
Copyright 2001 IEEE.
Published in the Proceedings of the Hawaii International Conference On System Sciences,

January 3-6, Maui, Hawaii

Client-centered Load Distribution: A Mechanism for Constructing Responsive Web Services

Vittorio Ghini, Fabio Panzieri, Marco Roccetti
Dipartimento di Scienze dell'Informazione, Università di Bologna

Mura Anteo Zamboni, 7, 40127 Bologna (Italy)
{ghini, panzieri, roccetti}@cs.unibo.it

Abstract

In this paper we describe the design, implementation
and experimental evaluation of a software mechanism
that supports responsive (i.e. highly available and
timely) Web services, constructed out of replicated
servers. Specifically, this mechanism operates by
engaging all the available replicas in supplying a
fragment of the Web document that a client requires.
The size of the fragment a replica is requested to supply
is dynamically evaluated on the basis of the response
time that replica can provide its client with. In addition,
the proposed mechanism can dynamically adapt to
changes in both the network and the replica servers’
status, thus tolerating possible replica or
communication failures that may occur at run-time. The
performance results we have obtained from our
experimental evaluation illustrate the adequacy of the
mechanism we propose.

1. Introduction

Responsiveness, i.e. high availability and timeliness, is
a crucial issue in the design of a Web service, as, from
the service user perspective, a poorly responsive service
can be virtually equivalent to an unavailable service.
A host of techniques, e.g. [1,2,3,6,8,9,10,11,12,14], has
been proposed in the literature that addresses
specifically the issue of providing highly available Web
services. In general, these techniques are based on i)
constructing a Web service out of replicated servers,
locally distributed in a cluster of workstations, and ii)
distributing the client request load among those servers.
Thus, service availability is achieved through the
redundancy inherent in the service implementation; in
addition, the overall service throughput (i.e., the
number of client requests per second that can be served)
is optimized through careful distribution of the client
request load among the clustered servers.
As discussed at length in [7], these techniques can only
partially meet the high availability requirement
mentioned above (e.g., they may be vulnerable to
failures of the router/gateway that interfaces the service
cluster to the rest of the network). In addition, these
techniques cannot be deployed in order to meet
timeliness requirements such as the client latency time
over the network (that may notably affect the timeliness

of a Web service) as these requirements are beyond the
control of these techniques.
In order to overcome these limitations, an alternative
approach has been proposed in [7], and explored further
in [4,5]. According to this approach, a responsive Web
service can be provided by replicating servers across the
Internet (rather than in a cluster of workstations).
In the Internet context, a successful deployment of this
approach will depend on the ability of achieving the
following two principal goals: i) dynamically binding
the client to the most convenient replica server, and ii)
maintaining data consistency among the replica servers.
Unfortunately, neither of these two goals is easy to
achieve. Firstly, the dynamic binding of clients to
replica servers can turn out to be difficult to implement,
owing to the location based naming scheme used in the
Web. This scheme provides a one-to-one mapping (i.e.,
the Uniform Resource Locator - URL) between a name
of a resource and a single physical copy of that
resource; hence, dynamic binding of a client to distinct
replica servers requires that the client-side software be
adequately extended in order to be able to select an
available replica, at run-time. Secondly, maintaining
replica consistency on a large geographical scale can be
hard to achieve, without affecting the overall service
performance. In addition, the Internet environment is
subject to (real or virtual) partitions, that can prevent
communications between functioning nodes; hence,
within this environment, both clients and replica servers
may hold mutually inconsistent views of which replica
server is available and which is unavailable.
Owing to these observations, we have developed a
mechanism for constructing responsive web services
that is implemented as an extension of the client-side
software. Specifically, our mechanism provides the
clients of a replicated Web service, constructed out of
replica servers distributed over the Internet, with timely
responses (issues of replica consistency fall outside the
scope of this mechanism).
The principal goal of our mechanism is to minimize
what we term the User Response Time (URT), i.e. the
time elapsed between the generation of a browser
request for the retrieval of a Web page, and the
rendering of that page at the browser site.
In summary, rather than binding a client to its most
convenient replica server, as proposed in [4,5,7], our
mechanism intercepts each client browser request for a
Web page, and fragments that request into a number of
sub-requests for separate parts of that document. Each
sub-request is issued to a different available replica
server, concurrently. The replies received from the

 2

replica servers are reassembled at the client end to
reconstruct the requested page, and then delivered to the
client browser.
Our mechanism is designed so as to adapt dynamically
to state changes in both the network (e.g. route
congestion, link failures), and the replica servers (e.g.
replica overload, unavailability). To this end, our
mechanism monitors periodically the available replica
servers and selects, at run-time, those replicas to which
the sub-requests can be sent, i.e. those replicas that can
provide the requested page fragments within a time
interval that allows our mechanism to minimize the
URT. As our mechanism implements effectively load
distribution of client requests among the available
replicas, we have named it Client-Centered Load
Distribution (C2LD).
The design of C2LD is based on an analytical model
that we have developed. This model is essential in order
to determine the size of the page fragment that can be
requested to each replica, and the extent of the replica
monitoring period C2LD is to use in order to execute a
client request. We have validated this model by
implementing it over the Internet, using four replica
servers located in Italy, in the UK, and in the USA.
In this paper we describe the C2LD design,
implementation and validation we have carried out.
Specifically, in the following Section the C2LD
analytical model is introduced. Section 3 describes the
C2LD implementation we have developed. Section 4
discusses the experimental results we have obtained
from that implementation; finally, Section 5 provides
some concluding remarks.

2. Analytical model

The timeliness requirement that our C2LD mechanism
is to meet can be expressed by means of a User
Specified Deadline (USD), i.e. a value that indicates the
extent of time a user is willing to wait for a requested
Web page to be rendered at his/her workstation.
It is worth observing that, firstly, as the USD value is
user specified, it may differ from the actual response
time a browser request may experience over the Internet
(i.e. the URT previously introduced), at least in
principle; thus, if a user sets an unrealistic USD, the
C2LD returns an appropriate exception. Secondly, note
that, in order to introduce no modifications in the
software of commercial browsers that can make use of
C2LD, in our implementation the USD is set by the user
prior to the invocation of the browser, and then captured
by the C2LD mechanism.
Owing to this USD time constraint, each replica server
that receives a sub-request for a page fragment must
honor that sub-request within a time interval that allow
the C2LD mechanism to reconstruct the requested page,
out of all the received fragments, before the USD
deadline expires. Thus, it is crucial that the C2LD
mechanism assess accurately both the size of the
fragment each replica is to supply, and the time

intervals within which these fragments are to be
received at the client site.
To this end, we have developed the analytical model
summarized below, and discussed in detail in [15].

2.1. Model

Assume that exactly NREP replica servers be available,
and that the size of the requested Web page be known,
and be equal to DS bytes. Moreover, assume that the
total amount of time needed to download an entire page
is exactly equal to the sum of NINT subsequent time
intervals, each of which has a duration of S seconds (i.e.
URT = NINT . S). Finally, let us denote with DR the data
rate that a given replica server i is able to provide
during a given time interval k, { }INTNk ,..,1∈ , and with
PS the size of the document fragment requested to a
certain replica server i. Note that the data rate DR may
vary unpredictably in different time intervals. In
addition, a sub-request, submitted to a certain replica
server at the beginning of a given time interval k, may
terminate during some later interval h (i.e., h ≥ k).
Hence, a realistic model must be able to represent both
the time interval in which each sub-request is
transmitted to each replica, and the exact sequence of
all the sub-requests transmitted to each replica. Based
on these assumptions, the analytical model we have
developed is as follows.
We denote with the index r, ranging in the interval

},..,1{
iREQN , each single sub-request that can be issued

to the replica i. Using the replica index i and the sub-
request index r, we can define the following mapping

rik , :

() () 1 , += SdivTTk ri , (1)
where T denotes the exact time instant in which a given
sub-request r is issued to the replica i, and () 1 +SdivT
denotes the time interval containing T.
In order to assess the data rate that will be provided by a
given replica i, we adopt the following measurement-
based strategy. Assume that the sub-request r must be
issued to the replica i at the time T, in the interval rik , ;
then, the data rate for that sub-request can be estimated
as:

1,

1,
,

−

−=
ri

ri
ri URT

PS
DR . (2)

In the above formula, 1, −riPS represents the size of the
document fragment downloaded with the previous sub-
request r-1, terminated by the time T. 1, −riURT is the
elapsed time experienced for downloading the r-1
document fragment of size 1, −riPS . Note that the

1, −riURT value may be experimentally measured at the
time T, when the previous sub-request r-1 has been

 3

completed. Given that value, the document fragment to
be requested to the replica i is:

∗⋅= ririri SDRPS ,,, (3)
with

TSkS riri −⋅=∗
,, (4)

and
() SkTSk riri ⋅<≤⋅− ,, 1 . (5)

In Eq. (3) above, the term ∗
riS , represents the URT

expected from the execution of the sub-request r
directed to the replica i; in Eq. (4), for the sake of
simplicity, the term rik , has been used in place of

()Tk ri, . Depending on the value of T, the following
two possible events may occur:

1. the sub-request r-1 terminates exactly at the
beginning of the interval rik , , i.e.

() SkT ri ⋅−= 1, ;

2. the sub-request r-1 terminates during the rik ,

interval, i.e. () SkTSk riri ⋅<<⋅− ,, 1 .
If event 1 occurs, the size of the requested page
fragment is proportional to the total duration S of a
complete interval. Instead, if event 2 occurs, the size of
the requested fragment is proportional to the residual
time TSk ri −⋅, needed to reach the end of the rik ,
interval. Finally, the following requirement must be
met by all the replica servers, in order to ensure that a
requested page be entirely downloaded within the USD
deadline:

DS
DRi,r ⋅URTi,rr=1

NREQi∑
N INT ⋅ Si =1

NREP∑
≤ USD . (6)

Eq. (6) states that the sum of the average data rates
provided by all the replica servers during the
downloading period SN INT ⋅ must be such that the
requested page (with size DS) is completely
downloaded before the USD deadline expire. To
conclude this Subsection, we wish to point out that our
model provides a measurement-based strategy for
assessing the actual data rate each replica can provide,
as the size of a fragment to be requested in a sub-
request r depends upon the measurement of the

1, −riURT value experienced at the time the (previous)
sub-request r-1 terminates.

3. Implementation

We have implemented our analytical model on top of
the HTTP 1.1 interface, as suggested in [5], using the

Java programming language. Our implementation
supports the standard HTTP 1.1 interface; so as to
operate transparently to the higher software layers (e.g.
the browser software). For the purposes of this
implementation, we have provided the users of our
mechanism with a C2LD configuration procedure that
allows them to set the USD timeout, introduced earlier,
before they request access to a Web service (a default
USD value is used by our C2LD implementation, if a
user does not make use of that configuration
procedure).
Typically, in order to access a Web service, a user starts
a browser by providing it with the URL of that service.
That browser invokes an HTTP GET method with that
URL. The C2LD mechanism intercepts that HTTP GET
invocation, starts the USD timeout and, using the URL
in the GET invocation, interrogates the DNS.
The DNS maintains the IP addresses of the NREP replica
servers that implement a Web service. When C2LD
submits a request to the DNS for resolving a URL, the
DNS returns the IP addresses of all the replica servers
associated to that URL. As the replica servers addresses
are available to the C2LD mechanism, this mechanism
interacts with each replica as illustrated in Figure 1, and
summarized below.
C2LD invokes an HTTP HEAD method on each replica
i. The reply from replica i to the first HTTP HEAD
invocation is used by C2LD to: i) get the size of the
requested page, ii) estimate the data rate that replica i
can provide, and iii) assess the size of the first fragment
that can be fetched from that replica.
C2LD maintains a global variable (download_done, in
Fig.1) that indicates whether or not all the fragments of
a requested page have been delivered. Until a page is
not fully downloaded, C2LD uses the Eq. (2) and (3) in
Section 2 to compute the size of the fragment that is to
be requested to the replica i.
Once the requested fragment size has been calculated,
C2LD issues an HTTP GET request to the replica i, in
order to retrieve the required fragment of that size.
(Specifically, a fragment of Z bytes size is requested by
invoking an HTTP GET method with the following
option set: "Range: bytes=Y-X", where X and Y denote
the bytes corresponding to the beginning and the end of
the requested fragment of size Z, respectively.)
In order to adjust adaptively to possible fluctuations of
the communication delays that may occur over the
Internet, the fragment size is computed each time a
fragment is to be requested, based on the value of the
URT experienced in fetching the previous fragment.
Thus, in essence, as the GET request r-1 directed to a
given replica i terminates, a new GET request r can be
issued to the replica i with the fragment size value

riPS , computed on the basis of the response time

1, −riURT .

 4

/* C2LD */
…
within USD do /* set USD timeout */
…
HEAD(…) /* send HEAD request to replica i */
URT(i) := … /* assess URT replica i can provide */
PS(i,1) := … /* compute 1st fragment size for replica i */
within S do /* set timeout of length S */

if not download_done then /* check if page download completed */
 GET (…) /* get fragment from replica i */

1,

1,
,

−

−=
ri

ri
ri URT

PS
DR ; /* compute expected data rate, based on URT of previous request */

 ririri SDRPS ,,, ⋅= ; /* compute size of next fragment to be requested */
 else

return;

od
…

od
Figure 1: Implementation of the C2LD Service

Note that some of the replica servers may not respond
timely to the HTTP (HEAD and GET) invocations
described above (e.g., they may be unavailable owing to
network congestion). Thus, C2LD associates a timeout
to each HTTP request it issues to each server i. If that
timeout expires before C2LD receive a reply from a
replica server i, it assumes that the server i is currently
unavailable, and places it in a stand_by list. Replica
servers in that list are periodically probed to assess
whether they have become active again. Requests for
replicas in the stand_by list are redirected to active
replicas.
Finally, we wish to mention that, in order to increase
the degree of parallelism in the fetching of document
fragments, the C2LD mechanism has been implemented
using the thread programming model provided by the
Java 2 Software Development Kit. A detailed
discussion of our implementation of this mechanism
can be found in [15].

4. Measurements

The effectiveness of our C2LD implementation has been
validated through a large number of experiments (4000,
approximately). These experiments were carried out
during a two-month period; namely, November and
December 1999. These experiments consisted
essentially of a client program (i.e. a browser)
downloading Web documents of different size from up
to 4 geographically distributed replica servers. These
documents were downloaded by the same client
program using both the C2LD mechanism, and the
standard HTTP GET downloading mechanism, for
comparison purposes.

In this Section, we describe in detail the scenario within
which these experiments have been carried out,
introduce the metrics we have used to assess our
implementation, and discuss the performance results we
have obtained.

4.1. Scenario

The performance of our C2LD implementation has been
evaluated using the Internet to connect a client
workstation (equipped with our C2LD software) with
four replica servers.
The client workstation was a SPARCstation 5 running
the SunOS 5.5.1 operating system and the Sun Java
Virtual Machine 1.2. This workstation was located at
the Computer Science Department of the University of
Bologna. The four different replica servers were
running the Apache Web server over the Linux
platform.
For the purposes of our evaluation, these servers were
located in four distinct geographical areas. Specifically,
a replica server was located close to the client
workstation; namely, at the Computer Science
Laboratory of the University of Bologna, in Cesena.
This Laboratory is four network hops far from our
Department in Bologna. The connection between our
Department and this Laboratory has a limited
bandwidth of 2 Mbps, and is characterized by a rather
high packet loss rate (between 2% and 9%).
A second replica server was located in northern Italy;
namely, at the International Center of Theoretical
Physics in Trieste. This server was reachable through 9
network hops via a connection whose bandwidth ranged
between 8 and 155 Mbps.
A third replica server was located at the Department of
Computing Science of the University of Newcastle

 5

upon Tyne (UK). This server was reachable through 15
network hops from our client workstation.
Finally, a fourth replica server was located at the
Computer Science Department of the University of
California at S. Diego. This server was reachable
through a 19 network hops transatlantic connection.
Figure 2, obtained with the utility [13], depicts the
locations of both the client and the replica servers used
in our experiments, and the routes between this client
and those servers; this Figure shows that the different
routes connecting our client with the four replica
servers scarcely overlap (i.e., route overlapping occurs
only up to Milan, when communicating with the replica
servers in Trieste, Newcastle, and San Diego). Within
this scenario, a replicated Web service can be
configured so as to use one of the following 11
combinations of the four available replica servers.
Namely, a service can be replicated across the two
servers in Cesena and Newcastle (C+N, in the
following), only, or those in Cesena and Trieste (C+T),
or in Trieste and Newcastle (T+N), or in Cesena and S.
Diego (C+S), or in Trieste and S. Diego (T+S), or
Newcastle and S. Diego (N+S).
A more redundant service can be implemented across
one of the following four combinations of three servers,
instead: Cesena, Newcastle and Trieste (C+N+T);
Cesena, Newcastle, and S. Diego (C+N+S); Cesena,

Trieste, and S. Diego (C+T+S); Trieste, Newcastle, and
S. Diego (T+N+S). Finally, a redundant Web service
can be implemented across the four replica servers in
Cesena, Newcastle, Trieste, and S. Diego (C+N+T+S).
Our experiments have been carried out using all these
11 combinations of replica servers. It is worth noting
that the four machines running the server replicas were
moderately loaded during our experiments. In contrast,
the routes to the European Web replica servers were
heavily loaded during daytime; network traffic over
these routes typically decreased during the night.
The average network traffic conditions on both the
European and transatlantic routes, experienced during
the evaluation of our C2LD mechanism, are reported in
the following Table 1. Specifically, in this Table, the
first row indicates the 90% percentile of the Round Trip
Time (RTT) obtained with the ping routine from our
client workstation in Bologna to the four replica
servers; the second row reports the minimum RTT
experienced over the routes to those servers; the third
row reports the average packet loss rate we measured
over those routes, as obtained with the ping routine
(ICMP).
Finally, note that the network traffic almost saturated
the bandwidth of 8 Mbps, available at the University of
Bologna routers, during working hours [15].

Figure 2. Routes between the client and the Web replica servers

ping from Bologna to: Cesena Trieste Newcastle S. Diego
RTT 90% of arrived pkt (msec) 107 95 160 450
RTT min (msec) 10 38 59 190
Lost Packet 2%-9% 0% 0% 0%-3%

Table 1. The measured round trip time and lost packet percentage

 6

4.2. Measures

The following two metrics have been used to evaluate
the effectiveness of our C2LD mechanism: i) the
percentage of document retrieval requests successfully
satisfied by our mechanism, and ii) the URT (as defined
earlier) our mechanism provides. Both these metrics
capture the principal user requirements; namely, that a
requested document be effectively retrieved, and that it
be done timely. Based on these metrics, the evaluation
of our mechanism has been carried out using different
values of the following four parameters: i) the number
of server replicas that implement a given Web service,
ii) the data rate that each different server replica can
provide, iii) the download monitoring period adopted by
the C2LD mechanism, and, finally, iv) the size of the
document to be retrieved.
The performance of our C2LD mechanism has been
compared and contrasted with that provided by the
standard HTTP document retrieval mechanism, as this
is implemented by the HTTP GET function. To this
end, each replica server maintained a set of
downloadable files of different size, ranging from 3
Kbytes to 1 Mbytes. These servers were requested to
retrieve the same Web document, at the same time of
the day (i.e. under the same network traffic conditions,
approximately) using, alternatively, both the standard
HTTP GET request, and our mechanism. The download
monitoring period S used by our mechanism ranged
from 50 milliseconds to 10 seconds.
A number of experiments were carried out for each
given file size and download monitoring period S. Each
experiment consisted of 15 consecutives download
requests. 4 out of 15 of these requests were executed by
invoking the HTTP GET function; the other 11 requests
were executed by the C2LD mechanism. The
experiments used files whose size was 3, 10, 30, 50,
100, 200, 500 and 1000 Kbytes. For each file size, the

experiments with the C2LD mechanism were repeated
using a different download monitoring period, ranging
from 50 milliseconds to 10 seconds.
As mentioned earlier, our experiments were carried out
on the 11 possible configurations of a replicated
service, introduced in Subsection 4.1; however, the
values reported in the Tables and Figures in this
Subsection are the average of the results obtained in all
our experiments.
As a first result, Table 2 summarizes the page loss
percentage obtained with our mechanism, and that
obtained with the standard HTTP GET downloading
mechanism (performed with S. Diego, Newcastle,
Trieste and Cesena, respectively). It can be seen from
this Table that the C2LD mechanism provides a highly
available service, since it always guaranties the
downloading of the requested document. Instead, the
standard HTTP mechanism is not always able to
provide its client with that document, as shown by the
page loss percentage experienced by the S. Diego and
Cesena servers, in particular.
Figure 5 summarizes the results of the URT assessment
we have obtained. The lowest curve in this Figure
represents the URT provided by our C2LD mechanism,
as it results from averaging its value over all the
performed experiments. The two higher curves, instead,
represent the URT values provided by the two fastest
Web replica servers, when interrogated with the
standard HTTP downloading mechanism. Specifically,
the URT values provided by these two replica servers
were obtained as follows. The four different replica
servers were exercised with the standard HTTP
mechanism; then, out of these four servers, the URT
results obtained by the two fastest ones were selected to
plot the graph in Figure 5.

 C2LD S. Diego
(HTTP)

Newcastle
(HTTP)

Trieste
(HTTP)

Cesena
(HTTP)

50 Kbytes 0 % 0.3 % 0 % 0 % 1.65 %
100 Kbytes 0 % 0.25 % 0 % 0 % 5 %
200 Kbytes 0 % 0.2 % 0 % 0 % 4 %
500 Kbytes 0 % 0.3 % 0 % 0 % 1 %
1 Mbyte 0 % 0.45 % 0 % 0 % 2.5 %

Table 2: Fault Percentage

 7

0

2

4

6

8

10

12

14

16

18

20

22

3 10 30 50 100 200 500 1000 file size (Kbytes)

U
R

T
 (

se
co

n
d

s)

2-nd Fastest

Fastest

C2LD

Figure 5. C2LD vs. HTTP

As shown in that Figure, the performance of the C2LD
mechanism and the HTTP mechanism are equivalent
when the document size less than 50 Kbytes. Instead,
when the document size is larger than 50 Kbytes, the
C2LD mechanism outperforms the standard HTTP
downloading mechanism. As already mentioned, the
C2LD URT values in Figure 5 represent an average
URT value, as it results from all the experiments we
have carried out. However, it may be interesting to
assess the URT improvement that can be obtained by
our mechanism as the number of replica servers,
concurrently used, varies. To this end, we have carried
out experiments in which the number of active
replicas was varying from 1 to 4.
Figure 6 illustrates the results of our experiments, in
these four cases. Specifically, in these cases, the URT
is measured as a function of the file size. As shown in
this Figure, the larger the number of replicas that are
used, the better the URT values that can be obtained;
in addition, as the file size increases, the advantage of
using the C2LD mechanism becomes more notable.
In addition, Table 3 shows the average percentage
improvement of the URT values that has been
experienced in the experiments depicted in Figure 6,
as the number of replica servers grows.
We have experimented our C2LD mechanism using
different values of the download monitoring period
parameter S, in order to assess the influence of that
parameter on the URT provided by our mechanism.
Specifically, we have measured the C2LD URT using
values of the monitoring period S ranging from 50 ms

to 10 s. Figure 7 below illustrates the results our
experiments. This Figure reports the different URT
curves that were obtained using files of different size.
Note that the monitoring period that provides the
lowest URT values is 0.5 seconds, regardless of the
file size.
Finally, for the sake of completeness, we report below
two additional graphs. These graphs illustrate the
performance results obtained by both requesting each
replica to fetch a 500 Kbytes file, using a standard
HTTP GET request, and exercising our mechanism
with the fetching of the same file; the monitoring
period used by our mechanism in these experiments
ranged from 500 to 2000 milliseconds. Specifically,
the histograms in Figure 8 represent the URT values
obtained by the C2LD mechanism (denoted as parallel
in this Figure), and the URT values obtained by each
single replica. Each histogram illustrating the
performance of our mechanism relates to a different
combination of the server replicas used during the
experiments, as indicated in the Figure. Thus, for
example, the leftmost parallel histogram reports the
URT values obtained with our mechanism when only
the replica servers in Cesena and Newcastle were
used; the rightmost parallel histogram reports the
URT values obtained with the C2LD mechanism when
all the four replica servers were used. The remaining
histograms (other than the parallel histogram) relate
to the individual replica servers, as indicated in the
Figures.

 8

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

30 50 100 200 500 1000 file size (Kbytes)

U
R

T
 (

se
co

n
d

s)

1 replica

2 replicas

3 replicas

4 replicas

Figure 6. URT improvement provided by the C2LD mechanism as the number of replicas grows

Number of
Replica Servers

URT percentage
improvement

2 4%

3 17.2%

4 21.5%

Table 3. Average URT percentage improvement

0

2

4

6

8

10

12

14

50 200 500 1000 2000 5000 10000

monitoring period (milliseconds)

U
R

T
 (

se
co

n
d

s)

1000K
500K
200K
100K
50K
30K
10K
3K

Figure 7. URT depending on the monitoring period

 9

Figure 9 compares the percentage of URT
improvement obtained by the C2LD mechanism with
that obtained by each single replica (interrogated
using HTTP GET). Both Figure 8 and 9 show that, in
general, the C2LD mechanism outperforms each single
replica in all cases; the only exception occurs when
the C2LD uses only two replica servers, and, out of
these two servers, one is very fast (Trieste or
Newcastle), and the other is very slow (i.e. San
Diego).

5. Concluding remarks

In this paper, we have shown that the C2LD
mechanism we have developed in order to implement
responsive Web services can outperform the standard
Web page downloading mechanism (e.g. that provided
by the HTTP implementation) as it can improve the
URT by an average factor ranging between 4% and
21%, depending on the size of the downloaded page
as indicated in Table 3 above. We have applied our
C2LD mechanism to the fetching of generic Web
resources, such as files and documents; we wish to
assess the adequacy of our mechanism when deployed
for accessing digital video and audio resources. In
addition, we are planning to extend the work
described in this paper by addressing the following
topics. Firstly, we intend to evaluate the overhead
caused by our mechanism both at the network and at
the server levels. Specifically, we wish to assess the
effectiveness of our mechanism when multiple clients
concurrently access the same replicated Web service.
Secondly, we intend to evaluate the performance of
our mechanism when implemented within a proxy
server; in this context, we wish to explore the use of
caching and prefetching techniques. Thirdly, we wish
to compare and contrast the performance of our
mechanism with that provided by other replicated
services, such as those based on a locally distributed
cluster of workstations. Fourthly, we wish to examine
strategies that optimize the routing of requests to
replica servers. Finally, we wish to investigate policies
for maintaining data consistency among
geographically distributed replica servers.

Acknowledgments

This work has been partially funded by the
Department of Computer Science of the University of
Bologna, the Italian MURST and Microsoft Research
Europe. A special debt of gratitude is due to our
colleagues at the Computing Science Department of
the University of Newcastle upon Tyne (UK), at the
International Center for Theoretical Physics of Trieste
(Italy), and at the Department of Computer Science of
the University of California at San Diego (USA) for
providing us with the resources required to carry out
our experiments. Last, but by no means least, we wish

to thank the anonymous referees who reviewed this
paper for their valuable and constructive comments.

References

[1] R.B. Bunt, D.L. Eager, G.M. Oster, C.L. Williamson,
“Achieving Load Balance and Effective Caching in
Clustered Web Servers”, Proc. 4th International Web
Caching Workshop, San Diego, CA, March 1999.

[2] “Cisco Local Director”, CISCO System Inc., White
paper, 1996.

[3] M. Colajanni, P. S. Yu, D. M. Dias, “Analysis of Task
Assignment Policies in Scalable Distributed Web-Server
Systems”, IEEE Trans. on Parallel and Distributed Systems,
Vol. 9, N 6, pp. 585-600, June 1998.

[4] M. Conti, E. Gregori, F. Panzieri, “Load Distribution
among Replicated Web Servers: A QoS-based approach”,
Proc. 2nd ACM Workshop on Internet Server Performance
(WISP'99), Atlanta, GA, , May 1999.

[5] M. Conti, E. Gregori, F. Panzieri, “QoS-based
Architectures for Geographically Replicated Web Servers”,
Cluster Computing (to appear).

[6] P. Damani, P.E. Chung, Y.Huang, C.Kintala, Y. M.
Wang, “ONE-IP: Techniques for Hosting a Service on a
Cluster of Machines”, Comp. Net. and ISDN Sys., 29, 1997,
pp. 1019-1027.

[7] D. Ingham, S.K. Shrivastava, F. Panzieri, “Constructing
Dependable Web Services”, IEEE Internet Computing, Vol.
4, N. 1, January/February 2000, pp. 25 - 33.

[8] A. Iyengar, J. Challenger, D. Dias, P. Dantzig, “High-
Performance Web Site Design Techniques”, IEEE Internet
Computing, Vol. 4., N. 2, March/April 2000, pp. 17-26.

[9] J. Li, H. Kameda, “Load Balancing Problems for
Multiclass Jobs in Distributed/Parallel Computer Systems”,
IEEE Trans. on Computers, Vol. 47, No. 3, March 1998, pp.
322-332.

[10] E.D. Katz, M. Butler, R. McGrath, “A Scalable HTTP
Server: The NCSA Prototype”, Comp. Net. and ISDN Sys.,
27 (2), pp.155-164, November 1994.

[11] J. Li, H. Kameda, “Load Balancing Problems for
Multiclass Jobs in Distributed/Parallel Computer Systems”,
IEEE Trans. on Computers, Vol. 47, No. 3, pp. 322-332,
March 1998.

[12] V. Pai, G. Banga, M. Svendsen, P. Druschel, W.
Zwaenepoel, E. Nahum, “Locality-aware Request
Distribution in Cluster-based Network Servers”, Proc.
ASPLOS- VIII, San Jose, CA, October 1998.

[13] Datametrics Systems Corp., “VisualRoute - Mapping
the Internet”, http://www.visualroute.com

[14] J. Watts, S. Taylor, “A Practical Approach to Dynamic
Load Balancing”, IEEE Trans. on Parallel and Distributed
Systems, Vol. 9, NO. 3, March 1998, pp. 235-248.

 10

[15] V. Ghini, F. Panzieri, M. Roccetti “Client-centered
Load Distribution: A Mechanism for Constructing
Responsive Web Services” Technical Report No. UBLCS-
07, Laboratory for Computer Science, University of
Bologna, June 2000.

500 Kbyte

0

2

4

6

8

10

12

14

16

C
+N

C
+T

T
+N

C
+S

T
+S

N
+S

C
+N

+T

C
+N

+S

C
+T

+S

T
+N

+S

C
+T

+N
+S

U
R

T
 (

se
co

n
d

s)

S=San Diego

C=Cesena

N=NewCastle

T=Trieste

Parallel

Figure 8. C2LD vs. single replicas performances

-20

-10

0

10

20

30

40

50

60

70

80

C
+N

C
+T

T
+N

C
+S

T
+S

N
+S

C
+N

+T

C
+N

+S

C
+T

+S

T
+N

+S

C
+T

+N
+S

U
R

T
 Im

p
ro

ve
m

en
t

S=San Diego

C=Cesena

N=NewCastle

T=Trieste

Figure 9. Percentage improvement of the C2LD mechanism

