e. arcs in M) while
→ indicates the arcs considered by the maximal matching algorithm (i.e. arcs
in G, line 7). The nodes in frame are the nodes that are used for computing
the maximal matching (i.e. the nodes in V and in levelP (i)), while nodes in
dotted frame are the nodes already processed (not considered by the matching
algorithm and deleted from V , line 9).
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Fig. 4. Example of execution of Algorithm 1 with 3 variables

From the final graph (Figure 4(d)) we can compute the radix trees schemas
by taking the maximal paths:
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The first path corresponds to the radix tree
schema RT (〈〉, 〈x〉, 〈x, y〉) while the other two corre-
sponds to RT (〈y〉, 〈y, z〉) and RT (〈z〉, 〈z, x〉, 〈z, x, y〉),
respectively.

4.1 Using radix trees

Once we have created the radix tree schemas by using our algorithm, we need
some operations for inserting and removing values from them, thus creating the
concrete radix trees to be used for correlating messages and sessions. Moreover



we need to define a lookup operation, that, given a message, allows us to use
the (concrete) radix tree to find all the correlating sessions. To this aim we first
introduce the three operations described below. Here and in the following, unless
differently specified, with “radix tree” we mean a concrete radix tree, contain-
ing values for keys and whose leafs contain (pointers to) sessions. Moreover we
assume w.l.o.g. that the service has a unique c-set and therefore only one group
of radix trees. If the service has more than one c-set the following considerations
should be applied to every c-set.

– RT.add(s) is the operation for adding to the radix tree RT the session s;
– RT.del(s) is the dual operation that deletes the session s in RT ;
– RT.find(m) returns all the sessions which correlate with m. If no sessions

in RT correlates with m then the null pointer is returned.

Assuming that RT belongs to the radix tree schema RT (seq1, . . . , seqk), when
RT.add(s) is invoked s is added to the radix tree RT using as key the string
ϕs(x1)# . . .#ϕs(xl)# where 〈x1, . . . , xl〉 = seqk and ϕs is the c-instance for s.
In a similar way RT.del(s) deletes from RT the session pointer to s.

If 〈x1, . . . , xl〉 is the sequence of all the variable defined by the c-token ϕ of a
message m, the operation RT.find(m) can be applied iff there exists a sequence
seqi = 〈x1, . . . , xl〉. In this case this operation returns all the sessions whose keys
have as prefix the string ϕ(x1)# . . .#ϕ(xl)#.

Using these basic operation we can now define the operations which manage
the set of radix trees produced by our algorithm . More precisely, we assume that
the set of radix tree schemas produced by the algorithm has been instantiated
to a set of (concrete) radix trees. Then this set is managed by the following
three operations: find session(m) (for finding a session that correlates with
a message m); add session(s) (for adding the session s); del session(s) (for
deleting a session s). The definition of the add session(s) and del session(s) is
obvious since the only thing to do is to execute RT.add(s) and RT.del(s) for
every radix tree RT . The find session(m) instead first have to select a specific
RT based on the variables defined by the c-token of m and later return the
RT.find(m) result.

5 Correctness and complexity analysis

In this section we prove the correctness of Algorithm 1 and we discuss the com-
plexity of correlation mechanism based on it. In particular, we show that it
produces the minimal number of radix trees needed to guarantee correctness. In
the following, as usual, we assume that V is the set of variables of a c-set and
that n = |V |.

First of all, we show that Algorithm 1 produces a number of radix trees
much smaller than 2n. With a slight abuse of notation, when no ambiguity arise,
we indicate by radix trees(P ) both the graph produced by the algorithm, with
input P , the radix tree schemas obtained from this graph according to Definition
5, and the concrete radix tree obtained from the schemas as described at the
end of previous section. All the proofs of the theorems are reported in [7].



Theorem 1. If W ⊆ P(V ) the result of radix trees(W ) is a graph containing
at most

(
n

dn/2e
)

maximal paths. Hence the algorithm produces at most
(

n
dn/2e

)
radix trees schemas.

Next we show that the algorithm is correct, that is, the number of radix trees
produced is sufficient to check correlation.

Theorem 2. Let m be a message and V1, . . . , Vk be all the subsets of c-set vari-
ables that are defined by all the possible c-tokens. Then there exists a radix tree
schema produced by radix trees({V1, . . . , Vk}) which allows us to check if the
message correlates with a session.

Finally we show that the number of radix trees produced by the algorithm
is the minimal one which guarantees correctness.

Theorem 3. The graph produced by radix trees(P ) contains the minimal num-
ber of maximal paths covering all the nodes in P .

As an obvious consequence of previous theorem we obtain that if we consider
less radix trees than those produced by Algorithm 1 we cannot establish correctly
correlation for some kind of messages. Thus our algorithm cannot be improved
with respect to the number of radix trees that one can use to solve this problem.

The complexity of Algorithm 1 is polynomial on the size of P . As for the com-
plexity of the operations described in Section 4.1, assuming that l is the maxi-
mum length of a c-set value and k is the number of the sessions that correlate with
a message m, the (time) complexity of find session(m), is O(n+knl) = O(knl).
For normal (i.e. non broadcast) messages the complexity of find session(m) re-
duces to O(nl). On the other hand, the (time) complexity of add session(s) and
del session(s) is O(

(
n

dn/2e
)
l) (for more details see [7]). We would like to underline

that, in practice, the number of the c-set variables which are used is very small
(less or equal to 5) so, in practice, the complexity of our operations is constant.

6 Conclusions and future work

We have proposed a data structure, based on radix trees, for managing a correla-
tion mechanism which supports also a broadcast communication in the context
of languages for service oriented computing. We have also described an algo-
rithm that computes the minimal number of radix trees required for handling
correctly every normal and broadcast message. The complexity of the correlation
operation is constant for normal messages, and linearly dependent with respect
to the number of targets for broadcast messages. The operations of session cre-
ation and termination have a complexity that depends on the number of different
types of broadcast messages. In the worst case (i.e. when an exponential num-
ber of broadcast messages is used) it is exponential. The worst case scenario is
however impossible in practice, since real scenarios use few types of broadcast
messages. For this reason the complexity of session creation and termination
have in practice a constant complexity.



The major drawback of our approach is memory consumption: having more
than one radix tree means that we require more memory to store the correlation
values. For services that use huge data as correlation values memory consumption
could be problematic. Nevertheless, we believe that in practice this is not an
issue, since correlation values should be small for minimizing the cost of the
message exchange over the network. If a service uses huge data as correlation
values then we argue that it is worth considering the introduction of a new
shorter key that can be used as a new correlation variable.

We are currently implementing the data structure and the algorithm in the
JOLIE language interpreter. With this new implementation hopefully we will be
able to provide a faster mechanism for the assignment of messages to session.

We are currently extending our work to support a property-based correlation
mechanism (see [2]) where also such operators as >,<,∨ can be used for the
assignment of messages and therefore the analogous of range queries in databases
arise. We think that radix trees could be very useful in this context, since these
data structures allow to manage range queries in a very natural way.
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