
Constraint based implementation of a PDDL-like
language with static causal laws and time fluents

Agostino Dovier1 and Jacopo Mauro2

1 Dipartimento di Matematica e Informatica, Università di Udine
dovier@dimi.uniud.it

2 Dipartimento di Scienze dell’Informazione, Università di Bologna
jmauro@cs.unibo.it

Abstract. Planning Domain Definition Language (PDDL) is the most
used language to encode and solve planning problems. In this paper we
propose two PDDL-like languages that extend PDDL with new con-
structs such as static causal laws and time fluents with the aim of im-
proving the expressivity of PDDL language. We study the complexity
of the main computational problems related to the planning problem in
the new languages. Finally, we implement a planning solver using con-
straint programming in GECODE that outperforms the existing solvers
for similar languages.

1 Introduction

In the context of knowledge representation and reasoning, a very important
application of logic programming within artificial intelligence is that of devel-
oping languages and tools for reasoning about actions and change and, more
specifically, for the problem of planning [2]. The proposals on representing and
reasoning about actions and change have relied on the use of concise and high-
level languages, commonly referred to as action description languages. Some
well-known examples include the languages A and B [11] and extensions like
K [7]. Action languages allow one to write propositions that describe the effects
of actions on states, and to create queries to infer properties of the underlying
transition system. An action description is a specification of a planning problem
using the action language.

Since 1998 a declarative language for planning has been defined either for
establishing a common syntax or for allowing different research groups to par-
ticipate to the planning competitions. This language is known as PDDL and its
last release is 3.1 (see [16, 10, 12] for information on planning competitions and
PDDL).

The goal of this work is to build two languages on the top of PDDL, called
APDDL and BPDDL, allowing new constructs and then explore the relevance
of constraint solving for handling them. The main ideas of the constraint en-
coding comes from [6]. However, here we employed the C++ constraint solver
platform GECODE [1] which is faster than the constraint solver of SICStus

Prolog used in [6], and we solve more precisely the frame problem. Moreover,
we define a front-end from the PDDL-like languages to GECODE. We always
outperform the running time of [6]; in some cases the improvements are really
sensible.

The presentation is organized as follows. In Section 2 we introduce the lan-
guage APDDL and in Section 3 we formally define its semantics. In Section 4
we define the language BPDDL. In Section 5 we report the complexities of some
interesting problems related to planning in this language. The solver implemen-
tation and the tests are then discussed in Sections 6 and 7. Some proofs are
reported in Appendix.

2 The language APDDL

APDDL is an extension of the well-known language PDDL and every APDDL
program consists of two parts: the domain definition used to model the planning
problem, and the instance definition used to define the instance of the problem
to solve. We need to define a set F of fluent names. Each f ∈ F is assigned to a
domain dom(f). We also need to define a set A of action names. Each action a is
associated to a precondition pre(a) and an effect eff(a) all expressed as a Boolean
combinations of arithmetic constraints on fluents (see Table 1 for a simplified
syntax3).

C ::= 0 | 1 | (not C) | (and C+) | (or C+) | (AOP AC AC) |
(eqv C C) | (imp C C) | (xor C C) | TIME FLUENT

AC ::= n | TIME FLUENT | (OP AC AC)
AOP ::= > | ≥ | < | ≤ | = | 6=
OP ::= + | − | ∗ | / | mod | rem

TIME FLUENT ::= f | (at n f)

Table 1. Abstract syntax of constraints (C)—n ∈ Z, f ∈ F

The concrete syntax of the language is described by a EBNF grammar avail-
able at [15]. We just give here a taste of the syntax using a simple example: the
famous Sam Lloyd’s n-puzzle that consists of a frame of numbered square tiles
in random order with one tile missing. The tiles should be arranged in increasing
order, with the hole in the bottom right corner. Types can be used for differen-
tiating objects. In this example we can define a type for the position of a tile,
one for the direction of the move to do and one for the numbers on the tile. This
can be done in the following way:

(:types positions directions tiles_numbers)

3 where eqv, imp, xor, mod, rem are respectively the equivalence, implication, exclusive
or, module and reminder operators

2

We can associate names (also known, with abuse of terminology, as constants)
to constant and function symbols (with arity 0 and greater than 0, respectively).
We can define the function symbol near with arity 2 used to determine what
position should occupy a tile moved from a position pos according to a particular
direction dir.

(near ?pos - positions ?dir - directions) - positions

In the example we can consider a missing tile as a tile numbered 0. We thus
define the constant empty tile number for representing it.

empty_tile_number - tiles_numbers

We use these preliminary definitions to encode the relevant proprieties of the
objects that we want to consider. These properties are the fluents and they are
represented by a (multivalued) function. Boolean functions are called predicates.
In our example we are interested in knowing the number in a particular position.
This multi-valued fluent can be defined in the following way:

(has ?position - positions) - tiles_numbers

The last ingredient for the domain definitions are the definitions of the possible
effects of the actions given their preconditions. In this example there is only an
action: moving a tile. This action can be defined as follows4:

(:action move
:parameters (?from ?to - positions)
:precondition (and

(exists ?direction - directions
(== (near ?from ?direction) ?to)

)
(== (has ?to) empty_tile_number))

:effect (and
(== (has ?from) empty_tile_number)
(== (has ?to) (at -1 (has ?from))))

)

Let us suppose that we want to solve this problem in a 3 × 3 board where
the missing tile is at the bottom right corner. This can be encoded into the
problem definition. First, all the objects involved are listed. In this case we have
the following three types of objects5:

(:objects
(set 1 9) - positions
Left Right Up Down - directions
(set 0 8) - tiles_numbers

)

4 The term (at -1 (has ?from) is a time fluent and it will be described later
5 set is an APDDL operator for defining set of integers in a concise way

3

Second, all the constants should be instantiated.

(:constants
(== empty_tile_number 0)
(== (near 1 Right) 2) (== (near 1 Down) 4)
(== (near 2 Right) 3) ...

)

The problem definition includes also the definition of the values of the fluents
in the initial state and the goal. In the problem we are considering this can be
done in the following way:

(:init (== (has 1) 2) (== (has 2) 5) ...)
(:goal (== (has 1) 1) (== (has 2) 2) ...)

We impose that the fluents in the initial state are completely defined.
If the goal of the problem is to obtain an optimal plan it is possible to define

a cost function. This function referred as metric has the following syntax:

M ::= (:metric MOP MC)
MOP ::= minimize | maximize
MC ::= AC | (is_violated C) | (OP MC MC)

where AC and C are defined as in Table 1. For example, suppose that a state has
cost 0 if the number 1 is in the first row and 1 otherwise. If we want to minimize
the cost, the metric can be defined in the following way:

(:metric minimize
(is_violated (or (== (has 1) 1) (== (has 2) 1) (== (has 3) 1))))

Finally, at the end of the problem definition, it is necessary to specify the
length of the plan we want to obtain. This can be done using the length primitive:

(:length 18)

The language APDDL has few more features like the possibility to introduce
a metric function to maximize or minimize and additional constraints called plan
constraints. For example in the n-puzzle problem it is possible to state that the
tile with the number 1 should be in the last line at least once:

(:constraints (sometimes (or (== (has 7) 1)
(== (has 8) 1)
(== (has 9) 1))))

The main difference between the PDDL language and the APDDL is the
possibility to use more operators in the action precondition and effects (division,
remainder, exclusive or, . . .) and the notion of time fluent.
A time fluent is an expression of the form (at i f) where i ∈ Z is an integer
and f is a fluent. This construct is used in actions for referring to the value of a
fluent f in time instant i. If i = 0 then (at 0 f) (or, in short, f) is called present

4

fluent because it refers to the value of the fluent f in the current state. If i < 0
(resp. i > 0) the term (at i f) is called instead past fluent (resp. future fluent).
Let us observe that if the time fluent is used in an action precondition it refers
to the state at which the action is executed. If it is used in the effect it refers to
the state produced by the execution of the action.

An example of the use of time fluents is the following action that decreases
the number of objects in a barrel in the next two states if during the last two
state transitions at least one object is added into the barrel.

(:action empty
:parameters (?barrel - barrel)
:precondition (and

(> (contains ?barrel) (at -1 (contains ?barrel)))
(> (at -1 (contains ?barrel)) (at -2 (contains ?barrel))))

:effect (and
(== (contains ?barrel) (- (at -1 (contains ?barrel)) 1))
(== (at 1 (contains ?barrel)) (- (contains ?barrel) 1)))

)

In goal constraints, plan constraints and metrics it is not possible to use past
or present fluents while in init constraint it is not possible to use past fluents.

3 APDDL Semantics

Given an APDDL program P it is possible to obtain an equivalent ground in-
stance ground(P) by grounding all variables with all constants satisfying the
types. In ground(P) actions preconditions and effects, goal conditions and all
the information on the initial state are (Boolean combinations of) Finite Domain
constraints on time fluents.

A state is characterized by the values of all the fluents involved. We will
use the term val(s, f) to denote the value of the fluent f in the state s. Any
action a is characterized by its preconditions pre(a) and its effects eff(a). We
allow parallel executions of different actions a1 and a2 provided their effects are
independent. We impose a strong syntactic requirement: the sets of time fluents
occurring in eff(a1) and eff(a2) must be disjoint.

Let us consider a sequence of states s0, s1, . . . , sn, and a constraint c. With
shifti(c) we denote the constraint obtained replacing each time fluent (at t f)
with the value val(st+i, f). If t + i < 0 or t + i > n then the value is ⊥ (un-
defined). Let us observe that c′ = shifti(c) is a Boolean combination of ground
arithmetic constraints (or ⊥). If ⊥ occurs in it, then its value is false. Otherwise,
its value is determined by the usual semantics of arithmetic and Boolean opera-
tors on ground formulas. If the value of c′ is true, we say that s0, s1, . . . , sn |= c′,
otherwise s0, s1, . . . , sn 6|= c′.

Let G be the set of goal constraints and I be the set of initial constraints.
Then a plan of length n (n ≥ 0) is a sequence s0, A1, s1, . . . , An, sn where

1. s0, . . . , sn are states

5

2. A1, . . . , An are (possibly empty) sets of actions
3. ∀i ∈ {1, . . . , n}∀a ∈ Ai .s0 . . . sn |= shifti−1(pre(a))
4. ∀i ∈ {1, . . . , n}∀a ∈ Ai .s0 . . . sn |= shifti(eff(a))
5. ∀c ∈ G .s0 . . . sn |= shiftn(c)
6. ∀c ∈ I .s0 . . . sn |= shift0(c)
7. ∀a1 ∈ Ai∀a2 ∈ Ai .a1 6= a2 eff(a1) and eff(a2) do not share future or present

fluents.
8. if no action executed refers to a fluent f in si (i > 0) then val(si, f) =

val(si−1, f) (inertia condition)

When further plan constraints are used, the plan definition must entail more
constraints. For instance, if the constraint (sometimes c) is added, then there
must be i such that s0 . . . sn |= shifti(c).

4 BPDDL

Starting from the language APDDL we add the possibility to use a construct like
the static causal laws (briefly denoted here as rules) introduced in the language
B [11], obtaining the new language BPDDL. A rule has a precondition and
an effect similar to the action preconditions and effects, but without future
fluents. Informally, the semantics of a rule is that at every state of the plan if
the precondition is true then also the effect must be true.

Rules are more powerful than PDDL axioms [18]. As a matter of fact, differ-
ently from axioms, rules do not require to define predicates using only stratified
programs (and this is a strong constraint for knowledge representation); more-
over, they are allowed to change values of fluents that can be also used in action
effects.

The possibility of using rules increases the expressiveness of the language.
For instance it is possible to change a fluent value after a transition even if no
action has been executed. A simple example is the implementation of a clock
simply using a fluent and a rule

(:rule
:parameters (?time - time)
:effect (== ?time (+ (at -1 time) + 1))

)

Another interesting use of rules is the propagation of an action effect. Let us
consider for example a colored directed graph where we want that all the nodes
connected with edges in a set E 1 have the same color. This propriety can be
encoded in the following way:

(:rule
:parameters (?edge - edge)
:precondition (is_edge_in_E_1 ?edge)
:effect (== (node_colour (head ?edge))

(node_colour (tail ?edge)))
)

6

When clear from the context, we will use the abstract notation c1 → c2 for rules.

4.1 BPDDL Semantics and Inertia

Dealing with inertia in presence of rules is obviously more difficult than in a
language that does not allow them. This is particularly true if the implementa-
tion of a language is based on the notion of constraint. Two rules stating the
implications p→ q and q → p are satisfied either by p = q = 0 or by p = q = 1.
However, an arbitrary change of the values from 0 to 1 or vice versa cannot be
simply justified by these rules.

A simple attempt of solution considered is that of choosing the states with
a minimum change of fluents. Unfortunately, this definition cuts off a lot of
solutions, as already pointed out in [3].

We instead used a solution based on the following principle: “Given some
action effects if something can be left unchanged then it must be unchanged”

Let us define with Act(s0, A1, s1, . . . , An, sn) the fluents of sn that can be
modified as a direct effect of an action in

⋃
Ai. Suppose that 4F (s, s′) is the

set of fluents that have different values between the state s and s′. Now, in a
plan s0, A1, s1, . . . , An, sn we say that there is a critical situation between si−1

and si if there is a sequence s0, A1, s1, . . . , si−1, Ai, s
′ where the state s′:

– entails all the rules
– 4F (si−1, s

′) ⊂ 4F (si−1, si)
– ∀f ∈ Act(s0, A1, s1, . . . , Ai, si) . val(si, f) = val(s′, f)

Intuitively when there is a critical situations there is at least a fluent that
can remain the same but instead has been changed by a rule. Therefore when
there is a critical situation in a plan the over mentioned principle is violated.

Just a comment on the past references in rules. If a rule refers to a value of
a fluent prior to the initial state s0 of a plan the rule is trivially satisfied.

The semantics of the language BPDDL is similar to the semantics of APDDL
with only two further requirements:

– the inertia condition is now the absence of critical conditions between two
consecutive states in the plan

– the states must entail the applicable rules

5 Complexity

In this section we study the complexity of the main computational problems
related to planning expressed within the APDDL and BPDDL languages. In
particular, we focus our attention to ground APDDL/BPDDL programs. For
APDDL programs some of the problems are equivalent, other are simpler or
not meaningful. We assume moreover that no plan constraints is used in the
program. Their inclusion would make the proofs more complicated but they
would not affect the results. We studied the complexity of the following decision
problems:

7

1. has critical situation (APDDL: not meaningful. BPDDL: NP-complete)
input: a program, a sequence of states and actions s0, A1, s1, . . . , An, sn and

two consecutive states si, si+1 that entail all the conditions in the plan
definition except the inertia

output: 1 iff there is a critical situation between si, si+1, otherwise 0
2. validity (APDDL: P; BPDDL: co-NP-complete)

input: a program and a sequence of states and actions s0, A1, s1, . . . , An, sn

output: 1 iff s0, A1, s1, . . . , An, sn is a plan, otherwise 0
3. k-plan (APDDL: NP-complete; BPDDL: ΣP

2 -complete)
input: a program
output: 1 iff there is a plan of length k that solves the problem encoded

into the BPDDL program, otherwise 0
4. plan: (APDDL and BPDDL: PSPACE complete)6

input: a program
output: 1 iff there is a plan that solves the problem encoded into the

BPDDL program, otherwise 0

We give here only the main ideas used. The complete proofs of the results
are reported in Appendix.

The proof of NP-hardness of has critical situation is based on a reduction
from a variant of SAT in which all false and all true assignments are forbidden.
Let us consider the Boolean formula ϕ = (X∨Z)∧(¬X∨¬Y ∨¬Z) and consider
the following program based on three rules with fluents fX , fY , fZ (⊕ stands for
exclusive or while f−1

W for the past fluent (at − 1 fW)):

true→ fX ∨ fZ ∨ (fX ∧ fY ∧ fZ) ∨ (¬fX ∧ ¬fY ∧ ¬fZ)
true→ ¬fX ∨ ¬fY ∨ ¬fZ ∨ (fX ∧ fY ∧ fZ) ∨ (¬fX ∧ ¬fY ∧ ¬fZ)
true→ (f−1

X ⊕ fX) ∨ (f−1
Y ⊕ fY) ∨ (f−1

Z ⊕ fZ)

Let us consider now two states s0 and s1, where for every fluent f in {fX , fY , fZ}
it holds that val(s0, f) = 0 and val(s1, f) = 1. And, let us analyze the problem:
is there a critical situation between s0, s1? The first two rules are satisfied if all
the fluents are true or all are false or if there is an assignment that satisfies the
formula ϕ. The last rule, instead, forces at least one fluent to change.

Let us observe that ϕ is not satisfiable by a trivial assignment 7. One of the
possible non trivial assignments that satisfy ϕ is instead {X/true, Y/false, Z/false}.
Using this assignment we can define a state s′ such that val(s′, fX) = 1, val(s′, fY) =
0, val(s′, fZ) = 0 that satisfies all the rules and with fluent variations included
w.r.t. those between s0 and s1. Therefore there is a critical situation.

6 APDDL and BPDDL are PSPACE complete if the maximum temporal reference
used is polynomially bounded on the length of the program encoding. See details in
proofs.

7 An assignment is trivial if all the variables are assigned to true or all the variables
are assigned to false

8

As far as the validity problem is concerned, checking if all the plan conditions
but the inertia holds can be done in polynomial time (and this is what is needed
in APDDL). Verifying if there are no critical situations in BPDDL can be done
in polynomial time using a co-NP oracle machine that solves the complement of
has critical situation.

k-plan problem membership to ΣP
2 derives directly by the NP-completeness

of has critical situation. To prove the ΣP
2 hardness of k-plan we reduce it to

the problem of finding an answer set for the extended disjunctive logic program
(EDLP programs) [4]. An EDLP program is a set of rules of the form

l1| . . . |lp ← lp+1, . . . , lm, not lm+1, . . . , not ln

where n ≥ m ≥ p ≥ 0 and each li is a literal, i.e. an atom a or the classical
negation ¬a of an atom in a first-order language, and not is a negation-as-failure
operator. The symbol | is used to distinguish disjunction in the head of a rule
from disjunction ∨ used in classical logic.

The problem of deciding if a propositional (i.e. ground) EDLP has an answer
set is ΣP

2 complete [8].
We introduce the reduction with an example. Consider the following propo-

sitional EDLP from [17] which states that everyone is pronounced not guilty
unless proven otherwise:

innocent|guilty← charged
¬guilty← not proven

charged←

From this program we can generate a program based on the following rules
with fluents innocent, guilty, charged, proven, w.

(w−1 = 2 ∧ charged = 1) −→ (innocent = 1 ∨ guilty = 1)
(w−1 = 2 ∧ ¬(proven = 1)) −→ guilty = 0

w−1 = 2 −→ charged = 1

If the fluents innocent, guilty, charged, proven, w can have values in {0, 1, 2}
and at the initial state all fluents have value 2 then there is a plan of length 1 iff
the EDLP program has a stable model. Intuitively the answer set has an atom a
(resp. ¬a) if in the final state a = 1 (resp. a = 0). If a = 2 then it is not in the an-
swer set. In the previous case the single answer set is {¬guilty, innocent, charged}
and the plan that solves the problem is

{guilty/2, innocent/2, charged/2, proven/2, w/2},
∅,

{guilty/0, innocent/1, charged/1, proven/2, w/2}

PSPACE membership can be proven viewing the planning problem as a reach-
ability problem on a graph where the nodes are states and the arcs are set of
actions. Encoding a state and checking if there is an arc between two states is fea-
sible in polynomial space and therefore reachability can be decided in PSPACE.

9

The plan problem is PSPACE complete because APDDL/BPDDL is more
expressive than STRIPS [9]. A STRIPS program can be mapped into a APDDL
or BPDDL program straightforwardly and thus since plan in STRIPS is PSPACE
complete [5] the plan problem is PSPACE complete also in APDDL or BPDDL.

6 Solver

The positive results of the approach [6] encouraged us to write a constraint-based
solver for the languages APDDL and BPDDL. The implementation of BPDLL
subsumes that of APDDL. We decided to exploit the constraint solver GECODE,
implemented in C++, that offers competitive performance w.r.t. both runtime
and memory usage. Starting from the context-free grammar of BPDDL we have
defined a lexical analyzer and a parser using the standard tools flex (Fast Lexical
Analyser) and Bison. The developed solver solves the k-plan problem.

The overall structure of the solver is similar to that developed in [6] and it
deals with the following variables:

1. for every fluent in every state one FD variable (a Boolean variable if the
fluent is a predicate) represents the value of the fluent in that state

2. for every action in every transition one boolean variable represents if the
action is executed

Constraints for checking action preconditions and imposing action effects
are then added. In the case of the BPDDL-solver we also introduced a set of
constraints to verify the closure of a state w.r.t. the rules and to solve the frame
problem.

Verifying that there are no critical situations can lead to a definition of an
exponential number of constraints. As pointed out in [13] and [14] for Answer
Set Programming, it is not possible to solve the frame problem adding only a
polynomial number of formulas of polynomial length unless P = NP .

Let now define a function shiftRule(F, r) that taking a set of fluents F and a
rule r, decreases by one the time reference of all the time fluents (at 0 f) in r
if f ∈ F .

Let ruleModified(f, s0, A1, s1, . . . , An, sn) be the constraint that is true iff
f /∈ Act(s0, A1, s1, . . . , An, sn) and val(sn, f) 6= val(sn−1, f).

There is no critical situation between two states si−1, si in a plan s0, A1, s1, . . . , sn

if for all non empty subset of fluents F

s0, . . . , sn |= shifti

 ∧
r rule

shiftRule(F, r)→ ¬
∧

f∈F

ruleModified(f, s0,A1, s1, . . . ,Ai, si)


Intuitively, we check if the rules are fulfilled even if the fluents in F are left

unchanged. When this happens we must assure that in this case there is at least
a fluent in F that is not modified only by rules.

In the BPDDL solver we tried to minimize the number of constraints added
to state the inertia. Suppose P is a partition such that for every (at 0 f1),(at

10

0 f2) defined in a rule one of its elements contains f1, f2. To avoid critical
situations it is possible to add one of the above-mentioned constraints for all the
non empty subsets of the elements in P .

If a metric is used we employ the branch and bound algorithm for finding
the optimum solution. Otherwise, we use the default algorithm provided by
GECODE for exploring the search space (depth first search).

We also developed two optional heuristics for reducing the search space. The
first one, called no state repetition avoids the possibility of returning to an
already visited state (drawback: if a k-plan exists only with multiple visits of a
node, we don’t find it).

The second heuristics is called confluent actions that imposes a partial
order on actions. We say that a1 < a2 when for every plan of length 2 the
execution of a1 and a2 has the same effect of the execution a2 and a1. We notice
that a1 < a2 is always true if the set of fluents in a1 effect is disjoint from the set
of fluents in a2 precondition and vice versa. When this happens we impose that
in a plan the action a1 should be executed before the action a2. This heuristic
can reduce the plan symmetries.

Since sometimes we are interested in finding a sequential plan we allow the
programmer to choose at most or exactly one action per transition.

7 Tests

For the scope of this paper, we compared the performances of the GECODE
based APDDL solver with the performances of the Solver for the language
BMV [6]. For the tests we used an AMD Opteron 2.2 GHz Linux Machine. The
APDDL solver uses GECODE 2.1.1 and was compiled with the 4.1.2 version of
g++. The BMV solver instead is written and executed in SICStus Prolog 4.0.4.
As benchmarks we chose some of the domains studied and presented in [6]. We
are planning some other tests also with other systems (e.g., MIPS-XXL, SG-
Plan5, SatPlan) when they are applicable (e.g. for domains without time fluents
and rules). All the solver codes and the examples of the program used for the
testing are available at [15].

As explained in [6], for implementation choice, treatment of inertia in BMV

can be incorrect for some programs where rules introduce loops. The BPDDL
solver, instead, works correctly on those examples. Anyway, in our tests we
choose to compare BMV with APDDL on domains without rules. BPDDL has
basically the same running time as APDDL (with a 5% of overhead) on the
tested domains.

For every instance of the problems we considered both the time needed by
the solver to post the constraints and the time needed to find the first solution (if
any). Timings are expressed in ms and are given as a sum of the post time (first
term) and the search time (last term in the addition). Even if the two languages
used are different (PDDL like vs Prolog like) we encoded the domains basically
in the same way (same actions, same preconditions, etc) and we have used both

11

the solvers with the default parameters (A/BPDDL solver chooses the variable
with the smallest domain size and the smallest value during the search process).

Since the BMV solver is studied for sequential plans we impose the same
constraint for the A/BPDDL solver. Table 2 contains the execution times for the
n-puzzle problem, the solitaire peg game8 (a plan with 31 moves), the problem
of finding a knight walk on a 4× 4 chessboard, and the well-known three barrels
problem with barrels of 20-11-9 liters.

Knight and peg has been launched with and without the no state repetition
heuristic.

Table 2. Experimental results for the 3x3 puzzle, knight walk, peg solitaire and bar-
rels (the * means that the APDDL solver was used without the no state repetition
heuristics)

Prob. Instance Len. Sol. APDDL BMV BMV

APDDL

puzzle I1 19 No 10 + 3660 150 + 12580 3,5
puzzle I1 20 Yes 0 + 70 140 + 4210 62,1
puzzle I2 24 No 10 + 93970 150 + 270080 2,9
puzzle I2 25 Yes 10 + 38010 180 + 314930 8,3
puzzle I3 20 No 10 + 8910 90 + 31140 3,5
puzzle I3 25 No 10 + 129760 170 + 463500 3,6

knight 24 Yes 40 + 98610 670 + 2743660 27,8
knight * 24 Yes 30 + 68120 1550 + 2620060 38,5

peg 11 No 10 + 13790 620 + 841340 61,0
peg * 11 No 10 + 9510 640 + 849610 89,3
peg 31 Yes 50 + 41390 1850 + 47910 1,2

peg * 31 Yes 30 + 16690 1780 + 46360 2,88

barrels 20-11-9 18 No 10 + 350 60 + 560 1,7
barrels 20-11-9 19 Yes 10 + 150 60 + 240 1,9

In Table 3 we compare the times for two multivalued problems. The gas
diffusion problem where Diabolik wishes to fill a room with sufficient amount of
gas in order to generate an explosion below the central bank9 and a community
problem where, according to some rules, rich people wish to give money to poor
people in order to reach an equilibrium.

The tests reveal that the APDDL solver is always the fastest one. In par-
ticular for the toughest instances the times can be decreased by an order of
magnitude or more (see for example the results obtained in the gas diffusion and
community problem).

8 This problem is one of the benchmarks of the 2008 planning competition.
9 This is a variant of the pipesworld domain of the 2006 planning competition.

12

Table 3. Experimental results for the gas diffusion problem and the community prob-
lem

Prob. Instance Len. Sol. APDDL BMV BMV

APDDL

gas A1 6 Yes 0 + 220 70 + 1348 6
gas A1 7 Yes 0 + 10 100 + 5350 545
gas B1 10 No 10 + 8500 170 + 3846200 452
gas B1 11 Yes 0 + 10 140 + 1802760 180290
gas B1 12 Yes 10 + 20 150 + 933350 31117
gas B1 13 Yes 10 + 70 160 + 302340 3781
gas B1 14 Yes 10 + 170 140 + 4600 26

community A5 5 No 0 + 9500 50 + 264760 28
community A5 6 Yes 0 + 100 30 + 200 2
community A5 7 Yes 0 + 12610 40 + 930080 74
community B5 5 No 0 + 5080 30 + 131630 26
community B5 6 Yes 10 + 0 30 + 110 14
community B5 7 Yes 0 + 10 40 + 170 21

8 Conclusion and Future Work

In this work we presented two extensions to PDDL-like languages. The first
extension introduces new operators and the notion of time fluents that allow to
express plan problems in a more concise way. For example suppose that we have
a board of lights and when one of the lights is off or on also the status of the
neighbor lights change. In BPDDL this situation can be easily modeled in the
following way:

(:action press
:parameters (?light - lights)
:effect (and

(xor (at -1 (is_on ?cell)) (is_on ?cell))
(forall ?neighbor - lights

(imp
(== (neighbor ?cell) ?neighbor)
(xor (at -1 (is_on ?neighbor)) (is_on ?neighbor))

))))

Then we introduced static causal laws and we provide a solver based on
GECODE which has been proved to be effective and it also represents a solid
starting point for future extensions. We then characterized the complexities of
the major problems relating to planning within the proposed languages. With
static causal laws the plan problem became harder than in the case of absence.

Some of the possible next steps are:

– extend the language BPDDL with some construct to query and constrain
the occurrences of the action directly in the language

– extend the language to allow more expressive metrics (e.g. it is possible to
define metrics giving for every action a certain cost)

13

– supporting in both languages other features like preferences or hierarchical
types

– support multi-agent planning and forms of concurrent actions
– create a compiler from the language PDDL to APDDL
– port the code of the solver using the new GECODE 3.0 environment
– compare the solver with the state-of-the-art PDDL planning solvers

Acknowledgments

We thank Andrea Formisano and Enrico Pontelli for the several useful discussions
and technical help. The research is partially supported by PRIN and FIRB
RBNE03B8KK projects.

References

1. Gecode: Generic constraint development environment, 2008. Gecode is currently
developed by Christian Schulte, Mikael Lagerkvist, Guido Tack and it is available
from http://www.gecode.org.

2. C. Baral. Knowledge representation, reasoning and declarative problem solving.
Cambridge University Press, 2003.

3. C. Bell, A. Nerode, R. T. Ng, and V. S. Subrahmanian. Mixed integer programming
methods for computing nonmonotonic deductive databases. J. ACM, 41(6):1178–
1215, 1994.

4. R. Ben-Eliyahu and R. Dechter. Propositional semantics for disjunctive logic pro-
grams. Ann. Math. Artif. Intell., 12(1-2):53–87, 1994.

5. T. Bylander. The computational complexity of propositional STRIPS planning.
Artif. Intell., 69(1-2):165–204, 1994.

6. A. Dovier, A. Formisano, and E. Pontelli. Multivalued Action Languages with Con-
straints in CLP(FD). In V. Dahl and I. Niemelä, editors, ICLP 2007 Proceedings,
volume 4670 of Lecture Notes in Computer Science, pages 255–270. Springer, 2007.
Extended version in http://www.dimi.uniud.it/dovier/PAPERS/rrUD 01-09.pdf.

7. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logic programming
approach to knowledge-state planning: Semantics and complexity. ACM Trans.
Comput. Log., 5(2):206–263, 2004.

8. T. Eiter and G. Gottlob. Complexity results for disjunctive logic programming
and application to nonmonotonic logics. In ILPS, pages 266–278, 1993.

9. R. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artif. Intell., 2(3/4):189–208, 1971.

10. M. Fox and D. Long. Pddl2.1: An extension to pddl for expressing temporal
planning domains. J. Artif. Intell. Res. (JAIR), 20:61–124, 2003.

11. M. Gelfond and V. Lifschitz. Action languages. Electron. Trans. Artif. Intell.,
2:193–210, 1998.

12. A. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos. Deterministic
planning in the fifth international planning competition: Pddl3 and experimental
evaluation of the planners. Artif. Intell., 173(5-6):619–668, 2009.

13. V. Lifschitz and A. A. Razborov. Why are there so many loop formulas? ACM
Trans. Comput. Log., 7(2):261–268, 2006.

14

14. F. Lin and Y. Zhao. Assat: computing answer sets of a logic program by sat solvers.
Artif. Intell., 157(1-2):115–137, 2004.

15. J. Mauro and A. Dovier. APDDL and BPDDL codes and examples. Available
from http://www.dimi.uniud.it/dovier/MISIGE/.

16. D. V. McDermott. The 1998 AI planning systems competition. AI Magazine,
21(2):35–55, 2000.

17. T. C. Przymusinski. Stable semantics for disjunctive programs. New Generation
Comput., 9(3/4):401–424, 1991.

18. S. Thiébaux, J. Hoffmann, and B. Nebel. In defense of pddl axioms. Artif. Intell.,
168(1-2):38–69, 2005.

15

A Complexity results and proofs

Let us start with some basic observations. Given a ground BPDDL program
of length n, the rules, the actions, the goal constraints, the initial constraints
have all length bounded by n. Similarly, since all the fluents in the initial state
must be uniquely determined by the initial constraints, the number of fluents is
bounded by n. Therefore, checking if a rule, an action precondition or an action
effect is entailed by a state can be done in polynomial time on n. In a similar way
checking if two actions can not be done simultaneously is feasible in polynomial
time.

Let us define an assignment {X1/v1, . . . , Xn/vn} non trivial if ∃i, j ∈ {1, . . . , n}
s.t. vi = true and vj = false. Let non-trivial-SAT be the problem of deciding if
a formula is satisfied only by a non trivial assignment.

Lemma 1. non-trivial-SAT is NP-complete

Proof. NP membership derives from the fact that checking if an assignment
satisfies a boolean formula and it is non trivial are two polynomial problems.

NP-hardness can be proved via reduction from SAT. Let ϕ be a SAT formula
and X and Y two fresh boolean variables. Let φ = ϕ∧ (X ∨Y)∧ (¬X ∨¬Y). We
have that ϕ is satisfiable iff there is a non trivial assignment that satisfies φ. ut

Theorem 1. has critical situation is NP-complete

Proof. NP membership can be proved by noticing that a certificate of the prob-
lem is a state s′ that entails the rules and 4F (si, si+1) ⊃ 4F (si, s

′). Checking
such a certificate can be done in polynomial time.

NP-hardness can be proved via reduction from non-trivial-SAT.
Let us consider a formula ϕ = ψ1 ∧ · · ·ψk where ψi are clauses. Let F be the

set of variables in ϕ. We build a BPDDL program as follows (we use an abstract
syntax for the sake of clarity):

– for all i = 1..k (ψi ∨
∧

f∈F f = 0 ∨
∧

f∈F f = 1)
–
∨

f∈F (at -1 f) 6= f

Let us consider the plan s0, ∅, s1 where val(s0, f) = 0 and val(s1, f) = 1 for all
f ∈ F .

It is possible to prove that ϕ is satisfiable only by a non trivial assignment
iff there is a critical situation between s0 and s1. ut

Theorem 2. validity is co-NP-complete

Proof. Given a plan, checking if all the plan conditions except the inertia are
respected can be done in polynomial time. Verifying if there are no critical
situations can be done using a co-NP machine that solves the complement of
has critical situation. Validity is therefore in co-NP.

Let be no validity the complement of validity. In Theorem 1 we proved
that has critical situation is still NP hard even with some restrictions (the plan

16

has 2 states, there are no actions, . . .). With these restrictions no validity is
has critical situation and thus it is NP hard.

Since no validity is NP hard than validity is co-NP hard. ut

In APDDL instead the validity problem is only polynomial on the length
of the program encoding. The difference between the two languages is made by
the definition of inertia that in the case of the BPDDL leads to a potentially
exponential search space of states on the number of the fluents.

Theorem 3. k-plan is in ΣP
2

Proof. Let M be a non deterministic Turing machine that guesses a sequence
of states and actions s0, A1, s1, . . . , Ak, sk and checks if all the plan conditions
except inertia are satisfied. Then for checking the inertia M calls k times an
oracle machine that solves has critical situation.

If all the checks are positive M returns 1, otherwise 0.
M solves k-plan in polytime. Therefore k-plan is in NPNP = ΣP

2 ut

Given a EDLP program P we define as T (P) the BPDDL program where:

– a multi-fluent a is defined for every atom a in P. These fluents can be 0, 1
or 2

– w is a new fluent
– for every rule l1| . . . |lj ← lj+1, . . . , lm, not lm+1, . . . , not ln in P there is a rule((at− 1 w) = 2) ∧

m∧
i=j+1

σ(li) ∧
n∧

i=m+1

¬σ(li)

→ j∨
i=1

σ(li)

where

σ(li) =
{

(a = 1) if li = a
(a = 0) if li = ¬a

– the initial constraint is (w = 2) ∧
∧

a atom(a = 2)
– there are no actions and goal constraints

Given a set S of P literals we use T (S) for the sequence of state and actions
s0, A1, s1 where

– val(s0, w) = val(s1, w) = 2
– for every atom in P val(s0, a) = 0 and

val(s1, a) =

1 if a ∈ S
0 if ¬a ∈ S
2 otherwise

– A1 = ∅

17

Just a simple consideration; given a program P and its transformation T (P)
all the initial states satisfy the rules since no rule is applicable to the first state.

We extend the notion of the translation T to rules of EDLP. We use the term
T (r) for the BPDDL rule obtained from the EDLP rule r.

With PS we refer to the Gelfond-Lifschitz transformation [4].

Lemma 2. if r is a rule of a disjunctive logic program then S |= r ↔ T (S) |=
T (r)

Proof. For definition of T (S) for every literal l S |= l ↔ T (S) |= σ(l) and
T (S) |= ((at− 1 w) = 2). For definition of ∧,∨,← we have the thesis. ut

Lemma 3. S |= PS iff T (S) |= T (P)

Proof. Given S the rules in P can be divided in the following tree disjoint sets.

1. rules that have a (not l) term where l ∈ S
2. rules that do not have (not l) terms
3. the remaining rules

The lemma can be proven by induction on the number of rules in the EDLP
program.

If P = ∅ then S |= P = PS and T (S) |= T (P)
Suppose that P = P1 ∪ {r}.

– if r is in the first set r /∈ PS . Then S |= PS iff S |= PS
1 . If S is not a

model of PS
1 then for inductive hypothesis T (S) 6|= T (P1) and thus T (S) 6|=

T (P) = T (P1)∧T (r). Conversely if T (S) |= T (P1) then T (S) 6|= (not σ(l)) if
l ∈ S. Since in T (r) precondition there is at least one of these literals then
T (S) |= T (r) and thus T (S) |= T (P1) ∧ T (r) = T (P).

– if r is in the second set then for lemma 2 S |= {r} ↔ T (S) |= T (r). For
inductive hypothesis S |= PS

1 ↔ T (S) |= T (P1) and thus S |= PS = PS
1 ∪

{r} ↔ S |= PS
1 ∧ S |= {r} ↔ T (S) |= T (P1) ∧ T (S) |= T (r) ↔ T (S) |=

T (P1) ∧ T (r) = T (P)
– if r is in the third set then for all the terms (not l) in r l 6∈ S. Therefore
T (S) |= (not σ(l)) and thus T (S) |= r ↔ T (S) |= r′ where r′ is the rule r
without the (not l) terms. Now since PS = PS

1 ∪ {r′} we can derive that
S |= PS ↔ T (S) |= T (P)

ut

Theorem 4. k-plan is ΣP
2 complete

Proof. We reduce the existence of the answer set in propositional EDLP program
to 1-plan.

Suppose that P has answer set S. Let us assume that T (S) = s0, ∅, s1 is not
a plan. For lemma 3 T (S) |= T (P). Since T (S) is not a plan there is a critical
situation between s0, s1 and therefore there exist s′ s.t. s0, ∅, s′ |= T (P) and
4F (s0, s′) ⊂ 4F (s0, s1). If S′ is a set of literals s.t. T (S′) = s0, ∅, s′ we have for

18

lemma 3 that S′ is model of PS′
but this is a contradiction since S′ ⊂ S and we

supposed S answer set.
Suppose that there exist a plan s0, ∅, s1 for T (P). Then there exist S such

that T (S) = s0, ∅, s1. For lemma 3 we have that S is a model of P and therefore
P has an answer set ut

Theorem 5. if tmax, tmin are the maximum and minimum time reference in
fluents and tmax, |tmin| are polynomially bounded on the length of the encoding
then plan is PSPACE complete.

Proof. Every fluent can assume O(2n) values and thus the number of possible
states is O(2n). Given two states s, s′ if tmax, |tmin| are polynomially bounded
it is possible to compute in polynomial space if there exist A s.t. s,A, s′ is
a subsequence of a plan. This can be done generating non deterministically a
polynomial number of states and actions and then solving the validity problem
without checking the entailment of goal and initial constraints.

The plan problem can therefore be seen as the reachability problem. Since it
is possible to define a state and check if two states are connected in polynomial
space using a non-deterministic Turing machine then the entire plan problem
can be solved in polynomial space using a non-deterministic Turing machine.
Since NPSPACE = PSPACE, plan is in PSPACE.

The plan problem is PSPACE complete because A/BPDDL is more expres-
sive than STRIPS [9]. A STRIPS program can be mapped into a A/BPDDL
program straightforwardly and thus since plan in STRIPS is PSPACE complete
the plan problem is PSPACE complete also in A/BPDDL. ut

Even if metric functions are used the optimization problem derived is in
PSPACE. This is due to the fact that the metric function depends on the value
of fluents in the final state and thus the metric value can be encoded in O(n2)
space.

19

