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Abstract. The utility of using portfolios of solvers for constraint sat-
isfaction problems is well reported. We show that when runtimes are
properly clustered, simple classification techniques can be used to pre-
dict the class of runtime as, for example, short, medium, long, time-out,
etc. Based on runtime classifiers we demonstrate a dispatching approach
to solve a set of problem instances in order to minimize the average
completion time of each instance. We show that this approach signifi-
cantly out-performs a well-known CSP solver and performs well against
an oracle implementation of a solver portfolio.

1 Introduction

The past decade has witnessed a significant increase in the number of constraint
solving systems deployed for solving constraint satisfaction problems (CSP). It is
well recognized within the field of constraint programming that different solvers
are better at solving different problem instances, even within the same problem
class [3]. It has been shown in other areas, such as satisfiability testing [19]
and integer linear programming [§], that the best on-average solver can be out
performed by a portfolio of possibly slower on-average solvers. This selection
process is usually performed using a machine learning technique based on feature
data extracted from CSPs.

Three specific approaches that use contrasting approaches to portfolio man-
agement in CSP, SAT and QBF are CPHYDRA, SATZILLA, and ACME, respec-
tively. CPHYDRA is a portfolio of constraint solvers exploiting a case-base of
problem solving experience [I12]. CPHYDRA combines case-base reasoning of
machine learning with the idea of partitioning CPU-TIME between components
of the portfolio in order to maximize the expected number of solved problem
instances within a fixed time limit. SATzILLA [I9] builds runtime prediction
models using linear regression techniques based on structural features computed
from instances of Boolean satisfiability problem. Given an unseen instance of
the satisfiability problem, SATZILLA selects the solver from its portfolio that it
predicts to have the fastest running time on the instance. The ACME system is a
portfolio approach to solve quantified Boolean formulae, i.e. SAT instances with
some universally quantified variables [13].



In this paper we present a very different approach to managing a portfolio
for constraint solving when the objective is to solve a set of problem instances so
that the average completion time, i.e. the time at which we have either found a
solution or proven that none exist, of each instance is minimized. This scenario
arises in a context in which problem instances are submitted to, for example, a
cloud-based solver which queues and solves instances in an autonomous fashion.
This scenario is consistent with our long term objective which is to build an
on-line service-based portfolio solver that receives CSPs from a user to solve,
exploits multiple processing nodes to search for solutions and returns the answer
as quickly as possible (see [7] for more details). In addition, there is a significant
scheduling literature that focuses on minimizing average completion time, much
of which is based around the use of dispatching heuristics [I7].

The approach we propose in this paper is strongly inspired by dispatching
rules for scheduling. Our approach is conceptually simple, but powerful. Specifi-
cally, we propose the use of classifier techniques as a basis for making high-level
and qualitative statements about the solvability of CSP instances with respect
to a given solver portfolio. We also use classifier techniques as a basis for a
dispatching-like approach to solve a set of problem instances in a single proces-
sor scenario. We show that when runtimes are properly clustered, simple classi-
fication techniques can be used to predict the class of runtime as, for example,
short, medium, long, time-out, etc. We show that this approach significantly out-
performs a well-known general-purpose CSP solver and performs well against an
oracle implementation of a portfolio.

The remainder of this paper is organized as follows. In Section [2] we sum-
marize the requisite background on constraint satisfaction and machine learning
required for this paper. Section [3| presents the large collection of CSP instances
on which we base our study. We discuss the various classification tasks upon
which our approach is based in Section[d] and evaluate the suitability of different
representations and classification for these tasks in Section 5} We demonstrate
the utility of our classification-based approach for managing a solver portfolio
in Section [fl We discuss related work in Section [ and conclude in Section

2 Preliminaries

A constraint satisfaction problem (CSP) is defined by a finite set of variables,
each associated with a domain of possible values that the variable can be as-
signed, and a set of constraints that define the set of allowed assignments of
values to the variables [9]. The arity of a constraint is the number of variables
it constrains. Given a CSP, the task is normally to find an assignment to the
variables that satisfies the constraints, which we refer to as a solution.

Machine learning “is concerned with the question of how to construct com-
puter programs that automatically improve with experience”. It is a broad field
that uses concepts from computer science, mathematics, statistics, information
theory, complexity theory, biology and cognitive science [10]. Machine learning
can be applied to well-defined problems, where there is both a source of training



examples and one or more metrics for measuring performance. In this paper we
are particularly interested in classification tasks. A classifier is a function that
maps an instance with one or more discrete or continuous features to one of a fi-
nite number of classes [10]. A classifier is trained on a set of instances whose class
is already known, with the intention that the classifier can transfer its training
experiences to the task of classifying new instances.

3 The International CSP Competition Dataset

We focused on demonstrating our approach on as comprehensive and a realistic
set of problem instances as possible. Therefore, we constructed a comprehensive
dataset of CSPs based on the various instances gathered for the annual Inter-
national CSP Solver CompetitionEI from 2006-2008. An advantage of using these
instances is that they are publicly available in a standardized XML-based for-
mat called XCSPE| The first competition was held in 2005, and all benchmark
problems were represented using extensional constraints only. In 2006, both in-
tentional and extensional constraints were used. In 2008, global constraints were
also added. Overall, there are five categories of benchmark problem in the compe-
tition: 2-ARY-EXT instances involving extensionally defined binary (and unary)
constraints; N-ARY-EXT instances involving extensionally defined constraints, at
least one of which is defined over more than two variables; 2-ARY-INT instances
involving intensionally defined binary (and unary) constraints; N-ARY-INT in-
stances involving intensionally defined constraints, at least one of which is de-
fined over more than two variables; and, GLB instances involving any kind of
constraints, including global constraints.

The competition required that any instance should be solved within 1800
seconds. Any instance not solved by this cut-off time was considered unsolved.
To facilitate our analysis, we remove from the dataset any instance that could
not have been solved by any of the solvers of our portfolio by the cut-off. In total,
our data set contains around 4000 instances across these various categories.

4 From Runtime Clustering to Runtime Classification

We show how clusters of runtimes can be used to define classification problems
for a dispatching-based approach to managing an algorithm portfolio. While our
focus here is not to develop the CPHYDRA system, we will, for convenience, use
its constituent solvers and feature descriptions of problem instances to build our
classifiers. We demonstrate our approach on a comprehensive and realistic set of
problem instances.

Based on the three solvers used in the 2008 CSP Solver Competition variant
of CPHYDRA we present in Figures and [Id| the runtime distributions for

3 Competition web-site: http://cpai.ucc.ie
4http://www.cril .univ-artois.fr/~lecoutre/benchmarks.html
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Fig. 1: The performance of each solver in the portfolio on the dataset.

each of its solvers, Mistral, Choco, and Abscon respectivelyﬂ showing for every
solver in the portfolio the number of instances of the data set solved in given
time windows. Having removed from the dataset any instance that could not
have been solved by any of these solvers within a 1800s time-limit, each instance
is ensured to be solved by at least one solver. However, it is not the case that
each solver finds that the same instances are either easy or hard. There are
many instances, as we will show below, for which one of the solvers decides the
instance quickly, while another solver struggles to solve it. Therefore we define
a classification task that given a CSP instance returns the fastest solver for that
instance.

Classification 1 (Fastest Solver Classification (Fs)) Given a CSP instance
i and a CSP solver portfolio II, the Fs classification task is to predict which
solver in II gives the fastest runtime on 1.

5 Visit the competition site for links to each of the solvers.



From Figure [1] it is clear that there are many instances that can be solved
easily or not at all. To capture this property we introduce a classification task
called 3C which is defined over a solver portfolio as follows.

Classification 2 (3Cy) Given a CSP instance i and a CSP solver portfolio 11,
the 3Cy, classification task is to predict whether i: (a) can be solved by all solvers
in IT in at most k seconds; (b) can be solved by at least one solver, but not all,
in IT in at most k seconds; or (c) takes more than k seconds to solve with each
solver in II.

The number of instances in our CSP dataset in each class is presented in
Figure Note that while many instances were easy (i.e. solvable within 10
seconds) for all solvers, a larger number were easy for some, but not all (the
middle stack in the histogram). We consider two additional classifiers related to
the performance of the portfolio as a whole. We compute the maximum and the
average time required by each solver in the portfolio to solve each instance. The
maximum times are presented in Figure [T¢ in which the x axis lists the index
of each instance and the y-axis represents the maximum run-time. Note that
a time-limit of 1800 seconds was applied on the dataset which gives the upper
bound of the maximum solving time and which is why there are a number of
instances presenting across the top of the plot. For applying this classifier, we
consider only two intervals of running time according to the data presented in
Figure at most 1500 seconds and greater than 1500 seconds.

Classification 3 (MAXCys) Given a CSP instance i and a CSP solver portfolio
II, the MAXCys classification task is to predict which interval of running-times
in ks that instance i can be solved using the worst performing solvers from II.

Similarly, the average times are presented in Figure In this plot we note
that there are three distinct classes of runtimes: instances that take on average
between 0-600 seconds, between 601-1200, and more than 1200. Again, this di-
vision is influenced by the fact that an instance’s maximum solving time is at
most 1800 seconds.

Classification 4 (AvaCys) Given a CSP instance i and a CSP solver portfolio
II, the AvGCys classification task is to predict which interval of running-times
in ks that instance © can be solved taking the average solving times for each of
the solvers in II.

To complement the AvcC classifier, we will also make use of a classifier that
considers the variance, or spread, of runtimes across the constituent solvers of a
portfolio over a given instance. We refer to this classifier as SPREAD.

Classification 5 (SPREAD;) Given a CSP instance i and a CSP solver portfo-
lio I1, the SPREADy, classification task is to predict whether the difference across
the runtimes of the constituent solvers is at most (or at least) k.



For applying this classifier, we consider the difference of at most 100 seconds,
based on the given runtimes.

The classifiers presented in this section define a very expressive qualitative
language to describe the expected performance of a solver portfolio on a given
CSP instance. For example, we can make statements like “this instance is easy for
all solvers in the portfolio”, or “this instance is easy for some, but not all solvers,
but the average Tunning time is low and has low variation”. This contrasts with
all current approaches to managing a solver portfolio. As our empirical results
will demonstrate, this approach is also very powerful in term of efficient solving.

5 Experiments in Runtime Classification

In this section, we experiment with the various classification problems discussed
in the previous section. To do so, we first establish “good” features to represent
CSPs starting from the features used in CPHYDRA. The objective of these exper-
iments is to show that accurate classifiers for solver runtimes can be generated,
and that these can be successfully used to build effective dispatching heuristics
for managing a solver portfolio for CSPs. For space reasons, we only focus on
the 3C, AvaC, and MAXC classifiers. The experimental data set is based on the
2008 International CSP Solving Competitiorﬁ We consider a portfolio compris-
ing three solvers: Abscon, Choco and Mistral. Running times for each of these
solvers are available from the CSP competition’s web-site. A time-out on solving
time is imposed at 1800 seconds. We exclude from the dataset the CSP instances
that cannot be solved in that amount of time and also some other instances due
to the reason that we will explain later. In total, our final dataset, upon which
we run our experiments comprises 3293 CSP instances.

Knowledge Representation and Classifiers. Since the selection of good
features has a significant impact on the classifier performances, we investigate
which ones are more suitable to capture problem hardness. In particular, we
consider three feature-based representations of the CSP instances in our dataset:
SATzILLA features representing each CSP instance encoded into SAT, those
features used by CPHYDRA(with some modifications), and the combination of
the two.

SATZILLA uses a subset of the features introduced by [I1]: starting from 84
features they discard those computationally expensive and too instable to be
of any value. At the end they consider only 48 features that can be computed
in less then a minute (for more information see [I8]). In this work we are able
to use directly these features simply translating each competition CSP instance
into SAT using the Sugar solvel’|and then using SATZILLA to extract its feature
description. In some (but few) cases, the encoding of a CSP instance into SAT
requires an excessive amount of time (i.e. more than a day). In order to make a

5 Competition web-site: http://cpai.ucc.ie
" http://bach.istc.kobe-u.ac.jp/sugar/
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fair comparison between the set of features, we simply dropped such instances
from the dataset.

For the second feature representation, we started from the 36 features of
CPHYDRA. Whilst the majority of them are syntactical, the remaining are com-
puted by collecting data from short runs of the Mistral solver. Among the syn-
tactical features, worth mentioning are the number of variables, the number of
constraints and global constraints, the number of constants, the sizes of the do-
mains and the arity of the predicates. The dynamic features instead take into
account the number of nodes explored and the number of propagations done
by Mistral with a time limit of 2 seconds. When we extracted the CPHYDRA
features using our dataset we noticed that two of them (viz. the logarithm of
the number of constants and the logarithm of the number of extra values) were
constant. Since constant features are not useful for discriminating between dif-
ferent problems, we discarded these two features. Inspired by Nudelman et al
[11], we considered additional features like the ratio of the number constraints
over the number variables, and the ratio of the number of variables over the
number of constraints. Moreover, we added features representing an instance’s
variable graph and variable-constraint graph. In the former, each variable is rep-
resented by a node with an edge between pairs of nodes if they occur together
in at least one constraint. In the latter, we construct a bipartite graph in which
each variable and constraint is represented by a node, with an edge between a
variable node v and a constraint node c¢ if v is constrained by c¢. From these
graphs, we extract the average and standard deviation of the node degrees and
take their logarithm. With these, the total amount of features we consider are
42,

The third feature-based description of the CSP instances, which we refer to
as HyLLA, is simply the concatenation of the two feature descriptions discussed
above. We consider a variety of classifiers, implemented in publicly available tools
RapidMineIEI and WEKAEI Our SVM classifier is hand-tuned to the specific
tasks considered in this paper according to the best parameters found using
RapidMiner; however, it is only applied to the 3C and AvGC tasks because
it appeared to be problematic to tune for the MAXC task. The other WEKA
classifiers are used with their default settings.

Results. The results of the runtime classification tasks are presented in Ta-
bles Three alternative feature descriptions, as discussed earlier, are com-
pared; these are denoted as CPHYDRA, HYLLA, and SATZILLA, in the tables.
We compare the performance of various classifiers on each of the three classifi-
cation tasks (3C, MAXC, and AvGC). A 10-fold cross-validation is performed.
The performance of each classifier, on each representation, on each classification
task are measured in terms of the classification accuracy and the k-statistic.
The latter measures the relative improvement in classification over a random
predictor.

8 http://rapid-i.com/content/view/181/196/
9 http://www.cs.waikato.ac.nz/ml/weka/
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Table 1: Classification accuracy and k-statistics for the 3C classifier.

Classifier (CPHYDRA) (HyLrA) (SATziLLA) |[(CPHYDRA) (HyLLA) (SATZILLA)

trees.J48 83.83 82,52 e 79.70 o 0.75 0.73 0.68 o
meta.MultiBoostAB 84.75  84.91 82.19 o 0.76 0.76 0.72 o
trees.RandomForest 85.34 85.14 82.39 e 0.77 0.77 0.72 e
functions.LibSVM 85.63 84.68 82.62 e 0.77 0.76 o 0.73 o
lazy.IBk 83.69  83.53 78.71 e 0.74 0.74 0.67 o
bayes.NaiveBayes 61.70  62.74 52.49 o 0.37 0.44 o 0.31 e
meta.RandomCommittee 84.99 85.44 82.57 e 0.76 0.77 0.73 e
rules.OneR 72.89 72.89 69.16 o 0.57 0.57 0.51 e

o, e statistically significant improvement or degradation over CPHYDRA .

Table 2: Classification accuracy and k-statistics for the AvGC classifier.

Classifier (CPHYDRA) (HyLLA) (SATziLLA) |[(CPHYDRA) (HyLLA) (SATZILLA)

trees.J48 84.18  83.35 82.42 o 0.63 0.61 0.58
meta.MultiBoostAB 85.14  85.10 83.95 o 0.65 0.65 0.62
trees.RandomForest 85.37 85.53 84.42 0.65 0.65 0.62 o
functions.LibSVM 84.99  84.24 83.67 e 0.64 0.63 0.60 e
lazy.IBk 83.45  83.13 81.39 e 0.62 0.61 0.57
bayes.NaiveBayes 64.96 53.81 e 41.69 e 0.25 0.22 0.12 e
meta.RandomCommittee 85.03  85.32 84.25 0.65 0.65 0.62

rules.OneR 78.97  78.97 75.75 o 0.45 0.45 0.34

o, e statistically significant improvement or degradation CPHYDRA:

Table 3: Classification accuracy and s-statistics for the MAXC classifier.

Classifier (CPHYDRA) (HyLra) (SATziLLa) |[(CPHYDRA) (HyLLA) (SATZILLA)
trees.J48 89.61  89.08 87.99 e 0.73 0.72 0.69 o
meta.MultiBoostAB 90.19 90.33 89.47 0.75 0.75 0.73
trees.RandomForest 90.35 90.70 89.90 0.75 0.76 0.74
lazy.IBk 89.18  89.00 87.87 e 0.73 0.72 0.70 @
bayes.NaiveBayes 71.37 67.30 o 54.26 o 0.31 0.34 0.18 e
meta.RandomCommittee 90.28 90.64 90.10 0.75 0.76 0.74
rules.OneR 82.98 82.98 77.87 o 0.54 0.54 0.38 o

o, e statistically significant improvement or degradation over CPHYDRA .

Differences in performance are tested for statistical significance using a Paired
t-Test at a 95% confidence level. The performance on the CPHYDRA feature set
is used as a baseline. In each table, values that are marked with a o represent
performances that are statistically significantly better than CPHYDRA, while
those marked with a e represent performances that are statistically significantly
worse.

In summary, both classification accuracies and r values are high across all
three tasks. Interestingly, combining both CPHYDRA and SATzILLA features
improves performance in only one x value, and without any significant improve-
ment in classification accuracy. The CPHYDRA feature set thus gives rise to the
best overall performance. Based on these promising results, we consider in the
next section the utility of using these classifiers as a basis for managing how a
solver portfolio can be used to solve a collection of CSP instances.

6 Scheduling a Solver Portfolio

We now consider a solver portfolio and demonstrate the utility of our classification-
based approach for its management via some experimental results.



Portfolio Construction and its Management. The portfolio is composed of
three solvers previously introduced: Mistral, Choco and Abscon. It is designed to
solve a collection of CSP instances as quickly as possible. Specifically, it tries to
minimize the average completion time of each instance; the completion time of
an instance is the time by which it is solved. One would wish to minimize average
completion time, if for example a CSP solver was deployed as a web-service and
instances were being added to a queue for solving. We assume all CSP instances
are known at the outset. This setting is similar to that used in the international
SAT competitions and also relevant in the context of the International CSP
Competition.

Minimizing average completion time can be achieved by solving each prob-
lem in increasing order of difficulty, i.e. by using the well-known shortest pro-
cessing time heuristic. In a solver portfolio context this corresponds to solving
an instance with the fastest available solver for it, and ordering each instance
by the corresponding solving time. This give us the most basic oracle (perfect)
approach to minimize average completion time. As it is unlikely to have such
perfect information, the portfolio can be managed via an instance selector and
a solver selector whose purpose are to predict, respectively, the correct order of
the instances from easiest to hard and the fastest solver on a given instance.

The classifiers developed previously can help to manage the portfolio. Con-
sider for instance Figure in which we see that the instances are grouped in
three: i) those that can be solved by all solvers in 10 seconds; ii) those that can
be solved by at least one solvers in 10 seconds; iii) those that are solved by all
solvers in more than 10 seconds. The figure exhibits a rather balanced distribu-
tion, especially between the first two classes. This suggests that 3C can provide
a good basis for distinguishing the easy instances from the hard ones, and that
the classifiers AvGC, SPREAD, and MAXC could be used to break ties between
the instances of the second and third classes. We exemplify this approach in
Figure 2] Given two classifiers C; and Cy with 3 and 2 classes respectively, an
instance ordering C; < Cs would mean that the instances are first divided ac-
cording the predictions of C7 resulting in three classes, and then those in each
class of C'; would be further divided according to the predictions of Cy, resulting
in six classes in total. The ordering of the instances then would be from the left
most to the right most leaf in the tree.

Oracles, Baselines and Experimental Methodology. In our experiments,
we compare the quality of our classifiers for managing a portfolio of solvers with
various oracle-based management strategies and simple baseline strategies. In
particular we consider the following instance selectors to order the instances:

— oracle: orders the instances based on their solving time, shortest first;

— BC (best classifier): orders the instances based on the SPREAD classifier
and then uses the 3C, AvaC, MAXC classifiers for tie-breaking; follow-
ing the notation introduce above this instance selector might be defined
as SPREAD < 3C < AvGC < MAXC. As we will show later, this selector is
the best classifier-based instance selector amongst all the possible instance
selectors built using the classifiers defined in Section [&
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Fig. 2: Instance ordering using classifiers C; (dividing in 3 classes) and Cy (di-
viding in 2 classes).

— LR (linear regression): orders the instances based on the expected solving
time, shortest first. The expected solving time is computed predicting the
logarithm of the solving time using the ridge regression algorithm imple-
mented in RapidMiner; the ridge parameter was set at the default lever, i.e.
1.0% 1078, The features used as input of this algorithm where those used by
CPHYDRA, defined in Section

— random: orders the instances randomly.
To sort the solvers to execute we consider the following:

— oracle: uses the best solver only;

— F's: uses the solver predicted by the Fs classifier first for 1800 seconds. In
the case of time-out, we randomly switch to another solver for 1800 seconds.
In case this second solver time-outs we then run the remaining solver in the
portfolio;

— SLR (Simple linear regression): uses the solver having the smallest expected
solving time for 1800 seconds. The expected solving time is computed using
ridge regression similar to the implementation of the LR selector. Note that
SLR selector is a simple attempt to simulate the linear regression approach
to select solvers a 14 SATZILLA.

— SLR™: which uses first the solver having the smallest expected solving time
for 1800 seconds. In case of time-out, we switch to the solver having the
second smallest expected solving time. This solver is run for 1800 seconds
and, in case it time-outs, we run the remaining solver in the portfolio. The
expected solving time is computed using ridge regression similar to the im-
plementation of the LR selector;

— CPHYDRA: simulates the performance that would be obtained from CPHYDRAE
The solver scheduling algorithm of CPHYDRA is used to partition the time
window of 1800 seconds among the three solver of the portfolio. We then sim-

10 This simulation was necessary to avoid running CPHYDRA several million times in
order to perform the experiments.



ulate what would have happened if Mistral was used first, Choco for second
and Abscon for last; |E|

— Mistral: uses only Mistral for 1800 seconds;

— Random: tries the solvers in a sequence in random order, every one of them
with a timeout of 1800 seconds.

As noted earlier, our benchmarks are composed of instances that can be
solved by at least one solver by the cut-off. Whilst the SLR, CPHYDRA, and
Mistral solver selectors do not guarantee that all instances will be solved, all the
other selector can make such a claim. In particular Mistral is not able to solve
7.871% of instances whilst using the SLR and CPHYDRA solver selectors 3.83%
and 0.91% of the instances were not solved, respectively.

In the experiments, we adopt a simple random split validation approach to
evaluate the quality of our classifiers for managing a portfolio of solvers. We use
the instances described in Section[3] Given a management strategy, we execute it
(via simulation) 1000 times. A single run consists in random split of the dataset
into a testing set (1/5 of the instances) and a training set (the remaining 4/5). We
use the random forest algorithm (RapidMiner) for learning the models. For every
run, we compute the overall average solving times and report just the average of
the average solving times across 1000 runs. Differences in performance are tested
for statistical significance using a Paired t-test at a 95% confidence level.

Results. First we built instance selectors considering all possible orderings of
the classifiers described in Section [4 and using F's as a solver selector. Table []
presents a subset of our results where we report some of the best instance se-
lectors. The best one is stdv < 3C < avg < max that as previously mentioned
is the instance selector that sorts the instances first using the SPREAD classifier
and then using 3C, AvGC, MAXC in that order for tie-breaking. We selected
this classifier, denoted as BC for short, for further comparisons against other
approaches.

Even though BC turned out to be the best classifier-based instance selector
in terms of average performance, it is not statistically better than several of the
other configurations, as indicted in Table [l For example the instance selector
stdv < 3C < awvg is not statistically worse than BC. All the classifier-based
instance selectors not shown in the table are statistically worse than BC.

The next experiments show what happens when we vary the instance selector
having fixed the solver selector. In Table [5| we compare these results when the
oracle, the random and the F's solver selector are used. When the oracle or the
Fs solver selector are chosen the oracle instance selector was, of course, the
best since it has full information about which solver is best for each instance.
The random instance selector is ranked last while the instance selector based on
classifiers was better that the LR selector. When, instead, the random solver
selector was chosen we have only one inversion: the BC selector is better than
the oracle. This rather surprising result can be easily explained by the fact

11 The execution order of the solvers was chosen according to their average solving
times, smallest first.



Table 4: Performance of classification-based portfolios. o, e indicate statistically
significant improvement or degradation over instance selector BC.

instance sel. solver sel.|| average
BC= stdv < 3C < avg < max Fs 13158.59
stdv < 3C < avg Fs 13178.91
stdv < 3C' < maz < avg Fs 13193.21
3C < stdv < avg < mazx Fs 13195.21
3C < avg < stdv < maz Fs 13198.94
3C < stdv < mazx < avg Fs 13206.20
3C < avg < maz < stdv Fs 13214.93
3C < maz < avg < stdv Fs 13225.41
3C < avg < stdv Fs 13232.20

3C < stdv < avg Fs 13255.44 o

3C < maz < stdv < avg Fs 13275.99 o

3C < avg < max Fs 13427.87 o

3C < mazx < avg Fs 13480.43 o

that the oracle instance selector is the best one only when the solver selector
always picks the fastest solver for that instance. If, instead, the solver to use
is chosen randomly the best oracle would be the one that sorts the instances
according to the average solving time of all the solvers for that instance. With
the support of these results we argue that classification-based instance selectors
are not only better than selectors based on the prediction of expecting times
via linear regression, but they also adapt nicely to scenarios where the solver
selector is far from optimal.

In Table [6] we fixed the instance selector varying the solver selectors. In
particular we present what happens when the oracle, random and BC selectors
are chosenlEI As already mentioned, in Table |§| when the Mistral, CPHYDRA,
and SLR solvers were used some instances were not solved. Hence, in these
cases the results indicate only a lower bound. When the oracle and random
instance selectors are considered the results are similar and present just one
inversion amongst the rankings. Indeed, the oracle solver selector is the best
one, followed by Fs, SLR, and SLR™. The use of the portfolio-based solver
CPHYDRA outperforms Mistral when the random instance selector is chosen;
it is worse in the other cases. When the BC instance selector is chosen the
SLR solver selector ranks higher than Fs, and SLRT becomes the worst solver
selector, excluding the random solver selector that is always the worst one. We
would like to underline that in this case even if SLR has lower average solving
times it cannot solve all instances. Thus for a fair comparison the Fs should
be compared against the SLR™ solver selector that enhances the SLR selector
allowing us to solve all instances in the dataset.

12 here we do not present all the possible combinations of instance selectors and solver
selectors for space reasons



Table 5: Performance of classification-based portfolios. o, e indicate statistically
significant improvement or degradation over instance selector BC.

instance sel.|solver sel.|| average instance sel.|solver sel.|| average
oracle oracle 1242.67 o BC random || 52159.37
BC oracle 4215.63 oracle random || 61919.52 e
LR oracle 6171.37 e LR random || 78560.97 e
random oracle |[15412.25 e random random |[156312.27 e
instance sel.|solver sel.|| average
oracle fs 6666.42 o
BC fs 13159.58
LR fs 17309.40 e
random fs 36614.87

Based on these results it seems that approaches based on the use of classifiers
for ordering instances and selecting solvers are reasonable and, compared against
approaches based on linear regression, they allow an improvement of the average
solving times or the resolution of more instances.

7 Related Work

The three closest approaches to solver portfolio management are CPHYDRA,
SATziLLA, and ACME. CPHYDRA, using a CBR system for configuring a set of
solvers to maximize the chances of solving an instance in 1800 seconds, was over-
all winner of the 2008 International CSP Solver Competition. Gebruers et al. [2]
also use case-based reasoning to select solution strategies for constraint satisfac-
tion. In contrast, SATZILLA [19] relies on runtime prediction models to select
the solver from its portfolio that (hopefully) has the fastest running time on a
given problem instance. In the International SAT Competition 2009, SATZILLA
won all three major tracks of the competition. An extension of this work has
focused on the design of solver portfolios [I8]. The ACME system is a portfolio
approach to solve quantified Boolean formulae, i.e. SAT instances with some uni-
versally quantified variables [I3]. Streeter et al. [15] use optimization techniques
to produce a schedule of solvers that should be executed in a specific order, for
specific amounts of time, in order to maximize the probability of solving the
given instance.

In [], a classification-based algorithm selection for a specific CSP is studied.
Given an instance of the bid evaluation problem (BEP), the objective is to be
able to decide a-priori whether an Integer Programming (IP) solver, or an hybrid
one between IP and CP (HCP) will be the best. Such a selection is done on the
basis of the instance structure which is determined via (a subset of) 25 static
features derived from the constraint graph [8]. These features are extracted on
a set of training instances and the corresponding best approach is identified.



Table 6: Performance of classification-based portfolios. o, e indicate statistically
significant improvement or degradation over solver selector F's.

instance sel.| solver sel. average instance sel.| solver sel. average
oracle oracle 1242.67 o random oracle 15412.25 o
oracle Fs 6666.42 random Fs 36614.87
oracle SLR > 8763.23 e random SLR > 43006.82
oracle SLR™ 11610.11 e random SLR* 54180.92
oracle mistral ||> 14051.78 e random |CPHYDRA[> 62236.14 e
oracle CPHYDRA||> 15133.02 e random mistral ||> 69899.70 e
oracle random 61919.52 @ random random 156312.27 o
instance sel.| solver sel. average
BC oracle 4215.63 o
BC SLR > 12702.69 o
BC Fs 13159.58
BC mistral ||> 13459.71 e
BC CPHYDRA||> 16298.59 e
BC SLR™ 17043.58 o
BC random 52159.37 e

The resulting data is then given to a classification algorithm that builds decision
trees. Our objective in this paper is not only to be able to predict the best
solver for a given instance but also to choose the right instance at the right
time to minimize the average finishing time of the set of instances. Consequently
we develop multiple classifiers and utilize them so as to predict their order of
difficulty. Moreover, our features are general-purpose and our approach works
for any CSP in the XCSP format with any of the related solvers. Furthermore,
we take into account a set of dynamic features which provide complementary
information.

Also related to our work is the instance-specific algorithm configuration tool
ISAC [6]. Given a highly parameterized solver for a CSP instance, its purpose is
to tune the parameters based on the characteristics of the instance. Again, such
characteristics are determined via static features and extracted from the train-
ing instances. Then the instances are clustered using the g-means algorithm, the
best parameter tuning for each cluster is identified, and a distance threshold
is computed which determines when a new instance will be considered as close
enough to the cluster to be solved with its parameters. The fundamental differ-
ence with our approach is that instances that are likely to prefer the same solver
are grouped with a clustering algorithm based on their features. We instead do
not use any clustering algorithm. We create clusters ourselves according to the
observed performance of the solvers on the instances and predict which cluster
an instance belongs based on its features using classification algorithms.



8 Conclusions

We have presented a novel approach to managing a portfolio for constraint solv-
ing. We proposed the use of classifier techniques as a basis for making high-level
and qualitative statements about the solvability of CSP instances with respect
to a given solver portfolio. We showed how these could then be used for solving a
collection of problem instances. While this approach is conceptually very simple,
we demonstrated that using classifiers to develop dispatching rules for a solver
portfolio is very promising. The code for computing the CPHYDRA features and
the simulator is available at jwww.cs.unibo.it/~jmauro/cpaior_2012.html.

The work presented here is a first step towards the ambitious goal of devel-
oping an on-line service-based portfolio solver that receives CSPs from a user,
exploits multiple processing nodes to search for solutions as quickly as possible.
In the future, we will study distributed strategies for systems having more than
one processor. In this setting, using more than one solver in parallel for the same
instance could also be useful. For instance, consider running all solvers in par-
allel for instances that are difficult for all solvers but one, and running only the
best solver for all the other instances. This strategy looks promising since it will
not waste resources running all the solvers for all the instances and, at the same
time, it minimizes the risk of choosing the wrong solver for some instances.

In this paper, our classes of run times were manually extracted. As part of
future work we consider to automate this task using clustering techniques. In
addition, we will investigate the benefit of using automatic algorithm tuning
tools like GGA [I] and ParamlILS [5] to train a larger portfolio of solvers. It has
been observed in ISAC and Hydra that additional performance benefits can be
achieved with solvers that have been expressly tuned for a particular subset of
problem types.

Finally we would like to exploit the solving statistics (e.g. solving times,
memory consumption) obtained at run time to improve on-the-fly the predictions
of the models. This goal has been already considered for the QSAT domain [I4].
We plan to follow similar ideas using on-line machine learning techniques [16].
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