
Alma Mater Studiorum · Università di Bologna

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI

Corso di Laurea Magistrale in Informatica

Learning for scheduling a portfolio of
constraint solvers

Algorithms and data structures

Relatore:
Chiar.mo Prof.
Zeynep Kiziltan

Correlatore:
Chiar.mo. Prof.
Barry O’Sullivan

Presentata da:
Luca Mandrioli

Sessione terza
2009/2010

Contents

Abstract (Italian) 3

1 Introduction 5
1.1 Background . 5
1.2 Motivation and goals . 6
1.3 Overview . 7

2 Background 9
2.1 Machine learning . 9

2.1.1 Supervised, unsupervised and reinforcement learning 10
2.1.2 Lazy and eager learning . 12
2.1.3 Machine learning algorithms . 13
2.1.4 Performances metrics and testing techniques in classification . . . 17

2.2 Constraint satisfaction problems and constraint programming principles . 20
2.2.1 Constraint satisfaction problems 20
2.2.2 SAT . 24
2.2.3 Constraint programming . 24
2.2.4 Constraint solvers . 25

2.3 Algorithm portfolio . 27
2.3.1 SATzilla . 28
2.3.2 CPHydra . 28

3 Learning from problem features 30
3.1 The international CSP competition dataset 30
3.2 Portfolio solving time analysis . 31
3.3 Classifiers . 34
3.4 Classifiers output distribution . 36
3.5 Features set . 37

3.5.1 CPHydra features . 38
3.5.2 SATzilla features . 39
3.5.3 CPHydra added features . 41

1

3.6 Experimental results . 41
3.6.1 Comparison of different CPHydra feature sets 42
3.6.2 Comparison between CPHydra and SATzilla features sets . . 46
3.6.3 Reliability of classifiers . 49

4 Scheduling problems based on learning 50
4.1 Single processor case . 51

4.1.1 Scheduling rules . 52
4.1.2 Experimental results . 55

4.2 Multiple processors case . 57
4.2.1 Scheduling rules . 58
4.2.2 Experimental results . 59

4.3 The simulators . 64

5 Related Work 67

6 Conclusion and future work 69

7 Acknowledgments 71

2

Sommario

Nel lavoro di tesi qui presentato si indaga l’applicazione di tecniche di apprendimento
mirate ad una più efficiente esecuzione di un portfolio di risolutore di vincoli (constraint
solver). Un constraint solver è un programma che dato in input un problema di vincoli,
elabora una soluzione mediante l’utilizzo di svariate tecniche. I problemi di vincoli sono
altamente presenti nella vita reale. Esempi come l’organizzazione dei viaggi dei treni
oppure la programmazione degli equipaggi di una compagnia aerea, sono tutti problemi
di vincoli.

Un problema di vincoli è formalizzato da un problema di soddisfacimento di vincoli
(CSP). Un CSP è descritto da un insieme di variabili che possono assumere valori ap-
partenenti ad uno specifico dominio ed un insieme di vincoli che mettono in relazione
variabili e valori assumibili da esse. Una tecnica per ottimizzare la risoluzione di tali
problemi è quella suggerita da un approccio a portfolio. Tale tecnica, usata anche in am-
biti come quelli economici, prevede la combinazione di più solver i quali assieme possono
generare risultati migliori di un approccio a singolo solver.

In questo lavoro ci preoccupiamo di creare una nuova tecnica che combina un portfolio
di constraint solver con tecniche di machine learning. Il machine learning è un campo
di intelligenza artificiale che si pone l’obiettivo di immettere nelle macchine una sorta
di ‘intelligenza’. Un esempio applicativo potrebbe essere quello di valutare i casi passati
di un problema ed usarli in futuro per fare scelte. Tale processo è riscontrato anche a
livello cognitivo umano. Nello specifico, vogliamo ragionare in termini di classificazione.
Una classificazione corrisponde ad assegnare ad un insieme di caratteristiche in input, un
valore discreto in output, come vero o falso se una mail è classificata come spam o meno.
La fase di apprendimento sarà svolta utilizzando una parte di CPHydra, un portfolio
di constraint solver sviluppato presso la University College of Cork (UCC). Di tale al-
goritmo a portfolio verranno utilizzate solamente le caratteristiche usate per descrivere
determinati aspetti di un CSP rispetto ad un altro; queste caratteristiche vengono altres̀ı
dette features.

Creeremo quindi una serie di classificatori basati sullo specifico comportamento dei solver.

3

La combinazione di tali classificatori con l’approccio a portfolio sarà finalizzata allo scopo
di valutare che le feature di CPHydra siano buone e che i classificatori basati su tali
feature siano affidabili. Per giustificare il primo risultato, effettueremo un confronto con
uno dei migliori portfolio allo stato dell’arte, SATzilla.

Una volta stabilita la bontà delle features utilizzate per le classificazioni, andremo a
risolvere i problemi simulando uno scheduler. Tali simulazioni testeranno diverse regole
costruite con classificatori precedentemente introdotti. Prima agiremo su uno scenario
ad un processore e successivamente ci espanderemo ad uno scenario multi processore. In
questi esperimenti andremo a verificare che, le prestazioni ottenute tramite l’applicazione
delle regole create appositamente sui classificatori, abbiano risultati migliori rispetto ad
un’esecuzione limitata all’utilizzo del migliore solver del portfolio.

I lavoro di tesi è stato svolto in collaborazione con il centro di ricerca 4C presso Univer-
sity College Cork. Su questo lavoro è stato elaborato e sottomesso un articolo scientifico
alla International Joint Conference of Artificial Intelligence (IJCAI) 2011. Al momento
della consegna della tesi non siamo ancora stati informati dell’accettazione di tale ar-
ticolo. Comunque, le risposte dei revisori hanno indicato che tale metodo presentato
risulta interessante.

4

Chapter 1

Introduction

1.1 Background

In a world where we always aim to be faster, from building better mechanics/electronics
parts in order to win races, to increase the CPU performance allowing us to run appli-
cations that we could only dream about years ago, most research in computing tries to
push the throttle for increasing performances or decreasing the time requested for solving
a specific task.

The challenge is also found in the world of constraint problems. In real life, many
problems are treated as constraint problems, from train scheduling to crew scheduling
of a flight company. There are also simpler examples that touch our everyday life, like
the crosswords or sudoku games. Constraint problems can be formalised as constraint
satisfaction problems (CSPs). A CSP is defined by a finite set of variables where each
one can be associated to a domain of values. A set of constraints defines then the possible
assignments of values to the variables [24].

The research in this field has been interested for quite many years, developing knowledge
and new techniques. This field that worries about the solving paradigm of CSPs is called
constraint programming [34]. The idea of constraint programming is that a problem is
stated as a CSP and a general purpose constraint solver solves it. A constraint solver im-
plements a series of techniques able to find a solution of the problem submitted, possibly
in an optimal way. Nowadays many solvers exist and some of them participate to interna-
tional competition with the purpose to elect the best constraint solver at the state of arts.

Apart from the development of new and optimised constraint solvers, new ideas have
been developed for obtaining solutions of constraint satisfaction problems more efficiently.
One of these is the portfolio approach [12]. This approach, also used in economical envi-

5

ronments, consists of the idea of using a set of solvers. These, combined together, try to
optimize certain parameters, like minimising the solving time or maximising the number
of instances solved in a determined amount of time.

The portfolio approach has been already used in different context, like for Satisfiability
problems (SAT) problems [43]. SAT is a specialization of CSP, with a domain of values
restricted to true and false and the constraints are Boolean formulas expressed in con-
junctive normal form (conjunctions of disjunctions of literals). The previous citation is
an example of integration of portfolio approach with machine learning techniques. Ma-
chine learning [27] is a field of artificial intelligence that employs a series of techniques
to extract knowledge, in general, from past cases and use it in future. This general ap-
proach is also well known in field like cognitive science. In the portfolio case a machine
learning algorithm could be useful deciding which solver to run looking on similarities of
problems treated in the past.

1.2 Motivation and goals

In this work we take the challenge of creating a new way of combining a portfolio ap-
proach with machine learning techniques. At the state of art the closest examples that
can be found are CPHydra and SATzilla. CPHydra [30] is a portfolio for solv-
ing CSPs developed at the 4C research centre in University College of Cork (UCC).1

It combines a portfolio approach with case based reasoning (CBR), a popular machine
learning technique. Using similarities in past cases and partitioning CPU-Time between
the components of the portfolio, CPHydra maximises the expected number of solved
problem instances within a fixed time limit. The previously mentioned SATzilla [43],
is a portfolio for SAT solving combined with machine learning technique which forecasts
the expected solving time of a given problem.

In this thesis, we continue in this successful line of research which exploits MLA in
the construction of a portfolio of CSP solver. The originality of our work is that we want
to explore a different way of exploiting machine learning algorithms in a portfolio. In the
specific, the goal of the new approach presented is to show that exploiting classifications
on CSPs is an efficient and successful strategy able to find solutions to CSPs efficiently.
A classification is a methodology that, given a series of attributes in input, is giving
a prediction expressed with a number of discrete categories in output, like yes/no to
classify an email spam or not spam, or easy, medium, hard to classify the difficulty of a
problem. Our work is using the CPHydra attributes. These attributes used are called
also features and are characteristics that describe a CSP. These features are useful to

1http://4c.ucc.ie/web/index.jsp

6

machine learning algorithms to depict important information about the constraint prob-
lem analysed. Using these features we want to create reliable and competitive classifiers.

To test that classification applied to a portfolio approach is a successful technique, we
want to achieve better performance compared to a configuration employing the best sin-
gle solver of the portfolio. In doing this, we want to assure that this supremacy holds
both in a single processor and in a multiple processors scenario. In the single processor
case we want to test the case base where our approach has to perform well otherwise
any further expansion would be useless. While, in the multiple processors case we want
to test that our method is scalable through a multiple CPUs scenario.

1.3 Overview

In the hereby presented work we will first focus on establishing whether CPHydra fea-
tures are good. In order to do that, we will first create a group of classifiers extracted
from analysis on the run time distribution of the portfolio solvers. On these classifiers,
we will compare CPHydra features, after an optimization work, to the features of one of
the finest portfolio solver, SATzilla[43]. We will also verify that the classifiers created
are reliable by means of determined statistics.

Once the quality of the features and the reliability of the classifiers are established,
in our next phase we assembles the information extracted from classifiers. This informa-
tion will be used for optimising a specific statistical measure obtained solving CSPs. In
our work we want to minimise the average finishing time, the time by which an instance
is solved. Minimising the average finishing time can be achieved by solving each instance
with an increasing order of difficulty. In the portfolio context doing this corresponds to
ordering the instances accordingly to their degree of hardness and then employing the
fastest solver to solve the instance. Such ordering of the instances will be consistently
smart to improve the usage of the portfolio. In doing that, we want to be sure that we
outperform the performances of a system composed by the best constraint solver of the
portfolio: mistral [16]. This has to be verified both in a single processor case and a mul-
tiple processor case for establishing that our solution scales correctly in a parallel setting.

The work here presented is structured in the following way: Chapter 2 will introduce
the background concepts about machine learning, constraint satisfaction problems, con-
straint programming and portfolio approach. Chapter 3 will go into the learning part,
talking about the classifiers built, features selection, and features set comparison. Chap-
ter 4 will consider the second main part of the work, where we will build scheduling rules
based on classifiers. First we will simulate the performance of such scheduling rules in
a single processor case and, in a second moment, in a parallel static context. Finally,

7

in Chapter 5 we will survey some related works before concluding and discussing future
works in Chapter 6.

The hereby presented work resulted to a paper submission to the 2011 International
Joint Conference of Artificial Intelligence (IJCAI).2 By the time of submitting the thesis
we are not yet informed about its acceptance status. However the reviewers feedback has
revealed that our method is appealing. The submitted paper is a result of a collaboration
with the 4C research centre in University College of Cork.

2http://ijcai-11.iiia.csic.es/

8

Chapter 2

Background

In this chapter, the required background on the thesis work is provided. However, due
to the vastness of each topic treated, this chapter will be focus only on the aspects which
are necessary for understanding of the presented work. The background chapter consists
of an introduction to machine learning and its algorithms; a section reserved to introduce
constraint satisfaction problems and constraint programming paradigms and a section
introducing the principles of algorithm portfolio.

2.1 Machine learning

Since the creation of computers, there was always interest in making the machines learn
and make them able to acquire knowledge from the environment. Starting from the
sci-fi film category, through the Isaac Asimov literature, many aspects about robotics
and machine learning were covered, mainly for entertainment purpose (robots turning
against the human beings). The reality is far away from the Hollywood point of view.

Nowadays, the fields in which learning techniques are applied are many and not related
only to computer science. In the following we present some examples.

Games: there are several papers related to the topic of making a machine learn how
to play chess against human and competing on the better intelligence. Since then, all
the video games started to develop better learning agents/players. Such an example can
be found in a particular field called general game playing. In [8] an agent is developed
with the aim of create an intelligence that can automatically and in real-time learn how
to play many different games at an expert level without any human intervention.

Patter recognition: from recognizing handwritten digit/text, to speech recognitions
are all subjects that requires learning [15].

9

Robotics: many are the aspects where learning in robotics is important. Depending
on the purpose of the robot, there could be learning algorithm regarding interaction
skills, working procedures. The classic example is the vacuum cleaner that analyses its
previous behaviour for taking further decision, like clean first a particular spot which is
usually dirty or either learn over obstacle objects [36].

Biology and medicine: there are numerous cases [28] [21] in which learning is required
in these fields, for example predicting various form of cancer like prostate cancer or
women breast cancer [2] and for measuring the DNA microarrays expression [15]. These
DNA microarrays evaluate the eventual presence of a specific gene in a given cell and, if
affirmative, the presence of a determined molecule in it .

Business: interesting applications are the predictions of important parameters like risk
factors for loans or bankruptcy [26]. Among the others there are specific works on agent
learning, for example, on oligopolistic competition in electricity auctions [13].

This section continues with an introduction on the main type of learning, a distinc-
tion between lazy and eager learning, as well as a list of the main machine learning
algorithms and performances metrics used to evaluate the results produced.

2.1.1 Supervised, unsupervised and reinforcement learning

Before taking a step further, let us give a formal definition of learning according to
Mitchell’s “Machine Learning” [27]:

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in
T, as measured by P, improves with experience E.

Let us take a concrete example. Imagine a software able to recognize handwritten digits
for the ZIP code. The task T, that the software has to accomplish, is to recognize the
handwritten digits from the image provided. The so called experience E is a database
of images containing digits and respectively the output result from which the software
will analyse similarities, patterns and learn. The performance P measure is given by the
percentage of images correctly recognized by the software.

This is a classic example of a supervised learning problem. Such a problem is easily
identifiable by a set of variables in input, measured or given, that are having influences
on the output(s). The word supervised is referred to the goal which is to use inputs to

10

predict the output values. This type of learning is often referred as “learning with a
teacher” [15]. Under this metaphor the “student” presents an answer ŷ for each xi in the
training sample, and the supervisor or “teacher” provides either the correct answer yi
and/or an error associated with the student’s answer. This error is usually characterized
by some loss function L(y, ŷ), for example, L(y, ŷ) = (y − ŷ)2.

Examples such as handwritten digit recognition or spam recognition in emails, in which
the aim is to assign a finite number of discrete categories (i.e. given an email classify it
spam or not spam), are called classification problems. If the searched output consists of
one or more continuous variables, then the task is called regression. A discrete value can
assume only a finite set of values, while a continuous can assume infinite different values.
An example of a regression problem is the prediction of the prostate-specific antigen
(PSA) value. Such a continuous value for example, measures the proteins produced by
cells of the prostate gland in the blood. The higher this values is, the more likely it is
that this specific cancer is present.

With a bit more of formality, it can be said that, given a vector of input data X,
where X = x0, ..., xn, a machine learning algorithm (MLA) is a function f that returns
a so called prediction Ŷ.

f(X) = Ŷ

If the output is discrete, the function f is called classifier, otherwise regression, if the
output is continuous.

In other pattern recognition problems, the training data consists of a set of input vectors
without any corresponding target values. Such problems are called unsupervised learning
problems [15]. Their goal may be to discover groups of similar examples within the data
(clustering), or to determine the distribution of data within the input space (density
estimation). This type of learning is done without the help of a supervisor or teacher
providing correct answers or a degree of error for each observation, that is why is also
known as “learning without a teacher”. The previously introduced DNA microarrays
expression is an example of unsupervised learning problem, since a DNA microarrays
expression does not need to be in a class, but it needs to be clustered or analysed in
other expressions so that patterns might be found.

The last of the most famous learning type, which is used in applications like the afore-
mentioned robotics, is the reinforcement learning. This technique [3] is interested in the
problem of finding suitable actions to take in a given situation in order to maximize a
reward. Those actions are discovered by a process of trial and error which characterizes
the reinforcement learning compared to the more classic supervised one. In fact, the

11

learning process comes from examples provided by some knowledgeable external super-
visor that alone is not adequate for learning from interaction [39].

These activities can be easily summarised in the following statements. A reinforce-
ment learning agent and its environment interact over a sequence of discrete time steps.
The specification of their interface defines a particular task: the actions made by the
agents are the choices, the states are basis for making the choices and the rewards are the
basis for evaluating the choices made. Everything inside the agent is completely known
and controllable by the agent while everything outside is incompletely controllable but
may or may not be completely known. Given a stochastic rule by which the agent selects
actions as a function of states (a policy), the agent’s goal is then to maximize the amount
of reward it receives over time and choices made.

There is one feature that is worth to be mentioned about reinforcement learning which
regards exploration and exploitation. It is very important, in fact, to monitor the trade-
off between exploration, in which the system tries out new kinds of actions to see how
effective they are, and exploitation, in which the system makes use of actions that are
known to yield a high reward. It has to be a balanced choice between the two because
being too strongly focused on either exploration or exploitation will bring poor results
[39].

2.1.2 Lazy and eager learning

Lazy methods are called in such way because they defer the decision of how to generalize
beyond the training data until each new query instance is encountered. On the other
hand, methods that are called eager generalize beyond the training data making possible
all the operations that define the approximation of the algorithm to the target function
before observing the new query [27].

Let us distinguish two differences between lazy and eager learning:

• in computation time;

• in the classifications produced for new queries.

In the first case, lazy methods will generally require less computation time during train-
ing, but more computation time when they have to predict the target value for a new
query. In the second, lazy methods may consider the query instance xq, when deciding
how to generalize beyond the training data. While, in the eager methods, by the time
they observe xq, they have already chosen their (global) approximation to the target
function. In other words, a lazy algorithm might take decision at the querying time,
while an eager algorithm cannot.

12

2.1.3 Machine learning algorithms

The list of machine learning algorithms (MLA) implemented so far is very long and some
of them require advanced mathematical/statistical background to be completely clear.
The purpose of this section, is to give an overview of the most important MLA oper-
ating mainly in supervised learning, since the thesis work is interested on these kind of
learning problems. For the sake of simplicity the algorithms are grouped in the closest
manner possible to the categorization method of Weka [17], a data mining tool used for
this project.1

The principal categories are the following:

• artificial neural networks;

• Bayesian learning methods;

• decision trees;

• lazy learners;

• meta classifiers;

• regression;

• rules;

• support vector machine.

Artificial Neural Network (ANN) [27] is a method that tries to resemble to the human
neural network. The most famous type of ANN, multi layer perceptron, is based on
the perceptrons, the artificial equivalent of the neurons. Artificial neural networks are
built out of a densely interconnected set of perceptrons, where each one of them takes a
number of real valued inputs (possibly the outputs of other units) and produces a sin-
gle real valued output (which may become the input to other units). These inputs and
outputs influence the interconnected perceptrons making the neural network adaptive to
the training inputs. ANN can be a powerful tool but is usually complex to find a good
tuning of the parameter and also they require a long training time.

In the Bayesian [27] learning methods, the algorithms are based on the Bayes formula,
which determines the most likely hypothesis from some space H, given an observed

1http://www.cs.waikato.ac.nz/ml/weka/

13

training data set D. The Bayes formula specifies a way to calculate the probability of
an hypothesis h in the following way:

P (h|D) =
P (D|h)P (h)

P (D)

where P (h), called the prior probability of h, measures the probability of the correctness
of the hypothesis h, before having seen the training data. P (D) denotes the probability
that training data D will be observed. P (D|h) denotes the probability of observing data
D knowing that the hypothesis h is valid or holds. P (h|D) is the posterior probability of
h and it reflects a level of confidence on h holding after the training data D is seen. A re-
mark is that the posterior probability P (h|D), in contrast to the prior probability P (h),
is influenced by the training data D. Among the variety of Bayesian learning methods
one worth to be mentioned is the naive Bayes learner. In some domains its performance
showed to be comparable to that of neural network and decision tree learning [25].

Decision trees algorithms, like the name says, are methods that construct a tree eas-
ily readable following the branching sequence that, from the root node to the leaf node,
leads to a classification decision [27]. Each node of the tree specifies a test of some
attribute of the instance, while each tree branch from a node, corresponds to one of the
possible values of this attribute. Decision trees usually work with entropy evaluation
once it comes to select which attribute branch first and are the most direct example of
eager learning type. An example of classic decision trees is C 4.5 [33].

Decision trees are nowadays brought to a powerful form of classification called Ran-
dom Forest [4]. This algorithm uses the technique known as bagging. This method
works by training each algorithm employed, in this case random trees, on a sample cho-
sen randomly from the original training set. The multiple output computed are then
combined using simple voting. The final composed output classifies an example x to the
class most often assigned by the underlying multiple output previously computed. In
general, decision trees are algorithms that suit better for classification problems [27].

In the lazy learning category, discussed above, the most important algorithm is k-NN.
The k-nearest neighbor [15] is a lazy learning algorithm that returns the k most similar
cases to the new problem submitted, where k is a parameter of the algorithm. To define
how to evaluate the similarity between the cases, a metric is required, which normally is
the Euclidean distance.

Case based reasoning (CBR) [1] is a lazy learning method that allows to elaborate solu-
tions of new appearing problems, choosing from similar cases already encountered and
solved. An important feature is that CBR is an approach to incremental, sustained learn-
ing, since a new experience is retained each time a problem has been solved, making it

14

immediately available for future problems. Generally the CBR activities are summarized
by the following list:

1. Retrieve the most similar cases;

2. Reuse the information and knowledge in that case to solve the problem;

3. Revise the proposed solution;

4. Retain the parts of this experience likely to be useful for future problem solving.

Figure 2.1: CBR: the cyclic process.

In Figure 2.1 the typical cyclic process of a CBR is depicted. The new problem is submit-
ted to the CBR which, with the help of a k-nearest neighbor (k-NN) algorithm, retrieves
the similar cases. Such similar cases combined sometimes with general knowledge are
being reused for producing a solution of the problem submitted. Through the revise
process the solution is then validated and corrected if the process is not successful. The
last phase of retaining consists in extracting the useful information able to increase the
cases database for the future usage.

A CBR algorithm looks like an implementation of a reinforcement learning method.

15

This is not completely true. Even if there are similarities in these approaches, there is
a substantial difference in the way they are learning. CBR uses the knowledge of the
past cases, or in some cases the general world knowledge, while reinforcement learning
techniques acquire knowledge exclusively by means of a process of trials and errors.

In the meta classifiers family there are all those algorithms powered by an inner MLA
combined with techniques like bagging, boosting or wagging. Some examples of meta
classifiers are AdaBoost, MultiBoost and Random Committee. To describe the main idea
of these classifiers, let us analyse briefly AdaBoost. AdaBoost [9] is based on the tech-
nique of boosting. Such a method works by repeatedly running a given weak learning
algorithm on various distributions over the training data, and combining the classifiers
produced by the weak learner into a single classifier. More specifically, AdaBoost calls
the weak learn algorithm (WL) repeatedly in a series of rounds. On each round, Ad-
aBoost provides WL with a distribution over the training set. In response, WL computes
a classifier or hypothesis which should correctly classify a fraction of the training set that
has large probability with respect to. The weak learner’s goal is to find an hypothesis
which minimises the training error. At the end of the rounds AdaBoost combines the
weak hypotheses into a single final one. The difference between AdaBoost (mainly the
boosting methods) from a bagging technique is that boosting is iterative. Whereas in
bagging individual models are built separately, in boosting each new model is influenced
by the performance of those built previously. Another important advantage coming from
the iterative nature is that boosting allows weighting a model’s contribution by its per-
formance rather than giving equal weight to all models, like in bagging.

MultiBoost [40] is actually an extension of AdaBoost that combines AdaBoost with wag-
ging. Wagging is variant of bagging, which requires a base learning algorithm that can
utilize training cases with differing weights. Rather than using random samples to form
the successive training sets, wagging assigns random weights to the cases in each training
set. Random Committee [41] builds an ensemble of weak classifiers and averages their
predictions. Random Committee distinguishes itself by making each classifier be based
on the same data but using a different random number seed. This only makes sense if
the base classifier is randomized, otherwise the classifiers would all be the same.

The simplest algorithm of regression category is the linear regression [27]. Such an
algorithm approximates a linear function f to a given set of training samples close to
the query instance x.

f(x) = w0 + w1a1(x) + w2a2(x) + . . .+ wkak(x)

In the specific, ai(x) indicates the ith attribute value of the instance x, while wi are the
coefficients weighting each attribute. This is a natural technique considered when the
class and all the attributes are continuous values.

16

In the rules category are grouped all those classifiers based on simple rules [18], like
1-R, a classifier that learns one rule from the training set.

A Support Vector Machine (SVM) is a method that aims to find the optimal sepa-
rating hyperplane that separates the instances of a two classes problem (separable or
not). In order to find this optimal solution, SVM uses a margin, defined as the smallest
distance between the decision boundary and any instance of the training set. SVM then,
separates the two classes’ problem, maximising the margin between the training points
and the decision boundary.

SVM is not the only algorithm that is separating the classes. For example the multi
layer perceptron algorithm, introduced under the ANN category, tries to find a separat-
ing hyperplane minimizing the distance of misclassified points to the decision boundary.
However this solution is dependent on the initial parameter of the perceptrons and the
solution is found just one of the many available. SVM has different variants, like the
one that can be applied to regression problems or for example the MultiClass SVM that
allows the algorithm to manage classification with multiple classes since the classic SVM
is meant to be for two classes problems only [15].

2.1.4 Performances metrics and testing techniques in classifi-
cation

There are many metrics able to depict the goodness of a classification in the supervised
learning context, but without a doubt the first one that has to be considered is the
accuracy. The accuracy of a machine learning algorithm represents, in percentage, how
many instances are correctly classified.

Another metric, Cohen’s kappa statistic (κ-statistic) [5] is used to measure the agree-
ment between the predicted and the observed classification. It is expressed with a value
from 0 to 1, where values closer to 0 represent a poor agreement, while values closer to
1, a good agreement. However, this measure does not take misclassification costs into
account.

Now we will show a practical example using an outcome from an experiment like the one
used in [14]. In Table 2.1 two type of classifiers (A,B) classify n instances in two classes
+ and −. a and d represent the number of instances classified respectively + and - from
both classifiers A and B. b and c, instead, represent the number of instances which are
classified + by one classifier and - from the other. A+, A−, B+ and B− are the sum of
all the instances classified respectively + and -, by A and by B individually.

17

Classifier B
Classifier A

Total
+ -

+ a b B+

- c d B−
Total A+ A− n

Table 2.1: Distribution of n instances classified by two classifiers.

The formula of Cohen’s κ-statistic is the following:

κ =
P (a)− P (e)

1− P (e)

where the probability of agreement (meaning that both classifiers have the same output)
P (a), is defined as:

P (a) =
a+ d

n

the probability of expected agreement P (e) is defined as follows:

P (e) = P (A+)P (B+) + P (A−)P (B−)

and

P (A+) =
A+

n
, P (B+) =

B+

n
, P (A−) =

A−

n
, P (B−) =

B−

n

In the Tables 2.2 and 2.3 two examples that show how κ is varying through different
data are given. Let us take the following tables with both n = 100 instances over two
classes and two classifiers (the problem can be extended to multiple classes):

Classifier B
Classifier A

Total
+ -

+ 45 15 60
- 25 15 40

Total 70 30 100

Table 2.2: κ statistic calculation example with 100 instances.

P (a) =
45 + 15

100
= 0.6

P (e) = 0.7× 0.6 + 0.3× 0.4 = 0.42 + 0.12 = 0.54

κ1 =
0.6− 0.54

1− 0.54
= 0.1304

18

Classifier B
Classifier A

Total
+ -

+ 25 5 30
- 5 65 70

Total 30 70 100

Table 2.3: κ statistic calculation example with 100 instances.

P (a) =
25 + 65

100
= 0.9

P (e) = 0.3× 0.3 + 0.7× 0.7 = 0.09 + 0.49 = 0.58

κ2 =
0.9− 0.58

1− 0.58
= 0.7619

In Table 2.2, the level of disagreement is higher than the one in Table 2.3 and is testified
by their κ values: κ2 = 0.7619, κ1 = 0.1304.

The most important testing technique in classification is the n-fold cross validation [27].
A cross validation is a methodology that consists of dividing the original data set in
n-folds (typically 5 or 10). Iteratively then, one fold is kept as testing set while the
remaining n− 1 folds are used for training the classifier. The cross validation is usually
adopted whenever the data set is not big enough to allow two consistent sets, one for
training and the other one for testing. Furthermore it might be useful to reduce the
problem of overfitting which happens usually in the decision tree learning when there
is noise in the data (wrong instances) or when the training set is too small for having
a good representation of the problem. An algorithm is said to be overfitting when an
increase of performance of the classifier on the training set, corresponds to a decrease
on the test set. This results in taking the training data too much as a strict example
of reality, risking that the algorithm is not able to later generalize on new presented
problems. An evident drawback of cross-validation is that the number of training runs
required are increasing as a factor n and this can be problematic for those models that
are computationally expensive to train.

19

Figure 2.2: An example of a 5-fold cross validation.

The Figure 2.2 gives an example of 5-fold cross validation where each fold consists of six
instances represented as dots.2 As it is possible to see, in the first iteration only first
fold is kept as test set, while the remaining ones are used as the training set. Once it
iterates over the next fold, the fold is selected as new test set. This process continues
until all the five folds are considered.

2.2 Constraint satisfaction problems and constraint

programming principles

In this section we will focus on the basic principles of constraint satisfaction problems,
giving an overview from the theoretical point of view, introducing also one of its special
case, the satisfiability problems. Then, we will present some basic concepts of constraint
programming and some principles and examples of constraint solvers.

2.2.1 Constraint satisfaction problems

The every day life is full of constraint problems. When it comes to scheduling trains or
scheduling crews for a flight company, these are all problems that deal with constraints.
Even in the everyday games, like crosswords and sudoku, we can find constraints prob-
lems. Given a real world constraint problem, it is necessary to define a mechanism that

2Image from http://genome.tugraz.at/proclassify/help/pages/XV.html

20

allows to formalize the problem in a schematic way.

Such problems can be formulated as Constraint Satisfaction Problem (CSP), defined
in the Handbook of constraint programming [34] as:

A CSP P is a triple P = 〈X,D,C〉 where:

• X is an n-tuple of variables X = 〈x1, x2, . . . , xn〉;
• D is a corresponding n-tuple of domains D = 〈D1, D2, . . . , Dn〉 such

that xi ∈ Di;

• C is a t-tuple of constraints C = 〈C1, C2, . . . , Ct〉.

A CSP is defined by a finite set of variables, each of which is associated with a domain
of possible values that can be assigned to the variable, and a set of constraints that
define the set of allowed assignments of values to the variables [24]. A constraint Cj

is a pair 〈RSj
, Sj〉 where RSj

is a relation on the variables in Sj. In other words, each
constraints Cj involves some subset of the variables Sj and specifies in RSj

the set of
allowed combinations of values that the variables can take simultaneously. In such way,
RSj

can be defined as a subset of the Cartesian product of the domains of the variables
in Sj.

Given a CSP, the task is normally to find an assignment to the variables that sat-
isfies the constraints, which we refer to as a solution. A solution P is an n-tuple
A = 〈a1, a2, . . . , an〉 where ai ∈ Di and each Cj is satisfied in that RSj

and it holds
the projection of A onto the scope Sj .

Given a CSP, it is requested to find one of the following:

• any solution, if one exists;

• all the solutions;

• an optimal solution given some objective function defined in terms of apart or the
entire set of variables.

A classic example used in literature: the n-queens problem. Such a problem consist of
finding the right disposal point of n queens on a n × n chessboard, in a way that each
queen is not able to attack and being attacked by another one (considering that a queen
moves horizontally, vertically and diagonally).

21

One possible way to encode this problem as CSP is as follows:

• a variable xi is defined for the queen on row i;

• the domains Di of each variable xi is defined as Di = {1 . . . n}, giving the possible
columns that queen i can be placed;

• ∀i, j, i 6= j having 1 ≤ i < j ≤ 8, the constraints are defined as:

1. xi 6= xj (knowing that two queens cannot be on the same row from the i 6= j,
here we say that two queens cannot be placed on the same column);

2. i− j 6= xi − xj (no other queen can be placed on one of the two diagonals);

3. j−i 6= xj−xi (no other queen can be placed on other one of the two diagonals).

Figure 2.3 shows one of the possible solutions of the 8×8 queens problem. It is verifiable
that no queen on the board is able to attack another one.

Figure 2.3: One possible solution of the 8-queens CSP.

Another example that helps to better understand what CSPs are, is the popular sudoku
game. A classic sudoku problem [37] can be expressed in the natural language like the
following: given a 9 × 9 board, the purpose of the game is to fill each of the 81 boxes
with a number from 1 to 9 in a way that in each row, in each column and in each 9
major 3× 3 subregion, is possible to have all the numbers from 1 to 9. An solution of a
sudoku game looks like the following:

22

2 5 8 7 3 6 9 4 1
6 1 9 8 2 4 3 5 7
4 3 7 9 1 5 2 6 8
3 9 5 2 7 1 4 8 6
7 6 2 4 9 8 1 3 5
8 4 1 6 5 3 7 2 9
1 8 4 3 6 9 5 7 2
5 7 6 1 4 2 8 9 3
9 2 3 5 8 7 6 1 4

One possible way to encode this problem as CSP is as follows:

• each variable xi,j corresponds to the cell on the board, with i, j ∈ [1, 9];

• the domain D(xi,j) = {1 . . . 9}, giving the numbers that can be filled in each cell;

• and the constraints are :

1. ∀i, j1, j2 ∈ [1, 9], then xi,j1 6= xi,j2 (two numbers in the same row cannot be
equal);

2. ∀j, i1, i2 ∈ [1, 9], then xi1,j 6= xi2,j (two number in the same column cannot be
equal);

3. for each 9 subregions Sr, xij 6= xhk, if i, j, h, k ∈ Sr, i 6= h and j 6= k (two
numbers in the same major 3× 3 subregion cannot be equal).

The arity of a constraint is the number of variables it constrains. This is an impor-
tant feature that can be used for analysing and depicting the specificity and possibly
the complexity of CSP. A first classification among CSP comes precisely on this fea-
ture. Constraints are defined as: unary, binary or n-ary if the arity is equal to 1, 2 or
> 2 respectively. Intensional constraints are specified by a formula that is the charac-
teristic function of the constraint. Extensional constraints are specified by a list of its
satisfying tuples. Global constraints are those constraints that involve relations between
an arbitrary numbers of variables. The most used example of a global constraint is
the all-different constraint which states that the variables in the constraint must be
pairwise different [34].

23

2.2.2 SAT

Satisfiability problems (SAT) are actually a specialization of CSP, where the domains
are restricted to be {true, false} and the constraints are clauses expressed as a Boolean
formula in conjunctive normal form (CNF) [34].

An example of a SAT problem can be the following: the formula (¬x1 ∨ x2) ∧ (x1 ∨ x3)
is a clause expressed in CNF, conjunction of disjunction of literals, where a literal is a
Boolean variable or its negation. A solution to this problem is: x1 = F ;x2 = F ;x3 = T .

The satisfiability of propositional formulae is one of the most famous example of prob-
lems in computer science, mainly because of its interesting applications in the theoretical
field. It has been proved that problem in the NP class [6] (problems for which exist an
algorithms that given an instance i and one of its possible solution s, is possible to verify
the correctness of s within a polynomial time) can be encoded into SAT ones and then
be solved by SAT solvers.

2.2.3 Constraint programming

Constraint programming is a solving paradigm of constraint problems that draws on a
wide range of techniques from artificial intelligence, computer science, databases, pro-
gramming languages, and operations research. Constraint programming is currently
applied with success to many domains like:

• scheduling;

• planning;

• vehicle routing (i.e. the travelling salesman problem (TSP): the problem of finding
the shortest path that visits a set of customers and returns to the first one);

• configuration (the task of composing a customized system out of generic compo-
nents. Classic examples involve constraints to assembling computers and cars);

• networks (apart from the classic networking field, CP can be used in electric-
ity/water/oil networks);

• bioinformatics.

Constraints are just relations, and a constraint satisfaction problem (CSP) states which
relations should hold among the given decision variables. For example, in scheduling
activities in a company, the decision variables might be the starting times and the du-
rations of the activities and the resources needed to perform them, and the constraints
might be on the availability of the resources and on their use for a limited number of

24

activities at a time.

The basic idea in constraint programming is that the user states the constraints and
a general purpose constraint solver is used to solve them. Constraint solvers take a
real-world problem like the scheduling activities in a company previously mentioned,
represented in terms of decision variables and constraints, and find an assignment to all
the variables that satisfies the constraints.

2.2.4 Constraint solvers

Constraint solvers search the solution space using different techniques [34]. The main
algorithmic techniques for solving CSPs are backtracking search, and local search. While
the first one is an examples of complete algorithm, the local search is an example of in-
complete algorithm. Complete means that there is the guarantee that a solution will
be found, if one exists, otherwise prove unsatisfiability, or find an optimal solution. On
the other hand incomplete algorithms are those that cannot assure to find a solution.
Systematic methods, like the more advanced versions of backtracking search, interleave
search and inference, which helps detect regions of the search space that does not con-
tain solutions. This information is usually propagated among the constraints. Constraint
propagation explicitly forbids values or combinations of values for some variables of a
problem because a given subset of its constraints cannot be satisfied otherwise. For ex-
ample, in a crossword puzzle, you propagate a constraint when the words Iceland and
Germany are discarded from the set of European countries that can fit a 7-digit slot
because the second letter must be a ’R’. The backtracking search is represented as a
search tree where partial solutions are built up by choosing values for variables until
a dead end is reached, where the partial solution could not be consistently extended.
When the dead end is reached, the last choice is rolled back and another one tried (back-
track). This is done in a systematic manner that guarantees that all possibilities are tried.

A local search algorithm starts with an initial configuration (for the CSP are, typically a
randomly chosen, complete variable assignment), in each step the search process moves
to a configuration selected from the local neighbourhood (typically based on heuristics
function). This process is iterated until a termination criterion is satisfied. To avoid
stagnation of the search process, almost all local search algorithms use some form of
randomisation, typically in the generation of initial positions and in many cases also in
the search steps. Local search algorithms cannot be used to show that a CSP does not
have a solution or to find an optimal solution. However, such algorithms are often effec-
tive at finding a solution if one exists and can be used to approximate an optimal solution.

The state of art of the constraint solvers is mainly presented in the Constraint Solver
Competition (CSC). At the writing time this event reached its fourth international edi-

25

tion in 2009.3 However, in this competition only solvers capable of accepting a CSP
with the specific XML format, XCSP [35] are admitted. The results are ranked based
on the number of solved instances and ties are broken by considering the minimum total
solution time. Based on this criteria of ranking, Figure 2.4 shows the results of the 2009
competition. Among the participating solvers pcs, abscon, choco, sugar and mistral are
winners in one or more category. In the specific mistral and sugar are tied winner with
both 8 leading categories over 21, then choco and abscon won 2 and pcs 1.

Figure 2.4: The winner of the 2009 constraint solver competition.

Unfortunately no direct ranking is provided on the “speed” of the solvers or at least on
the ratio between CPU time and number of solved instances.

As well as constraint solvers, SAT solvers state of art is presented in different com-
petition like the International SAT Competition 4 and the SAT Race. At the writing
time the last competitions held are in 2009 for the SAT competition 5 and 2010 for the
SAT Race. 6 The variety of SAT solvers participating at these competitions are high and
the categories of competition are split on type of instances, representation of problems
or type of execution.

3http://www.cril.univ-artois.fr/CPAI09/
4http://www.satcompetition.org/
5http://www.satcompetition.org/2009
6http://baldur.iti.uka.de/sat-race-2010/index.html

26

From the 2009 SAT competition, 9 are the categories in which the solvers are tested.
Among the competing solvers, the portfolio solver SATzilla won 3 out of 9, clasp 2
categories and precosat , glucose, TNM and March hi one.

From the 2010 SAT race, among the participating solvers, the winners of the three
competitions are CryptoMiniSat, plingeling and MiniSat++ 1.1.

It is interesting to see how SATzilla is employing the best performing solvers of the
2006 SAT race and 2005 SAT competition for winning three categories both in the 2007
and 2009 SAT competition. This portfolio of SAT solvers will be described in Section
2.3.1.

2.3 Algorithm portfolio

Over the past decade there has been a significant increase in the number of solvers that
have been deployed for solving constraint satisfaction problems. It is recognised within
the field of constraint programming that different solvers are better at solving different
problem instances, even within the same problem class [12]. It has been shown in other
areas, such as satisfiability testing and integer linear programming that the best on av-
erage solver can be outperformed by a portfolio of possibly slower on average solvers,
examples are respectively SATzilla [43] and this work [23]. The same philosophy is
applied also to some latest machine learning algorithms, like the previously mentioned
AdaBoost (Section 2.1.3). Instead of using a single classifier, a series of ”weak” classifiers
are combined together in a way to reach a consensus. The portfolio selection process is
usually performed using a machine learning technique based on feature data extracted
from constraint satisfaction problems.

Portfolio solvers are often distinguished by the following categorization:

• parallel, where all the solvers all run in parallel;

• sequential, where a solver waits for the previous one to finish, before starting its
computation;

• partly sequential, an hybrid version of the previous categories.

Two portfolio solvers are involved in the hereby presented work. CPHydra is the
protagonist portfolio solver. From which, we extract the features to manipulate. The
second one is SATzilla. Even if it is a portfolio of SAT solvers, it is useful to establish
the goodness of CPHydra features by means of comparison.

27

2.3.1 SATzilla

SATzilla [43] is an automated approach for constructing per-instance algorithm se-
quential portfolio for SAT problems. SATzilla uses machine learning techniques, such
as linear regression, to build run time prediction models based on features computed
from instances.

In the specific, the original version of SATzilla uses a very specific strategy for building
a sequential portfolio. The part of construction is done offline. After selecting a set of in-
stances believed to be representative of some underlying distribution, SATzilla selects
a set of candidate solvers that are expected to perform well on the data distribution.
The appropriate features are then selected on these problem instances. This operation
is usually done with the help of knowledge from a domain expert. The features set are
calculated on a training set of instances, determining also the real running time for each
algorithm candidate.

In the next phase SATzilla identifies one or more solvers that have to be used as
pre-solvers. Such solvers are used to eliminate those problems that are solved in a short
amount of time and will be launched before the feature computation. Using a validation
dataset, SATzilla then determines the backup solver. This solver is the one which
achieves the best performances on those instances that are not solved by the pre-solvers.
In absence of instances that go timeout or produce error, the best single solver known
so far is selected as backup solver. Then a model containing the runtime predicted for
each solver is constructed and SATzilla selects the best subset of solvers to use in the
final portfolio.

In the online phase, SATzilla runs the pre-solvers for a limited amount of time; if
the pre-solvers succeed the process end up here but if the pre-solvers fail to solve the
problem then it computes the features of the instance just run. If, once again, these fea-
tures are not calculated because of errors or timeout, then the backup solver is used for
solving the instance. If instead the features are calculated, then the runtime algorithm is
predicted using a simple variant of linear regression and finally, once the best predicted
is selected, this is run. In the International SAT Competition 2009, SATzilla won all
three major tracks of the competition.7

2.3.2 CPHydra

CPHydra [30] is sequential portfolio solver for constraint satisfaction problems devel-
oped at 4C (Cork Constraint Computation Centre) that uses a CBR machine learning
algorithm to select solution strategies for constraint satisfaction. A CBR methodology

7http://www.satcompetition.org/2009/

28

performs well in decision making as reported in [11]. CPHydra was the overall winner
of the 2008 Constraint Solver Competition. Its strength relies on the combination of
machine learning methodology, case based reasoning (CBR), with the idea of partition-
ing CPU-Time between components of the portfolio in order to maximise the expected
number of solved problem instances within a fixed time limit. Mainly because it has been
built for the 2008 competition, CPHydra uses a portfolio with three solvers (abscon,
choco and mistral) and it does not exploit the latest results of the competition, where
sugar won the same number of categories as mistral. However, comparing mistral to the
other solvers will clearly establish that it is the fastest solver in the portfolio.

In the retrieval phase of the CBR, CPHydra uses a k-nearest neighbor algorithm that
returns the set of solving times for each of the k most similar problem instances found
in the base case along with their similarities to the submitted one. In order to define
how to evaluate the similarities between the cases, CPHydra uses a classic Euclidean
distance between the features of the problems. In situation of equality, tied cases are
returned in the k neighbour. In the reuse phase the runtime of the k most similar cases
are used to generate a solver schedule. For each problem submitted, γ are the similar
cases returned. For a given solver s and a time point t ∈ [0 . . . 1800], we define C(s, t)
as the subset of γ solved by s given at least time t. The goal of the scheduler is then to
maximise C(s, t), for each solver. This goal is then optimised weighting the input case
by the Euclidean distance of each similar case.

During the revision phase a solution is evaluated and validated running each solver
for the amount of time decided by the scheduler. If only one solver solves the instance
within the time slot, then the schedule is considered a success. A revision of the solution
is not possible in a competition scenario, where there would not be enough time for run-
ning each solver. In the retention phase, as well, there is not enough time for building
the complete new case. Such an operation requires to run every solver till a solution is
reached and in competition scenario this is not possible.

The experiments and the 2008 competition results showed that CPHydra is implement-
ing a winning strategy. In the 2008 competition, CPHydra was the overall winner.8

8http://www.cril.univ-artois.fr/CPAI08/

29

Chapter 3

Learning from problem features

Learning is a generic concept that can be applied to many fields. Hereby, the learning
concept will be applied to CSPs for information extraction. This information is going
to be useful for solving CSPs in the context of a portfolio solver, as will be explained in
Chapter 4.

Next we will first introduce the dataset used. Then we will analyse how the portfolio is
behaving on this dataset. We will tackle the solving times of each solver for building a
group classifiers. With these classifiers we will perform two kinds of tests: one to test
different features set of CPHydra and the other one to compare the CPHydra features
to those of SATzilla. The latter test will establish how reliable our classifiers are.

In order to avoid confusion, in the next sections we will talk about instance or prob-
lem, indicating a CSP instance.

3.1 The international CSP competition dataset

The comprehensive dataset of CSPs used is based on the various instances from the
annual International CSP Solver Competition from 2006-2008. Overall, there are five
categories of benchmark problems in the competition:

• 2-ARY-EXT instances involving extensionally defined binary (and unary) con-
straints;

• N-ARY-EXT instances involving extensionally defined constraints, at least one of
which is defined over more than two variables;

• 2-ARY-INT instances involving intensionally defined binary (and unary) constraints;

30

• N-ARY-INT instances involving intensionally defined constraints, at least one of
which is defined over more than two variables;

• GLB instances involving any kind of constraints, including global constraints.

The competition stated that a problem would have to be solved with a time out value of
1800 seconds. Once the time frame is passed, the problem is considered not solved. So,
in the dataset considered, it is clear to see whether or not a solver finds a solution before
the cut off. Another important remark is that, at the competition time, the problems
that are not solved by the portfolio within 1800 seconds of cut off, are removed from the
dataset. In total, the dataset contains approximately more than 4000 instances across
these various categories. Later we will restrict this dataset to a subset of 3293 for reasons
that we will clarify.

3.2 Portfolio solving time analysis

Based on the three solvers of the portfolio used in the 2008 CSP Solver Competition
variant of CPHydra, it is interesting, as a first step, to present the runtime distribu-
tions. Figures 3.1(a), 3.1(b), 3.1(c), respectively mistral, choco and abscon solving time
distributions, are introducing their distributions. Each runtime distribution is specified
as a histogram of the frequency (y-axis) of a given runtime (x-axis). The purpose of
doing this is to show for every single solver in the portfolio, the number of instances of
the dataset solved in the given time windows. This can highlight the fact that there are
many instances for which one of the solvers finds a solution quickly, while another solver
struggles to solve them. However, it is not the case that each solver finds that the same
instances are either easy or hard because. For instance, abscon can solve some instances
in an easier way than mistral and the situation is the other way around in some other
instances. This is a good hint for developing what will be one of the first classifiers,
which however will be more useful in the scheduling part: a classifier which will try to
forecast the fastest solver in the portfolio.

31

seconds

in
st

an
ce

 n
um

be
r

0 500 1000 1500

0
50

0
10

00
15

00
20

00
25

00

(a) Runtime distribution for Mis-
tral.

seconds

in
st

an
ce

 n
um

be
r

0 500 1000 1500

0
50

0
10

00
15

00
20

00
25

00

(b) Runtime distribution for
Choco.

seconds

in
st

an
ce

 n
um

be
r

0 500 1000 1500

0
50

0
10

00
15

00
20

00
25

00

(c) Runtime distribution for Ab-
scon.

Figure 3.1: The performance of each solver in the portfolio on the dataset.

We note in Figure 3.1(a) that mistral seems to be the fastest solver only analysing the
bars of the plot. In fact it is the one with the higher bar on the left side and lowest bar
in correspondence of the timeout value.

After showing how the single solvers of the portfolio are behaving, it is interesting to ad-
dress directly the portfolio itself. For each instance, we extract the minimum, maximum
and the average runtime of the instances given by the three solvers in the portfolio, as
well as the standard deviation. Analysing such data could highlight any kind of clus-
tering or distribution patterns showed by the combination of the solvers. A cluster or a
distribution pattern in the plot, would manifest that a good machine learning classifica-
tion could be created.

In the plots below (Figures in 3.2) we show the output distribution of data analysed. All
the functions applied show a natural clustering of the instances, except the minimum.
In fact the minimum plot (Figure 3.2(a)) shows a distribution that does not indicate any
immediate clustering or possible classification.

32

●●

●

●●

●

●●

●

●●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●
●

●●

●
●

●●

●

●

●●●
●●

●

●●●

●

●
●
●

●●●●

●

●●●

●●
●

●

●

●●●

●

●●

●●
●●●
●
●

●●●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●

●

●

●

●

●●●

●●●

●●

●

●

●

●

●
●

●

●●●●●
●●●

●

●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●●●●●●

●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●●●
●
●●●●●●●●●●●●●●●●●

●

●●
●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●●●
●●
●
●
●
●

●

●●●●●●●

●

●●●●
●
●
●●
●

●
●●●●●●●
●
●●
●
●

●

●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●

●

●●●
●

●

●

●●

●

●

●●
●
●●●●●●●●●●●

●

●

●

●

●

●

●

●●●

●

●●●●●●●●●

●

●●●●●●

●

●
●●●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●
●

●●●●●●●●●

●

●

●●●

●

●●●

●●

●●●●
●
●

●
●

●

●●●●
●
●●●●●●●●●
●
●●●●●●●●●

●

●●●

●

●●●●●●●●●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●●●●

●

●●●

●

●●●●●

●

●●●

●

●●●

●

●

●

●

●

●●●
●
●
●●●●●●●●●●●●●●●
●
●
●

●

●●●
●●●●●●
●
●●●●●
●
●●●●●●●●●
●
●●
●
●●●●●●●
●
●
●

●

●
●
●●
●●●●●
●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●
●

●

●

●

●●
●
●

●

●

●●●

●

●
●
●●●●

●

●●●

●

●

●

●●●●●●●●●●●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●
●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●●

●

●●●●
●
●

●

●●●●
●
●
●
●●●●

●

●

●●●●●●●●●●
●
●

●

●●●●●
●
●●●●●●

●

●●●

●

●

●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●

●●●●●●●
●●●●●●

●

●●●●
●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●
●
●●
●●●

●

●●●●

●

●
●

●●●●●

●

●
●●
●
●
●
●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●●

●

●

●●●●●●●●●●●●

●

●

●

●

●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●

●

●●
●●●●●

●

●●●●●●
●
●●●●●●●
●
●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●
●●●●●●●
●
●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●

●

●

●

●
●
●●●

●

●
●

●●●●●●

●

●

●

●
●
●●●●●●

●

●●●●●●●●●

●

●●●
●●●●
●

●
●
●●

●

●●●●

●
●
●
●●
●●

●

●

●●●●
●

●

●●●●

●

●●

●

●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●

●

●

●

●●

●

●

●●●●●●●●●●

●

●●●●●●●●●
●
●●●●●●●●

●

●●●

●

●●●●●●●●

●

●●●

●

●●

●

●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●

●●●
●●

●

●●●

●

●

●

●●●
●
●●●●●●●●●●
●
●●
●
●●●●●●●●●

●

●●●
●
●

●

●

●
●
●●●●●●●●●●
●
●●●

●
●●

●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

0 500 1000 1500 2000 2500 3000

0
50

0
10

00
15

00

Index

m
in

(a) The minimum runtime of the portfolio on each
instance.

●●●●●

●

●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●●●●

●●●●●●

●

●
●●●●

●

●●●●●●●●●●●●●●●

●

●
●

●

●●

●●

●

●

●●

●

●

●●●

●

●

●

●●●

●

●

●

●

●●●●

●

●
●●

●●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●●●●●
●●●●
●
●●●
●●●●
●●●●●
●●●
●
●
●
●●●●●●●●●
●
●●●●●●●●●●●●

●

●●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●●●

●

●●
●

●

●●

●●

●●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●
●

●

●

●

●

●●

●

●●●●●●●

●

●
●

●

●●
●

●●●●●

●●●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●●

●

●●
●
●●●
●

●

●●●

●

●

●●

●

●●●●

●●

●
●●●●

●

●●●

●

●●●●

●

●●●●●●●
●
●●

●

●●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●●●

●

●

●

●

●●●●●●●●●

●

●
●

●

●

●●

●

●●

●

●●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●

●

●●●
●
●●●●●●●

●

●●

●

●●●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●
●●●

●
●

●●●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●
●
●

●

●●
●

●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●

●●
●

●

●
●
●
●
●●

●

●●●

●●

●

●

●●

●

●●
●
●

●●●●●●

●

●

●●●

●

●
●

●

●●

●

●

●●

●

●

●●●

●

●●●

●

●●

●●●●●●●
●●●●

●

●●●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●

●

●●

●

●●●●●●●●●●

●

●●●●●●●●●

●●
●

●

●●
●
●●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●●●
●
●●●

●

●●●
●

●

●●

●

●

●

●
●●
●

●

●●●●●

●

●

●

●●●●

●●

●

●●●●

●●

●

●

●

●

●●●

●

●

●●

●●●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●

●

●●●●

●

●

●

●●

●

●

●●●

●

●

●●●●

●●●●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●
●

●

●
●

●●

●

●●

●

●●●●●●●●●

●

●
●
●●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●●●●●●●●●●●●●

●

●

●

●

●

●●●●

●

●

●

●●

●
●

●

●

●

●●●
●
●●●●●●●●●●●●●●●

●
●
●●●

●

●
●●●●

●

●●●
●

●

●●●

●

●●●●●●●●●

●

●

●

●

●

●●

●

●●

●

●●●

●

●●●●●●

●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●●

●

●
●●

●

●

●

●

●●

●

●

●

●

●
●

●
●
●●

●●

●

●●●●●
●

●

●
●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●●●
●

●

●●
●
●

●

●●●
●●●●●●

●

●●

●

●●●
●
●
●

●
●●

●
●

●

●

●
●
●
●●●
●●

●●●●
●●●●●●●●●●
●●●●●●●
●●
●●
●
●
●
●●
●
●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●
●
●

●

●●
●

●

●

●

●●●●●●●●●●

●

●

●

●
●

●
●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●
●
●●

●●●●●●●●●●
●

●

●

●

●●

●

●●●●

●

●

●

●
●●●

●

●
●
●●●●

●

●

●●●●●
●●
●●●

●

●

●

●●●●●

●

●●●
●
●●

●

●
●●

●

●

●●

●

●●●●●●●●●●●
●
●●
●
●●

●●

●●

●

●●
●

●

●●●●

●

●●●●●

●
●

●

●

●

●

●●●

●

●
●●●●

●

●
●
●●

●●

●
●
●●●●

●
●●

●

●
●●●●●●●●
●
●●●
●●●●
●
●●

●●

●
●●●

●

●

●

●●●●

●

●●

●●

●

●

●

●
●

●

●●●●

●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●●●

●●●●●

●

●●●●●●●●●●●●●●

●

●
●●

●

●●
●●●●●●●●●●●●●●●
●

●

●

●

●●●

●

●
●●●●

●

●

●●●

●

●

●

●

●●●●●●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●

●●●●●●●●●●●●●●●●

●

●

●●●

●

●●

●●

●

●

●

●●
●

●

●●

●

●●●

●

●

●

●●●

●
●
●

●

●●●●●●
●
●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●
●
●●●●

●

●

●

●

●

●●

●

●
●
●●●
●
●
●
●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●

●

●●●●●●●●●●●
●
●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●●●●●

●

●

●

●

●

●
●●●●●

●

●

●

●●●●●●●

●

●●
●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●●

●

●

●●●●

●

●●

●

●●●●●●●●●●●

●

●

●

●
●●

●

●

●

●●●●●●●●

●

●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●

●●

●

●

●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●

●●

●●

●

●●●●●●

●

●●●●●●●●●●●●●●●

●●●●●●●●

●●●
●
●●

●

●

●

●

●

●●

●

●

●●
●●●

●

●●●●

●

●●●●●

●

●●●

●

●●
●

●

●●●●

●

●●
●

●

●●●●
●
●●●

●

●

●

●●

●●

●●

●

●●

●

●●●●●●●●

●

●●●●●●

●

●●●●

●

●●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●

●●

●

●

●●●
●
●●

●

●●●●●●●
●
●

●

●●

●●●

●●●

●

●●●

●

●●●●

●●●●

●●●●●

●

●●●●

●●

●

●

●●

●

●●●

●

●
●●●●

●

●●

●●●●●●●●●●●●●●

●

●
●

●●

●

●

●
●●

●

●●

●

●●●●●

●

●●●●●●●●

●

●

●●●●●●

●
●●●
●

●

●●

●

●
●
●
●
●●
●
●●●●
●
●
●

●

●●●
●

●

●

●

●●
●

●
●

●●●
●●●●●●

●

●●

●

●●●

●

●●
●
●●

●

●
●
●
●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●●●●●●●●
●
●●●●●

●●●●●●●●●●

●●●

●●●

●

●
●●●●●●

●

●●●

●

●

●

●●

●

●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●
●

●

●●

●

●

●●
●
●●●●●●

●

●●●
●●
●

●
●●

●●●
●●●●●●

●

●●
●
●●●●●●●●●●●●●●●●●●
●
●●●

●

0 500 1000 1500 2000 2500 3000

0
50

0
10

00
15

00

Index

av
g

(b) The average runtimes of the portfolio on each
instance.

●●●●●

●

●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●●
●●●

●●●●●●

●

●

●●●●

●

●●●●●●●●●●●●●●●

●

●

●●

●
●

●●

●

●

●●

●

●

●●●

●

●●●●●

●

●

●

●

●

●●●

●

●

●
●

●●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●●●●●
●●
●
●
●
●●●
●●●
●
●●●
●
●●●●
●

●
●
●●●●●●●
●
●●
●●●●●●●●●●●●

●

●●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●
●●
●
●
●●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●
●●●●●●

●

●

●

●

●
●

●

●●●●●

●●●
●●●●●●●●
●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●

●

●●●●●
●
●●

●

●
●●

●●●●●●●●●

●

●●●

●

●

●●●

●

●

●●●●●●●

●
●●
●●
●●●●●●
●
●●●●●●●●●●●
●
●
●●●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●●

●

●●

●

●●

●

●●●

●

●
●●●●●●●●●●●●●●●●●

●

●●●
●
●●●

●

●●●●●●

●

●●●●●

●

●●●●●●●●●●
●
●●
●
●●●●

●

●●●●●●●●●●●●

●

●●●●

●

●●●

●

●●●●●●●

●

●●

●

●●●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●
●●●

●
●

●●●●

●
●●

●

●

●●

●

●●●●

●

●●●
●●
●

●

●

●●

●

●
●
●

●●●●●●●●●●●●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●
●

●●●●●●●●●
●
●●●●●●●

●

●

●●●

●

●
●●

●
●

●

●

●
●

●●●●●●
●●●●●●

●

●●

●●
●●●
●
●●

●

●●
●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●
●

●

●●●●●●●●●●

●

●●●●●●●●●

●●
●

●

●●
●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●●●
●
●●●

●

●●●
●

●

●●

●

●

●

●
●●
●

●

●●●●●

●

●

●

●●●●

●●

●

●●●●
●
●

●

●

●●●●●●●
●●

●●●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●

●●●
●
●

●●
●

●

●

●●●●

●●●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●●

●

●●●●●●
●●●

●

●●●●●●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●●●●●●●
●
●●●
●

●

●

●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●●●●●
●
●●●

●●
●

●●●●●●●●●●●●●●●

●

●

●●●

●
●

●●●●
●
●

●
●

●

●●●●
●
●●●●●●●●●

●

●

●

●
●

●●

●

●●

●

●●●

●

●●●●●●

●

●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●●
●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●●

●

●●●●●●●
●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●

●

●

●

●●
●
●

●

●●

●
●

●

●
●●

●
●
●

●
●
●

●

●●

●

●
●
●
●

●

●

●
●
●
●

●

●

●

●

●●●
●
●
●●

●
●●●

●
●
●●●●●●
●●
●●●●●●
●●●

●
●●

●
●
●●

●

●

●

●

●

●

●●●
●
●

●

●●●

●

●

●

●
●●
●

●

●

●●

●

●
●
●

●●●●●●●●●●

●

●

●

●●

●
●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●
●●

●●●●●●●●●●
●

●

●

●

●●

●

●●●●

●

●

●

●
●●●

●

●
●
●●●●

●

●

●●●●●
●●
●●●

●

●

●

●●●●●

●

●●●
●
●●

●

●
●●

●

●

●●

●

●●●●●●●●●●●

●

●●

●

●
●

●●

●
●

●

●
●
●

●

●●●
●

●

●●
●

●●

●
●

●

●

●

●

●
●
●

●

●
●●
●●

●

●
●

●
●

●●

●

●
●
●
●●

●

●●

●

●
●●
●●●
●

●●
●

●
●●
●●●

●

●

●
●

●●

●
●●●●●●●
●
●●●

●

●

●●●●●

●

●●

●●

●

●

●

●
●

●

●●●●

●

●●
●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●●

●●●

●
●●●
●

●

●●●●●●●●●●●●●●

●

●

●●

●

●●
●●●●●
●
●●●●●●●●●

●

●

●

●

●●●

●

●

●●●●

●

●

●
●●

●

●

●

●

●●●●●●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●
●●●●●●●●●
●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●●

●●●●●●●●●●●●●●●●

●

●

●
●●

●

●●

●
●

●

●

●

●●

●

●

●●

●●●●

●

●

●

●●●

●

●

●
●●●●●●●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●●
●
●
●

●

●

●●
●●●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●
●

●

●
●
●●●●●●●●●
●
●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●●●●●

●

●

●

●

●

●
●●●●●

●

●

●

●●●●●●
●

●

●
●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●●

●

●

●●●●

●

●●

●

●●
●●
●●
●
●●●●

●

●

●

●
●
●

●

●

●

●
●
●●●●
●●

●

●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●

●●

●

●

●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●

●
●

●●

●

●●●●●●

●

●●●●●●
●
●●●●●●●●

●●●●●●●●

●
●●
●
●●

●

●

●

●

●

●●

●

●

●●
●
●
●

●

●●●●

●

●●●●●

●

●●●

●

●
●
●

●

●
●●●

●

●●
●

●

●●●●●●●●

●

●

●

●●

●●

●●

●

●●

●

●●●●●●●●

●

●●
●●●●

●

●●●●

●

●
●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●

●●

●

●

●●●

●

●●

●

●●●●●●●

●

●

●

●●

●●●

●●●

●

●●●

●

●●●●

●●●●

●●●●
●

●

●●●●

●●

●

●

●
●

●

●●●

●

●

●●●●

●

●

●
●●●●●●●●●●●●●●

●

●
●

●●

●

●

●●●

●

●●

●

●●●●●

●

●●●●●●●●

●

●

●●●●●●

●

●
●●

●

●

●●
●

●

●
●

●

●●
●
●●●
●

●
●
●

●

●
●●
●

●

●

●

●
●
●

●

●

●●●●●●●●●

●

●●

●

●●●

●

●●
●
●●

●

●
●
●
●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●
●
●

●●
●
●●

●

●●●●
●

●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●

●

●
●
●●

●

●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●

●

●

●●●

●

●

●
●

●

●

●●

●

●
●●●
●
●

●

●●●

●
●
●

●
●●

●●
●

●
●
●●●●

●

●
●

●

●●●●●●●●●●●●●●
●
●
●
●

●

●●●

●

0 500 1000 1500 2000 2500 3000

0
20

0
40

0
60

0
80

0

Index

st
dv

(c) The standard deviation runtimes of the portfo-
lio on each instance.

●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●
●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●
●
●

●●●

●●●●●●

●

●

●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●●●

●
●

●
●

●
●

●

●

●●●
●●
●

●●●

●

●
●●

●

●●●

●

●

●
●

●●●
●

●

●●●

●

●●

●●●

●

●

●
●

●

●
●

●

●

●

●
●
●
●
●
●

●
●●●

●
●
●
●
●

●

●
●
●●

●●●
●

●

●
●
●●

●●●

●

●

●

●●●●●●●
●●

●

●●●●●●●●●●●●

●

●●

●●●

●

●

●●

●

●

●

●●●

●

●

●

●
●

●

●

●●

●●

●●●

●

●

●
●

●●

●

●

●●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●●

●

●●●●●●●

●

●

●

●

●●

●

●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●
●●
●
●●●●●●●●●

●

●
●●

●●●●●●●●●

●

●●●

●

●●●●

●

●●●●

●●

●●
●

●●

●
●
●
●

●●

●

●

●
●●●

●●

●●●●●●

●

●

●●

●●

●
●

●

●
●

●●

●
●

●●

●

●

●

●

●

●●
●

●

●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●

●

●●●
●
●●●

●

●●●●●●

●

●●●●●

●

●●●●●●●●●●
●
●●
●
●●●●

●

●●●●●●●●●●●●

●

●●●●

●

●●●

●

●●●●●●●

●

●●
●
●●●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●
●●
●●●

●●●

●●

●

●

●

●●●

●

●●●

●

●

●

●

●●

●●
●
●●

●●

●●

●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●

●●

●

●

●

●●

●

●

●
●
●●

●●●●●●

●●●●

●

●●●●●
●

●

●●●●

●

●●●
●
●●●

●

●●

●

●●

●●
●●●●●●

●
●●
●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●
●●●●●●●●●●

●

●●●

●

●●●●●●●

●●●●●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●

●

●
●
●●

●●
●●

●

●

●

●●●
●
●●●

●

●●●
●

●

●●
●

●

●
●

●
●●

●

●●
●
●●
●●●
●●●●

●

●

●

●●●●

●
●

●

●

●●

●

●

●●
●

●●

●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●

●

●●
●
●●

●
●
●●

●

●
●●
●

●

●●

●●●

●●●
●
●
●
●●
●
●

●

●

●

●●

●

●

●

●
●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●
●
●●

●

●●●●●●●●●

●

●
●
●●●●

●

●
●●●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●●●●●●●●
●
●●●
●

●

●

●

●

●

●●●●

●

●●
●
●

●

●

●●

●

●●●●●
●
●●

●●

●●●●●●●●●●●●●●●

●

●

●●●

●●

●●●●

●

●

●
●

●

●

●

●

●

●
●●●●●●●●●
●

●

●●

●

●●

●
●●

●

●●●

●

●●●●●●
●
●●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●●●●

●

●

●
●

●

●
●
●●●

●●

●

●

●
●

●●

●

●

●
●

●
●
●●
●
●
●●
●●●●●●●●●●●●

●
●
●
●

●

●●

●

●●

●

●●●
●●●●●●●●●●●

●

●

●●

●
●
●●
●
●

●

●●
●
●●

●
●
●

●

●
●
●

●
●
●
●
●

●

●
●
●●●

●●
●●●●●●
●●●
●●●●●
●

●

●

●
●
●

●

●
●●

●

●●

●

●
●

●
●
●●

●

●

●●
●

●

●
●
●●●●
●
●●

●●

●●

●●●●●●●●●●●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●●
●

●

●

●

●
●●●●●●●●●●●●●●

●

●

●

●●

●

●●●●
●
●

●

●●●●

●

●

●

●●●●

●

●

●●●●●●

●

●●●
●
●

●

●●●●●

●

●●●●●●

●
●

●●

●

●

●●

●

●●●●●●●●●●●●●●●●●

●

●

●

●
●
●●●●●●●●

●

●●

●

●●●
●

●●●

●

●
●
●●
●

●●●
●

●

●
●●●
●●
●●
●
●
●●
●
●

●
●●

●●●●●

●

●●

●

●
●
●

●●●

●●
●
●
●●
●

●●●

●

●

●

●●

●●

●●

●

●●

●

●

●

●
●

●

●●●●

●

●
●

●

●

●●●

●

●
●●

●

●
●

●

●

●
●●●

●●

●●●
●
●●●●●●●●●●●●●●●●●
●

●

●●

●

●●●●●●●
●
●●●●●●●●●

●
●
●

●

●●●
●

●

●●●●●
●

●
●●
●
●

●●●●●●●●●●

●

●

●

●

●●

●
●●●

●

●

●
●
●
●●●●●●●●
●

●●

●

●

●
●

●

●

●

●

●●●●●

●

●●

●●●●●●●●●●●●●●●●●

●●

●
●●●●●

●

●●●
●●●

●

●
●●

●

●
●
●●

●

●

●●●

●

●

●

●

●●●●●●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●

●

●●

●●

●

●

●●
●
●
●●
●
●

●

●●
●
●

●
●
●
●
●●●●●●●●●
●

●

●●●●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●●●

●

●

●

●●●●●●

●

●

●

●

●

●●●●●●

●

●

●

●●●●●●
●

●

●
●
●
●
●●

●●

●
●
●

●

●

●●

●

●
●
●●
●

●

●●

●

●

●
●
●●

●

●

●●●●

●

●●

●

●●
●
●●●●●●●●
●
●●●
●
●●

●
●
●

●
●●●●●
●
●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●

●

●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●

●

●

●

●

●

●●

●

●

●●
●
●
●
●●●●
●

●

●●●●●

●

●●●
●
●
●
●
●●
●●●

●

●●●

●

●●●●
●
●●●

●

●●●●●●●●●●●●
●●●●●●
●●
●●●●
●
●●●
●●
●●●●●●●●●●
●●●●●
●●
●●●●
●
●●●●●●
●
●●

●

●●
●
●●●●
●
●●●
●●
●
●●●●●●●

●
●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●
●●●

●

●●●●●●●●●●●●

●
●●●●●●

●

●●●

●
●●

●

●●●●●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●●

●

●

●
●●

●

●●

●

●●●●●●●●●●●●●●

●●

●●●●●●●
●
●●

●

●

●
●
●●

●

●●●●

●

●●●
●

●

●

●

●●
●●
●●

●

●

●

●
●●

●●●●●●●●●●
●
●●

●

●●●

●

●●
●
●●

●

●
●
●

●

●

●

●

●
●
●

●

●●●●●●

●

●
●
●

●

●●●

●

●●
●
●●

●

●●
●●
●
●●●●

●

●●●●

●●●

●●
●●●

●

●

●

●
●

●

●●●●
●
●●
●
●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●

●

●●
●
●●

●

●●●●●
●●●
●
●●●●●●

●

●
●

●

●
●
●●

●

●●●●●

●

●
●

●

●●●●●●●●●●●●●●
●
●
●
●

●

●●●●

0 500 1000 1500 2000 2500 3000

0
50

0
10

00
15

00

Index

m
ax

(d) The maximum runtimes of the portfolio on each
instance.

Figure 3.2: Average, standard deviation and maximum runtimes of the portfolio.

While considering average, standard deviation and maximum, it is very clear that there
are clustering on instances and very precise lines. In Figure 3.2(b) there are three evident

33

classes, one starting from 0 seconds to around 600 seconds, the second one starting from
600 to 1200 seconds and the third one from 1200 to 1800 (timeout). These specific values
are not randomly appearing, but they are result of the average operator. Moreover the
plot shows that the values are concentrated on the boundaries. The first class is close to
zero, meaning that all the solver are fast on average. The second class is close to 600,
meaning that there might be one solver of the portfolio going timeout while the rest are
fast. The third class of instances are grouped close to 1200, meaning that there might
be two solvers going timeout and one solving the problem.

In Figure 3.2(c) it is clear that the majority of the values are either concentrated to
the top or to the bottom, with few middle values. This suggests two clusters. Therefore
we understand that either a problem is close to its average solution time or the portfolio
has very fast and very slow solvers. In Figure 3.2(d) it is even clearer than the previous
plot that there are two natural clusters. One below the 1500 seconds and the other one
on the top at the timeout value. This implies that in the worst either a problem is
solvable within 1500 seconds or it is likely to time out.

3.3 Classifiers

Upon the discovery of distribution patterns, the next step is to exploit those properties
to create classifiers that are able to convey information about the satisfiability of the
problems. In total, six classifiers are developed:

• 3 classes (3C);

• average (AvgC);

• standard deviation (StdvC);

• maximum (MaxC);

• fastest solver (Fs);

• mistral classifier (MistralC).

While the first four are used both for feature comparison and scheduling simulation, Fs
and MistralC classifiers are only used in the scheduling.

Table 3.1 summarizes the classifiers and the way they select classes.

34

Classifier Class Meaning

3C easy for all if all the solvers in the portfolio solves the problem within 10s
at least one easy if at least one solver solves the problem within 10s

never easy if none of the solvers in the portfolio solves the problem within 10s
AvgC easy portfolio average solving time (pavg), pavg ≤ 600s

medium 600s < pavg ≤ 1200s
hard pavg > 1200s

StdvC low portfolio standard deviation solving time (pstdv), pstdv ≤ 100s
high pstdv > 100s

MaxC easy portfolio maximum solving time (pmax), pmax ≤ 1500s
hard pmax > 1500s

Fs abscon at < ct ∧ at < mt

choco ct < at ∧ ct < mt

mistral mt < ct ∧mt < at
MistralC easy mistral solving time (mt), mt ≤ 10s

medium 10s < mt ≤ 1799s
hard mt > 1799s

Table 3.1: Classifiers and their classes.

The 3C classifier is the most important one among the group since it is the one that
better separates the problems with respect to the portfolio. 3C aims to predict where
the portfolio is able to solve an instance easily with all the solvers, with at least one
or never easily. The AvgC classifier aims to give an indication on the average solving
time necessary in the portfolio to solve the examined instance. Along with the average
there is often the standard deviation, a measure of spread of the portfolio around the
average value. A high value of standard deviation could mean that in the portfolio there
are fast or slow solvers, while a low value could mean that the portfolio has a solving
time close to the average. The StdvC classifier measures the standard deviation/spread
using two classes: low and high. The MaxC classifier employs two classes with the goal
to distinguish between those portfolios that have at least one solver which is likely to go
time out and those portfolios which does not have it at all. The Fs classifier simply aims
to predict which solver is the fastest in the portfolio. The MistralC classifier is built
for test purposes and works in this way: if an instance is solved within 10 seconds, it is
classified easy. If it times-out, it is classified hard. If it is in the middle of the previous
cases, it is classified medium. The classifier MistralC is developed because mistral is
the best solver of the portfolio as well as one of the top solvers in the 2009 International
CSP competition, like mentioned in Section 2.2.4. Later we will also present how the
mistral solver is the fastest solver for 77,89% of the dataset considered. MistralC will
be useful once we will compare the performance of solving the CSPs with a classification
based portfolio or using only the mistral, the best solver of the portfolio.

35

3.4 Classifiers output distribution

Having to deal with unbalanced data set, is not a good feature for machine learning
algorithms [31]. Simply because if, on a two classes problem, one of the classes is chosen
by the 98% of the instances, then the optimal strategy will classify all the new coming
instances on the most selected class. This is a generalizing behaviour of the algorithms
that are trying to reach the best accuracy possible and is not an advantage in case we
are interested also in the other 2% of the instances.

Usually when those problems are present upsampling and downsampling are the first
techniques suggested. The former adds new instances replicating from the minority set,
while the latter is reducing the instances set, eliminating instances from majority set.

In the following series of Figures (3.3) we will analyse how the instances are spreading
over the different classes.

easy4all at_least_one_easy never_easy

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

(a) The 3C classifier classes
distribution.

easy medium hard

0
50

0
10

00
15

00
20

00

(b) The AvgC classifier classes
distribution.

easy hard

0
50

0
10

00
15

00
20

00

(c) The StdvC classifier
classes distribution.

easy hard

0
50

0
10

00
15

00
20

00

(d) The MaxC classifier
classes distribution.

abscon choco mistral

0
50

0
10

00
15

00
20

00
25

00

(e) The Fs classifier classes dis-
tribution.

easy medium hard

0
50

0
10

00
15

00
20

00

(f) The MistralC classifier
classes distribution.

Figure 3.3: Classifiers classes distribution.

36

Three classifiers seem to show high level of imbalance, namely AvgC Fs and the testing
classifier MistralC. However, only Fs (Figure 3.3(e)) and MistralC (Figure 3.3(f))
are in unbalanced condition where the classes ‘choco’ and ‘hard’ represent the 4.46% and
6.43% of the set. This issue is due to the nature of the problems we are treating. In fact,
in Figure 3.1(a) we showed the solving time distribution of mistral. The plot represent
perfectly the classifier classes distribution of MistralC. The majority of the instances
are solved easily while a small amount is slower or unsolvable.

Techniques such as upsampling and downsampling are not contemplated in this con-
text. The first one would influence the MLA to consider more important those problems
features of CSPs that are replicated. The second one would reduce the instances set to
such a small number of problems that would make training useless. This problem rests
unsolved, nevertheless the experimental results showed in Section 3.6.3 give us a good
reason to think that, despite that the unbalance issue our approach is still reliable.

The Fs classifier has an interesting result within. It allows us to prove, as previously
stated, the dominance of mistral as the fastest solver of the portfolio. In fact 77.89% of
the instances are solved by mistral with the best solving time of the portfolio. Classifiers
like StdvC (Figure 3.3(c)) and MaxC (Figure 3.3(d)) are following the trend of the
time distribution of the solvers without showing an impressive imbalance. Last but not
least, the 3C (Figure 3.3(a)) classifier shows a good distribution among the classes. The
first two classes are gathering the majority of the instances. This gives the hint that 3C
could be good to distinguish first the very easy instances for the whole portfolio, then
those that are fast for some solvers and then taking care of the hard ones with further
methods.

3.5 Features set

The choice of the instance features has a significant impact on the performance of the
classifiers. If a feature is expressive of the problem hardness, like the arity of a constraint,
this particular characteristic can influence the MLA to perform a better classification.
The list of features used by the portfolio solver CPHydra are analysed briefly in Section
3.5.1. Furthermore, in Section 3.5.3, a new group of features is added to the existing
CPHydra features. For establishing the goodness of them, it is necessary to compare
them with another good portfolio algorithm solver. For this comparison test we use
SATzilla features, described in Section 3.5.2 .

37

3.5.1 CPHydra features

An aspect of CPHydra not covered in the introduction of the portfolio solver is its
features set. CPHydra portfolio solver employs 36 features. A part of the features are
calculated by running the solver mistral and using the same solver for extracting infor-
mation statically. The rest are syntactic features. Here we list all the features, numbered
1-36 and grouped by how they are represented.

Dynamic features:
1-4: log average variables weight, log nodes, log propagation, log standard deviation

variables weight.

Logarithmic features:
5-16: bits, boolean, constants, constraints, extra bits, extra boolean, extra ranges,

extra values, lists, ranges, search variables, values

General purpose features:
17-18: max arity, all-different constraints

Percent features (%):
19-28: all-different, avg continuity, cumulative, decompose predicate, element, exten-

sional, gac predicate, global, min continuity, weighted sum

Perten features (×10):
29-34: average predicate arity, avg predicate shape, average predicate size, binary ext,

large ext, naryext

Square root features:
35-36: average domain size, max domain size

The dynamic features are obtained by launching mistral for each instance, with a time
limit of 2 seconds. The attributes that are saved are the average and standard deviation
of the variables weight. Such a measure is modified by mistral every time a failure in
the searching phase of the solution occurs. Along with those two values, there are the
number of nodes created and the number of propagations done.

The logarithmic category groups all those kind of features in which the function log2

is applied and mostly these are the one calculated using mistral statically. Some of the

38

features are related to how mistral represents the problem for solving it. In this subset
it is possible to find the number of bits, booleans, constants, extra bits, extra boolean,
extra ranges, extra values, lists, ranges and values. Feature number 8 measures the num-
ber of constraints, while feature number 15 counts the number of variables that mistral
will have to search on. In the general purpose group there are two features which are
not mathematically transformed, the max arity of the CSP and number of all-different
constraints present.

There is then a substantial group of features expressed in percentage. First of all there
are the percentage of extensional and global constraints respect to the total number
of constraints. Then we also count the percentage of decomposed predicates and the
non-decomposed (gac predicates) on the number of constraints. For predicate we mean
mathematical, logic formulas that can involve inequalities, equalities or simply logic op-
erations. There is the percentage of all-different, element, cumulative and weighted sum
constraints with respect to the global constraints. These are all different types of global
constraints. The percentage of domain continuity measure how the domain interval is
covered by the domain values assumed. If the percentage is high it means that the conti-
nuity of values is good; if the percentage is low it means that the values are spread in the
domain with large gaps between one value and another one. We measure the percentage
average and minimum of the domain continuity.

In the per ten features group we store information like the average predicate arity, size
and shape, expressed as scaled from 0 to 10. The shape is defined to be the average of the
score of the predicates, knowing that each operation within a predicate has a different
score (i.e. one default, 5 for a mul, 100 for a pow). Moreover there are the features that
capture the per ten value of the binary, n-ary and large constraints (with arity ≥ 5)
with respect of the extensional constraints. The squared root features group contains
information about the maximum and average domain size.

3.5.2 SATzilla features

SATzilla is using a restrained set of features introduced by Nudelman [29]. From the
84 mentioned in the paper, SATzilla cut out a number of computationally expensive
features, limiting the computation time for each of the local search and other features
extractions. The total feature computation time per instance was limited to 60 CPU sec-
onds. After eliminating some features that had the same value across all instances and
some that were too unstable given only 1 CPU second of local search probing, SATzilla
ended up using the 48 features summarized in the following list [43].

Problem Size Features:
1. Number of clauses: denoted c.

39

2. Number of variables: denoted v.
3. Ratio: c/v .

Variable-Clause Graph Features:
4-8. Variable nodes degree statistics: mean, variation coefficient, min, max and
entropy.
9-13. Clause nodes degree statistics: mean, variation coefficient, min, max and en-
tropy.

Variable Graph Features: 14-17. Nodes degree statistics: mean, variation co-
efficient, min and max.

Balance Features:
18-20. Ratio of positive and negative literals in each clause: mean, variation
coefficient and entropy.
21-25. Ratio of positive and negative occurrences of each variable: mean, vari-
ation coefficient, min, max and entropy.
26-27. Fraction of binary and ternary clauses

Proximity to Horn Formula:
28. Fraction of Horn clauses
29-33. Number of occurrences in a Horn clause for each variable: mean, varia-
tion coefficient, min, max and entropy.

DPLL Probing Features:
34-38. Number of unit propagations: computed at depths 1, 4, 16, 64 and 256.
39-40. Search space size estimate: mean depth to contradiction, estimate of the log
of number of nodes.

Local Search Probing Features:
41-44. Number of steps to the best local minimum in a run: mean, median, 10th
and 90th percentiles for SAPS.
45. Average improvement to best in a run: mean improvement per step to best
solution for SAPS.
46-47. Fraction of improvement due to first local minimum: mean for SAPS and
GSAT.
48. Coefficient of variation of the number of unsatisfied clauses in each local
minimum: mean over all runs for SAPS

40

3.5.3 CPHydra added features

It was immediately clear that two CPHydra features (7: log costants and 12: log extra values)
were useless, since on each instance, their value was always ‘-1’, which means not calcu-
lated. They were consequentially removed from the feature set.

Inspired by the work presented by Nudelman [29], which is used also in SATzilla, we
extracted some new features from the problems, modifying the source code CPHydra
in order to calculate them. The first simple feature that is added is the ratio of num-
ber constraints over number variables and the reciprocal ratio, number of variables over
number of constraint. Then more elaborate features were considered. For every instance
we considered the variable graph (vg), where every variable is represented as a node and
an edge connects two nodes if only if they occur together in at least one constraint.

Finally we considered the variable-constraints graph (vcg) which has a node for ev-
ery variable or constraint and an edge between a variable and a constraint if only if the
variable is involved in that constraint. From those features over the graphs we extracted
the average and standard deviation of the nodes degree and then applied the logarithm.
All of these new feature were expressed by means of logarithm in base 2.

extended features set:
37-44: ratio, reciprocal ratio, log vg average, log vg standard deviation, log
vcg average constraint, log vcg average variable, log vcg standard deviation
constraint, log vcg standard deviation variable.

3.6 Experimental results

Two types of experiments using our classifiers are conducted aiming to three different
purposes. The first one is focused on different features sets of CPHydra. In Section
3.6.1, different combinations of features set will be tested to establish if some config-
uration is better than another one. The second type of experiments aims to compare
CPHydra features to SATzilla ones and a mixture of the two. These experiments sat-
isfies two goals of ours: decreeing the supremacy of CPHydra features over SATzilla
one; and establishing that our classifiers are reliable, reaching satisfying values of accu-
racy and κ statistic.

In each experiment, the Weka Experimenter framework [17] is used using a variety of
MLA by classification purposes. A 10-fold cross validation is performed and the per-
formance of each classifier, on each representation and on each classification task is
measured in terms of the classification accuracy and the κ statistic.

41

Differences in performance are tested for statistical significance using a paired t-test
at a 95% confidence level. Usually the results are reported in tables and the feature
set expressed in the first column is used as a baseline. In each table, values that are
marked with a ◦ represent performances that are statistically significantly better than
the baseline, while those marked with a • represent performances that are statistically
significantly worst.

3.6.1 Comparison of different CPHydra feature sets

The purpose of this section is to show the results of a series of classification run on
different feature sets. So we will first introduce how the different feature sets are formed.
Then we will show how long does the features calculation take and finally we presents
the tables highlighting the comparison from the accuracy and κ statistic point of view.

The feature sets to test involve the following list of attributes variation. Each feature is
expresses as id : name.

features involved in the different features sets:
7:constants, 12:extra values, 37:ratio, 38:reciprocal ratio, 39:log vg average,
40:log vg standard deviation, 41:log vcg average constraint, 42:log vcg aver-
age variable, 43:log vcg standard deviation constraint, 44:log vcg standard
deviation variable

Table 3.2 explains the feature sets composition, considering that the features not specified
in the column are kept fixed in each set. The norm column shows whether or not all the
features are normalized by the variable size and added to the features set. The feature
sets names in the first column correspond to the amount of features used.

Feature set
features IDs

7 12 36 37 38 39 40 41 42 43 norm

42 % % ! ! ! ! ! ! ! ! %

34 % % % % % % % % % % %

36 % % ! ! % % % % % % %

38 % % ! ! ! ! % % % % %

40 % % ! ! % % ! ! ! ! %

84 % % ! ! ! ! ! ! ! ! !

original ! ! % % % % % % % % %

Table 3.2: The classifiers used for comparing the different feature set.

42

While in the main feature set comparison all the previous feature sets are used, for
showing the time elapsed in the features calculation we will not. It is necessary to show
the bigger, the smaller and the baseline feature set. The time elapsed varies from machine
to machine, so what will be important are the differences between the times registered.

Feature set
Elapsed time (sec)

no dynamic with dynamic
34 1019 36549

original 1022 36650
42 1080 36729
84 1087 36768

Table 3.3: Time elapsed for the CPHydra features calculation.

We notice in Table 3.3 that the time elapsed for calculating the features does not increase
too much as the number of features increase. The dynamic features are the real reason
why the calculation takes so long, in fact without them the calculation would be almost
34 times faster. The explanation relies in the fact that for every problem, mistral is
executed for a maximum time of 2 seconds in order to be able to extract the dynamic
features.

In Table 3.4 we enlist the MLA that are used for the upcoming test. The choice is
limited to three because this test does not need any wide range experiment on different
type of algorithms. J48 is employed as baseline RandomCommittee and RandomForest
will demonstrate that they are the reaching the highest values of accuracy and κ statistic.

MLA Toolkit Implementation
Decision Tree WEKA J48
Meta Classifier WEKA Random Committee + Random Tree
Decision Tree WEKA Random Forest

Table 3.4: The classifiers used for comparing the different feature sets.

From Table 3.5 to 3.12, a series of tests on classifiers 3C, AvgC, StdvC, MaxC are
reported, analysing first accuracy and then κ statistic for each feature set. The features
set 42 is used as baseline. In each table, values that are marked with a ◦ represent
performances that are statistically significantly better than the 42 features set, while
those marked with a • represent performances that are statistically significantly worse.

43

Table 3.5: Feature sets comparison based on the 3C classifier: accuracy.

MLA on 3C 42 34 36 38 40 84 original
trees.J48 83.83 83.04 83.15 83.63 83.64 82.49 • 83.04
trees.RandomForest 85.34 84.86 84.86 85.12 85.27 84.28 84.72
meta.RandomCommittee 84.99 84.80 84.67 85.20 85.37 84.59 84.85

◦, • statistically significant improvement or degradation

Table 3.6: Feature sets comparison based on the AvgC classifier: accuracy.

MLA on AvgC 42 34 36 38 40 84 original
trees.J48 84.18 84.12 84.21 84.14 84.18 83.96 84.12
trees.RandomForest 85.37 85.53 85.28 85.30 85.08 84.95 85.45
meta.RandomCommittee 85.03 85.45 85.12 85.27 85.17 84.60 85.29

Table 3.7: Feature sets comparison based on the StdvC classifier: accuracy.

MLA on StdvC 42 34 36 38 40 84 original
trees.J48 90.10 90.07 90.02 90.16 89.88 89.89 90.07
trees.RandomForest 90.88 90.83 90.70 90.75 90.94 90.80 90.68
meta.RandomCommittee 91.00 90.75 90.63 90.79 90.90 90.78 90.72

Table 3.8: Feature sets comparison based on the MaxC classifier: accuracy.

MLA on MaxC 42 34 36 38 40 84 original
trees.J48 89.61 89.85 89.60 89.75 89.68 89.69 89.85
trees.RandomForest 90.35 90.56 90.42 90.24 90.35 90.19 90.40
meta.RandomCommittee 90.28 90.39 90.30 90.20 90.22 90.17 90.42

44

Table 3.9: Features set comparison based on the 3C classifier: κ.

MLA on 3C 42 34 36 38 40 84 original
trees.J48 0.75 0.73 0.74 0.74 0.74 0.72 • 0.73
trees.RandomForest 0.77 0.76 0.76 0.77 0.77 0.75 0.76
meta.RandomCommittee 0.76 0.76 0.76 0.77 0.77 0.76 0.76

◦, • statistically significant improvement or degradation

Table 3.10: Features set comparison based on the AvgC classifier: κ.

MLA on AvgC 42 34 36 38 40 84 original
trees.J48 0.63 0.63 0.63 0.63 0.63 0.62 0.63
trees.RandomForest 0.65 0.65 0.65 0.65 0.64 0.64 0.65
meta.RandomCommittee 0.65 0.66 0.65 0.65 0.65 0.64 0.65

Table 3.11: Features set comparison based on the StdvC classifier: κ.

MLA on StdvC 42 34 36 38 40 84 original
trees.J48 0.76 0.76 0.76 0.76 0.76 0.76 0.76
trees.RandomForest 0.78 0.78 0.77 0.77 0.78 0.78 0.77
meta.RandomCommittee 0.78 0.78 0.77 0.78 0.78 0.78 0.77

Table 3.12: Features set comparison based on the MaxC classifier: κ.

MLA on MaxC 42 34 36 38 40 84 original
trees.J48 0.73 0.74 0.73 0.74 0.74 0.74 0.74
trees.RandomForest 0.75 0.76 0.75 0.75 0.75 0.75 0.75
meta.RandomCommittee 0.75 0.75 0.75 0.75 0.75 0.75 0.75

In Table 3.13 we summarise the results given previously from Table 3.5 to Table 3.12.
Table 3.13 should be read as follows: the baseline set of 42 features is major, equal or
minor (>,=, <), in a number of characteristics indicated in each row, compared to the
feature set in the first column across twelve tables. Each comparison considers both
accuracy and κ statistic. As Table 3.13 suggests, none of the feature sets was able to
perform clearly better than the others. It is also clear from the tables that, although
there is no feature set that is statistically more significant than the others, the set with
42 features is performing slightly better. Like summarised in Table 3.13, this set is per-
forming slightly better not only compared to the original features set but also to the
other ones. A further run of popular techniques like backward elimination or forward
selection does not help refining the features set.

Keeping the baseline set composed by 42 features as the official features set for the
following experiments has its strength points. First, the slightly improved accuracy even
though we did not find any statistical significance. Secondly the idea of introducing

45

Feature set compared
baseline:42
> = <

original-accuracy 7 0 5
original-κ 4 7 1
34-accuracy 7 0 5
34-κ 2 7 3
36-accuracy 8 0 4
36-κ 4 8 0
38-accuracy 8 0 4
38-κ 2 8 2
40-accuracy 6 2 4
40-κ 2 8 2
84-accuracy 11 0 1
84-κ 5 6 1

Table 3.13: Summary of percentage major, equal or minor (>,=, <) between the
baseline and the other datasets.

more complete features like those based on graphs and, at the same time, removing two
of them useless.

3.6.2 Comparison between CPHydra and SATzilla features
sets

Three alternative feature descriptions are compared in this second experiment. These
are denoted as CPHydra, Hylla, and SATzilla, in the tables. CPHydra has the
new expanded set composed of 42 features. For being able to calculate the 48 features
of SATzilla a conversion of CSPs to SAT was required. Unfortunately, as mentioned
in [34], this is a process that can take a long time. Indeed it took a long time, used a big
amount of memory space and eventually it was not possible to calculate the features of
some instances. Because of these calculation issues, after the CPHydra and SATzilla
features calculation the dataset shrank down to 3293 instances. These instances are then
used for all the three features set.

The solver sugar provides the utility of encoding a CSP into a SAT problem. This
utility was exploited for having our instances encoded into SAT one and being able to
run an executable program, provided by the creator of SATzilla, which extracts the
SATzilla features from the SAT problems. A third feature set is formed after the pre-
vious one by simply merging the two features set CPHydra and SATzilla. This is
called Hylla.

46

The performances are compared using various MLA presented in Table 3.14, on each
of the four classifier (3C, AvgC, StdvC and MaxC). In this case the choice of MLA
presented is bigger because there is the will of trying to see how the different feature set
are behaving with the respect to different learning categories previously not used, like
NaiveBayes or One-rule. ANN is not included because of slowness and difficulties in tun-
ing. Originally MultiBoostAB was tested in combination with J48 but the computation
time was unacceptably high that it would make impossible to test such configuration for
scheduling purposes. So, like for RandomCommitte, RandomTree is used as weak learner
for MultiBoost.

MLA category Toolkit Implementation
Decision Tree WEKA J48
k-NN WEKA IBk
Meta Classifier WEKA MultiBoostAB + RandomTree
Meta Classifier WEKA Random Committee + RandomTree
Naive Bayes WEKA Default
Decision Tree WEKA Random Forest
Rules WEKA One-R

Table 3.14: The classifiers used for evaluation.

In the following tables CPHydra feature set is used as a baseline. The symbol ◦ then,
represents performances that are statistically significantly better than CPHydra, while
those with a • represent performances that are statistically significantly worst. Each
table is ordered according to the accuracy on CPHydra.

47

Table 3.15: Classification accuracy and κ-statistics for the 3C classifier.

MLA CPHydra Hylla SATzilla CPHydra Hylla SATzilla
trees.RandomForest 85.34 85.14 82.39 • 0.77 0.77 0.72 •
meta.MultiBoostAB 85.04 81.58 • 81.66 • 0.76 0.71 • 0.71 •
meta.RandomCommittee 84.99 85.44 82.57 • 0.76 0.77 0.73 •
trees.J48 83.83 82.52 • 79.70 • 0.75 0.73 0.68 •
lazy.IBk 83.69 83.53 78.71 • 0.74 0.74 0.67 •
rules.OneR 72.89 72.89 69.16 • 0.57 0.57 0.51 •
bayes.NaiveBayes 61.70 62.74 52.49 • 0.37 0.44 ◦ 0.31 •

◦, • statistically significant improvement or degradation over CPHydra .

Table 3.16: Classification accuracy and κ-statistics for the AvgC classifier.

MLA CPHydra Hylla SATzilla CPHydra Hylla SATzilla
trees.RandomForest 85.37 85.53 84.42 0.65 0.65 0.62 •
meta.RandomCommittee 85.03 85.32 84.25 0.65 0.65 0.62
trees.J48 84.18 83.35 82.42 • 0.63 0.61 0.58 •
lazy.IBk 83.45 83.13 81.39 • 0.62 0.61 0.57 •
meta.MultiBoostAB 83.06 82.50 80.74 • 0.61 0.60 0.56 •
rules.OneR 78.97 78.97 75.75 • 0.45 0.45 0.34 •
bayes.NaiveBayes 64.96 53.81 • 41.69 • 0.25 0.22 0.12 •

◦, • statistically significant improvement or degradation CPHydra.̇

Table 3.17: Classification accuracy and κ-statistics for the StdvC classifier.

MLA CPHydra Hylla SATzilla CPHydra Hylla SATzilla
trees.RandomForest 91.03 91.14 90.15 0.78 0.78 0.76
meta.RandomCommittee 91.02 91.08 90.17 0.78 0.78 0.76 •
meta.MultiBoostAB 90.70 88.28 • 87.31 • 0.78 0.72 • 0.70 •
trees.J48 90.28 89.46 88.22 • 0.77 0.75 0.72 •
lazy.IBk 89.88 89.67 87.90 • 0.76 0.75 0.71 •
rules.OneR 81.43 81.41 77.70 • 0.54 0.54 0.42 •
bayes.NaiveBayes 71.59 65.73 • 55.39 • 0.32 0.33 0.19 •

◦, • statistically significant improvement or degradation over CPHydra .

Table 3.18: Classification accuracy and κ-statistics for the MaxC classifier.

MLA CPHydra Hylla SATzilla CPHydra Hylla SATzilla
trees.RandomForest 90.35 90.70 89.90 0.75 0.76 0.74
meta.RandomCommittee 90.28 90.64 90.10 0.75 0.76 0.74
trees.J48 89.61 89.08 87.99 • 0.73 0.72 0.69 •
lazy.IBk 89.18 89.00 87.87 • 0.73 0.72 0.70 •
meta.MultiBoostAB 88.42 88.32 86.95 • 0.71 0.71 0.67 •
rules.OneR 82.98 82.98 77.87 • 0.54 0.54 0.38 •
bayes.NaiveBayes 71.37 67.30 • 54.26 • 0.31 0.34 0.18 •

◦, • statistically significant improvement or degradation over CPHydra .

In summary, classification accuracies of CPHydra are in majority all higher across all
the results, except some cases like some of the Random Forest or Random Committee
results in which no statistically significance is reached. In AvgC, StdvC and MaxC
classifiers, all the algorithms except the aforementioned, are showing statistical signif-
icance of CPHydra on SATzilla, both on accuracy and κ statistic. In two specific
cases this pattern is broken, in AvgC Random Forest κ and in StdvC Random Com-
mittee κ are statistically significantly better than SATzilla. The 3C classifier shows
the best results in terms of both accuracy and κ, where all the algorithms used reach the
statistical significance of CPHydra on SATzilla. Multi Boost and J48 are reaching

48

higher value on CPHydra respect to Hylla.

3.6.3 Reliability of classifiers

We showed already in Tables 3.15, 3.16, 3.17 and 3.18 that the classifiers presented are
reliable. Not considering the low performing MLA, like One-R and NaiveBayes, 3C and
AvgC reach a really good accuracy value around the 85%. While StdvC and MaxC are
reaching accuracy of even 90%. All the κ statistics value are significantly high. AvgC
scores a 0.65 level of agreement. While the other classifiers are scoring a really good
0.75/0.78 of κ statistic.

In Table 3.19 we introduce the experimental results of the Fs classifier. This classi-
fier has been excluded from the previous tests because of its utilization is to the next
phase described in Chapter 4.

Table 3.19: Classification accuracy and κ-statistics for the Fs classifier.

MLA CPHydra Hylla SATzilla CPHydra Hylla SATzilla
trees.RandomForest 89.28 89.35 88.47 0.69 0.69 0.66
meta.RandomCommittee 89.11 89.44 88.11 0.69 0.70 0.65 •
lazy.IBk 88.60 87.60 • 86.10 • 0.69 0.66 • 0.62 •
trees.J48 88.33 88.09 87.45 0.67 0.66 0.64
meta.MultiBoostAB 87.04 87.02 87.99 0.64 0.64 0.66
rules.OneR 82.85 82.66 82.33 0.44 0.42 0.40
bayes.NaiveBayes 52.96 57.52 ◦ 37.56 • 0.25 0.29 ◦ 0.15 •

◦, • statistically significant improvement or degradation over CPHydra .

The Fs classifiers reaches an high accuracy value around the 89%, with κ statistic around
0.69.

The CPHydra features set thus gives rise to the best overall performance. Moreover
the classifiers built on these features are reliable. Based on these promising results, we
consider in the next chapter the utility of using these classifiers as a basis for managing
how a solver portfolio can be used to solve a collection of CSP instances.

49

Chapter 4

Scheduling problems based on
learning

The usage of a portfolio of constraint solvers might have different challenges, like minimis-
ing the CPU time used for solving the instances or maximising the number of instances
solved in a specific time frame. In this chapter we consider the challenge of minimising
the average finishing time of an instance set. The finishing time of an instance is defined
as the time by which it is solved.

The purpose of the following sections is to show that classifiers can help devising simple
scheduling rules that will optimise the average finishing time. For this purpose, a couple
of simple Java simulators, described in Section 4.3, have been built. One simulates the
execution of the portfolio on a single processor case and the other one on a multi proces-
sor case. We assume that CSP instances to be solver are all ready at our disposal. We
then focus on the 3293 instances considered in the previous chapter. This methodology
is similar to the one used in the international SAT competitions.

In both simulators a 5-fold cross validation on a randomised dataset is run. The reason
of randomising is due to the fact that similar instances are next to each other and by
randomising, the range of problems varies giving the possibility of training on hetero-
geneous instances. The reason of applying a 5-fold cross validation and not a popular
10-fold like used previously, relies on the dimension of the dataset. A 5-fold split allows
to simulate the scheduling with 658 or 659 instances while a 10-fold would halve the
dataset. A so small number of instances would not be desirable especially for the multi
processors experiments. At the increase of the number of processors, the results returned
would not be interesting any more.

In the following section we will explain the simulation and the results on the single
processor. A section on the simulation on the multiple processor case will then follow

50

and finally a section about the simulator implemented.

4.1 Single processor case

A single processor scenario is the elementary way to show a simulation of scheduling.
However if the classifiers previously introduced would not be perform well, it would be
clear from the results of a simple scheduling simulation. The single processor case is a
first step that must be solver before advancing in multiple processors scenario.

For describing the modus operandi of this simulation, we will follow the same execu-
tion flow of the simulator developed. In a simple simulation run these operation are
called:

1. initialization;

2. preparation of data structures;

3. classification;

4. scheduling;

5. statistics record;

6. structures cleaning.

After a generic initialization in the first phase, the 5-fold cross validation is set up in the
second phase of preparation of the data structures. A train and a test set are composed
for each classifier employed. The purpose is then training each train set and, on the
classifier built, classify the instances belonging to the test. The next step is to apply
different scheduling rules to evaluate the classifiers performances. The scheduling rules
are deepened in the following Section 4.1.1.

The statistical data is then stored for experimental tests treated in Section 4.1.2. In
this single CPU case, two statistical measures are considered. Apart from the already
known average finishing times, the median finishing time is recorded. The median gives
an idea about which value divides in two the finishing time distribution. It can be a
good indicator of how much the data is skewed compared to the average.

A final cleaning function is called to erase all the sets and statistics achieved till this
point. This operation is crucial if the 5-fold cross validation is run different times. In
the specific, in order to stabilize the results, this whole process is repeated for 250 times.

51

The average and median finishing time is calculated on each result from each fold of
cross validation in every executed run.

In all the tests, we employed Random Committee as MLA. This choice is justified in
Figure 4.10.

4.1.1 Scheduling rules

Minimising the average finishing time can be achieved by solving each instance with
an increasing order of difficulty, more precisely, using the known heuristic shortest pro-
cessing time. In the portfolio context doing this corresponds to ordering the instances
accordingly to their degree of hardness and then employing the fastest solver to solve
the instance. This section will be devoted to developing heuristic for this purpose which
will be refer to as scheduling rules.

Our scheduling rules are divided in three categories:

• oracle based;

• classifier based;

• baseline.

In the first category there are all those rules that are exploiting directly the real run
time. They are using an “oracle” to selects the fastest solver. Oracle1 is what can
also be defined as the optimal solution. In fact the instances are ordered based on the
fastest solving time and run with that. Oracle2 rule orders the instances according to a
combination of the whole 3C, AvgC, StdvC, MaxC classifiers. The specific order will
be described later in the rules based on classifiers. Oracle3 orders the instances by the
3C classifier. Such order consists in first execute those instances belonging to the first
class (easy for all), then instances from the second class (at least one easy) and finally
the hard instances (never easy).

The rules based on classifiers exploits all the five classifiers developed in chapter 3 to or-
der the instances in different way. All the rules, however, use the Fs classifiers to selected
the predicted fastest solver. The rules presented in this category are six. The simplest
one is Scheduler6, which orders the instances by the 3C classifier (like Oracle3). The
Scheduler5 and Scheduler4 order the instances based on two classifiers: 3C and then
respectively by MaxC and AvgC to break ties. The scheduling order is showed in Fig-
ures 4.1 and 4.2 with the help of a structural figure as a tree. The root node of the
tree indicates the first classifier applied. Each branch is result of ordering on the parent
classifier and the results are subsets of the original datasets. A node with a single child or

52

a leaf is a class. While a node with more than one child corresponds to another ordered
classifier. If not specified, the scheduling order has to be read from the most left leaf to
the most right leaf.

In all the presented scheduling rules, the labels c1, c2, c3 correspond to the 3C classes easy
for all, at least one easy, never easy. Labels such e,m, h correspond to easy, medium,
hard classes of AvgC. While labels like l, h correspond to low, high classes of StdvC.
We show now how to read Scheduler5 represented below. First we order the instances
based on 3C classes, from the easiest one to the most difficult one. In each 3C classes
we then break ties ordering on the MaxC. The scheduler is executing first the easy (e)
then the hard (h) instances of the c1 class. It follows the easy then the hard instances
of the c2 class. Finally it schedules the easy then the hard instances of the c3 class.

3C

c3

MaxC

he

c2

MaxC

he

c1

MaxC

he

Figure 4.1: Scheduler5 rule

3C

c3

AvgC

hme

c2

AvgC

hme

c1

AvgC

hme

Figure 4.2: Scheduler4 rule

In Figure 4.3 the Scheduler1 rule is illustrated. This rule is using 3C, AvgC and StdvC
to order the instances.

53

3C

c3

AvgC

h

StdvC

hl

m

StdvC

hl

e

StdvC

hl

c2

AvgC

h

StdvC

hl

m

StdvC

hl

e

StdvC

hl

c1

AvgC

h

StdvC

hl

m

StdvC

hl

e

StdvC

hl

Figure 4.3: Scheduler1 rule

Scheduler3 is similar to Scheduler1, except that MaxC is used instead of StdvC as a
tie breaker for 3C. In specific the order is described in the tree in Figure 4.4. The first
branch maintains the usual order also helped by the fact that almost all the classes are
easy. In the second and third branches a swap of classifiers has been actuated. Indeed,
as the numbers will show later, such a swap is improving both the average and median
finishing time.

3C

c3

MaxC

h

AvgC

hme

e

AvgC

hme

c2

MaxC

h

AvgC

hme

e

AvgC

hme

c1

AvgC

h

MaxC

he

m

MaxC

he

e

MaxC

he

Figure 4.4: Scheduler3 rule

Finally Scheduler2 employs all the five classifiers as depicted in Figure 4.5. It still applies
the same swapping optimization in the Scheduler3. For space purpose the ultimate
classifiers are restricted: M is MaxC and SD is StdvC .

54

3C

c3

MaxC

h

AvgC

h

SD

hl

m

SD

hl

e

SD

hl

e

AvgC

h

SD

hl

m

SD

hl

e

SD

hl

c2

MaxC

h

AvgC

h

SD

hl

m

SD

hl

e

SD

hl

e

AvgC

h

SD

hl

m

SD

hl

e

SD

hl

c1

AvgC

h

StdvC

h

M

he

l

M

he

m

StdvC

h

M

he

l

M

he

e

StdvC

h

M

he

l

M

he

Figure 4.5: Scheduler2 rule

We now explain the baseline scheduling rules. The first called Random, selects the next
instance to solve at random, and solves it with a randomly chosen solver. It is called
simply Random. The second approach,Random+FS, selects the instances randomly and
solves each instance with the solver predicted by the Fs classifier. The last baseline
approach, Mistral, orders the instances based on the MistralC classifier and solves
them with the mistral solver. The choice of mistral has two motivation, first it is the
fastest solver of the portfolio and one of the fastest CSP solver in the latest competition.
The second reason relies in the simple fact of showing that this portfolio strategy is
able to perform better than the single best solver. Surely, this approach has already its
weak point in the non termination condition. In fact mistral is not able to solve all the
instances by itself.

4.1.2 Experimental results

The scheduler is giving a cut off of 1800 seconds. After that an instance is considered
timed out. The result of a 250 runs of 5-fold cross validation are summarized in Table 4.1.

Each of the rules just described, except the aforementioned Mistral one, assures that
each instance is actually solved by the cut off. Saying that, if the solver selected by Fs
or randomly times out, the portfolio switches randomly to a new solver until eventually

55

the termination is reached. This condition is reachable because instances not solvable
by the cut off were already excluded from the dataset. Instead, if Mistral reaches the
cut off, we declare the instance not solved.

Scheduler Scheduler Selectors Finishing Time
Category Configuration instance selector solver selector average median

Oracles
Oracle1 oracle oracle 922 45
Oracle2 3C≺ AvgC≺ StdvC≺ MaxC oracle 2,637 599
Oracle3 3C oracle 3,468 1,074

Classifiers
Scheduler2 3C≺ AvgC≺ StdvC≺ MaxC Fs 6,748 1,389
Scheduler3 3C≺ AvgC≺ MaxC Fs 6,800 1,344
Scheduler1 3C≺ AvgC≺ StdvC Fs 7,051 1,707
Scheduler4 3C≺ AvgC Fs 7,327 2,295
Scheduler5 3C≺ MaxC Fs 7,580 2,247
Scheduler6 3C Fs 8,835 3,731

Baselines
Mistral MistralC Mistral time ≥ 15,402 ≥ 8,720
Random+FS random Fs 24,344 23,590
Random random random 113,414 113,898

Table 4.1: Performance of classification-based portfolios on a single processor.

The experimental results shows, that, even if the median is slightly higher than the suc-
cessive Scheduler3 rule, the best average finishing time is reached with the combination
of the 3C, AvgC, StdvC, MaxC and Fs classifiers. Scheduler2 clearly gives the top
result among the non oracle based scheduling rules. Compared to the Mistral rule ,
we proved that classification based portfolio approach is useful and brings significant
measures in runtime. Considering that Mistral is not solving every instances in the
test, Scheduler2 is increasing the performances in average and medium finishing time
respectively of 57% and 84%.

From the observation of Scheduler2 and Oracle2, we can evaluate how effective is Fs
classifier compared to the oracle. Certainly Fs is affected by classification errors and
this justify the increase of almost 2.5 times in the average finishing time. However, if
we consider Random and Random+FS, we can appreciate how Fs is decreasing the average
finishing time of 4.7 times. This states how a random selection is worse than classifier
based on selection. We can also observe that the best scheduling rule gives result much
closer to the oracle based solutions than the random one. This is testifying that a classi-
fication based portfolio is a successful strategy due also to the reliability of the classifiers.

In addition, we have tested how swapping classifiers in two branches of Scheduler3 af-
fects the performances. As Table 4.2 shows, swapping the classifiers yields to decreased
average and median finishing time.

56

Scheduler configuration
Finishing Time

average median
Scheduler3 6,800 1,344
Scheduler3 (no swap) 7,212 2,601

Table 4.2: Performance comparison of Scheduler3 with or without swap.

4.2 Multiple processors case

The second Java simulator is actually an extension of the single processor case and it
uses the same modus operandi previously introduced:

1. initialization

2. preparation of data structures

3. classification

4. scheduling

5. statistics record

6. structures cleaning

The operations are still the same, from the generic initialization to the preparation of
the 5-fold cross validation, creating the training and test sets. Then it still executes the
classification of the respective test sets in input and the run of different scheduling rules
created, which however will be different. Once it comes to the statistics storage phase
new statistical measures are introduced. In fact, moving out from a single to a multiple
CPU reality, introduces a series of new possibilities to control, like the makespan or the
percentage of unused resources. Those two, indeed, are measures that would not be inter-
esting in a single processor case. The makespan is informally defined as the ending time
of the last task. Where obviously in a single processor such a definition would provide
the same number over the all runs, in the multi processor case is interesting to analyse
all the different ending computation times of each processor. From those computation
times we want to extract the maximum, which is the makespan. Such value will show
on average how long does it takes to execute the most expensive computation. Knowing
the makespan makes interesting to calculate how much of the resources that could be
used, are actually left idle.

57

Given a problem i, the makespan is defined as the maximum of the n processors running
time pr.

makespan(i) = max(pr1(i), pr2(i), . . . , prn(i))

Given a problem i, the percentage of unused resources is defined as the difference between
the average of ending time and the maximum (the makespan), divided by the makespan.

unusedr(i) =
avg(runtimepr(i))−makespan(i)

makespan(i)

The larger the difference is, the bigger is the unbalance imbalance in work load among
the processors.

Once the statistical values are stored, the simulator cleans the data structures for being
able to perform another run of cross validation. Like in the single CPU case, 250 runs
are executed and the MLA applied is Random Committee. A further explanation of this
MLA choice is given later in Figure 4.10.

4.2.1 Scheduling rules

The purpose of this scheduling simulation is to minimise the average finishing time and
the scheduling rules already introduced in Section 4.1.1 are still valid in this context.
We will however restrict ourselves to only five rules, as shown in Table 4.3: the optimal
(Oracle1 in the single processor case), the best classification based approach from the
single processor (Scheduler2) and the baseline rules (Mistral Random and Random+FS).
The job across the machines will be distributed as round robin. In some rules (as
shown in Table 4.3), SJF heuristic is employed for dispatching the instances ordered
by hardness to the machines. The SJF heuristic is applied with the scheduling rules
previously introduced. If the purpose of the scheduling was minimise the makespan,
then a technique such as preemption would be the top choice of the scheduling because
such method could distribute better the load of computation over the processors involved.

Scheduler configuration Scheduling rule
Name Round Robin SJF instance selector solver selector

Optimal ! ! oracle oracle

Scheduler2 ! ! 3C≺ AvgC≺ StdvC≺ MaxC Fs

Mistral ! ! MistralC mistral time

Random+FS ! % random Fs

Random ! % random random

Table 4.3: Rules applied on portfolios in a multiple processors case.

58

4.2.2 Experimental results

The experimental runs are executed on 5, 10, 25, 50, 75 and 100 processors. Such a
number of processors is able to delineate the trend over all the statistics measures.

In Table 4.4 the results over the different scheduling rules are shown. The table re-
ports the results using the average finishing time.

Num. of processors Optimal Scheduling2 Mistral Random+FS Random

5 201 1299 3096 4719 22711
10 112 664 1590 2382 11461
25 60 285 685 976 4703
50 45 162 386 510 2430
75 41 122 292 351 1684
100 38 102 246 271 1306

Table 4.4: Average finishing time of a scheduling simulation on multiple processors.

The plot in Figure 4.6 shows the trend of the average finishing time. As it is possible to
notice, the Scheduling2, our top choice, is performing considerably good. The distance
between the rule and the Optimal is decreasing as the number of processors increases.
The same behaviour is notable comparing Scheduling2 and Mistral where the distance
is increasing with the increase of the number of processors. An interesting point is to
see that the rule Random+FS is asymptotically reaching Mistral.

59

●

●

●

●

●

●

number of processors

av
g

fin
is

hi
ng

 ti
m

e

5 10 20 30 40 50 60 70 80 90 100

1e
+

01
1e

+
02

1e
+

03
1e

+
04

●

●

●

●

●

●

●

●

Random
Random+FS
Mistral
Scheduling2
Optimal

Figure 4.6: Average finishing time.

Before taking a step further to other measures, let us analyse another run of experiments
with an exponential scale of processors: 2, 4, 8, 16, 32, 64, 128, 256 and 512. In Figure
4.7, both the x and y axis are log scaled, because we want to show the linearity of the
average finishing times. This property says that, as the number of processors increase,
the average finishing time is decreasing linearly. This property is maintained until a
certain point. In fact, such a linearity is compromised already with 128 processors. In
this case the number of processors is getting too high for being able to exploit the power
of parallelism in some way and this is mainly due to the number of instances tested.

60

●

●

●

●

●

●

●

●

●

number of processors

av
g

fin
is

hi
ng

 ti
m

e

2 4 8 16 32 64 128 256 512

1e
+

01
1e

+
02

1e
+

03
1e

+
04 ●

●

●

●

●

●

●

●

●

●

●

Random
Random+FS
Mistral
Scheduling2
Optimal

Figure 4.7: Average finishing time on an exponential number of processors.

Num. of processors Optimal Scheduling2 Mistral Random+FS Random

5 6124 14420 25345 14645 56905
10 3095 8270 13608 8449 31110
25 1256 4194 6220 4308 14531
50 646 2567 3548 2654 8456
75 432 1890 2585 1972 6305
100 321 1515 2073 1590 5140

Table 4.5: Makespan of a scheduling simulation on multiple processors.

In Table (4.5) we report the makespan results.
Comparing the numbers and plotting them in Figure 4.8, we note that ordering the
instances randomly or by Scheduler2 rule does not make too much difference from the
makespan point of view. What is influencing these similar values is the same selection

61

strategy of the solver. In the specific the usage of Fs classifier for predicting the solver
and the random if the predicted one times-out.

●

●

●

●

●

●

number of processors

m
ak

es
pa

n

5 10 20 30 40 50 60 70 80 90 100

1
50

00
20

00
0

30
00

0
40

00
0

50
00

0

●

●

●
● ● ●

●

●

Random
Random+FS
Mistral
Scheduling2
Optimal

Figure 4.8: Makespan.

In Figure 4.9, we observe the different trends of the unused resources. The increasing
value of the Optimal over the Random and Mistral is due to the fact that scheduling
with round robin and short job first does not optimize at all the load average on the
CPUs. Such a characteristic, like said before, would require different scheduling rules
which are not objective of the work done so far. Once again, the similarities between the
Random+FS and Scheduling2 are due to fact that this measure is based on the makespan.

62

●

●

●

●

●

●

number of processors

pe
rc

en
ta

ge
 o

f u
nu

se
d

C
P

U

5 10 20 30 40 50 60 70 80 90 100

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

●

●

●

●

●

●

●

●

Random
Random+FS
Mistral
Scheduling2
Optimal

Figure 4.9: Percentage of unused CPU.

As the last experiment, different tests are run with the same scheduling rules (Scheduling2),
but this time varying the MLA applied. The purpose is to compare how the MLA are
performing on the scheduling, also taking in account the previous classification results.
In Section 4.1.2 the classification results showed that RandomForest was the algorithm
reaching the highest accuracy performances among the MLA set tested. While in this
application, algorithms such RandomCommittee and MultiBoost are actually perform-
ing better than RandomForest, as the plot in Figure 4.10 shows. The reasons could be
multiple, from the difference of cross validation type to the fact that one algorithm once
doing misclassification could misclassify worse than another (when it chooses the worst
possible error).

63

Classifier Toolkit Implementation
Meta Classifier WEKA Random Committee + RandomTree
Decision Tree WEKA Random Forest
Meta Classifier WEKA MultiBoost + RandomTree
Decision Tree WEKA J48

Table 4.6: The classifiers compared on Scheduling2.

●

●

●

●

●
●

number of processors

av
g

fin
is

hi
ng

 ti
m

e

5 10 15 20 25 30 40 50 60 75 90

1e
+

00
1e

+
03

●

●

●

●

●
●

●

●

RandomCommittee
RandomForest
MultiBoost
J48

Figure 4.10: Average finishing time compared to different MLA.

4.3 The simulators

The Java software developed to simulate the scheduling experiments has the following
inheritance structure (Figure 4.11).

64

Figure 4.11: UML class diagram depicting inheritance.

In figure 4.11 we introduce the class diagram showing the inheritances among the classes.
An empty white arrow indicates an inheritance of the class where the arrow enters, from
the class where the arrow leaves. The class Scheduler contains abstract methods that
have to be implemented by the underlying classes, one for the single processor case and
the other for the multi processor case. All the scheduling rules are gathered in the
Dispatcher class. The same class is extended by ParallelDispatcher adding new spe-
cialized methods for the scheduling rules in the multiple processor case. In this class we
will implement, for example, the round robin strategy. Unrelated to the others, there
are the classes ClassifyNewInstaces and CsvManager. The latter is a simple collec-
tion of methods that help to deal with the output CSV (comma separated values) files.
While the former contains all the functions able to interact with the Weka tool, from the
dataset randomization to the classification operations. Weka1, in fact, is an open source
software written in Java and this feature facilitates any integration with an user willing
to exploit machine learning algorithms.

In Figure 4.12, the dependencies between the classes are clarified. Each arrow is as-
sociated with a label that defines the type of relation between the classes sharing the

1http://www.cs.waikato.ac.nz/ml/weka/

65

same arrow. The relation of dependence has to be read as from the class where the arrow
leaves to the class where arrives.

Figure 4.12: UML class diagram depicting dependencies.

The modus operandi of each simulation, described in the previous sections, is here plot-
ted. In each scheduling the main class derived by Scheduler

(Scheduler single processor and Scheduler multi processor) is the main charac-
ter.

The Scheduler single processor calls ClassifyNewInstaces, Dispatcher and
CsvManager respectively to interact with Weka (operating on the datasets and classify-
ing the new instances), to launch the different scheduling rules and in the end to record
the statistical output from the operation just run. Scheduler multi processor calls
the same classes except for the scheduling rules. In this case the extended version,
ParallelDispatcher, is employed for the scheduling run.

The last thing that needs to be explain are the input and output of the scheduler.
In each simulation the input is the dataset expressed in the Weka open file, arff. In
output both simulations create a CSV file for the average finishing time. In the single
CPU case an additional file for the median is created, while in the multi CPU case there
are two more output for the makespan and the unused resources.

66

Chapter 5

Related Work

Machine learning, in constraint programming fields, has been used a lot but here we
focus especially in application to algorithm tuning and selection.

The hereby presented work utilizes the features of CPHydra for creating a group of
classifiers able to give us information on how to use a portfolio of solver to speed up the
solving process of CSPs. Combining classifications for solving CSP is a strategy inspired
by the good results that classification showed on satisfiability problems. In this paper
[7], indeed, it has been shown that, using SATzilla features, a classification technique
can be effective on SAT problems.

Our classification based approach differentiates itself from the aforementioned SATzilla,
apart from the different nature of the problem (SAT instead of CSP), because SATzilla
uses linear regression to forecast the expected running time.

In [38] a portfolio combining multiple heuristics is employed for optimizing techniques
to produce a schedule that minimises the total CPU time spent on all instances. The
schedule considered is a task-switching schedule, a more powerful class of schedules that
allow the proportion of CPU time allocated to each heuristic to change over time. In this
paper they tackled a similar idea of computing an offline scheduling and using learning
methodology for computing the optimal task-switching scheduling. However the focus
of this work is closer to the scheduling optimisation then the learning one.

The adaptive QBF multi engine (AQME) system [32], where a quantified Boolean for-
mulae (QBF) is SAT instances with some quantified variables, uses a similar approach
to the portfolio concept: employ different QBF solvers and harness reasoning techniques
to learn how to select engine policies. Moreover AQME is a self adaptive QBF solver:
a multi engine solver that can update its learned policies in a very similar way to the
CBR way. AQME is using classifications based on the features for selecting which en-

67

gine/solver run. A similar approach is adopted in the work here presented when we use
Fs for selecting the portfolio solver.

An example of CBR applied to decision is in [10] where a case based reasoning method-
ology is used for deciding whether to use constraint programming or integer linear pro-
gramming as a solving strategy. In the specific, they focus on bid evaluation problem,
where it is not easy to determine a priori which is the best technique.

ISAC is an instance specific algorithm configuration that automatically tunes the al-
gorithms by selecting the parameters that yield to best performance [19]. In ISAC the
solver selection is tackled more specifically. Whether our scheduling rules use Fs classi-
fier for determine which solver to use, ISAC is clustering on similarities of the features
vector. Then if these clustered features are behaving similarly once they are run with
the same solver, they start to tune the algorithm parameters of each cluster. At runtime,
when a new instance is submitted in input, it determines the cluster that is closest to the
input instance and it solves the instance with the parameters of the respective cluster.
In Hydra[42], not to be confused with CPHydra, a framework is built on the combina-
tion of automated algorithm configuration and portfolio-based algorithm selection. This
complementation of two techniques, using SATzilla as a portfolio builder, is intended
for use in problem domains where an adequate set of candidate solvers does not already
exist. In [22], given a choice of algorithms and parameter settings, machine learning
techniques are used for choosing the algorithm-parameter combination that delivers the
best performance for a specific problem. Moreover in this paper a similar procedure to
the one described in Chapter 3 has been adopted, but instead of focusing on accuracy
and κ, like done here, they focused on the misclassification penalty.

68

Chapter 6

Conclusion and future work

In the hereby presented work we created a new combination of a portfolio with machine
learning techniques. This combination differs from similar work previously introduced,
CPHydra and SATzilla. The former is a portfolio for constraint solving that em-
ploys a case based reasoning for maximising the probability of solving an instance in
a time frame. While the latter is a portfolio for SAT solving that employs a linear re-
gression algorithm to build run time prediction and then choose among its fastest solvers.

Our new portfolio approach is inspired by both portfolios even if more by CPHydra.
From it we reused the features, the attributes able to depict a CSP peculiarity. We
showed that a classification approach to construct a portfolio of constraint solvers can
provide good result. Such a classification would not perform correctly if the features
employed for describing the problems would not be efficient. In Chapter 3 we showed
that, after optimising the features derived from the portfolio CPHydra, they are sta-
tistically significant better at a 95% confidence level compared to the features of an
high competitive portfolio solver like SATzilla. In order to show the supremacy of
CPHydra features, we first built a group of classifiers based on the run times distribu-
tion on the portfolio solvers. Then we run a series of tests using a variety of different
machine learning algorithms. The results of these tests are reported in Section 3.6.2.
Beyond CPHydra features supremacy, the results shows that the classifiers built are
reliable, reaching high values in both accuracy and κ statistics.

Forecasting information by means of classifications, indeed, can improve the execution
of portfolio of constraint solvers for solving CSPs. What we showed after is that, the
scheduling rule, based on the combination of all classifiers created, is performing well
both on single and multiple processor case. In both single and multiple cases we are
outperforming a scheduling solution based on the solely fastest solver of the portfolio,
mistral [16]. Moreover, with the goal of minimising the average finishing time of the in-
stances, the winning strategy is the one that orders the instances on the combination of

69

four classifiers and uses a fifth one for selecting the solver to run. In a multiple processor
scenario, the approach is similar with the only difference that the ordered instances are
spread to the machines with a round robin technique.

The hereby presented work resulted to a paper submission to the 2011 International
Joint Conference of Artificial Intelligence (IJCAI).1 By the time of submitting the thesis
we are not yet informed about its acceptance status. However the reviewers feedback
has revealed that our method is appealing.

A refinement that can be done on the present work regards the multiple processors
scenario. It can be interesting to try to change the purpose of minimising the average
finishing time to minimise the makespan, and then compare the statistics measures in
terms of gain/loose of the two different purposes. Another refinement that could be
interesting to analyse is the one related to the solver selection strategy. Right now if
a predicted solver goes timeout, another solver randomly chosen from the portfolio, is
scheduled on the same processor, until a solution is found. This can be the reason why
we obtain such similar makepan values for all those scheduling rules that uses the same
strategy. A solution could be schedule the randomly chosen solver to a different proces-
sor. Such a strategy would spread the makespan over the solving network.

As a future work there is the extension of the scheduler simulator to a new version
able to dynamically execute the problems without knowing them from the beginning.
This dynamic behaviour will be first adapted and then included in the service-oriented
volunteer computing for massively parallel constraint solving using portfolios presented
in [20]. Such an architecture uses a series of different tuning on the portfolio solvers that
recalls what has been introduced in some works listed in Chapter 5. The goal of the
work in [20] is the one to build an online architecture for solving CSPs. This motives
the choice of average finishing time as the performance metric.

1http://ijcai-11.iiia.csic.es/

70

Chapter 7

Acknowledgments

My sincere acknowledgements go to my supervisor professor Zeynep Kiziltan, for giving
me the possibility to work on this thesis in Ireland and for the incredible energies spent
on my work. I would like to thank professor Barry O’Sullivan and doctor Emmanuel
Hebrard for following my project and giving me the possibility to work in their research
centre in University College Cork. Thank to all of them and to PhD student Jacopo
Mauro for contributing to increase my knowledge and make this thesis work possible. I
want to thank Marco Patrignani and Stefania Stefansdottir for their last minute proof
reading work and personally for being always present even when the distance is dividing
us.

I want to thank all my best friends Nikolas, Dave, Simone, Marco, Laura, Patrizia,
Cristina, Andrea, Michele, Lorenzo, Rita and Sonia. Even if I have been abroad most
of the time of the past year and half, they were always there for me. Many thanks to
all my Erasmus friends with whom I shared fantastic memories and they took me to
the position I am currently now. Especially Alessio, Federico, Patrick and Emanuele. I
would like to thanks Martina Malafova for being so close and present to me for so long
notwithstanding the distance.

My best acknowledgements go to my parents who in primis made all this possible. To
my relatives and especially my cousin Cinzia Mandrioli for the continuous support. I
already apologize to whomever is missing from the list but the road that brought me
here has been a long one. The climb to the mountain is just started.

71

Bibliography

[1] Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational issues,
methodological variations, and system approaches. AI Commun., 7(1):39–59, 1994.

[2] Armando Bazzani, Alessandro Bevilacqua, Dante Bollini, Rosa Brancaccio, Renato
Campanini, Nico Lanconelli, Alessandro Riccardi, Davide Romani, and Gianluca
Zamboni. Automatic detection of clustered microcalcifications in digital mammo-
grams using an svm classifier. In ESANN, pages 195–200, 2000.

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, New
York, 2006.

[4] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[5] J. Cohen. A coefficient of agreement for nominal scales. Educational and psycho-
logical measurement, 20(1):37, 1960.

[6] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. Introduction
to Algorithms. McGraw-Hill Science/Engineering/Math, 2nd edition, 2003.

[7] David Devlin and Barry O’Sullivan. Satisfiability as a classification problem. In
Proc. of the 19th Irish Conf. on Artificial Intelligence and Cognitive Science, 2008.

[8] Hilmar Finnsson and Yngvi Björnsson. Learning simulation control in general game-
playing agents. In AAAI, 2010.

[9] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm.
In ICML, pages 148–156, 1996.

[10] Cormac Gebruers, Alessio Guerri, Brahim Hnich, and Michela Milano. Making
choices using structure at the instance level within a case based reasoning framework.
In CPAIOR, pages 380–386, 2004.

[11] Cormac Gebruers, Brahim Hnich, Derek G. Bridge, and Eugene C. Freuder. Using
cbr to select solution strategies in constraint programming. In ICCBR, pages 222–
236, 2005.

72

[12] Carla P. Gomes and Bart Selman. Algorithm portfolios. Artif. Intell., 126(1-2):43–
62, 2001.

[13] Eric Guerci, Stefano Ivaldi, Marco Raberto, and Silvano Cincotti. Learn-
ing oligopolistic competition in electricity auctions. Computational Intelligence,
23(2):197–220, 2007.

[14] Kilem L. Gwet. Inter-rater reliability: Dependency on trait prevalence and marginal
homogeneity. Statistical Methods For Inter-Rater Reliability Assessment, October
2002.

[15] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical
learning: data mining, inference and prediction. Springer, 2 edition, 2008.

[16] Emmanuel Hebrard. Mistral. http://www.cril.univ-
artois.fr/CPAI06/descriptionSolvers/Mistral.pdf, 2006.

[17] G. Holmes, A. Donkin, and I. H. Witten. Weka: a machine learning workbench.
pages 357–361, August 1994.

[18] Robert C. Holte. Very simple classification rules perform well on most commonly
used datasets. Machine Learning, 11:63–91, 1993.

[19] Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. Isac -
instance-specific algorithm configuration. In ECAI, pages 751–756, 2010.

[20] Zeynep Kiziltan and Jacopo Mauro. Service-oriented volunteer computing for mas-
sively parallel constraint solving using portfolios. In CPAIOR, pages 246–251, 2010.

[21] Igor Kononenko. Machine learning for medical diagnosis: history, state of the art
and perspective. Artificial Intelligence in Medicine, 23(1):89–109, 2001.

[22] Lars Kotthoff, Ian Miguel, and Peter Nightingale. Ensemble classification for con-
straint solver configuration. In CP, pages 321–329, 2010.

[23] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Learning the empirical
hardness of optimization problems: The case of combinatorial auctions. In CP, pages
556–572, 2002.

[24] Alan K. Mackworth. Consistency in networks of relations. Artif. Intell., 8(1):99–118,
1977.

[25] Donald Michie, David J. Spiegelhalter, and Charles C. Taylor, editors. Machine
Learning, Neural and Statistical Classification. Ellis Horwood, New York, NY, 1994.

73

[26] Jae H. Min and Youngchan Lee. Bankruptcy prediction using support vector
machine with optimal choice of kernel function parameters. Expert Syst. Appl.,
28(4):603–614, 2005.

[27] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[28] Stephen Muggleton. Machine learning for systems biology. In ILP, pages 416–423,
2005.

[29] Eugene Nudelman, Kevin Leyton-Brown, Holger H. Hoos, Alex Devkar, and Yoav
Shoham. Understanding random sat: Beyond the clauses-to-variables ratio. In CP,
pages 438–452, 2004.

[30] Eoin OMahony, Emmanuel Hebrard, Alan Holland, Conor Nugent, and Barry OSul-
livan. Using case-based reasoning in an algorithm portfolio for constraint solving.
Proceedings of the 19th Irish Conference on Artificial Intelligence (AICS’08), 2009.

[31] Foster Provost. Machine learning from imbalanced data sets 101 (extended ab-
stract).

[32] Luca Pulina and Armando Tacchella. A self-adaptive multi-engine solver for quan-
tified boolean formulas. Constraints, 14(1):80–116, 2009.

[33] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[34] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Pro-
gramming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York,
NY, USA, 2006.

[35] Olivier Roussel and Christophe Lecoutre. Xml representation of constraint networks:
Format xcsp 2.1. CoRR, abs/0902.2362, 2009.

[36] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 2nd edition, 2002.

[37] Helmut Simonis. Sudoku as a constraint problem. In Fourth International Workshop
on Modelling and Reformulating Constraint Satisfaction Problems (CP2005) pp 13-
27, October 2005.

[38] Matthew J. Streeter, Daniel Golovin, and Stephen F. Smith. Combining multiple
heuristics online. In AAAI, pages 1197–1203, 2007.

[39] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998.

74

[40] Geoffrey I. Webb. Multiboosting: A technique for combining boosting and wagging.
Machine Learning, 40(2):159–196, 2000.

[41] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann Series in Data Management Systems. Morgan
Kaufmann, second edition, June 2005.

[42] Lin Xu, Holger Hoos, and Kevin Leyton-Brown. Hydra: Automatically configuring
algorithms for portfolio-based selection. In AAAI, 2010.

[43] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Satzilla: Portfolio-
based algorithm selection for sat. J. Artif. Intell. Res. (JAIR), 32:565–606, 2008.

75

	Abstract (Italian)
	Introduction
	Background
	Motivation and goals
	Overview

	Background
	Machine learning
	Supervised, unsupervised and reinforcement learning
	Lazy and eager learning
	Machine learning algorithms
	Performances metrics and testing techniques in classification

	Constraint satisfaction problems and constraint programming principles
	Constraint satisfaction problems
	SAT
	Constraint programming
	Constraint solvers

	Algorithm portfolio
	SATzilla
	CPHydra

	Learning from problem features
	The international CSP competition dataset
	Portfolio solving time analysis
	Classifiers
	Classifiers output distribution
	Features set
	CPHydra features
	SATzilla features
	CPHydra added features

	Experimental results
	Comparison of different CPHydra feature sets
	Comparison between CPHydra and SATzilla features sets
	Reliability of classifiers

	Scheduling problems based on learning
	Single processor case
	Scheduling rules
	Experimental results

	Multiple processors case
	Scheduling rules
	Experimental results

	The simulators

	Related Work
	Conclusion and future work
	Acknowledgments

