
Streaming Stored
Audio & Video

Streaming stored media:
r Audio/video file is stored

in a server
r Users request audio/video

file on demand.
r Audio/video is rendered

within, say, 10 s after
request.

r Interactivity (pause, re-
positioning, etc.) is allowed.

Media player:
m removes jitter
m decompresses
m error correction
m graphical user interface

with controls for
interactivity

r Plug-ins may be used to
imbed the media player
into the browser window.

Streaming from Web server (1)

r Audio and video files
stored in Web servers

naïve approach
r browser requests file with

HTTP request message
r Web server sends file in

HTTP response message
r content-type header line

indicates an audio/video
encoding

r browser launches media
player, and passes file to
media player

r media player renders file

• Major drawback: media player
interacts with server through
intermediary of a Web browser

Streaming from Web server (2)

Alternative: set up connection
between server and player

r Web browser requests and
receives a meta file
(a file describing the
object) instead of
receiving the file itself;

r Content-type header
indicates specific
audio/video application

r Browser launches media
player and passes it the
meta file

r Player sets up a TCP
connection with server and
sends HTTP request.

Some concerns:
r Media player communicates

over HTTP, which is not
designed with pause, ff,
rwnd commands

r May want to stream over
UDP

Streaming from a streaming server

r This architecture allows for non-HTTP protocol between server
and media player

r Can also use UDP instead of TCP.

Options when using a streaming server
r Send at constant rate over UDP. To mitigate the effects of jitter,

buffer and delay playback for 1-10 s. Transmit rate = d, the encoded
rate. Fill rate x(t) equals d except when there is loss.

r Use TCP, and send at maximum possible rate under TCP; TCP
retransmits when error is encountered; x(t) now fluctuates, and can
become much larger than d. Player can use a much large buffer to
smooth delivery rate of TCP.

Real Time Streaming Protocol: RTSP
HTTP
r Designers of HTTP had

fixed media in mind: HTML,
images, applets, etc.

r HTTP does not target
stored continuous media (i.e.,
audio, video, SMIL
presentations, etc.)

RTSP: RFC 2326
r Client-server application

layer protocol.
r For user to control display:

rewind, fast forward, pause,
resume, repositioning, etc…

What it doesn’t do:
r does not define how

audio/video is encapsulated
for streaming over network

r does not restrict how
streamed media is
transported; it can be
transported over UDP or
TCP

r does not specify how the
media player buffers
audio/video

RealNetworks
r Server and player use RTSP

to send control info to each
other

RTSP: out of band control
FTP uses an “out-of-band” control

channel:
r A file is transferred over

one channel.
r Control information

(directory changes, file
deletion, file renaming,
etc.) is sent over a
separate TCP connection.

r The “out-of-band” and “in-
band” channels use
different port numbers.

RTSP messages are also sent out-
of-band:

r The RTSP control messages
use different port numbers
than the media stream, and
are therefore sent out-of-
band.

r The media stream, whose
packet structure is not
defined by RTSP, is
considered “in-band”.

r If the RTSP messages were to
use the same port numbers as
the media stream, then RTSP
messages would be said to be
“interleaved” with the media
stream.

RTSP initiates and controls delivery
r Client obtains a description of the

multimedia presentation, which can consist
of several media streams.

r The browser invokes media player (helper
application) based on the content type of
the presentation description.

r Presentation description includes
references to media streams, using the
URL method rtsp://

r Player sends RTSP SETUP request; server
sends RTSP SETUP response.

r Player sends RTSP PLAY request; server
sends RTSP PLAY response.

r Media server pumps media stream.
r Player sends RTSP PAUSE request; server

sends RTSP PAUSE response.
r Player sends RTSP TEARDOWN request;

server sends RTSP TEARDOWN response.

HTTP GET

SETUP

PLAY

media stream

PAUSE

TEARDOWN

media
player

Web
server

media
server

Web
browser

client server

presentation desc.

Meta file example

<title>Twister</title>
<session>

<group language=en lipsync>
<switch>

<track type=audio
e="PCMU/8000/1"
src = "rtsp://audio.example.com/twister/audio.en/lofi">

<track type=audio
e="DVI4/16000/2" pt="90 DVI4/8000/1"
src="rtsp://audio.example.com/twister/audio.en/hifi">

</switch>
<track type="video/jpeg"

src="rtsp://video.example.com/twister/video">
</group>

</session>

RTSP session

r Each RTSP has a session
identifier, which is chosen by
the server.

r The client initiates the session
with the SETUP request, and
the server responds to the
request with an identifier.

r The client repeats the session
identifier for each request,
until the client closes the
session with the TEARDOWN
request.

r RTSP port number is 554.
r RTSP can be sent over UDP or

TCP. Each RTSP message can be
sent over a separate TCP
connection.

RTSP: exchange example
C: SETUP rtsp://audio.example.com/twister/audio RTSP/1.0

Transport: rtp/udp; compression; port=3056; mode=PLAY

S: RTSP/1.0 200 1 OK
Session 4231

C: PLAY rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0
Session: 4231
Range: npt=0-

C: PAUSE rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0
Session: 4231
Range: npt=37

C: TEARDOWN rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0
Session: 4231

S: 200 3 OK

RTSP: streaming caching
r Caching of RTSP response

messages makes little sense.
r But desirable to cache media

streams closer to client.
r Much of HTTP/1.1 cache control

has been adopted by RTSP.
m Cache control headers can be

put in RTSP SETUP requests
and responses:

• If-modified-since: ,
Expires: , Via: , Cache-
Control:

r Proxy cache may hold only
segments of a given media
stream.

m Proxy cache may start
serving a client from its
local cache, and then have to
connect to origin server and
fill missing material,
hopefully without
introducing gaps at client.

r When origin server is sending a
stream through client, and
stream passes through a proxy,
proxy can use TCP to obtain the
stream; but proxy still sends
RTSP control messages to origin
server.

