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Abstract— Peer-to-peer (P2P) systems are becoming increas-
ingly popular due to their ability to deliver large amounts of
data at a reduced deployment cost. While P2P systems foster the
development of novel media applications, they also represent an
interesting alternative paradigm for media streaming applications
that can benefit from the inherent self organization and resource
scalability available in such environments. This paper presents
an overview of application and network layer mechanisms that
enable successful streaming frameworks in peer-to-peer systems.
We describe media delivery architectures that can be deployed
over P2P networks, in order to address the specific requirements
of streaming applications. In particular, we show how video
streaming applications can benefit from the diversity offered
by P2P systems, and implement distributed streaming and
scheduling solutions with multipath packet transmission.

I. I NTRODUCTION

P2P networking architectures receive a lot of attention
nowadays, as they enable a variety of new applications that
can take advantage of the distributed storage and increased
computing resources offered by such networks. In addition,
P2P systems represent a scalable and cost effective alternative
to classic media delivery services, which allows for extended
network coverage in the absence of IP multicast or expensive
Content Distribution Networks (CDNs). Their advantage re-
sides in their ability for self organization, bandwidth scalabil-
ity, and network path redundancy, which are all very attractive
features for effective delivery of media streams over networks.

However, some fundamental differences between central-
ized/structured architectures and P2P systems need to be
addressed first, in order to provide efficient P2P streaming
solutions to existing media applications. Typical client-server
architectures and CDNs offer the network infrastructure that
permits deployment of generic media applications (Figure 1).
It facilitates implementation of tools for effective rich media
delivery, e.g., end-to-end error correction, path computation,
route selection, and rate adaptation. These tools generally
rely on the centralized paradigm that is served by sustained
computational capabilities of streaming servers, or cooperating
proxy servers. On the other hand, P2P systems are less reliable,
but present the advantage of low cost service deployment, and
the flexibility of resource aggregation through multiple path
transmission (Figure 2).
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Researchers have proposed to exploit the advantages of path
diversity and system scalability in P2P environments in order
to build some early streaming mechanisms like CoolStreaming
[1]. However, specificities of media applications in terms of
bandwidth, delay, and reliability are not completely addressed
by the characteristics of unstructured P2P systems. The lack of
coordination of such systems, the limited peer capabilities, and
the low system stability over time represent a great challenge
for the deployment of high quality P2P streaming applications.
The replacement or extension of conventional media delivery
infrastructures with P2P systems clearly necessitates adapta-
tion of existing coding, routing, and scheduling algorithms to
unreliable network environments.

The aim of this paper is to describe state-of-the-art strategies
that allow for deployment of efficient streaming solutions in
P2P systems. We present delivery architectures and adaptive
streaming mechanisms that enable resource-demanding and
delay-constrained applications over unstructured networks. We
later review in more detail the strategies available for multi-
path video transmission, the objective of which is to provide
high sustainable bandwidth to the streaming applications.
The networking mechanisms that achieve efficient, distributed
packet scheduling and forwarding in P2P media systems,
are also examined. We eventually show that the P2P para-
digm, along with adaptive streaming mechanisms, provide an
interesting alternative for low-cost and effective multimedia
communication applications.

II. PEER-TO-PEER STREAMING FRAMEWORK

A. Delivery Architectures

Since a P2P system does not provide any guaranteed support
to streaming services, these have to rely on self-organized and
adaptive network architectures in order to meet their stringent
quality requirements. Two main types of architectures are
generally considered for providing the organization necessary
to streaming applications: tree-based overlay for streaming
sessions from media sources to a pool of client peers, and
mesh overlay for massive parallel content distribution among
peers.

On one hand, tree-based overlays organize the peers as a
single, or multiple tree overlay that connects the source of
the media content to the clients (Figure 3). Clients are leaf
nodes in the distribution tree, while intermediate peers push
the content from the source. A peer can simultaneously be



2

a leaf in some distribution trees, and an intermediate node
in others. Single tree architectures are easy to implement
and maintain, either in a distributed or centralized way by
the source. However, they are fundamentally limited by two
factors: i) due to the high rate of peers joining/leaving the
system (the so called churn rate), the architecture suffers from
high instability; and ii) the received media quality is limited by
the minimum upload bandwidth of the intermediate peers in
the branch, since each client is connected to the source through
a single tree branch. Multiple tree architectures address the
aforementioned problems, by providing redundancy in network
paths. However, designing and maintaining such systems be-
comes less trivial. It may even lead to solving contradictory
issues such as minimizing tree depth, while simultaneously
provisioning network path diversity. Most importantly, the
underlying physical topology has to be carefully considered
in order to achieve efficient content dissemination [2].

On the other hand, a mesh overlay architecture is based
on self organization of nodes in a directed mesh that is used
for media delivery to clients (Figure 4). The original media
content from a source is distributed among different peers. A
peer is connected to the mesh through one or more parent
peers, where it retrieves media information, and to a set of
child peers to which it serves media packets. The advantages
of such an architecture reside in the low cost and simplicity of
structural maintenance, and in the resilience of the topology to
node failure or departure, due to the increased probability of
available distinct network paths. However, streaming applica-
tions over such architectures face important challenges. First,
due to the inherent sequential media encoding and play-out,
packet dissemination and data requests must follow closely the
temporal ordering of the content at the source. This constraint
may be slightly reduced by the implementation of play-back
buffers, when delays permit it. Second, the limited look-ahead
content availability, especially in the case of live streaming
scenarios, limits greatly the flexibility in terms of content
download/upload through such an architecture [3].

The design of efficient media streaming solutions over each
of these architectures requires adaptive and robust streaming
strategies, in order to overcome the variability and unreliability
of the underlying transport medium. Media specific solutions
that allow for stream adaptation to the constraints and speci-
ficities of the network are detailed in the next section. Effective
routing and scheduling mechanisms that rely on increased
network diversity, are presented subsequently.

B. Media coding for unstable P2P systems

The lack of any Quality of Service guarantee in typical
P2P systems runs in sharp contrast to the strict timing re-
quirements of video streaming applications. In particular, the
time constrained video packets need to be delivered over
networks that are characterized with dynamic variations in
bandwidth, loss rate, and delay jitter. The task becomes even
more challenging due to the typically high, and time-varying
data rate of compressed video sources. Finally, peers usually
join and depart the network at random, which represents
yet another degree of difficulty for successful deployment of

streaming applications over such networks. Media adaptation
strategies at the application layer can be employed to address
these challenges. Specifically, the video information can be
compressed and packetized in a form that facilitates adapta-
tion to variable network bandwidth, packet loss and delay.
Further robustness of streaming applications can be achieved
by introducing error control in the form of efficient packet
retransmission and forward error correction.

The rate profile of a compressed video stream is typically
independent of the network bandwidth variations. Therefore,
rate adaptation of the video source needs to be performed
to address the eventual mismatch between the two. Scalable
video encoding provides an elegant solution to this end. In
particular, at compression, a scalable representation of the
video source is created such that it enables scalability of the
video stream in terms of its temporal, spatial, and SNR (video
quality) resolution. Scalability properties allow to meet the
constraints imposed by the bandwidth available at a given
point in a P2P network. The scalable video content is typically
organized in a hierarchy of layers, where the higher layers
in each scalability dimension (space, time, and SNR) are
discarded first in the event of insufficient network bandwidth,
via in-network packet filtering and rate adaptation. As the same
compressed content can be used to serve a variety of receiving
clients, scalable representations are particulary advantageous
for overlay architectures where there is a large heterogeneity
between the nodes (peers), in terms of their access bandwidth
and processing power.

An alternative technique to scalable coding for streaming
applications is multiple description coding (MDC), which
consists in constructing several independent descriptions of the
same signal. In this approach, a controlled level of redundancy
is left in the media content at compression, so that the received
video quality is proportional to the number of descriptions that
are received. MDC represents a natural solution for multi-
path streaming scenarios, where independent descriptions can
be sent on disjoint paths. It is generally less efficient than
scalable encoding in terms of compression; however, it exhibits
stronger resilience to packet loss. Two independent descrip-
tions of the video content can be created by treating the odd
and even frames of the video separately, and can be sent
over two separate network paths. Another approach to creating
multiple descriptions is based on the application of forward
error correction (FEC), for example. In particular, different
levels of redundancy in terms of FEC packets are applied to a
set of media packets so that each redundancy level effectively
corresponds to one independent description. The advantages
and drawbacks of multiple descriptions and scalable coding
for video streaming over overlay networks have been studied
most recently in [4].

Losses of media packets can be attributed to random peer
departures, events of network congestion, and transmission
over unreliable channels (e.g., wireless links). The media
content can be compressed such that it exhibits a higher level
of resilience to packet loss. In other words, the reconstructed
video becomes less susceptible to error propagation, which
naturally occurs in predictive video coding when not all of the
video packets are received (on time). Some of these tools such
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as flexible macroblock ordering, multi-reference frame motion
estimation, and redundant slices, have been incorporated in
the most recent video coding standard H.264. Alternatively,
missing packets can be recovered at the receiver via appli-
cation layer retransmissions (ARQ) if the timing constraints
of the streaming application permit it. When retransmission is
however unfeasible due to the related latency, FEC redundant
packets can be sent together with the video packets so that
missing packets at the receiver can be recovered through FEC
decoding. In particular, the FEC packets can be organized such
that they provide unequal error protection (UEP) to scalable
media representations [5]. Finally, receiver techniques, e.g.,
error concealment or adaptive-playout, can be enabled to
mitigate the effects of eventual packet loss, and provide an
additional improvement in video quality.

The above adaptive techniques can be elegantly combined
with the availability of multiple sending sources, or multiple
network paths between a sender and a destination receiver.
This so called path diversity property arises naturally in the
context of P2P overlay networks.

III. ROUTING AND RATE ALLOCATION IN P2PNETWORKS

A. Multipath Streaming in Mesh Networks

Effective streaming mechanisms exploit the multi-path na-
ture of P2P networks to satisfy the bandwidth requirements of
media applications by aggregation of network resources. The
early work presented in [6] establishes a generic framework
for multi-path streaming. Some of the specific advantages
brought by the utilization of multiple transmission paths for
media dissemination consist of aggregated network bandwidth,
packet loss de-correlation and delay reduction. Prior experi-
mental work on multi-path streaming [7] offers some insights
concerning the selection of content sources and streaming
paths, based on the jointness/disjointness of network segments.
However these findings cannot be applied directly in P2P
scenarios, especially due to the lack of coordination among
the peers.

In a large network setup, when a client can connect to
multiple source peers through distinct network paths, the
streaming application has to determine the best subset of paths
and possibly sources, along with the optimal rate allocation
on the chosen paths. This selection is based on network
parameters, such as available path bandwidth and error rates,
and on media specific parameters. The media quality at the
receiving peer can be maximized by proper path selection and
rate allocation, which become application-specific in order to
reflect the client satisfaction. Solutions to these problems lie
in the cooperation between the media application and the path
selection mechanisms. The encoding flexibility provided by
the media specific tools influences the choices made by the
application at the transport and routing levels, and provides
the necessary adaptation to the changing network environment.
However, it is not trivial to determine, in a distributed way, the
optimal source selection and media rate allocation. Fluctuating
topologies that are typical of P2P systems, require periodic
path re-computation and adaptation of the media application
in order to cope with the channel and path variations. Next, we

present in more detail receiver-driven and distributed strategies
for effective routing and rate allocation in P2P networks.

B. Receiver Driven Streaming Scenarios

Source peer selection and rate allocation are typically
addressed in receiver-driven streaming scenarios, where the
client coordinates the streaming process. Note that such a
scenario, even if not fully decentralized, is a good strategy for
P2P streaming systems. Content location information can be
accessed by the receiver at supernodes/servers as in BitTorrent
or PPLive solutions, or from other peers by search algorithms
adapted to decentralized systems. Furthermore, the receiving
peer can probe for network connections towards candidate
source nodes. Then, based on network connectivity informa-
tion and streaming session characteristics, a receiver makes
an informed choice of source peers and network transmission
paths [8]. Furthermore, during a streaming session a receiver
has access to network path statistics (e.g., via RTCP reports).
Hence, it is able to aggregate this information and construct
a timely image of the available network topology. Finally,
application adaptation can be performed by the receiver, in
order to reflect the changes observed in the transport medium.
Prior work [9] unsurprisingly advocates the choice of lowest
error paths first for media delivery from multiple source peers
to a receiving end.

C. Distributed Path Computation

One of the major drawbacks of receiver-driven scenarios
lies however in the need for full topology knowledge at a
single peer, namely the client. Only when the receiver knows
the complete network topology (e.g, complete set of sources,
along with their connection characteristics), it can make an
optimal decision in terms of source peer selection and path rate
allocation. However, as the network size increases, end-to-end
traffic monitoring at a single peer becomes cumbersome and
increasingly expensive or inefficient. Hence, moving at least
part of the computation to intermediate peers becomes nec-
essary. Augmenting the streaming scenario with intermediate
peer functionality allows to maintain up-to-date information
about network availability. The topology information is no
longer relayed towards a single node in the scenario. Rather,
every intermediate peer takes an individual routing decision
for every incoming packet, based only on local topology
information [10]. All incoming media flows arriving at one
intermediate peer are relayed on the outgoing links according
to the specific forwarding rules, implemented locally at the
peer.

Distributed path computation may however result in sub-
optimal streaming strategies, since no peer has a complete
knowledge of the network status. In heterogeneous network
scenarios, the results obtained by the locally-optimal decisions
implemented at each intermediate peer may differ greatly
from the global achievable optimal performance. Depending
on the local path selection and the rate allocation rules
implemented at each node, the media application can trade-off
the achieved average end-to-end quality, with the flexibility
and convergence time of the solution in case of network
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fluctuations. Finally, note that the routing of media packets in
tree-based overlays is straightforward, as it is directly given by
the structure of the multicast trees. The construction of these
trees may however use algorithms similar to routing solutions
for multi-path networks. Even if the routing is simple in tree-
based overlays, the proper scheduling of media packets is non-
trivial, as exposed in the next section.

IV. PACKET DELIVERY MECHANISMS IN P2PNETWORKS

A. Rate-Distortion Efficient Scheduling

Packets of a media stream do not contribute evenly to the
video quality at a receiving peer, and a packet is useful to the
receiving peer only if: i) it arrives prior to its delivery deadline,
and ii) all the previous packets necessary for its correct
decoding have been already received. The unequal importance
of video packets, along with timing constrains, naturally lead
to the derivation of efficient packet scheduling algorithms that
determine which packets should be forwarded at a given time
instant, in order to maximize the overall streaming quality. The
implementation of such scheduling strategies corresponds to
a compromise between system complexity, and rate-distortion
efficiency.

Implementing completely distributed video packet schedul-
ing algorithms in individual peers is a complex task. Ideally,
these algorithms run independently on each source peer, but
unanimously decide the set of video packets to be sent,
along with disjoint partitions allocated to each transmitting
peer. Their goal is to maximize the quality of the received
video stream, while avoiding wasting network resources. One
way to reduce the real-time computational burden imposed
by the distributed algorithms is to perform some initial off-
line processing on the media stream. In the case of video-
on-demand (VoD) applications, the benefit of each individual
media packet can be computed and stored before the streaming
session actually begins. Later on, the scheduling mechanism
performs a real-time selection of the set of packets to be
transmitted, according to the available network resources and
the packets’ relative importance. Furthermore, the complexity
of joint scheduling in multiple source scenarios is alleviated
by partitioning beforehand the set of media packets among
the potential serving peers. Based on the feedback that each
transmitter receives from the receiving client, they can perform
independent scheduling decisions that are optimal in a rate-
distortion sense while simultaneously ensuring that no packet
is scheduled for transmission more than once across all
participating sources [11]. Other solutions for solving packet
scheduling issues in P2P networks are provided by in-network
scheduling and queue management, and packet coding for
distributed delivery.

B. In-Network Stream Processing

Packet scheduling and queue management techniques can
be enabled in video distribution trees, with the goal of dis-
tributively adapting the streaming process to the available
network resources. A peer participating in a tree architecture
is in general confronted with the situation where it needs to
take a scheduling decision (whether to forward, or rather drop

packets) in order to maximize the video quality down-stream
(Figure 5). To guide this scheduling process, the rate-distortion
information for each packet can be piggy-backed in its header.
Based on this side information, a forwarding node in the tree
can optimally adapt, or filter the passing video streams in a
rate/distortion sense. In P2P systems, it is generally beneficial
to distribute the video stream through multiple trees, in order
to deal with the typically unreliable P2P network structure,
thereby taking advantage of the available network diversity.
The scheduling process for a single tree described above
extends easily to multiple trees by sending disjoint subparts
of the stream through separate trees, and is enhanced further
by taking into account the number of peers fed with media
packets by the forwarding node on each of these subtrees [12].
This method, while very flexible and easy to implement at
the intermediate forwarding peers, still requires some off-line
processing of the media streams at the source.

C. Coding for Distributed Delivery

As computing the relative benefit/importance of media
packets is generally not trivial, coding methods have been
proposed as an alternative to scheduling algorithms. They
mostly consist in smoothing out the differences in importance
between media packets, thereby avoiding the need for complex
packet scheduling. Channel codes can be employed to encode
independent segments of a video stream, such as GOPs and/or
layers. For example, the authors in [13] propose to encode
the substreams of a scalable video bitstream using Raptor
codes. Raptor codes belong to the family ofrateless, or
Fountain codes, which potentially allow an infinite number
of coded symbols to be generated from a set ofk source
symbols. Any subset ofk + ε Raptor symbols (whereε is
arbitrarily small) can then be used to decode the original
k source symbols with high probability. Thus, by encoding
an independently decodable subpart ofk source symbols
of the video stream with Raptor codes, the receiving client
merely needs to retrieve enough of the corresponding Raptor
symbols from all available serving peers on aggregate. The
client will be able to decode the subpart in question as soon
as k + ε symbols have been received, without distinction
of which particular packets are available to this end. This
solution offers low decoding complexity and provides, along
the way, a universal channel code for the transmitted stream.
Finally, other applications of distributed coding solutions can
also be proposed to improve the efficiency of media delivery
from multiple source peers. Network coding, for example, is
a recent technique where intermediate nodes forward linear
combinations of incoming packets. This increases the capacity
of the network (by reducing the amount of replication) as well
as its resilience to packet loss [14], while being able to cope
with possibly different constraints at the end user.

V. D ISCUSSION ANDOPEN PROBLEMS

We have examined the challenges of media streaming in P2P
environments. Specific media adaptation techniques employed
at the application layer and efficient network routing and
packet scheduling mechanisms have been considered, along
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TABLE I

P2PSTREAMING SYSTEMS CHARACTERISTICS

P2P System Architecture Media coding Packet level scheduling

CoolStreaming Overlay mesh Possible use of layered coding or MDC Yes
CoopNet Multiple trees MDC No

PALS Receiver-driven tree Layered coding Receiver-driven
PROMISE Receiver-driven tree Possible use of FEC Receiver-driven

SPLIT Stream Multiple trees Possible use of MDC and FEC No
Bullet Overlay mesh Possible use of MDC or FEC Receiver-driven

with the most common P2P architectures, in order to address
these difficulties. Some of these techniques are currently part
of the most prominent P2P streaming systems implemented in
the literature (please refer to [1] and its references). Table I
provides a brief overview of the main characteristics of these
systems.

However, there are still several issues that need to be
resolved in order to be able to establish P2P streaming as
the premium media delivery solution. In particular, proper
coordination of the aforementioned techniques across the
different layers of the networking stack is not a trivial problem,
and nowadays many efforts are being deployed towards cross-
layer optimization of multimedia communications. At the
same time, large streaming scenarios featuring users with
different (possibly conflicting) constraints require specialized
mechanisms in order to insure a stable system performance.
Encouraging solutions are available in the area of network
coding for P2P systems, differentiated services among peers
[15], or node coopetition (a trade-off between peer cooperation
and competition).

In addition, the development of efficient strategies to im-
prove the stability of peer-to-peer topologies will offer an
enhanced quality-of-service to users of streaming services, par-
ticularly in wireless environments. Solutions could be found
in better mobility prediction models, or in the development
of self-healing systems, which are able to rapidly converge
to stable topologies when peers join and leave the streaming
session at random. Finally, digital rights management remains
an important problem in peer-to-peer delivery, as it is still
difficult to maintain secure media sessions in distributed and
unstructured P2P topologies. The popularity of such systems
and the continuous efforts of researchers in this area however
should bring efficient solutions to all these problems in the
near future, and enable a wide-scale deployment of high
quality peer-to-peer streaming applications.
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Fig. 1. Structured content distribution network: The client requests a service from the main application server; the servers cooperate among each-other and
decide which server or proxy has to serve the client.
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Fig. 3. Tree architecture for media delivery in P2P systems.
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Fig. 4. Mesh architecture for media delivery in P2P systems.
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Fig. 5. Intermediate peer processing of the incoming media streams: Based on distortion information present in the packet headers, a node can take a
rate-distortion optimized scheduling decision for the incoming packets.


