
PhD Thesis of Vittorio Ghini                                                                            Chapter 2 

 

Chapter 2 
 
End-to-End Quality of Service 
 
 
This section introduces the notion of Quality of Service as it is currently provided by 
the Internet. As of today, the Internet offers a point-to-point delivery service, which is 
based on the "best effort" delivery model. In this model, data are delivered to their 
destinations as soon as possible, but with no bandwidth or latency guarantees. Using 
protocols, such as TCP, the highest guarantee the network provides is reliable data 
delivery. This is adequate for traditional applications such as FTP and Telnet, but 
inadequate for applications requiring timeliness guarantees. For example, distributed 
multimedia applications need to communicate in real-time and are sensitive to the 
quality of service they receive from the network. For these applications to perform 
adequately and be widely used, Quality of Service (QoS) must be quantified and 
managed. 
Up to now, QoS has been specified in terms of raw bandwidth and latency for network 
resources, or CPU and memory utilization for system resources, and the network 
infrastructures have been deployed to support real-time QoS and controlled end-to-end 
delays. However, at present the notion of QoS extends from the communication level 
up to the application level, in order to map QoS application requirements into low-level 
QoS parameters.  
One distinguishing feature of QoS is that the application-level QoS parameters are 
subject to negotiation between applications and both the system and network 
components, in order to determine whether the application requiring QoS can be 
provided by the entire system. Several resource managers (brokers) can be deployed to 
provide support for the dynamic management of QoS. 
In this chapter the traditional concept of Quality of Service at the network level is 
introduced, a taxonomy of the applications and their QoS requirements is provided, and 
a more recent notion of end-to-end QoS is presented. 
 
2.1  The Quality of Service 
 

Standard Internet Protocol (IP)-based networks provide "best effort" data delivery by 
default. Best-effort IP confines the responsibility of meeting application specific 
requirements at the application level in the end-hosts; thus, the network typically can 
remain relatively simple [33]. This approach allows one to construct scalable 
applications, as evidenced by the ability of the Internet to support its phenomenal 
growth. As more hosts are connected, network service demands eventually exceed 
capacity, but service is not denied. Instead it degrades gracefully. Although the 
resulting variability in delivery delays (jitter) and packet loss do not adversely affect 
typical Internet applications (e.g., email, file transfer and Web applications) other 
applications cannot adapt to inconsistent service levels. Delivery delays cause problems 
for applications with real-time requirements, such as those that deliver multimedia, the 
most demanding of which are two-way applications such as telephony. 
Increasing bandwidth is a necessary first step for accommodating these real-time 
applications, but it is still not sufficient to avoid jitter during traffic bursts. Even on a 
relatively unloaded IP network, delivery delays can vary enough to continue to 



PhD Thesis of Vittorio Ghini                                                                            Chapter 2 

 

adversely affect real-time applications. To provide adequate service -- some level of 
quantitative or qualitative determinism -- IP services must be supplemented. This 
requires extending the network software so as to distinguish traffic with strict timing 
requirements from traffic that can tolerate delay, jitter and loss of data. That is what 
Quality of Service (QoS) protocols are designed to do. QoS does not create bandwidth, 
but manages it so it is used more effectively to meet the wide range of application 
requirements. The goal of QoS is to provide some level of predictability and control 
beyond the current IP "best-effort" service. 
There is no common or formal definition of QoS. However, there are a number of 
definitions at the communication level where the notion originated to describe certain 
technical characteristics of data transmission. 
 
2.1.1  The traditional Notion of Quality of Service 
 

Traditional QoS (ISO standard) was provided by the network layer of the 
communication system. For example, the ISO standard defines QoS as a concept for 
specifying how "good" the offered networking services are. So, QoS can be 
characterized by a number of specific parameters. The OSI Reference Model has a 
number of QoS parameters describing the speed and reliability of transmission, such as 
throughput, transit delay, error rate and connection establishment failure probability. 
From the point of view of the QoS, the ability of a network to deliver the service 
needed by a specific network applications from end-to end with some level of control 
over delay, loss, jitter, and/or bandwidth can be categorized into the following three 
levels of service: 
• Best Effort Service -- basic connectivity with no guarantees. The Internet is an 

example of best effort level of service.  
• Differentiated Service -- expedited handling for specific classes of traffic.  
• Guaranteed Service -- a reservation of network resources to ensure that specific 

traffic gets a specific level of service it requires.   
 
2.1.2  Network QoS Issues 
 

Since today’s Internet interconnects multiple administrative domains (autonomous 
systems (AS)) based on IP technology, it is the concatenation of domain-to-domain 
data forwarding that provides end-to-end QoS delivery (Fig. 3.2). 

AS1
AS2

AS3

AS4

AS5

 
Figure 2.1: End-to-end QoS delivery. 

 
The management of QoS at the network level involves 5 different issues: 
• QoS Specification (RSpec) 

In general, each flow should be able to express its delay, jitter, loss and bandwidth 
constrains. 



PhD Thesis of Vittorio Ghini                                                                            Chapter 2 

 

• Flow Specification (TSpec) 
o Each flow should indicate to the network the load it will impose on it (peak rate, 

average rate). 
o The network guarantees satisfaction of the QoS specs if the flow does not 

violate its flow specs. 
• Admission control. 

Given the QoS and flow specs, the network should perform admission control. 
A flow is admitted only if:  
o its constraints can be satisfied 
o none of the constraints of existing flows are violated  

• Signaling 
The information regarding the admission of a new flow is propagated in the 
network to set up appropriate state 

• Policing 
The network has to ensure that a malicious flow does not violate its flow 
specifications thereby hurting other flows  

• Router Support 
o Edge routers would typically be responsible for admission control, policing, and 

signaling 
o Core routers will need to implement QoS-sensitive packet classification, 

scheduling and dropping policies 
 

2.1.3  Approaches to Network QoS Support 
 

Mainly, two are the approaches to provide QoS at the network level, IP based and ATM 
based, as depicted in Fig. 2.2. The former approach maintains the wide spread packet 
switching IP technology, and provides differentiated delivery services for individual 
flows or aggregates by adding "smarts" to the Net and improving on best effort service. 
The latter approach, instead, substitutes IP technology by providing connection-
oriented services.  
ATM provides both Data Link and Network OSI levels and is being developed to 
incorporate the QoS. ATM has the ability to handle a number of traffic types by 
statistically multiplexing together blocks of data called cells. ATM has five basic traffic 
classes [6], constant bit rate (CBR), real-time variable bit rate (rt-VBR), non-real-time 
variable bit rate (nrt-VBR), unspecified bit rate (UBR) and available bit rate (ABR).  

IP approach

Network QoS

ATM approach

Inbuilt QoS
Reservation
Based QoS

Prioritization

DiffServ

Resource
Reservation

IntServ
(RSVP)

SBMMPLS

 
Figure 2.2:  Network QoS Taxonomy. 

 



PhD Thesis of Vittorio Ghini                                                                            Chapter 2 

 

These traffic classes are defined by parameters such as sustainable bit rate (SCR), peak 
cell rate (PCR), cell loss ratio (CLR) and cell delay variation (CDV). Before a 
connection can be established the network and host have to agree on the parameters to 
define the traffic class of the flow. This agreement is called a contract. Connection 
admission control and traffic policing are used to control the amount of traffic entering 
the network and so prevent excessive congestion. The admission control policy has to 
measure the available bandwidth within the network and calculate the effect any new 
connection will have on this available bandwidth. If a new connection is going to have 
a detrimental effect on existing connections then the new connection should be 
rejected. Traffic policing is responsible for ensuring that connections abide by their 
contracted bandwidth requirements. The traffic policing mechanism is only necessary 
at the switch connected to the source end node. 
Although there is variety of choices, there are two major approaches for supporting 
QoS into IP based network: 
• Resource reservation (integrated services): network resources are apportioned 

according to an application's QoS request, and subject to bandwidth management 
policy. 

• Prioritization (differentiated services): network traffic is classified and apportioned 
network resources according to bandwidth management policy criteria. To enable 
QoS, network elements give preferential treatment to classifications identified as 
having more demanding requirements.  

These two types of QoS managements can be applied to individual application "flows" 
or to flow aggregates, hence there are two other ways to characterize types of QoS: 
• Fine Grained or Per Flow: it provides "per flow" QoS guarantees and is 

represented by the integrated services (IntServ) framework. A "flow" is defined as 
an individual, uni-directional, data stream between two applications (sender and 
receiver), uniquely identified by a 5-tuple (transport protocol, source address, 
source port number, destination address, and destination port number). Each router 
on the path of a flow participates in admission control. The router keeps track of all 
admitted flows. For each flow, it allocates bandwidth, buffer space, and a priority. 
A new flow is not admitted unless the router can satisfy its bandwidth and storage 
needs as well as its delay constraint. For the signalling IntServ adopts the 
Reservation Protocol (RSVP) [7]. The problem with integrated services is that per-
flow state is required in routers, thus this approach has been criticized for lack of 
scalability. 

• Coarse Grained or Per Aggregate: An aggregate is simply two or more flows. 
Typically the flows will have something in common (e.g. any one or more of the 5-
tuple parameters, a label or a priority number, or perhaps some authentication 
information). Flows are classified into a small number of classes and a different 
behavior for each class is defined. 

Applications, network topology and policy dictate which type of QoS is most 
appropriate for individual flows or aggregates. To accommodate the need for these 
different types of QoS, there are a number of different QoS protocols and algorithms: 
• ReSerVation Protocol (RSVP): Provides the signaling to enable network resource 

reservation (otherwise known as Integrated Services). Receiver initiates network 
resource reservation by sending an RESV message. The amount of reservation 
guarantees satisfaction of timing, bandwidth, and buffer size constraints. 
Reservation establishes soft state along the path to the sender and sets aside the 
required resources. Soft state is refreshed periodically by the receiver or else it 
times out canceling the reservation. Although typically used on a per-flow basis, 



PhD Thesis of Vittorio Ghini                                                                            Chapter 2 

 

RSVP is also used to reserve resources for aggregates (as we describe in our 
examination of QoS architectures).  

• Differentiated Services (DiffServ)[8]: Provides a coarse and simple way to 
categorize and prioritize network traffic (flow) aggregates. Differentiated services 
classify all flows into a small number of classes and define a different “per-hop-
behavior” for each class. 6 bits out of the Type-of-Service byte in the IP header are 
used to define per-hop behaviors. Clients pay the network provider for a certain 
profile of traffic. Edge routers mark client packets. The 6-bit per-hop behavior code 
in the IP header tells each core router what to do with the packet. 

• Multi Protocol Labeling Switching (MPLS) [9]: Provides bandwidth management 
for aggregates via network routing control according to labels in (encapsulating) 
packet headers.  

• Subnet Bandwidth Management (SBM) [10]: Enables categorization and 
prioritization at Layer 2 (the data-link layer in the OSI model) on shared and 
switched IEEE 802 networks.  

 
2.2  Applications QoS 
 

Different applications running on the same distributed system may have different 
subsets of relevant QoS parameters, with different values required, and some 
parameters may be not mutually independent, and may be time depending. For 
instance, there are 5 types of QoS parameters for the distributed multimedia 
applications (such as video-on-demand services, teleconferencing [34], computer 
supported cooperative work [35, 36] and tele robotic applications [37]):  
• performance­oriented, e.g. end­to­end delay, bit rate;  
• format­oriented, e.g. video resolution, frame rate, storage format, compression 

scheme;  
• synchronization­oriented, e.g. the skew between the beginning of audio and video 

sequences;  
• cost­oriented, e.g. connection and data transmission charges, copyright fees;  
• user­oriented, e.g. subjective image and sound quality. 
We are particularly interested in the QoS application requirements that involve the 
network. 
 
2.2.1  Applications Taxonomies 
 

The taxonomy of the networked applications (see Fig. 2.3) revolves around the timely 
delivery of packets, but addresses other qualitative issues as well. It is based on the 
simple classification of applications into two principal categories.  
First, there are applications that are sensitive to the delay incurred by their data flows as 
they traverse the network; these applications are real-time applications. If a packet 
arrives late to a real-time application, it is no longer useful.  
Second, there are applications that always wait for their data to arrive; they are called 
elastic applications. 



PhD Thesis of Vittorio Ghini                                                                            Chapter 2 

 

Applications

Elastic

Interactive
bulk

Interactive Asynchronous

Real time

Tolerant Intolerant

Rate-Adaptive Not AdaptiveNot Adaptive

Rate-
Adaptive

Adaptive

Delay-
Adaptive

delay  sensitivity

signal  fidelity interactivity

traffic generationplayback   instant

 
Figure 2.3:  Applications Taxonomy. 

 
Elastic Applications: traditional applications such as remote terminal (e.g., Telnet), 
file transfer (e.g., FTP), name service (e.g., DNS), and electronic mail (e.g., SMTP) are 
rather elastic in nature, in that they tolerate packet delays and packet losses rather 
gracefully, and so they are rather well served by the current Internet's best effort 
service. Also Web browsing may be thought of as an elastic interactive application. A 
rough set of categorizations for elastic applications might include: 
• Interactive burst (Telnet, X, NFS) 
• Interactive bulk transfer (FTP) 
• Asynchronous bulk transfer (electronic mail, FAX) 
The categories are listed here in approximately decreasing order of delay sensitivity. 
Note that it is the average delay of data that impacts the performance of elastic 
applications 
Real Time Applications: At the other extreme of delay sensitivity are applications 
with real time requirements. These application are considered playback applications.  
Data originating at a source is encoded, packetized, sent across the network, decoded 
by the receiver, and attempted to be replayed at the destination as a replica of what was 
encoded initially. However packets are likely to experience a range of delays across the 
network, and earlier packets may take longer to transit the network than later packets. 
Consequently a real-time application typically buffers the arriving packets at the 
destination. The buffer allows the application not only to smooth out the delay 
variation, or jitter, but also to re-order packets if necessary. In any event, data is 
reconstituted at the destination by establishing a playback point, the point in time after 
which a packet is delivered. That point is usually a fixed offset from the original 
departure time. In practical terms a packet is buffered according to this departure time, 
then a buffering delay is added to smooth the play out of the data stream. Depending on 
the application, the buffering delay may be quite short on the order of milliseconds, as 
in a conversational audio application, or seconds and potentially minutes, as in a 
streaming video-on-demand application. Packets arriving after the playback point are 
discarded. These are considerations that impact the design of buffering at the end-
systems.  
In choosing a playback point, an application approximates the amount of delay it is able 
to tolerate. This approximation may be based on a delay bound promised by a particular 
service class, on actual measurements, or on predictions about future packet delays. 
The delay bound need not be fixed for the lifetime of the data flow. 



PhD Thesis of Vittorio Ghini                                                                            Chapter 2 

 

The performance of a playback application is measured by two parameters: latency and 
fidelity. Some playback applications are particularly sensitive to latency, such as a 
distributed music performance that relies on interactions between the end systems, 
whereas other applications are less so, such as an Internet lecture that behaves more 
like a unidirectional streaming application. Likewise, applications exist that are quite 
demanding of fidelity of the real-time signal, whereas others are more willing to forego 
exactness. This latter dimension of performance, leads to two further classifications of 
the real-time playback applications into those that are tolerant and intolerant of signal 
fidelity. For those that are tolerant a predictive service class is proposed. For intolerant 
applications a service model called guaranteed service is proposed. 
The calibration of the offset delay is quite important, as it determines the latency of the 
application. Furthermore, a realistic offset is critical to the fidelity of the application. If 
the offset delay is incorrect, more packets arrive late and are dropped, making the data 
stream less complete. Alternatively late packets may cause the application to adjust its 
playback point, which introduces distortion in the signal. Applications of this sort are 
considered adaptive playback applications. A final reaction to late packets might be for 
the application to alter its traffic generation scheme, e.g., switch to a less demanding 
audio or video encoding. These applications are known as rate-adaptive playback 
applications. Although this technique may reduce delay, it necessarily compromises 
data resolution. All of the previous examples show that late packets decrease playback 
fidelity.  
While a tolerant application has the option of selecting one of these methods for 
handling late packets (the appropriateness of one over the other depends on the 
application itself), an intolerant application must use a fixed offset delay to avoid loss 
of fidelity. The intolerant application must choose a “perfectly reliable upper bound on 
delay”, the maximum delay of any packet, whereas the tolerant application can resort to 
using a “fairly reliable upper bound”, which is conservatively predictive [38]. The 
motivation for using predictive service over guaranteed service is that it offers better 
network utilization and presumably lower cost. 

requires guaranties

Applications

yes no

StatisticalGuaranteed

monitoring  and adaptation

Flexible Not Flexible

yes no

Best Effort

monitoring  and adaptation

Adaptive Not Adaptive

yes no

 
Figure 2.4:  Guaranties required by the Applications 

 
A simpler taxonomy involves real time constraints of the applications. Real-time 
constraints are classified as hard, firm and soft, depending on the consequences of the 
constraint being violated. A task with hard real time constraint has disastrous 



PhD Thesis of Vittorio Ghini                                                                            Chapter 2 

 

consequences if its constraint is violated (for instance, a missile control). A task with 
firm real time constraint has no value to the system if its constraint is violated. A task 
with soft real time constraint has decreasing, but usually nonnegative, value to the 
system if its constraint is violated. 
Another taxonomy (see Fig. 2.4) classifies the networked applications depending on the 
guaranties they require from the underlying network; there are three classes of 
applications: 
a) Guaranteed – all deadlines are guaranteed to be met all the time. This application 
gets highest priority and will need resources to be reserved considering the worst case 
situation. 
b) Statistical – deadlines are guaranteed to be met with a certain probability (e.g. a 
service that guarantees that 90% of the deadlines will be met over an interval). The 
statistical behavior of this class needs to be monitored and maintained. 
c) Best Effort – no guarantees are given for meeting deadlines. Deadlines are met on a 
best-effort basis with the resources leftover from those reserved for guaranteed 
services. These applications can be pre-empted by higher priority classes, and no 
resources are reserved. 
Most of the applications that require guaranties from the network are flexible, in the 
sense that they can tolerate a QoS range of input quality and resource availability 
beyond a certain minimum level, and can improve their performance, provided that a 
larger share of resources is available. Flexible applications monitor the distributed 
resource and dynamically adapt themselves by modifying their QoS requirements and 
by negotiating a new QoS level with the environment. If resources above the minimum 
requirements are shared among all applications, statistical multiplexing gain can be 
improved. In addition, for the flexible applications that involve interactive activities 
that cannot be predicted beforehand, it may be hard or impossible to specify a 
maximum demand for QoS. 
Finally, it is worth pointing out that “an application is best-effort based” means it does 
not require guaranties, but it may adopt several software architectures, mechanisms and 
policies in order to provide the users with the suitable QoS. For instance, the QoS of a 
web service, as perceived by the users, may be increased by using caching at the 
browser side, pre-fetching at the proxy, and replication at the server side (several web 
server replicas) and at the browser side (mechanism for binding the best replica). 
Although these three different approaches do not require guaranties from the network, 
they can provide the user with timely responses, thus increasing the user's satisfaction.  
In particular, adaptive best-effort applications monitor the performances of the 
involved resources and dynamically adapt themselves by modifying their behavior in 
order to meet the QoS requirements of the user, but unlike flexible applications they do 
not reserve network resources. The negotiation phase of flexible applications becomes 
the adaptation phase of best effort applications. For instance, the web browser involved 
in the previously cited web service may periodically monitor the performances of each 
web replica server, in order to retrieve a web resource to the best replica. 
 
2.3  The Notion of End-To-End QoS 
 

The original QoS parameters apply mostly to lower network protocol layers, and are 
not meant to be directly observable or verifiable by the application. Consequently, the 
resulting QoS coverage of OSI as a whole is incomplete and even inconsistent. This 
situation, while acceptable when communication networks were used mostly for 
non­time­dependent data, is no longer satisfactory with respect to the new requirements 



PhD Thesis of Vittorio Ghini                                                                            Chapter 2 

 

stemming from distributed multimedia systems. As time­dependent data are becoming 
prevalent in multimedia applications, the entire distributed system must participate in 
providing the guaranteed performance levels. 

 

network

End System 1

Scheduler

Memory
Management

I/O

Application

Network
Interface

End System 2

Scheduler

Memory
Management

I/O

Application

Network
Interface

 
Figure 2.5:  End-to-end QoS entities 

 
The QoS notion must be extended because many other services contribute to the end-
to-end service quality. This in turn means that both the network and the end-system 
have to contribute towards achieving this end-to-end QoS. Fig. 2.5 above illustrates a 
basic diagram of the entities involved in providing this end-to-end QoS. Beyond its 
intuitive meaning as system characteristics that influence the perceived quality of an 
application, there is little consensus on the precise meaning, let alone the formal 
definition of QoS. For instance, the ITU/ISO Reference Model for Open Distributed 
Processing [39] refers to QoS as ``A set of quality requirements on the collective 
behavior of one or more objects''. According to ISO, ``QoS characteristics are intended 
to be used to model the actual behavior of systems. It is defined independently of the 
means by which it is represented or controlled''. This type of definition is too general, 
since it tends to include all system parameters without distinction. In [40] the following 
working definition is proposed: “By quality of service we mean the set of those 
quantitative and qualitative characteristics of a distributed multimedia system, which 
are necessary in order to achieve the required functionality of an application. This 
includes the presentation of multimedia data to the user, and in general the user's 
satisfaction with the application''. 
 
2.3.1  End-To-End QoS Entities 
 

To discuss further QoS and resource management, we adopt a layered model of the 
end-to-end networked applications with respect to QoS (see Fig. 2.6). That model 
consists of three layers: application, system (including communication services and 
operating system services), and network. Above the application may or may not reside 
a human user. This implies the introduction of QoS in the application (application 
QoS), in the end system (system QoS) and in the network (network QoS). In the case of 
having a human user, the QoS model may also have a user QoS specification. 



PhD Thesis of Vittorio Ghini                                                                            Chapter 2 

 

 
 

Figure 2.6:  QoS Levels 
The system layer includes (see Fig. 2.7) several modules [41], such as task scheduler, 
memory management and I/O subsystem. Therefore, the QoS system parameters mirror 
the requirements on CPU scheduling (e.g., task start time, priority, duration and 
deadline), on memory management (buffer allocation) and on I/O management (for 
example, the maximal frame rate for a video device). In this view, the QoS requirement 
originates with an application process which conveys it in terms of QoS parameters to 
other system components. This is generally followed by a negotiation process whereby 
the components of the system determine if collectively they are capable of satisfying 
the requested QoS level. The QoS of a given system is expressed as a set of 
(parameter­value) pairs, sometimes called a tuple; each parameter can be considered as 
a typed variable whose values can range over a given set. Note that different 
applications running on the same distributed system may have different subsets of 
relevant QoS parameters, with different values required, and some parameters may not 
be mutually independent. 

Network Interface

Interrupt
Handler

Protocol
StackScheduler

Memory
Management

I/O

Application Application

network connections
Network

components

End System
components

Applications

 
 

Figure 2.7:  QoS End System Components 
 

Resource management is a fundamental task performed by the operating systems. Most 
current mainstream operating systems implement resource management policies which 
are oriented towards overall system throughput and fairness. They perform reasonably 
well for a mix of interactive, batch processing, or server applications. Real-time 



PhD Thesis of Vittorio Ghini                                                                            Chapter 2 

 

operating systems are designed to give hard guarantees on resource allocations to allow 
applications to perform time-critical tasks. This is achieved by allocating fixed shares 
of resources to processes for their entire lifetime, or at least for a relatively long 
duration. Multimedia operating systems (e.g., [42], [43], [44], [45], [46]) give soft real-
time guarantees for resource allocations to processes which may be renegotiated 
dynamically at runtime, encouraging applications to adapt to the changing overall 
system load. This is usually achieved through explicit resource allocation and 
revocation. This process is commonly referred to as QoS-Management. In conclusion, 
one distinguishing feature of QoS is that these QoS parameters are subject to 
negotiation between applications and both system and network components, in order to 
determine if these QoS parameters may be provided by the entire system.  
 
 
References 
[6] ATM Forum Specification, [Online] http://www.atmforum.org/ 
[7] L. Zhang, S. Deering, S. Shenker, Zappala, ``RSVP: A New Resource Reservation Protocol'', 

IEEE Network, Vol. 7, pp. 8-18 (1993). 
[8] Y. Bernet et al., "A Framework for Differentiated Services," Internet Draft, draft-ietf-diffserv-

framework-02.txt, Feb. 1999.  
[9] Multiprotocol Label Switching Architecture, RFC 3031, January, 2001. 
[10] ''SBM (Subnet Bandwidth Manager):A Protocol for RSVP-based Admission Control over IEEE 

802-style networks', RFC 2814, May, 2000. 
[11] K. Nahrstedt and J. M. Smith: "The QOS Broker", IEEE Multimedia, Vol. 2, No. 1, pp. 53--67 

(1995). 
[12] P. Y. Wang, Y. Yemini, D. Florissi, J. Zinky, ``A Distributed Resource Controller for QoS 

Applications'', appeared in NOMS 2000, Hawaii, April 2000.   
 
 [33] J. Saltzer, D. Reed, D. Clark, ''End to End Arguments in System Design'', ACM Transactions in 

Computer Systems, November 1984. [Online] http://www.reed.com/Papers/EndtoEnd.html  
[34] P.V.Rangan, ``Video conferencing, file storage, and management in multimedia computer 

systems'', Computer Network and ISDN Systems, 25, pp. 901­919 (1993). 
[35] M. Altenhofen, et al., ``The BERKOM Multimedia Collaboration Service'', in Proceedings of 

the ACMMultimedia 93, ed. P.Venkat Rangan, pp. 457­464, ACM Press, Anaheim (1993). 
[36] T.Gutekunst, T.Schmidt, G. Schule, J. Schweitzer,and M. Weber, ``A Distributed Multimedia 

Joint Viewing and Tele­Operation Service for Heterogeneous Workstation Environments'', in 
Proceedings of International Workshop on Distributed Multimedia Systems, Stuttgart (1993). 

[37] K. Nahrstedt, J. M. Smith, ``Application-Driven Approach to Networked Multimedia Systems'', 
in Proceedings of the 18th Conference on Local Computer Networks (1993). 

[38] B. Braden, D. Clark, S. Shenker. ``Integrated Services in the Internet Architecture: an 
Overview''. RFC 1633. Integrated Services Working Group of the IETF, June 1994. Available 
as ftp://ftp.isi.edu/in-notes/rfc1533.{ps,txt} 

[39] ITU/ISO, ``Information Technology - Open Distributed Processing ­ Reference Model: 
Foundations'', ITU­T Recommendation X.902 (Nov. 1995). Also ISO/IEC International 
Standard 10746-2. 

[40] A. Vogel, B. Kerhervé, G. v. Bochmann, J. Gecsei, ``Distributed Multimedia Applications and 
Quality of Service – A Survey'', IEEE .. 

[41] K. Nahrstedt, J. M. Smith, ``Design, Implementation, and Experiences of the OMEGA End-
Point Architecture'', IEEE Journal on Selected Areas in Communications, pp 1263-1279, Vol. 
14, No. 7, Sep 1996. 



PhD Thesis of Vittorio Ghini                                                                            Chapter 2 

 

[42] G. Coulson, G. Blair, P. Robin, and D. Shepherd. ``Supporting Continuous Media Applications 
in a Micro-Kernel Environment'', in O. Spaniol, editor, Architecture and Protocols for High-
Speed Networks. Kluwer Academic Publishers, 1994.  

[43] M. B. Jones, P. J. Leach, R. Draves, J. S. Barrera. ``Modular Real-Time Resource Management 
in the Rialto Operating System''. In Proceedings of the 5th Workshop on Hot Topics in 
Operating Systems (HotOS-V), May 1995.  

[44] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fairbairns, E. Hyden. 
``The Design and Implementation of an Operating System to Support Distributed Multimedia 
Applications''. IEEE Journal on Selected Areas In Communications, 14(7),1280-1297, 
September 1996.  

[45] J. Nieh, M. S. Lam. ``The Design, Implementation and Evaluation of SMART: A Scheduler for 
Multimedia Applications''. In Proceedings of the 16th ACM SIGOPS Symposium on Operating 
Systems Principles, Operating Systems Review, pages 184-197, Saint-Malo, France, October 
1997.  

[46] R. Rajkumar, K. Juvva, A. Molano, S. Oikawa. ``Resource Kernels: A Resource-Centric 
Approach to Real-Time Systems''. In Proceedings of the SPIE/ACM Conference on Multimedia 
Computing and Networking, January 1998.  

[47] T. F. Abdelzaher. “QoS-Adaptation in Real-Time Systems'', PhD thesis, University of 
Michigan, Ann Arbor, Michigan, August 1999. [Online] 
http://kabru.eecs.umich.edu/papers/thesis/zaher_thesis.ps.gz. 


