

Computer Programming

Course Details
An Introduction to Computational Tools

Prof. Mauro Gaspari: mauro.gaspari@unibo.it

Road map for today

 The skills that we would like you to acquire: to think
like a computer scientist.

 Course organization.
 Exams.
 Course material.
 An introduction to computational tools.
 Getting started.

To think like a
Computer Scientist.....

 To understand computational tools and terminology.
 To use these basic tools to write small scale

programs.
 To understand programs written by others.
 To understand both capabilities and limitations of

computational tools.
 To map (qf) problems into computational solutions.

Python

 Computational solution will be implemented in
Python a modern programming language.

 This course is not about Python (e.g. studying
Python details), but it is about using it to think and
build computational solutions.

 Warning!!! reading the textbook is not enough,
exercises are fundamental.

Course Organization

 Interactive approach - learning by doing
 Interactive Lectures:

 Exercises solved in class (workgroup
sessions)

 Individual support (tutor: to be announced)

 Home assigments (warning home work is
mandatory for class students!!!)

Course Material

 TextBook: How to Think Like a Computer Scientist: Learning
with Python, by A. Downey, J. f Elkner and C. Meyers. Green Tea
Press (available online here:
https://media.readthedocs.org/pdf/howtothink/latest/howtothink.pdf).

 Web site: http://www.cs.unibo.it/~gaspari/www/teaching/
 Slides
 Readings and Links

 Online software and documentation:
 Python site: http://www.python.org/
 There is an Italian version too: http://www.python.it/

http://www.cs.unibo.it/~gaspari/www/teaching/
http://www.python.org/
http://www.python.it/

Exam
 The Exam of Computer Programming is composed by two parts:

 A WRITTEN TEST
 FOR QF STUDENTS ONLY: A DISCUSSION OF AN

INDIVIDUAL (OPTIONAL) PROJECT.
 The final score is the media of the two parts, otherwise is the result of

the written test.
 Passing the WRITEN TEST is mandatory for STARTING a

PROJECT and for discussing it.
 Students that passed the Crash Course Test can start their projects at

the end of the course (thus before the written test).
 Projects are discussed by appointment. If the project discussion fails,

namely the project is not original and/or the student is not able to
change its source code, the written test must be repeated.

Home Work

 Homework are assigned to all the students at the end of each week
(Wednesday). They should be completed before the first lesson of the next
week (11am Thursda)y.

 Students can contact us for questions and/or problems with the proposed
exercises.

 Homework is essential for class students to follow the next lecture.

Discussion of a project
 Procedure:

 Propose a (qf) problem and submit a specification of what the
program will do.

 When approved implement a computational solution.
 Projects code must be consigned the day before the

discussion sending the source code by email to
mauro.gaspari@unibo.it.

 Discussion:
 A demo of your project + a practical test (modify your code).

mailto:mauro.gaspari@unibo.it

Vote

 For each student s:

Vote(s) = (Written(s) + Project(s))/2
 Where:

 Written(s) => is the written vote
 Project(s) => is the result of the project discussion.

Computational tools
and problem solving

 Computational tools are used for problem solving.
 Humans are problem solvers: we use knowledge to

solve problems.
 What is knowledge?
 We can divide knowledge into at least two

categories:
 Declarative knowledge
 Imperative knowledge

Example: Greatest
 Common Divisor

 DECLARATIVE KNOWLEDGE:
A, B are positive integer, X = GCD(A,B) then:

- The remainder of both A/X and B/X is equal to 0 and,

- If exists Y≠X such that the remainder of both A/Y and B/
Y is equal to 0 then X > Y

 IMPERATIVE KNOWLEDGE (EUCLID)
IF A<B, exchange A and B.

Divide A by B and get the remainder, R. If R=0, GCD(A,B) = B.

Replace A by B and replace B by R. Return to the previous step.

 IMPERATIVE KNOWLEDE IS THE RECIPE!

What is a Computation?
 A computation is a recipe: a sequence of (simple)

instructions (this is also called program).
 Is it possible to build a mechanical process to

capture that set of computations?
 Yes, for example building a simple circuit to do this:

fixed-program computer (for example a dishwasher
program).

 General purpose computer are more complex, they
are circuit able to take a “recipe” (list of simple
instructions) as an input, reconfigure themselves and
act as the recipe.

How they work?

IR

Registers

ALU

CU

CPU

Von Neumann Machine

R

A

M

Op code. op1 op2 ris

Speed in Hertz

How many instructions in a second

Capacity in

Bytes (8 bit)

BUS

Instructions

PC

instr1
instr2
....
.....
instrn

Program

PC

MEMORY

What is a program?

 Programs are written
using programming
languages.

 Source code:
instructions of a given
program.

Program Tombstone Diagrams
A program P written
In a Language L

L

P

Source code of
a program P written
In language L is
usually stored in
file and loaded in
memory

....

......

....

.....

Which Programming
Languages?

 High level Languages
 Python, C, C++, Perl, Java, Lisp, Prolog.

 Thus there is also a low-level
 Machine language
 Assembler

High-level vs low-level

High-level
Languages

....
print b*h/2
....

Assembler

LOAD r1,b
LOAD r2,h
MUL r1,r2
DIV r1,#2
RET

Low-level
Languages

00010010010001010010
01001110110010101101
001..

Machine
Language

Machine Language

 Computer are only
able to execute
machine language
instructions.

 Different computers
may have different
machine languages.

M

Computer Tombstone Diagram
A computer having a machine
language M is represented with
the following tombstone diagram

Program execution

 A computer can only
execute programs
written in its machine
language M

P

M

Problems of machine
languages

 Write programs in machine language is “almost”
impossible.

 The first computers were programmed in this way.
 Now low-level languages are used only for a few

specialized applications.
 Almost all programs are written in high-level

programming languages.
 Rapid development
 Portable code

However

 Apparently high
level languages
cannot be directly
executed on
computers.

A program P written
in L cannot be executed
on a machine M.

L

P

M

Programming Language
Processors

 Specific tools to support the execution of high-
level programming languages:

 Interpreters.
 Compilers.

Interpreter

 An interpreter for a language L is a
program that takes as input a program
written in L and executes it instruction
by instruction.

 An interpreter can be written in
machine language.

L
M

Interpreter Tombstone Diagram
An interpreter for a language L
written in M.

Executing Python
programs

 The python interpreter allows
a user to execute a program P
written in Python in computer
M.

 This means that Python an
interpreted language.

Python

P

M

Python
M

Compilers

 A compiler is a program which
translates source code (usually
written in a given high level
language) into object code usually
written in machine language.

L -> M

M

Compiler Tombstone Diagram
A compiler which translates
source code written in a langusge
L into object code written in
machine language M.

Using a compiler

L -> M

M

M

P

M

M

L

P

Note that a compiler is
a program, thus it must
be executed on the right
machine as other programs
are.

Source code

Executable
object code

Instructions
 input: Get data from the keyboard, a file, or some other device.

 output: Display data on the screen or send data to a file or other
device.

 math: Perform basic mathematical operations like addition and
multiplication.

 conditional execution: Check for certain conditions and execute the
appropriate code.

 repetition: Perform some action repeatedly, usually with some
variation.

 Programming = the process of breaking a complex task into smaller
and smaller subtasks until the subtasks are simple enough to be
performed with one of these basic instructions.

Bugs and Debugging!

 Bugs
 Debugging (the process of tracking down bugs)
 Why we introduce this concept here?

 Is an essential skill associated to computer
programming.

 In principle all the programs may have bugs!
 Bugs are frequent in programming, but they can

be solved with debugging!

Different kinds of errors
 Syntax errors: Python can only execute a program if the syntax is

correct; otherwise, the interpreter displays an error message.
Syntax refers to the structure of a program and the rules about that
structure. If there is a single syntax error anywhere in your
program, Python will display an error message and quit.

 Runtime errors: these errors do not appear until after the
program has started running. These errors are also called
exceptions because they usually indicate that something
exceptional (and bad) has happened.

 Semantic errors: If there is a semantic error in your program, it
will run successfully (without error messages), but it will not do
the right thing. It will do something else. The meaning of the
program (its semantics) is wrong. Identifying semantic errors can
be very tricky.

Debugging
 Debugging is like detective work: you are confronted with clues, and

you have to infer the processes and events that led to the results you
see.

 Experimental science;
 you have an idea about what is going wrong,
 you modify your program and try again.
 If your hypothesis was correct, then you can predict the result of the

modification, and you take a step closer to a working program.
 If your hypothesis was wrong, you have to come up with a new one.

 Sherlock Holmes “When you have eliminated the impossible,
whatever remains, however improbable, must be the truth.”

 Programming => debugging: programming is the process of
gradually debugging a program until it does what you want.

Formal languages

 Natural languages are the languages people speak, such
as English, Spanish, and French. They were not designed
by people they evolved naturally.

 Formal languages are languages that are designed by
people for specific applications. For example, the
notation that mathematicians use is a formal language
that is particularly good at denoting relationships among
numbers and symbols.

 Programming languages are formal languages that
have been designed to express computations.

Syntax
 Formal languages tend to have strict rules about syntax.

 For example, 3 + 3 = 6 is a syntactically correct
mathematical statement, but 3+ = 3$6 is not.

 Two levels of syntax rules:

 Tokens are the basic elements of the language, such as words,
numbers, and chemical elements. One of the problems with 3+
= 3$6 is that $ is not a legal token in mathematics.

 Structure of a statement: the way the tokens are arranged.
The statement 3+ = 3 is illegal because even though + and =
are legal tokens, you can’t have one right after the other.

 Parsing: is the process that analyse a sentence finding and
understanding its structure.

Formal Languages vs
Natural Languages

 Although formal and natural languages have many features in
common—tokens, structure, syntax, and semantics—there are
some differences:

 ambiguity: Natural languages are full of ambiguity, which
people deal with by using contextual clues and other
information. Formal languages are designed to be nearly or
completely unambiguous.

 redundancy: In order to make up for ambiguity and reduce
misunderstandings, natural languages employ lots of
redundancy. As a result, they are often verbose. Formal
languages are less redundant and more concise.

 literalness: Natural languages are full of idiom and metaphor.
Formal languages mean exactly what they say.

Semantics

 Semantics: concerns the meaning of instructions,
thus the meaning of the constructs of the language.

 Semantics of programming languages:
 Informal semantics (manual).
 Formal semantics (computer scientists):

useful for building programming languages
processors.

The python interpreter

 We will use version 3.7.
 Python is an interpreted language. There are two ways to

use the interpreter:
 Interactive mode: you type Python programs and the

interpreter displays the result:

>>> 1 + 1
2

 Script mode: you can store code in a file and use the
interpreter to execute the contents of the file (script). By
convention, Python scripts have names that end with .py.

Script execution

 To execute the script, you have to tell the interpreter the
name of the file. If you have a script named hello.py alond
you are working in a UNIX command window, you type:

python hello.py
 In other development environments, the details of executing

scripts are different. Environment based on graphical user
interfaces usually have a specific “run” botton or menu item
to execute the script.

 You can find instructions for your environment at the
Python website http://python.org

http://python.org/

The first program

 Traditionally, the first program you write in a new language
is called “Hello, World!” because it just prints this sentence.

 In Python, the implementation is very simple:

print('Hello, World!')

 This is an example of a print statement, which displays a
value on the screen (it is an output statement).

 The quotation marks in the program mark the beginning and
end of the text to be displayed.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

