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Abstract 
The success of a Web service is largely dependent on its responsiveness (i.e., its availability and timeliness) 
in the delivery of the information its users (clients) require. A practical approach to the provision of 
responsive Web services is based on introducing redundancy in the service by replicating the service itself 
across a number of servers geographically distributed over the Internet. Provided that the replica servers be 
maintained mutually consistent, service responsiveness can be guaranteed by dynamically binding the client 
to the most convenient replica (e.g., the nearest, lightly loaded, available replica; the available replica with 
the least congested connection to the client). Based on this approach, we have developed a software 
mechanism [GHI01] that meets effectively the responsiveness requirement mentioned above. In essence, this 
mechanism, rather than binding a client to its most convenient replica server, engages all the available 
replicas in supplying a fragment of the Web document that client requires. The size of the fragment a replica 
is requested to supply is dynamically evaluated on the basis of the response time that replica can provide its 
client with. In addition, the proposed mechanism can dynamically adapt to changes in both the network and 
the replica servers status, thus tolerating possible replica or communication failures that may occur at run-
time. Our mechanism can be implemented either as part of the browser software or as part of a Proxy server. 
In this paper, we describe the design, the development, and the performance evaluation of both these 
implementations of our mechanism. The performance results we have obtained from our evaluation exercise 
illustrate the adequacy of the mechanism we propose, in order to provide responsive Web services. 
 

1. Introduction 
 

The Web is becoming a fundamental technology for most of advanced companies and organizations, and 
many users rely on the Web for retrieving critical information and for conducting personal businesses. Users 
are not willing to tolerate too large latency times, and they do not care of complexity of Web infrastructure 
and technology. They only detect if the response time becomes too high, or if there are many periods of 
unavailability of the services. Thus, the responsiveness is a crucial issue in the design of those services. 
Responsiveness can be increased [CAR01] deploying one of the following four approach: i) scaling-up the 
single server, ii) using so-called Differentiated Web Services that provide preferential treatment of classes of 
users, iii) using local replication, i.e. locally distributing the Web services among a set of replica servers 
located into a cluster of workstations and iv) geographical replicating the servers across the Internet.  
Scaling-up. Obviously, the first step to increase the performance of a web service consists of increasing the 
hardware potential of the servers that implement that service, by adding memory and CPU power to each 
single server. Unfortunately, the server cannot scale-up indefinitely. 
Differentiated Web Services. Recent proposals suggest to provide differentiated scheduling services in 
order to enable preferential treatments of classes of users. Typically, access to a commercial web service 
occurs in the form of a session consisting of a sequence of individual requests. The session-based admission 
control policies proposed in [CHE99] will accept a new session (i.e. a new customer to the site) only when a 
server has the capacity to process all future requests related to the session, i.e. a server can guarantee the 
successful session completion. The HP's WebQoS system is based on this approach. 
Local Replication. A host of techniques, e.g. [BUN99, CIS96, COL98, DAM97, IYE00, PAI98, WAT98], 
has been proposed in the literature that addresses specifically the issue of providing highly available Web 
services. In general, these techniques are based on i) constructing a Web service out of replicated servers, 
locally distributed in a cluster of workstations, namely a Web cluster, and ii) distributing the client request 
load among those servers, by using a Web router/gateway (with the public IP address of the web service) that 
acts as a centralized dispatcher. As discussed at length in [ING00], local replication techniques can only 
partially meet the high availability requirement (e.g., they may be vulnerable to failures of the 
router/gateway). In addition, they cannot be deployed in order to meet timeliness requirements, such as the 
client latency time over the network, because these requirements fall beyond the control of these techniques. 



Geographical Replication. In order to overcome these limitations, an alternative approach has been 
proposed in [ING00], and explored further in [CON99, CON01]. According to this approach, a responsive 
Web service can be provided by replicating servers across the Internet, rather than in a cluster of 
workstations. In the Internet context, a successful deployment of this approach will depend on the ability of 
achieving the following two principal goals: i) dynamically binding the client to the most convenient replica 
server, and ii) maintaining data consistency among the replica servers. Unfortunately, neither of these two 
goals is easy to achieve. Firstly, the dynamic binding of clients to replica servers can turn out to be difficult 
to implement, owing to the location based naming scheme used in the Web. This scheme provides a one-to-
one mapping (i.e., the Uniform Resource Locator - URL) between a name of a resource and a single physical 
copy of that resource; hence, dynamic binding of a client to distinct replica servers requires that the client-
side software be adequately extended in order to be able to select an available replica, at run-time. Secondly, 
maintaining replica consistency on a large geographical scale can be hard to achieve, without affecting the 
overall service performance. In addition, the Internet environment is subject to (real or virtual) partitions that 
can prevent communications between functioning nodes; hence, within this environment, both clients and 
replica servers may hold mutually inconsistent views of which replica server is available and which is 
unavailable. 
In view of these observations, we have developed a mechanism, that, in order to provide the clients of a 
geographically replicated Web service with service responsiveness, exploits the parallelism inherent in the 
replicated servers architecture that implements that service. Specifically, the principal goal of this mechanism 
is to minimize what we term the User Response Time (URT), i.e. the time elapsed between the generation of 
a browser request for the retrieval of a Web page, and the rendering of that page at the browser site (issues of 
replica consistency fall outside the scope of this mechanism). To this end, rather than binding a client to the 
most convenient replica server, as proposed in [ING00], our mechanism intercepts each client browser 
request for a Web page, and fragments that request into a number of sub-requests for separate parts of that 
document. Each sub-request is issued to a different available replica server, concurrently. The replies 
received from the replica servers are reassembled at the client end to reconstruct the requested page, and then 
delivered to the client browser. The effectiveness of C2LD mechanism has been validated through both an 
experimental evaluation over the Internet, and simulation. 
This paper is structured as follows. The next section summarizes the design of our C2LD mechanism and 
introduce the mechanism. Section 3 discusses both the experimental and the simulative results we obtained 
from the validation exercise of the C2LD mechanism we have carried out. Finally, Section 4 provides some 
concluding remarks. 
 

2. Design Issues 
 

Our mechanism is designed so as to adapt dynamically to state changes in both the network (e.g. route 
congestion, link failures), and the replica servers (e.g. replica overload, unavailability). To this end, our 
mechanism periodically monitors the available replica servers and selects, at run-time, those replicas to 
which the sub-requests can be sent, i.e. those replicas that can provide the requested page fragments within a 
time interval that allows our mechanism to minimize the URT. As our mechanism implements effectively 
load distribution of client requests among the available replicas, we have named it Client-Centered Load 
Distribution (C2LD). C2LD can be implemented as an extension of the client-side software (i.e., in the 
browser) or as a module of a Proxy server to which the clients send their requests. 
The design of C2LD is based on an analytical model that we have developed, and described in [GHI01]. This 
model is essential in order to determine the size of the page fragment that can be requested to each replica, 
and the extent of the monitoring period C2LD is to use in order to execute a Web page request.  
The timeliness requirement to be met by our C2LD mechanism can be expressed by means of a User 
Specified Deadline (USD), i.e. a value that indicates the extent of time a user is willing to wait for a 
requested Web page to be rendered at his/her workstation. Owing to this USD time constraint, each replica 
server that receives a sub-request for a page fragment must honor that sub-request within a time interval that 
allow the C2LD mechanism to reconstruct the requested page, out of all the received fragments, before the 
USD deadline expires. Thus, it is crucial that the C2LD mechanism assess accurately both the size of the 
fragment each replica is to supply, and the time intervals within which these fragments are to be received at 
the client site. The above mentioned analytical model enables these assesments. Access to a Web service 
from a browser entails that a HTTP GET method be invoked by that browser. The C2LD mechanism 
intercepts that HTTP GET invocation, starts the USD timeout and, using the URL in the GET invocation, 
interrogates the DNS. The DNS maintains the IP addresses of the NREP replica servers that implement a Web 



service. When C2LD submits a request to the DNS for resolving a URL, the DNS returns the IP addresses of 
all the replica servers associated to that URL. As the replica servers’ addresses are available to the C2LD 
mechanism, this mechanism interacts with each replica as illustrated by the skeleton code in Figure 1, and 
summarized below. C2LD invokes a HTTP HEAD method on each replica i. The reply from replica i to the 
first HTTP HEAD invocation is used by C2LD to: i) get the size of the requested page, ii) estimate the current 
data rate that replica i can provide ( riDR ,  in figure 1 below), and iii) assess the size ( riPS , in figure 1) of the 

first fragment that can be fetched from that replica. C2LD maintains a global variable (download_done, in 
Fig.1) that indicates whether or not all the fragments of a requested page have been delivered. Until a page is 
not fully downloaded, C2LD uses the Eq. in the rows 9 and 10 to compute the size of the fragment that is to 
be requested to the replica i.  
 
1) within USD  do   /* set USD timeout */ 
2) …   
3) HEAD(…)    /* send HEAD request to replica i */ 
4) URT(i) := …    /* assess URT replica i can provide */ 
5) PS(i,1) := …    /* compute 1st fragment size for replica i */ 
6) within S  do    /* set timeout of length S */ 
7)       if not download_done then /* check if page download completed */ 
8)             GET (…)     /* get fragment from replica i */ 

9)             
1r,i

1r,i
r,i URT

PS
DR

−

−= ;    /* compute expected data rate, based on URT of previous request */ 

10)             PSi,r = DRi,r 
. Si,r ;    /* compute size of next fragment to be requested */ 

11)       else  
12)             return; 
13)       od  
14) …       /* handle S timeout exception */ 
15) od 

 

Figure 1: Implementation of the C2LD Service 
 

In order to adjust adaptively to possible fluctuations of the communication delays that may occur over the 
Internet, the fragment size is computed each time a fragment is to be requested, based on the value of the 
URT experienced in fetching the previous fragment. Thus, in essence, as the GET request r-1 directed to a 
given replica i terminates, a new GET request r can be issued to the replica i with the fragment size value 

riPS ,  computed (see row 10 in the figure 1) on the basis of the URTi,r-1 response time. Once the requested 
fragment size has been calculated, C2LD issues a HTTP GET request to the replica i, by specifying the HTTP 
RANGE option, in order to retrieve the required fragment of that size. Note that some of the replica servers 
may not respond timely to the HTTP (HEAD and GET) invocations described above (e.g., they may be 
unavailable owing to network congestion). Thus, C2LD associates a timeout to each HTTP request it issues to 
each server i. If that timeout expires before C2LD receives a reply from a replica server i, it assumes that the 
server i is currently unavailable, and places it in a stand_by list. Replica servers in that list are periodically 
probed to assess whether they have become active again. Requests for replicas in the stand_by list are 
redirected to active replicas.  
We have developed the implementation of our mechanism using the Java programming language and the 
Java 2 Software Development Kit. Our mechanism can be incorporated either in the browser software or in a 
HTTP Proxy server. In the former case, the C2LD implementation intercepts the HTTP GET method 
invocation issued by the browser, and acts as previously described. In contrast, in the latter case, a Proxy 
server maintains an instance of the C2LD mechanism for each browser accessing that server. Thus, in 
essence, a Proxy server dispatches requests from its client browsers to their relative C2LD instances, and 
delivers responses from those instances to their relative browsers. 
 

3. Validation 
 

The effectiveness of our C2LD implementation has been assessed through the following two separate 
evaluation exercises. The first of these exercises consisted of experimenting our mechanism using the actual 



Internet. In this evaluation, a single browser program, incorporating our mechanism and accessing a 
geographically replicated Web service, was involved. 
The second evaluation exercise was based on simulation; specifically, as part of this exercise, we developed a 
simulation scenario in which multiple clients accessed the same replicated Web service. In addition, within 
this exercise, we have evaluated the two C2LD implementations described earlier, i.e., the implementation of 
the C2LD mechanism within the browser program, and the implementation of our mechanism within a Proxy 
server. In the following sub-sections we summarize our evaluation exercises, in isolation. 
 

3.1. Single Client Experimentation 
In order to carry out experimental evaluation, we have developed a simple Web service implemented by four 
replica servers located in Italy (Cesena and Trieste), the UK (Newcastle), and the USA (San Diego), and 
interconnected via the Internet. A large number of experiments (4000, approximately) were carried out 
during a two-month period. These experiments consisted essentially of a client program (i.e. a browser) 
downloading Web documents of different size from up to 4 geographically distributed replica servers. These 
documents were downloaded by the same client program using both the C2LD mechanism, and the standard 
HTTP GET downloading mechanism, for comparison purposes. Figure 2 depicts the locations of both the 
client and the replica servers used in our experiments, and the routes between this client and those servers.  
 

 
 

Figure 2: Routes between the client and the Web replica servers 
 
 

 
 

Table 2: Fault Percentage 
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Figure 3: C2LD vs. HTTP 

As a first result, Table 2 summarizes the page loss percentage obtained with our mechanism, and that 
obtained with the standard HTTP GET downloading mechanism (performed with S. Diego, Newcastle, 
Trieste and Cesena, respectively). It can be seen from this Table that the C2LD mechanism provides a highly 
available service, since it always guaranties the downloading of the requested document. Instead, the 
standard HTTP mechanism is not always able to provide its client with that document, as shown by the page 
loss percentage experienced by the S. Diego and Cesena servers, in particular. Figure 3 summarizes the 
results of the URT assessment we have obtained. The lowest curve in this Figure represents the URT 
provided by our C2LD mechanism, as it results from averaging its value over all the performed experiments. 
The two higher curves, instead, represent the URT values provided by the two fastest Web replica servers, 
when interrogated with the standard HTTP downloading mechanism. As shown in Figure 3, the performance 
of the C2LD mechanism and the HTTP mechanism are equivalent when the document size less than 50 
Kbytes. Instead, when the document size is larger than 50 Kbytes, the C2LD mechanism outperforms the 
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standard HTTP downloading mechanism. As already mentioned, the C2LD URT values in Figure 3 represent 
an average URT value, as it results from all the experiments we have carried out. For the sake of simplicity in 
this figure we do not report the value of the variance of the URT, as measured in our experiments. However, 
this value for the C2LD mechanism varied from 0.099 s to 5 s, approximately, depending on the size of the 
requested page. The experimental results indicate that, in general, the C2LD mechanism outperforms each 
single replica in all cases; the only exception occurs when the C2LD uses only two replica servers, and, out of 
these two servers, one is very fast (Trieste or Newcastle), and the other is very slow (i.e., San Diego). 
 

3.2. Multiple Client Simulation 
The results discussed in the previous sub-section indicate that our C2LD mechanism, when incorporated in a 
browser’s software, can provide a notable speed-up in the communications between that browser and a 
replicated Web service, compared to the HTTP standard document fetching policy. However, as our 
experimental evaluation was based on a single client, these results were not sufficient to show the 
effectiveness of our C2LD mechanism in the general case in which a replicated Web service is accessed by a 
large number of clients (say, hundreds), concurrently. Thus, as it was impractical to experiment our 
mechanism in one such real Internet-based scenario, we developed a simulation of that scenario within which 
we have evaluated the implementation of our mechanism both as part of the client software and as part of a 
HTTP Proxy server. In our simulation, both the workload that can be experienced by four replica servers, 
under different distribution of client requests, and the network load have been specified by means of 
simulation parameters. The simulation model has been specified by using the AEMPA technology [BER00].  

 
Figure 4. Web Access: URT measurements with multiple-client simulation 

 

A summary of the simulation results we have obtained when the C2LD mechanism is implemented at the 
browser are reported in Figure 4. We have assessed the responsiveness of our C2LD fetching policy for the 
following Web page sizes: 100, 250, 500, 750, and 1000 Kbytes. We have used the following monitoring 
periods: 300, 600, and 900 ms. In addition to the results provided by the C2LD policy this Figure shows the 
URT provided by each single server, accessed via the standard HTTP mechanism; the related curves are 
labeled with the name of the corresponding server.  
As shown in Figure 4, Cesena achieves the best performance, with the standard HTTP mechanism, followed 
by Trieste, Newcastle and San Diego. Here, we can note a first discrepancy between these results and those 
obtained with the single-client experimentation. This discrepancy amounts to the fact that in the simulative 
scenario the Cesena server (equipped with the HTTP protocol) clearly outperforms the C2LD policy. This is 
due to the fact that, after our single-client experimentation, the Internet connections provided to interconnect 
the central site of the University of Bologna with the remote university site of Cesena were upgraded, and the 
ping program used to set up the simulation parameters was executed after this upgrade. For the same reason, 
the transmission delays obtained with this method are in general notably lower than those measured in our 
experiments on the field. In essence, as already observed during the single client experimentation, this is the 
case when a specific server responds much faster than all the other replica servers. In one such particular 
situation, it may not be convenient to make use of any load distribution policy among replicated servers. 
Regardless of this particular situation, however, we can observe that the achieved URT critically depends on 



 

the duration of the monitoring period. If the duration is 300 ms, we see a poor performance which is only 
better than that using the San Diego server alone, with the standard HTTP mechanism. The reason is that, if 
we examine the configuration parameters, on average the S. Diego server replies to a HTTP request after 400 
ms; hence, at the end of each monitoring period of 300 ms, most of the page fragments will be downloaded 
from the Cesena, Trieste, and Newcastle servers. The URT improves notably when the monitoring period is 
600 ms; in this case C2LD outperforms the San Diego, Newcastle and Trieste equipped with the standard 
HTTP mechanism, for page sizes greater than 500 Kbytes, and it is even better with a 900 ms monitoring 
period; in this case, C2LD outperforms Trieste for page sizes greater than 300 Kbytes. 
 

4. Concluding Remarks 
 

In this paper, we have discussed a mechanism we have developed to construct responsive Web services. We 
have shown, through both real experiments and simulation, that this mechanism can be extremely effective in 
order to minimize the URT, if implemented either as part of a browser software or as part of a Proxy server. 
We have applied our C2LD mechanism to the fetching of generic Web resources, such as files and 
documents; we wish to assess the adequacy of our mechanism when deployed for accessing digital video and 
audio resources. In addition, we are planning to extend the work described in this paper by addressing the 
following topics. Firstly, we wish to examine strategies that involve pre-fetching of Web resources from the 
replica servers. Secondly, we wish to extend our mechanism to deal with dynamic Web services, and the 
previously described strategies for implement replicated Web servers. Finally, we wish to investigate policies 
for maintaining data consistency among geographically distributed replica servers.\ 
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