
Real-time interactive 
applications

r PC-2-PC phone
r PC-2-phone

m Dialpad
m Net2phone

r videoconference
r Webcams

r Now we look at a PC-2-PC 
Internet phone example in 
detail



Internet phone over best-effort (1)

Best effort
r packet delay, loss and 

jitter
Internet phone example
r now examine how packet 

delay, loss and jitter are 
often handled in the 
context of an IP phone 
example.

r Internet phone applications 
generate packets during 
talk spurts

r bit rate is 64 kbps during 
talk spurt

r during talk spurt, every 20 
msec app generates a 
chunk of 160 bytes =
8 kbytes/sec * 20 msec 

r header is added to chunk; 
then chunk+header is 
encapsulated into a UDP 
packet and sent out

r some packets can be lost 
and packet delay will 
fluctuate.

r receiver must determine 
when to playback a chunk, 
and determine what do 
with missing chunk



Internet phone (2)

packet loss
r UDP segment is 

encapsulated in IP 
datagram

r datagram may overflow a 
router queue

r TCP can eliminate loss, but
m retransmissions add delay
m TCP congestion control 

limits transmission rate
r Redundant packets can help
end-to-end delay
r accumulation of 

transmission, propagation, 
and queuing delays

r more than 400 msec of 
end-to-end delay seriously 
hinders interactivity; the 
smaller the better

delay jitter
r consider two consecutive 

packets in talk spurt
r initial spacing is 20 msec, 

but spacing at receiver can 
be more or less than 20 
msec

removing jitter
r sequence numbers
r timestamps
r delaying playout



Internet phone (3): fixed playout delay

r Receiver attempts to 
playout each chunk at 
exactly q msecs after the 
chunk is generated.

m If chunk is time 
stamped t, receiver 
plays out chunk at t+q .

m If chunk arrives after 
time t+q, receiver 
discards it.

r Strategy allows for lost 
packets.

r Tradeoff for q:
m large q: less packet loss
m small q: better 

interactive experience



Internet phone (4): fixed playout delay

r Sender generates packets every 20 msec during talk spurt.
r First packet received at time r
r First playout schedule: begins at p
r Second playout schedule: begins at p’
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Adaptive playout delay (1)
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• Estimate network delay and adjust playout delay at the beginning of 
each talk spurt.

• Silent periods are compressed and elongated.

• Chunks still played out every 20 msec during talk spurt.

Dynamic estimate of average delay at receiver:

)()1( 1 iiii trudud −+−= −

where u is a fixed constant (e.g., u = .01).



Adaptive playout delay (2)

Also useful to estimate the average deviation of the delay, vi :

||)1( 1 iiiii dtruvuv −−+−= −

The estimates di and vi are calculated for every received packet, although they 
are only used at the beginning of a talk spurt.

For first packet in talk spurt, playout time is:

iiii Kvdtp ++=

where K is a positive constant. For this same packet, the play out delay is:

iii tpq −=

For packet j in the same talk spurt, play packet out at

ijj qtp +=



Adaptive playout (3)

How to determine whether a packet is the first in a talkspurt:
r If there were never loss, receiver could simply look at the 

successive time stamps.
m Difference of successive stamps > 20 msec, talk spurt 

begins.
r But because loss is possible, receiver must look at both time 

stamps and sequence numbers.
m Difference of successive stamps > 20 msec and sequence 

numbers without gaps, talk spurt begins.



Recovery from packet loss (1)

r Loss: packet never arrives 
or arrives later than its 
scheduled playout time

forward error correction 
(FEC): simple scheme

r for every group of n chunks 
create a redundant chunk by 
exclusive OR-ing the n 
original chunks

r send out n+1 chunks, 
increasing the bandwidth by 
factor 1/n.

r can reconstruct the original 
n chunks if there is at most 
one lost chunk from the n+1 
chunks

r Playout delay needs to 
fixed to the time to 
receive all n+1 packets

r Tradeoff: 
m increase n, less bandwidth 

waste
m increase  n, longer playout 

delay
m increase n, higher 

probability that 2 or more 
chunks will be lost



Recovery from packet loss (2)

2nd FEC scheme
• “piggyback lower 
quality stream” 
• send lower resolution
audio stream as the
redundant information
• for example, nominal 
stream PCM at 64 kbps
and redundant stream
GSM at 13 kbps.
• Sender creates packet
by taking the nth chunk
from nominal stream and 
appending to it the 
(n-1)st chunk from 
redundant stream.

• Whenever there is non-consecutive loss, the
receiver can conceal the loss. 
• Only one packets need to be received before 
playback
• Can also append (n-1)st and (n-2)nd low-bit rate
chunk



Recovery from packet loss (3)
Interleaving
r chunks are broken

up into smaller units
r for example, 4 

5 msec units per 
chunk

r interleave the chunks as 
shown in diagram

r packet now contains small 
units from different 
chunks

r Reassemble chunks at 
receiver

r if packet is lost, still have 
most of every chunk



Recovery from packet loss (4)

Receiver-based repair of 
damaged audio streams

r produce a replacement for 
a lost packet that is similar 
to the original

r can give good performance 
for low loss rates and small 
packets (4-40 msec)

r simplest: repetition
r more complicated: 

interpolation


