
Real-time interactive
applications

r PC-2-PC phone
r PC-2-phone

m Dialpad
m Net2phone

r videoconference
r Webcams

r Now we look at a PC-2-PC
Internet phone example in
detail

Internet phone over best-effort (1)

Best effort
r packet delay, loss and

jitter
Internet phone example
r now examine how packet

delay, loss and jitter are
often handled in the
context of an IP phone
example.

r Internet phone applications
generate packets during
talk spurts

r bit rate is 64 kbps during
talk spurt

r during talk spurt, every 20
msec app generates a
chunk of 160 bytes =
8 kbytes/sec * 20 msec

r header is added to chunk;
then chunk+header is
encapsulated into a UDP
packet and sent out

r some packets can be lost
and packet delay will
fluctuate.

r receiver must determine
when to playback a chunk,
and determine what do
with missing chunk

Internet phone (2)

packet loss
r UDP segment is

encapsulated in IP
datagram

r datagram may overflow a
router queue

r TCP can eliminate loss, but
m retransmissions add delay
m TCP congestion control

limits transmission rate
r Redundant packets can help
end-to-end delay
r accumulation of

transmission, propagation,
and queuing delays

r more than 400 msec of
end-to-end delay seriously
hinders interactivity; the
smaller the better

delay jitter
r consider two consecutive

packets in talk spurt
r initial spacing is 20 msec,

but spacing at receiver can
be more or less than 20
msec

removing jitter
r sequence numbers
r timestamps
r delaying playout

Internet phone (3): fixed playout delay

r Receiver attempts to
playout each chunk at
exactly q msecs after the
chunk is generated.

m If chunk is time
stamped t, receiver
plays out chunk at t+q .

m If chunk arrives after
time t+q, receiver
discards it.

r Strategy allows for lost
packets.

r Tradeoff for q:
m large q: less packet loss
m small q: better

interactive experience

Internet phone (4): fixed playout delay

r Sender generates packets every 20 msec during talk spurt.
r First packet received at time r
r First playout schedule: begins at p
r Second playout schedule: begins at p’

packets

time

packets
generated

packets
received

loss

r

p p'

playout schedule
p - r

playout schedule
p' - r

Adaptive playout delay (1)

packet th receivingafter delay network average of estimate
packet thfor delay network

receiverat played is packet timethe
receiverby received is packet timethe

packet th theof timestamp

id
itr

ip
ir

it

i

ii

i

i

i

=
=−

=
=
=

• Estimate network delay and adjust playout delay at the beginning of
each talk spurt.

• Silent periods are compressed and elongated.

• Chunks still played out every 20 msec during talk spurt.

Dynamic estimate of average delay at receiver:

)()1(1 iiii trudud −+−= −

where u is a fixed constant (e.g., u = .01).

Adaptive playout delay (2)

Also useful to estimate the average deviation of the delay, vi :

||)1(1 iiiii dtruvuv −−+−= −

The estimates di and vi are calculated for every received packet, although they
are only used at the beginning of a talk spurt.

For first packet in talk spurt, playout time is:

iiii Kvdtp ++=

where K is a positive constant. For this same packet, the play out delay is:

iii tpq −=

For packet j in the same talk spurt, play packet out at

ijj qtp +=

Adaptive playout (3)

How to determine whether a packet is the first in a talkspurt:
r If there were never loss, receiver could simply look at the

successive time stamps.
m Difference of successive stamps > 20 msec, talk spurt

begins.
r But because loss is possible, receiver must look at both time

stamps and sequence numbers.
m Difference of successive stamps > 20 msec and sequence

numbers without gaps, talk spurt begins.

Recovery from packet loss (1)

r Loss: packet never arrives
or arrives later than its
scheduled playout time

forward error correction
(FEC): simple scheme

r for every group of n chunks
create a redundant chunk by
exclusive OR-ing the n
original chunks

r send out n+1 chunks,
increasing the bandwidth by
factor 1/n.

r can reconstruct the original
n chunks if there is at most
one lost chunk from the n+1
chunks

r Playout delay needs to
fixed to the time to
receive all n+1 packets

r Tradeoff:
m increase n, less bandwidth

waste
m increase n, longer playout

delay
m increase n, higher

probability that 2 or more
chunks will be lost

Recovery from packet loss (2)

2nd FEC scheme
• “piggyback lower
quality stream”
• send lower resolution
audio stream as the
redundant information
• for example, nominal
stream PCM at 64 kbps
and redundant stream
GSM at 13 kbps.
• Sender creates packet
by taking the nth chunk
from nominal stream and
appending to it the
(n-1)st chunk from
redundant stream.

• Whenever there is non-consecutive loss, the
receiver can conceal the loss.
• Only one packets need to be received before
playback
• Can also append (n-1)st and (n-2)nd low-bit rate
chunk

Recovery from packet loss (3)
Interleaving
r chunks are broken

up into smaller units
r for example, 4

5 msec units per
chunk

r interleave the chunks as
shown in diagram

r packet now contains small
units from different
chunks

r Reassemble chunks at
receiver

r if packet is lost, still have
most of every chunk

Recovery from packet loss (4)

Receiver-based repair of
damaged audio streams

r produce a replacement for
a lost packet that is similar
to the original

r can give good performance
for low loss rates and small
packets (4-40 msec)

r simplest: repetition
r more complicated:

interpolation

