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Abstract 
 

In this paper we describe the design, implementation 
and experimental evaluation of a software mechanism 
that supports responsive (i.e. highly available and 
timely) Web services, constructed out of replicated 
servers. Specifically, this mechanism operates by 
engaging all the available replicas in supplying a 
fragment of the Web document that a client requires. 
The size of the fragment a replica is requested to supply 
is dynamically evaluated on the basis of the response 
time that replica can provide its client with. In addition, 
the proposed mechanism can dynamically adapt to 
changes in both the network and the replica servers’ 
status, thus tolerating possible replica or 
communication failures that may occur at run-time. The 
performance results we have obtained from our 
experimental evaluation illustrate the adequacy of the 
mechanism we propose. 
  
 
1. Introduction 
 
Responsiveness, i.e. high availability and timeliness, is 
a crucial issue in the design of a Web service, as, from 
the service user perspective, a poorly responsive service 
can be virtually equivalent to an unavailable service. 
A host of techniques, e.g. [1,2,3,6,8,9,10,11,12,14], has 
been proposed in the literature that addresses 
specifically the issue of providing highly available Web 
services. In general, these techniques are based on i) 
constructing a Web service out of replicated servers, 
locally distributed in a cluster of workstations, and ii) 
distributing the client request load among those servers. 
Thus, service availability is achieved through the 
redundancy inherent in the service implementation; in 
addition, the overall service throughput (i.e., the 
number of client requests per second that can be served) 
is optimized through careful distribution of the client 
request load among the clustered servers. 
As discussed at length in [7], these techniques can only 
partially meet the high availability requirement 
mentioned above (e.g., they may be vulnerable to 
failures of the router/gateway that interfaces the service 
cluster to the rest of the network). In addition, these 
techniques cannot be deployed in order to meet 
timeliness requirements such as the client latency time 
over the network (that may notably affect the timeliness 

of a Web service) as these requirements are beyond the 
control of these techniques. 
In order to overcome these limitations, an alternative 
approach has been proposed in [7], and explored further 
in [4,5]. According to this approach, a responsive Web 
service can be provided by replicating servers across the 
Internet (rather than in a cluster of workstations). 
In the Internet context, a successful deployment of this 
approach will depend on the ability of achieving the 
following two principal goals: i) dynamically binding 
the client to the most convenient replica server, and ii) 
maintaining data consistency among the replica servers. 
Unfortunately, neither of these two goals is easy to 
achieve. Firstly, the dynamic binding of clients to 
replica servers can turn out to be difficult to implement, 
owing to the location based naming scheme used in the 
Web. This scheme provides a one-to-one mapping (i.e., 
the Uniform Resource Locator - URL) between a name 
of a resource and a single physical copy of that 
resource; hence, dynamic binding of a client to distinct 
replica servers requires that the client-side software be 
adequately extended in order to be able to select an 
available replica, at run-time. Secondly, maintaining 
replica consistency on a large geographical scale can be 
hard to achieve, without affecting the overall service 
performance. In addition, the Internet environment is 
subject to (real or virtual) partitions, that can prevent 
communications between functioning nodes; hence, 
within this environment, both clients and replica servers 
may hold mutually inconsistent views of which replica 
server is available and which is unavailable. 
Owing to these observations, we have developed a 
mechanism for constructing responsive web services 
that is implemented as an extension of the client-side 
software. Specifically, our mechanism provides the 
clients of a replicated Web service, constructed out of 
replica servers distributed over the Internet, with timely 
responses (issues of replica consistency fall outside the 
scope of this mechanism). 
The principal goal of our mechanism is to minimize 
what we term the User Response Time (URT), i.e. the 
time elapsed between the generation of a browser 
request for the retrieval of a Web page, and the 
rendering of that page at the browser site.  
In summary, rather than binding a client to its most 
convenient replica server, as proposed in [4,5,7], our 
mechanism intercepts each client browser request for a 
Web page, and fragments that request into a number of 
sub-requests for separate parts of that document. Each 
sub-request is issued to a different available replica 
server, concurrently. The replies received from the 
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replica servers are reassembled at the client end to 
reconstruct the requested page, and then delivered to the 
client browser.  
Our mechanism is designed so as to adapt dynamically 
to state changes in both the network (e.g. route 
congestion, link failures), and the replica servers (e.g. 
replica overload, unavailability). To this end, our 
mechanism monitors periodically the available replica 
servers and selects, at run-time, those replicas to which 
the sub-requests can be sent, i.e. those replicas that can 
provide the requested page fragments within a time 
interval that allows our mechanism to minimize the 
URT. As our mechanism implements effectively load 
distribution of client requests among the available 
replicas, we have named it Client-Centered Load 
Distribution (C2LD). 
The design of C2LD is based on an analytical model 
that we have developed. This model is essential in order 
to determine the size of the page fragment that can be 
requested to each replica, and the extent of the replica 
monitoring period C2LD is to use in order to execute a 
client request. We have validated this model by 
implementing it over the Internet, using four replica 
servers located in Italy, in the UK, and in the USA. 
In this paper we describe the C2LD design, 
implementation and validation we have carried out. 
Specifically, in the following Section the C2LD 
analytical model is introduced. Section 3 describes the 
C2LD implementation we have developed. Section 4 
discusses the experimental results we have obtained 
from that implementation; finally, Section 5 provides 
some concluding remarks. 
 
2. Analytical model  
 
The timeliness requirement that our C2LD mechanism 
is to meet can be expressed by means of a User 
Specified Deadline (USD), i.e. a value that indicates the 
extent of time a user is willing to wait for a requested 
Web page to be rendered at his/her workstation.  
It is worth observing that, firstly, as the USD value is 
user specified, it may differ from the actual response 
time a browser request may experience over the Internet 
(i.e. the URT previously introduced), at least in 
principle; thus, if a user sets an unrealistic USD, the 
C2LD returns an appropriate exception. Secondly, note 
that, in order to introduce no modifications in the 
software of commercial browsers that can make use of 
C2LD, in our implementation the USD is set by the user 
prior to the invocation of the browser, and then captured 
by the C2LD mechanism. 
Owing to this USD time constraint, each replica server 
that receives a sub-request for a page fragment must 
honor that sub-request within a time interval that allow 
the C2LD mechanism to reconstruct the requested page, 
out of all the received fragments, before the USD 
deadline expires. Thus, it is crucial that the C2LD 
mechanism assess accurately both the size of the 
fragment each replica is to supply, and the time 

intervals within which these fragments are to be 
received at the client site. 
To this end, we have developed the analytical model 
summarized below, and discussed in detail in [15].  
 
2.1. Model  
 
Assume that exactly NREP replica servers be available, 
and that the size of the requested Web page be known, 
and be equal to DS bytes. Moreover, assume that the 
total amount of time needed to download an entire page 
is exactly equal to the sum of NINT subsequent time 
intervals, each of which has a duration of S seconds (i.e. 
URT = NINT . S). Finally, let us denote with DR the data 
rate that a given replica server i is able to provide 
during a given time interval k, { }INTNk ,..,1∈ , and with 
PS the size of the document fragment requested to a 
certain replica server i. Note that the data rate DR may 
vary unpredictably in different time intervals. In 
addition, a sub-request, submitted to a certain replica 
server at the beginning of a given time interval k, may 
terminate during some later interval h (i.e., h ≥ k). 
Hence, a realistic model must be able to represent both 
the time interval in which each sub-request is 
transmitted to each replica, and the exact sequence of 
all the sub-requests transmitted to each replica. Based 
on these assumptions, the analytical model we have 
developed is as follows.  
We denote with the index r, ranging in the interval 

},..,1{
iREQN , each single sub-request that can be issued 

to the replica i. Using the replica index i and the sub-
request index r, we can define the following mapping 

rik , : 
 

( ) ( ) 1  , += SdivTTk ri ,    (1) 
where T denotes the exact time instant in which a given 
sub-request r is issued to the replica i, and ( ) 1  +SdivT  
denotes the time interval containing T. 
In order to assess the data rate that will be provided by a 
given replica i, we adopt the following measurement-
based strategy. Assume that the sub-request r must be 
issued to the replica i at the time T, in the interval rik , ; 
then, the data rate for that sub-request can be estimated 
as: 
 

1,

1,
,

−

−=
ri

ri
ri URT

PS
DR .    (2) 

In the above formula, 1, −riPS  represents the size of the 
document fragment downloaded with the previous sub-
request r-1, terminated by the time T. 1, −riURT  is the 
elapsed time experienced for downloading the r-1 
document fragment of size 1, −riPS . Note that the 

1, −riURT  value may be experimentally measured at the 
time T, when the previous sub-request r-1 has been 
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completed. Given that value, the document fragment to 
be requested to the replica i is: 
 

∗⋅= ririri SDRPS ,,,     (3) 
with 

TSkS riri −⋅=∗
,,     (4) 

and 
( ) SkTSk riri ⋅<≤⋅− ,, 1 .    (5) 

In Eq. (3) above, the term ∗
riS ,  represents the URT 

expected from the execution of the sub-request r 
directed to the replica i; in Eq. (4), for the sake of 
simplicity, the term rik ,  has been used in place of 

( )Tk ri, .  Depending on the value of T, the following 
two possible events may occur: 
 

1. the sub-request r-1 terminates exactly at the 
beginning of the interval rik , , i.e. 

( ) SkT ri ⋅−= 1, ; 

2. the sub-request r-1 terminates during the rik ,  

interval, i.e. ( ) SkTSk riri ⋅<<⋅− ,, 1 . 
If event 1 occurs, the size of the requested page 
fragment is proportional to the total duration S of a 
complete interval. Instead, if event 2 occurs, the size of 
the requested fragment is proportional to the residual 
time TSk ri −⋅,  needed to reach the end of the rik ,  
interval.  Finally, the following requirement must be 
met by all the replica servers, in order to ensure that a 
requested page be entirely downloaded within the USD 
deadline: 
 

DS
DRi,r ⋅URTi,rr=1

NREQi∑
N INT ⋅ Si =1

NREP∑
≤ USD .               (6) 

Eq. (6) states that the sum of the average data rates 
provided by all the replica servers during the 
downloading period SN INT ⋅  must be such that the 
requested page (with size DS) is completely 
downloaded before the USD deadline expire. To 
conclude this Subsection, we wish to point out that our 
model provides a measurement-based strategy for 
assessing the actual data rate each replica can provide, 
as the size of a fragment to be requested in a sub-
request r depends upon the measurement of the 

1, −riURT  value experienced at the time the (previous) 
sub-request r-1 terminates. 
 
3. Implementation 
 
We have implemented our analytical model on top of 
the HTTP 1.1 interface, as suggested in [5], using the 

Java programming language. Our implementation 
supports the standard HTTP 1.1 interface; so as to 
operate transparently to the higher software layers (e.g. 
the browser software). For the purposes of this 
implementation, we have provided the users of our 
mechanism with a C2LD configuration procedure that 
allows them to set the USD timeout, introduced earlier, 
before they request access to a Web service (a default 
USD value is used by our C2LD implementation, if a 
user does not make use of that configuration 
procedure). 
Typically, in order to access a Web service, a user starts 
a browser by providing it with the URL of that service. 
That browser invokes an HTTP GET method with that 
URL. The C2LD mechanism intercepts that HTTP GET 
invocation, starts the USD timeout and, using the URL 
in the GET invocation, interrogates the DNS.   
The DNS maintains the IP addresses of the NREP replica 
servers that implement a Web service. When C2LD 
submits a request to the DNS for resolving a URL, the 
DNS returns the IP addresses of all the replica servers 
associated to that URL. As the replica servers addresses 
are available to the C2LD mechanism, this mechanism 
interacts with each replica as illustrated in Figure 1, and 
summarized below.  
C2LD invokes an HTTP HEAD method on each replica 
i. The reply from replica i to the first HTTP HEAD 
invocation is used by C2LD to: i) get the size of the 
requested page, ii) estimate the data rate that replica i 
can provide, and iii) assess the size of the first fragment 
that can be fetched from that replica. 
C2LD maintains a global variable (download_done, in 
Fig.1) that indicates whether or not all the fragments of 
a requested page have been delivered. Until a page is 
not fully downloaded, C2LD uses the Eq. (2) and (3) in 
Section 2 to compute the size of the fragment that is to 
be requested to the replica i.  
Once the requested fragment size has been calculated, 
C2LD issues an HTTP GET request to the replica i, in 
order to retrieve the required fragment of that size. 
(Specifically, a fragment of Z bytes size is requested by 
invoking an HTTP GET method with the following 
option set: "Range: bytes=Y-X", where X and Y denote 
the bytes corresponding to the beginning and the end of 
the requested fragment of size Z, respectively.) 
In order to adjust adaptively to possible fluctuations of 
the communication delays that may occur over the 
Internet, the fragment size is computed each time a 
fragment is to be requested, based on the value of the 
URT experienced in fetching the previous fragment. 
Thus, in essence, as the GET request r-1 directed to a 
given replica i terminates, a new GET request r can be 
issued to the replica i with the fragment size value 

riPS ,  computed on the basis of the response time 

1, −riURT . 
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/* C2LD */ 
…  
within USD  do   /* set USD timeout */ 
…   
HEAD(…)    /* send HEAD request to replica i */ 
URT(i) := …    /* assess URT replica i can provide */ 
PS(i,1) := …    /* compute 1st fragment size for replica i */ 
within S  do    /* set timeout of length S */ 

if not download_done then /* check if page download completed */ 
  GET (…)  /* get fragment from replica i */ 

 

1,

1,
,

−

−=
ri

ri
ri URT

PS
DR ; /* compute expected data rate, based on URT of previous request */ 

             ririri SDRPS ,,, ⋅= ; /* compute size of next fragment to be requested */ 
 else  

return; 
 

od  
…    

od 
Figure 1: Implementation of the C2LD Service 

 
 
Note that some of the replica servers may not respond 
timely to the HTTP (HEAD and GET) invocations 
described above (e.g., they may be unavailable owing to 
network congestion). Thus, C2LD associates a timeout 
to each HTTP request it issues to each server i. If that 
timeout expires before C2LD receive a reply from a 
replica server i, it assumes that the server i is currently 
unavailable, and places it in a stand_by list. Replica 
servers in that list are periodically probed to assess 
whether they have become active again. Requests for 
replicas in the stand_by list are redirected to active 
replicas.  
Finally, we wish to mention that, in order to increase 
the degree of parallelism in the fetching of document 
fragments, the C2LD mechanism has been implemented 
using the thread programming model provided by the 
Java 2 Software Development Kit. A detailed 
discussion of our implementation of this mechanism 
can be found in [15]. 
 
4. Measurements 
 
The effectiveness of our C2LD implementation has been 
validated through a large number of experiments (4000, 
approximately). These experiments were carried out 
during a two-month period; namely, November and 
December 1999. These experiments consisted 
essentially of a client program (i.e. a browser) 
downloading Web documents of different size from up 
to 4 geographically distributed replica servers. These 
documents were downloaded by the same client 
program using both the C2LD mechanism, and the 
standard HTTP GET downloading mechanism, for 
comparison purposes.  

In this Section, we describe in detail the scenario within 
which these experiments have been carried out, 
introduce the metrics we have used to assess our 
implementation, and discuss the performance results we 
have obtained. 
 
4.1. Scenario 
 
The performance of our C2LD implementation has been 
evaluated using the Internet to connect a client 
workstation (equipped with our C2LD software) with 
four replica servers.  
The client workstation was a SPARCstation 5 running 
the SunOS 5.5.1 operating system and the Sun Java 
Virtual Machine 1.2. This workstation was located at 
the Computer Science Department of the University of 
Bologna. The four different replica servers were 
running the Apache Web server over the Linux 
platform.  
For the purposes of our evaluation, these servers were 
located in four distinct geographical areas. Specifically, 
a replica server was located close to the client 
workstation; namely, at the Computer Science 
Laboratory of the University of Bologna, in Cesena. 
This Laboratory is four network hops far from our 
Department in Bologna. The connection between our 
Department and this Laboratory has a limited 
bandwidth of 2 Mbps, and is characterized by a rather 
high packet loss rate (between 2% and 9%). 
A second replica server was located in northern Italy; 
namely, at the International Center of Theoretical 
Physics in Trieste. This server was reachable through 9 
network hops via a connection whose bandwidth ranged 
between 8 and 155 Mbps.  
A third replica server was located at the Department of 
Computing Science of the University of Newcastle 



 5 

upon Tyne (UK). This server was reachable through 15 
network hops from our client workstation.  
Finally, a fourth replica server was located at the 
Computer Science Department of the University of 
California at S. Diego. This server was reachable 
through a 19 network hops transatlantic connection. 
Figure 2, obtained with the utility [13], depicts the 
locations of both the client and the replica servers used 
in our experiments, and the routes between this client 
and those servers; this Figure shows that the different 
routes connecting our client with the four replica 
servers scarcely overlap (i.e., route overlapping occurs 
only up to Milan, when communicating with the replica 
servers in Trieste, Newcastle, and San Diego). Within 
this scenario, a replicated Web service can be 
configured so as to use one of the following 11 
combinations of the four available replica servers. 
Namely, a service can be replicated across the two 
servers in Cesena and Newcastle (C+N, in the 
following), only, or those in Cesena and Trieste (C+T), 
or in Trieste and Newcastle (T+N), or in Cesena and S. 
Diego (C+S), or in Trieste and S. Diego (T+S), or 
Newcastle and S. Diego (N+S). 
A more redundant service can be implemented across 
one of the following four combinations of three servers, 
instead: Cesena, Newcastle and Trieste (C+N+T); 
Cesena, Newcastle, and S. Diego (C+N+S); Cesena, 

Trieste, and S. Diego (C+T+S); Trieste, Newcastle, and 
S. Diego (T+N+S).  Finally, a redundant Web service 
can be implemented across the four replica servers in 
Cesena, Newcastle, Trieste, and S. Diego (C+N+T+S). 
Our experiments have been carried out using all these 
11 combinations of replica servers. It is worth noting 
that the four machines running the server replicas were 
moderately loaded during our experiments. In contrast, 
the routes to the European Web replica servers were 
heavily loaded during daytime; network traffic over 
these routes typically decreased during the night. 
The average network traffic conditions on both the 
European and transatlantic routes, experienced during 
the evaluation of our C2LD mechanism, are reported in 
the following Table 1. Specifically, in this Table, the 
first row indicates the 90% percentile of the Round Trip 
Time (RTT) obtained with the ping routine from our 
client workstation in Bologna to the four replica 
servers; the second row reports the minimum RTT 
experienced over the routes to those servers; the third 
row reports the average packet loss rate we measured 
over those routes, as obtained with the ping routine 
(ICMP). 
Finally, note that the network traffic almost saturated 
the bandwidth of 8 Mbps, available at the University of 
Bologna routers, during working hours [15]. 

 

 
 

Figure 2. Routes between the client and the Web replica servers 
 

 
ping from Bologna to: Cesena Trieste Newcastle S. Diego 
RTT 90% of arrived pkt (msec) 107 95 160 450 
RTT min   (msec) 10 38 59 190 
Lost Packet 2%-9% 0% 0% 0%-3% 

 
Table 1. The measured round trip time and lost packet percentage 
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4.2. Measures 
 
The following two metrics have been used to evaluate 
the effectiveness of our C2LD mechanism: i) the 
percentage of document retrieval requests successfully 
satisfied by our mechanism, and ii) the URT (as defined 
earlier) our mechanism provides. Both these metrics 
capture the principal user requirements; namely, that a 
requested document be effectively retrieved, and that it 
be done timely. Based on these metrics, the evaluation 
of our mechanism has been carried out using different 
values of the following four parameters: i) the number 
of server replicas that implement a given Web service, 
ii) the data rate that each different server replica can 
provide, iii) the download monitoring period adopted by 
the C2LD mechanism, and, finally, iv) the size of the 
document to be retrieved. 
The performance of our C2LD mechanism has been 
compared and contrasted with that provided by the 
standard HTTP document retrieval mechanism, as this 
is implemented by the HTTP GET function. To this 
end, each replica server maintained a set of 
downloadable files of different size, ranging from 3 
Kbytes to 1 Mbytes. These servers were requested to 
retrieve the same Web document, at the same time of 
the day (i.e. under the same network traffic conditions, 
approximately) using, alternatively, both the standard 
HTTP GET request, and our mechanism. The download 
monitoring period S used by our mechanism ranged 
from 50 milliseconds to 10 seconds. 
A number of experiments were carried out for each 
given file size and download monitoring period S. Each 
experiment consisted of 15 consecutives download 
requests. 4 out of 15 of these requests were executed by 
invoking the HTTP GET function; the other 11 requests 
were executed by the C2LD mechanism. The 
experiments used files whose size was 3, 10, 30, 50, 
100, 200, 500 and 1000 Kbytes.  For each file size,   the  
 

experiments with the C2LD mechanism were repeated 
using a different download monitoring period, ranging 
from 50 milliseconds to 10 seconds. 
As mentioned earlier, our experiments were carried out 
on the 11 possible configurations of a replicated 
service, introduced in Subsection 4.1; however, the 
values reported in the Tables and Figures in this 
Subsection are the average of the results obtained in all 
our experiments. 
As a first result, Table 2 summarizes the page loss 
percentage obtained with our mechanism, and that 
obtained with the standard HTTP GET downloading 
mechanism (performed with S. Diego, Newcastle, 
Trieste and Cesena, respectively). It can be seen from 
this Table that the C2LD mechanism provides a highly 
available service, since it always guaranties the 
downloading of the requested document. Instead, the 
standard HTTP mechanism is not always able to 
provide its client with that document, as shown by the 
page loss percentage experienced by the S. Diego and 
Cesena servers, in particular. 
Figure 5 summarizes the results of the URT assessment 
we have obtained. The lowest curve in this Figure 
represents the URT provided by our C2LD mechanism, 
as it results from averaging its value over all the 
performed experiments. The two higher curves, instead, 
represent the URT values provided by the two fastest 
Web replica servers, when interrogated with the 
standard HTTP downloading mechanism. Specifically, 
the URT values provided by these two replica servers 
were obtained as follows. The four different replica 
servers were exercised with the standard HTTP 
mechanism; then, out of these four servers, the URT 
results obtained by the two fastest ones were selected to 
plot the graph in Figure 5.  
 
 

 C2LD S. Diego 
(HTTP) 

Newcastle 
(HTTP) 

Trieste 
(HTTP) 

Cesena 
(HTTP) 

50 Kbytes 0 % 0.3 % 0 % 0 % 1.65 % 
100 Kbytes 0 % 0.25 % 0 % 0 % 5 % 
200 Kbytes 0 % 0.2 % 0 % 0 % 4 % 
500 Kbytes 0 % 0.3 % 0 % 0 % 1 % 
1 Mbyte 0 % 0.45 % 0 % 0 % 2.5 % 

 

 
Table 2: Fault Percentage 
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As shown in that Figure, the performance of the C2LD 
mechanism and the HTTP mechanism are equivalent 
when the document size less than 50 Kbytes. Instead, 
when the document size is larger than 50 Kbytes, the 
C2LD mechanism outperforms the standard HTTP 
downloading mechanism. As already mentioned, the 
C2LD URT values in Figure 5 represent an average 
URT value, as it results from all the experiments we 
have carried out. However, it may be interesting to 
assess the URT improvement that can be obtained by 
our mechanism as the number of replica servers, 
concurrently used, varies. To this end, we have carried 
out experiments in which the number of active 
replicas was varying from 1 to 4. 
Figure 6 illustrates the results of our experiments, in 
these four cases. Specifically, in these cases, the URT 
is measured as a function of the file size.  As shown in 
this Figure, the larger the number of replicas that are 
used, the better the URT values that can be obtained; 
in addition, as the file size increases, the advantage of 
using the C2LD mechanism becomes more notable. 
In addition, Table 3 shows the average percentage 
improvement of the URT values that has been 
experienced in the experiments depicted in Figure 6, 
as the number of replica servers grows. 
We have experimented our C2LD mechanism using 
different values of the download monitoring period 
parameter S, in order to assess the influence of that 
parameter on the URT provided by our mechanism. 
Specifically, we have measured the C2LD URT using 
values of the monitoring period S ranging from 50 ms 

to 10 s. Figure 7 below illustrates the results our 
experiments. This Figure reports the different URT 
curves that were obtained using files of different size. 
Note that the monitoring period that provides the 
lowest URT values is 0.5 seconds, regardless of the 
file size. 
Finally, for the sake of completeness, we report below 
two additional graphs. These graphs illustrate the 
performance results obtained by both requesting each 
replica to fetch a 500 Kbytes file, using a standard 
HTTP GET request, and exercising our mechanism 
with the fetching of the same file; the monitoring 
period used by our mechanism in these experiments 
ranged from 500 to 2000 milliseconds. Specifically, 
the histograms in Figure 8 represent the URT values 
obtained by the C2LD mechanism (denoted as parallel 
in this Figure), and the URT values obtained by each 
single replica. Each histogram illustrating the 
performance of our mechanism relates to a different 
combination of the server replicas used during the 
experiments, as indicated in the Figure. Thus, for 
example, the leftmost parallel histogram reports the 
URT values obtained with our mechanism when only 
the replica servers in Cesena and Newcastle were 
used; the rightmost parallel histogram reports the 
URT values obtained with the C2LD mechanism when 
all the four replica servers were used. The remaining 
histograms (other than the parallel histogram) relate 
to the individual replica servers, as indicated in the 
Figures. 
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Figure 6.  URT improvement provided by the C2LD mechanism as the number of replicas grows 
 

Number of 
Replica Servers 

URT percentage 
improvement 

2 4% 

3 17.2% 

4 21.5% 

 
Table 3. Average URT percentage improvement 
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Figure 9 compares the percentage of URT 
improvement obtained by the C2LD mechanism with 
that obtained by each single replica (interrogated 
using HTTP GET). Both Figure 8 and 9 show that, in 
general, the C2LD mechanism outperforms each single 
replica in all cases; the only exception occurs when 
the C2LD uses only two replica servers, and, out of 
these two servers, one is very fast (Trieste or 
Newcastle), and the other is very slow (i.e. San 
Diego). 
 
5. Concluding remarks 
 
In this paper, we have shown that the C2LD 
mechanism we have developed in order to implement 
responsive Web services can outperform the standard 
Web page downloading mechanism (e.g. that provided 
by the HTTP implementation) as it can improve the 
URT by an average factor ranging between 4% and 
21%, depending on the size of the downloaded page 
as indicated in Table 3 above. We have applied our 
C2LD mechanism to the fetching of generic Web 
resources, such as files and documents; we wish to 
assess the adequacy of our mechanism when deployed 
for accessing digital video and audio resources. In 
addition, we are planning to extend the work 
described in this paper by addressing the following 
topics. Firstly, we intend to evaluate the overhead 
caused by our mechanism both at the network and at 
the server levels. Specifically, we wish to assess the 
effectiveness of our mechanism when multiple clients 
concurrently access the same replicated Web service. 
Secondly, we intend to evaluate the performance of 
our mechanism when implemented within a proxy 
server; in this context, we wish to explore the use of 
caching and prefetching techniques. Thirdly, we wish 
to compare and contrast the performance of our 
mechanism with that provided by other replicated 
services, such as those based on a locally distributed 
cluster of workstations. Fourthly, we wish to examine 
strategies that optimize the routing of requests to 
replica servers. Finally, we wish to investigate policies 
for maintaining data consistency among 
geographically distributed replica servers. 
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Figure 8. C2LD vs. single replicas performances 
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Figure 9. Percentage improvement of the C2LD mechanism 
 

  


