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Abstract
Program transformation is an appealing technique which allows to
improve run-time efficiency, space-consumption and more gener-
ally to optimize a given program. Essentially it consists of a se-
quence of syntactic program manipulations which preserves some
kind of semantic equivalence. One of the basic operations which is
used by most program transformation systems is unfolding which
consists in the replacement of a procedure call by its definition.
While there is a large body of literature on transformation and un-
folding of sequential programs, very few papers have addressed this
issue for concurrent languages and, to the best of our knowledge,
no one has considered unfolding of CHR programs.

This paper is a first attempt to define a correct unfolding system
for CHR programs. We define an unfolding rule, show its correct-
ness and discuss some conditions which can be used to delete an
unfolded rule while preserving the program meaning.

Categories and Subject Descriptors D.3.1 [Programming lan-
guages]: Formal Definitions and Theory; D.3.2 [Programming
Languages]: Language Classifications—Concurrent, distributed,
and parallel languages; D.3.2 [Programming Languages]: Lan-
guage Classifications - Constraint and logic languages; F.3.2
[Logic and meanings of programs]: Semantics of Programming
Languages

General Terms Languages, Theory.

Keywords Unfolding, Constraint Handling Rules, Program trans-
formation.

1. Introduction
CHR [5, 7] is a committed-choice declarative language which
has been specifically designed for writing constraint solvers.
There is nowadays a very large literature on CHR, ranging from
theoretical aspects to implementations and applications (more
than 1000 papers mentioning CHR are reported at the web site
http://www.cs.kuleuven.ac.be/ ˜ dtai/projects/CHR/). However, only
a few papers, notably [6, 9, 11], consider source to source trans-
formation of CHR programs. This is not surprising, since program
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transformation is in general very difficult for (logic) concurrent
languages and in case of CHR it is even more complicated, as we
discuss later.

While [6] focuses on specialization of a program for a given
goal, here we consider unfolding. This is a basic operation of any
source to source transformation (and specialization) system and
essentially consists in the replacement of a procedure call by its
definition. While this operation can be performed rather easily for
sequential languages, and indeed in the field of logic programming
it was first investigated by Tamaki and Sato more than twenty years
ago [12], when considering logic concurrent languages it becomes
quite difficult to define reasonable conditions which ensure its
correctness. This is mainly due to the presence of guards in the
rules: Intuitively, when unfolding a rule r by using a rule r′ (i.e.
when replacing in the body of r a “call” of a procedure by its
definition r′) it could happen that some guard in r′ is not satisfied
“statically” (i.e. when we perform the unfold), even though it could
become satisfied later when the unfolded rule is actually used. If
we move the guard of r′ in the unfolded version of r we can then
loose some computations (because the guard is anticipated). This
means that if we want to preserve the meaning of a program we
cannot replace the rule r by its unfolded version, and we have to
keep both the rules. For CHR the situation is further complicated
by the presence of multiple heads in the rules. The problem here
is that even though the guards are satisfied, when unfolding a body
B of a rule r by using the (multiple) head H of another rule r′,
we cannot be sure that at run-time all the atoms in H will indeed
be used to rewrite B, since in general B could be in a conjunction
with other atoms. This technical point, that one can legitimately
find obscure now, will be further clarified in Section 5.

Despite these technical problems, the study of unfolding tech-
niques for concurrent languages, and for CHR in particular, is im-
portant as it could lead to significant improvements in the efficiency
of programs.

In this paper we then define an unfolding rule for CHR pro-
grams and show that it preserves the semantics of the program in
terms of qualified answers (a notion already defined in the liter-
ature). We also provide a syntactic condition which allows to re-
place in a programs a rule by its unfolded version while preserving
qualified answers. Even though the idea of the unfolding is straight-
forward, its technical development is complicated by the presence
of guards and multiple heads, as previously mentioned. In particu-
lar, it is not immediate to identify conditions which allow to replace
the original rule by its unfolded version. Moreover, a further reason
of complication comes from the fact that we consider the reference
semantics (called ωt) defined in [3] which avoids trivial non ter-
mination by using a, so called, token store (see next section). Due
to the presence of this token store, in order to define correctly the



unfolding we have to slightly modify the syntax of CHR programs
by adding to each rule a local token store. The resulting programs
are called annotated and we define their semantics by providing a
(slightly) modified version of the semantics ωt, which is proven to
preserve the qualified answers.

The remaining of this paper is organized as follows. Next sec-
tion contains some notations used in the paper and the syntax of
CHR. The operational semantics of ωt [3] and of the modified se-
mantics ω′t are presented in Section 3. Section 4 defines the unfold-
ing rule and prove its correctness. Section 5 discuss the problems
related to the replacement of a rule by its unfolded version and
gives a correctness condition which holds for a specific class of
rules. Finally Section 6 concludes by discussing also some related
work.

2. Preliminaries
In this section we introduce the syntax of CHR and some notations
and definitions we will need in the following. CHR uses two kinds
of constraints: the built-in and the CHR ones, also called user-
defined. Built-in constraints are defined by c ::= d|c∧c|∃xc, where
d is an atomic formula (or atom). These constraints are handled
by an existing solver and we assume given a (first order) theory
CT which describes their meaning. We use c, d to denote built-in
constraints, h, k, s, p, q to denote CHR constraints and a, b, g, f to
denote both built-in and user-defined constraints (we will call these
generically constraints). We also denote by false any inconsistent
(conjunction of) constraints. The capital versions will be used to
denote multisets (or sequences) of constraints.

The notation ∃−V φ, where V is a set of variables, denotes the
existential closure of a formula φ with the exception of the variables
in V which remain unquantified. Fv(φ) denotes the free variables
appearing in φ. Moreover, if t̄ = t1, . . . tm and t̄′ = t′1, . . . t

′
m

are sequences of terms then the notation p(t̄) = p′(t̄′) represents
the set of equalities t1 = t′1, . . . , tm = t′m if p = p′, and it is
undefined otherwise. Analogously, if H = h1, . . . , hk and H ′ =
h′1, . . . , h

′
m are sequences of constraints, the notation H = H ′

represents the set of equalities h1 = h′1, . . . , hk = h′k. Finally,
multi-set union is represented by symbol ].

2.1 CHR syntax
As shown by the following definition, a CHR program consists of
a set of rules which can be divided into three types: simplification,
propagation and simpagation rules. The first kind of rules is used to
rewrite CHR constraints into simpler ones, while second one allows
to add new redundant constraints which may cause further simpli-
fication. Simpagation rules allow to represent both simplification
and propagation rules.

DEFINITION 1. CHR SYNTAX [5]. A CHR program is a finite set
of CHR rules. There are three kinds of CHR rules:
A simplification rule has the form:

r@H ⇔ C |B

A propagation rule has the form:

r@H ⇒ C |B

A simpagation rule has the form:

r@H1 \H2 ⇔ C |B,

where r is a unique identifier of the rule, H , H1 and H2 are se-
quences of user-defined constraints (called heads), C is a possi-
bly empty multiset of built-in constraints (guard) and B is a possi-
bly empty multiset of (built-in and user-defined) constraints (body).

A CHR goal is a multiset of (both user-defined and built-in) con-
straints.

A simpagation rule can simulate both simplification and prop-
agation rule by considering, respectively, either H1 or H2 empty
(with (H1, H2) 6= ∅). In the following we will then consider in the
formal treatment only simpagation rules.

When considering unfolding we need to consider a slightly
different syntax, where rule identifiers are not necessarily unique,
atoms in the body are associated with an identifier and where each
rule is associated with a local token store T . More precisely, we
define an identified CHR constraint (or identified atom) h#i as
a CHR constraint h, associated with an integer i which allows to
distinguish different copies of the same constraint. We will also
use the functions chr(h#i)=h and id(h#i)=i, possibly extended to
sets and sequences of identified CHR constraints in the obvious
way. Given a goal G, we denote by G̃ one of the possible identified
versions of G. Goals is the set of all (possibly identified) goals.

DEFINITION 2. CHR ANNOTATED SYNTAX. Let us define a token
as an object of the form r@i1, . . . , il, where r is the name of a rule
and i1, . . . , il is a sequence of identifiers. A token store is a set of
tokens.
An annotated rule has then the form:

r@H1 \H2 ⇔ C | B̃; T

where r is an identifier, H1 and H2 are sequences of user-defined
constraints, B̃ is a sequence of built-in and identified CHR con-
straints such that different (occurrences of) CHR constraints have
different identifiers, and T is a token store, called the local token
store of rule r. An annotated CHR program is a finite set of anno-
tated CHR rules.

Intuitively, identifiers are used to distinguish different occur-
rences of the same atom in a rule. The identified atoms can be
obtained by using a suitable function which associates a (unique)
integer to each atom. More precisely, let B be a goal which con-
tains m CHR-constraints. We assume that the function In+m

n (B)
identifies each CHR constraint in B by associating to it a unique
integer in [n + 1, m + n] according to the lexicographic order.

On the other hand, the token store allows to memorize some
tokens, where each token describes which (propagation) rule has
been used for reducing which identified atoms. As we discuss in the
next section, the use of this information was originally proposed
in [1] and then further elaborated in the semantics defined in [3]
in order to avoid trivial non termination arising from the repeated
application of the same propagation rule to the same constraints.
Here we simply incorporate this information in the syntax, since
we will need to manipulate it in our unfolding rule.

Given a CHR program P , by using the function In+m
n (B) and

an initially empty local token store we can construct its annotated
version as follows.

DEFINITION 3. Let P be a CHR program. Then its annotated ver-
sion is defined as follows:

Ann(P ) = { r@H1 \H2 ⇔ C | Im
0 (B); ∅ |

r@H1 \H2 ⇔ C |B ∈ P and
m is the number of CHR-constraints in B }.

Notation
In the following examples, given a (possibly annotated) rule

r@H1 \H2 ⇔ C |B(; T ),

we write it as

r@H2 ⇔ C |B(; T ),



if H1 is empty and we write it as

r@H1 ⇒ C |B(; T ),

if H2 is empty.
That is, we maintain also the notation previously introduced for

simplification and propagation rules. Moreover, if C = true, then
true | is omitted. Finally, if in annotated rule the token store is
empty we simply omit it.

3. CHR operational semantics
This section introduces the reference semantics ωt [3], in particular
the variant that modifies the token set only after the application of
a propagation rule (for the sake of simplicity, we omit indexing the
relation with the name of the program).

Afterward we define a slightly different operational semantics,
called ω′t, which considers annotated programs and which will be
used to prove the correctness of our unfolding rules (via some form
of equivalence between ω′t and ωt).

We describe the operational semantics ωt, introduced in [3], by
using a transition system

Tωt = (Conft ,−→ωt).

Configurations in Conft are tuples of the form 〈G, S̃, c, T 〉n with
the following meaning. G, the goal, is a multiset of constraints to
be evaluated. The CHR constraint store S̃ is the set of identified
CHR constraints that can be matched with rules in the program
P . The built-in constraint store c is a conjunction of built-in con-
straints. The propagation history T is a set of tokens of the form
r@i1, . . . , il, where r is the name of the applied propagation rule
and i1, . . . , il is the sequence of identifiers associated to the con-
straints to which the head of the rule is applied. This is needed to
prevent trivial non-termination for propagation rules. If one does
not consider tokens (as in the original semantics of [5]) it is clear
from the transition system that if a propagation rule can be applied
once it can be applied infinitely many times thus originating an in-
finite computation (no fairness assumptions are made here). On the
other hand, by using tokens one can ensure that a propagation rule
is used to reduce a sequence of constraints only if the same rule
has not been used before on the same sequence of constraints, thus
avoiding trivial infinite computations (arising from the application
of the same rule to the same constraints). Finally the counter n rep-
resents the next free integer which can be used to number a CHR
constraint. As previously mentioned, the first idea of using a token
store to avoid trivial non termination was described in [1].

Given a goal G, the initial configuration has the form

〈G, ∅, true, ∅〉1.

A final configuration has either the form 〈G′, S̃, false, T 〉n when
it is failed or it has the form 〈∅, S̃, c, T 〉n when it represents a
successful termination (since there are no more applicable rules).

The relation −→ωt (of the transition system of the operational
semantics ωt) is defined by the rules in Table 1: the Solve rule
moves a built-in constraint from goal store to the built-in constraint
store; the Introduce identifies and moves a CHR (or used defined)
constraint from the goal store to the CHR constraint store and the
Apply rule chooses a program rule r, for which matching between
constraints in CHR store and the ones in the head of r exists, it
checks that the guard of r is entailed by the built-in constraint store,
considering the matching substitution, and it verifies that the token
that would be eventually added by Apply in the token store is not
already present, than it fires the rule.

3.1 The modified semantics ω′t

We now define the semantics ω′t which considers annotated rules.
This semantics differs from ωt in two aspects.

First, in ω′t the goal store and the CHR store are fused in
a unique generic store, where CHR constraints are immediately
labeled. As a consequence, we do not need anymore the Introduce
rule and every CHR constraint in the body of an applied rule is
immediately utilizable for rewriting.

The second difference concerns the shape of the rules. In fact,
each annotated rule r has a local token store (which can be empty)
that is associated to it and which is used to keep trace of the
propagation rules that are used to unfold the body of r. Note also
that here, differently from the case of the propagation history in ωt,
the token store associated to the real computation can be updated by
adding more tokens at once (because an unfolded rule with many
token in its local token store has been used).

In order to define formally ω′t we need a function inst which is
defined as follows.

DEFINITION 4. Let Token be the set of all possible token set
and let N be the set of natural numbers. We denote by inst :
Goals × {Token} × N → Goals × {Token} × N the function
such that inst(B̃, T, n) = (B̃′, T ′, m), where

• B̃ is an identified CHR goal,
• (B̃′, T ′) is obtained from (B̃, T ) by incrementing each identi-

fier in (B̃, T ) with n and
• m is the greatest identifier in (B̃′, T ′).

We describe now the operational semantics ω′t for annotated
CHR programs by using, as usual, a transition system

Tω′
t

= (Conf ′t ,−→ω′
t
).

Configurations in Conf ′t are tuples of the form 〈S̃, c, T 〉n with
the following meaning. S̃ is the set of identified CHR constraints
that can be matched with rules in the program P and built-in con-
straints. The built-in constraint store c is a conjunction of built-in
constraints and T is a set of tokens, while the counter n represents
the last integer which was used to number the CHR constraints in
S̃.

Given a goal G, the initial configuration has the form

〈Im
0 (G), true, ∅〉m,

where m is the number of CHR constraints in G. A final config-
uration has either the form 〈S̃, false, T 〉n when it is failed or it
has the form 〈S̃, c, T 〉n when it represents a successful termination,
since there are no more applicable rules.

The relation −→ω′
t

(of the transition system of the operational
semantics ω′t) is defined by the rules in Table 2. Let us discuss
briefly the rules.

Solve’ moves a built-in constraint from the store to the built-in
constraint store;

Apply’ uses the rule r@H ′
1\H ′

2 ⇔ D | B̃; Tr provided that
exists a matching substitution θ such that chr(H̃1, H̃2) =
(H ′

1, H
′
2)θ, D is entailed by the built-in constraint store of

the computation and r@id(H̃1, H̃2) 6∈ T ; H̃2 is replaced by B̃,
where the identifier are suitably incremented by inst function
and chr(H̃1, H̃2) = (H ′

1, H
′
2) is added to built-in constraint

store.

In order to show the equivalence of the semantics ωt and ω′t we
now define the notion of observables that we consider: these are the
“qualified answers” (already used in [5]).

DEFINITION 5. (QUALIFIED ANSWERS). Let P be a CHR pro-
gram and let G be a goal. The set QAP (G) of qualified answers



Solveωt

CT |= c ∧ C ↔ C′ and c is a built-in constraint

〈{c} ]G, S̃, C, T 〉n −→ωt 〈G, S̃, C′, T 〉n

Introduceωt

h is a user-defined constraint

〈{h} ]G, S̃, C, T 〉n −→ωt 〈G, {h#n} ∪ S̃, C, T 〉n+1

Applyωt

r@H′
1 \H′

2 ⇔ D |B ∈ P x = Fv(H′
1, H′

2) CT |= C → ∃x((chr(H̃1, H̃2) = (H′
1, H′

2)) ∧D)

〈G, {H̃1} ∪ {H̃2} ∪ S̃, C, T 〉n −→ωt 〈B ]G, {H̃1} ∪ S̃, (chr(H̃1, H̃2) = (H
′
1, H

′
2)) ∧ C, T

′〉n

where r@id(H̃1, H̃2) 6∈ T and T ′ = T ∪ {r@id(H̃1, H̃2)} if H̃2 = ∅ otherwise T ′ = T.

Table 1. The transition system Tωt for the ωt semantics

Solve’
CT |= C ∧ c ↔ C′ and c is a built-in constraint

〈{c} ∪ G̃, C, T 〉n 7→ω′
t
〈G̃, C′, T 〉n

Apply’
(r@H′

1\H
′
2 ⇔ D | B̃; Tr) ∈ P, x = Fv(H′

1, H′
2) CT |= C → ∃x((chr(H̃1, H̃2) = H′

1, H′
2) ∧D)

〈H̃1 ∪ H̃2 ∪ G̃, C, T 〉n 7→ω′
t
〈B̃′ ∪ H̃1 ∪ G̃, (chr(H̃1, H̃2) = (H′

1, H′
2) ∧ C, T ′〉m

where (B̃′, T ′
r, m) = inst(B̃, Tr, n); r@id(H̃1, H̃2) 6∈ T and

T ′ = T ∪ {r@id(H̃1, H̃2)} ∪ T ′
r if H̃2 = ∅ otherwise T ′ = T ∪ T ′

r.

Table 2. The transition system Tω′
t

for the ω′t semantics

for the query G in the program P is defined as follows:

QAP (G) =

{∃−Fv(G)K ∧ d | 〈G, ∅, true, ∅〉1 →∗
ωt
〈∅, K̃, d, T 〉n 6→ωt}

∪
{false | 〈G, ∅, true, ∅〉1 →∗

ωt
〈G′, K̃, false, T 〉n}.

Analogously we can define the qualified answer of an annotated
program.

DEFINITION 6. (QUALIFIED ANSWER FOR ANNOTATED PRO-
GRAMS). Let P be an annotated CHR program and let G be a
goal with m CHR constraints. The set QA′

P (G) of qualified an-
swers for the query G in the annotated program P is defined as
follows:

QA′
P (G) =

{∃−Fv(G)K ∧ d | 〈Im
0 (G), true, ∅〉m →∗

ω′
t
〈K̃, d, T 〉n 6→ω′

t
}

∪
{false | 〈Im

0 (G), true, ∅〉m →∗
ω′

t
〈G̃′, false, T 〉n}.

The following result shows the equivalence of the two semantics
w.r.t. (the equivalence induced by) qualified answers. The proof is
easy by definition of ωt and ω′t.

PROPOSITION 1. Let P and Ann(P ) be respectively a CHR pro-
gram and its annotated version. Then, for every goal G,

QAP (G) = QA′
Ann(P )(G)

holds.

4. The unfolding rule
In this section we define the unfold operation for CHR simpagation
rules. As a particular case we obtain also unfolding for simplifica-
tion and propagation rules, as these can be seen as particular cases
of the former.

The unfolding allows to replace a conjunction S of constraints
(which can be seen as a procedure call) in the body of a rule r by

the body of a rule v, provided that the head of v matches with S.
More precisely, assume that the head H of v, instantiated by a sub-
stitution θ, matches with the conjunction S (in the body of r). Then
the unfolded rule is obtained from r by performing the following
steps: 1) the new guard in the unfolded rule is the conjunction of
the guard of r with the guard of v, the latter instantiated by θ and
without those constraints that are entailed by the built-in constraints
which are in r; 2) the body of v and the equality H = S are added
to the body of r (equality here is interpreted as syntactic equality);
3) the conjunction of constraints S can be removed, partially re-
moved or left in the body of the unfolded rule, depending on the
fact that v is a simplification, a simpagation or a propagation rule,
respectively; 4) as for the local token store Tr associated to every
rule r, this is updated consistently during the unfolding operations
in order to avoid that a propagation rule is used twice to unfold the
same sequence of constraints.

Before formally defining the unfolding we need to define the
function

clean : Goals× Token → Token,

as follows: clean(B̃, T ) deletes from T all the tokens for which
at least one identifier is not present in the identified goal B̃. More
formally

clean(B̃, T ) = {t ∈ T | t = r@i1, . . . , ik and
ij ∈ id(B̃), for each j ∈ [1, k]}.

Recall also that we defined chr(h#i)=h.

DEFINITION 7. (UNFOLD). Let P be an annotated CHR program
and let r, sp ∈ P be two annotated rules such that:

r@H1\H2 ⇔ D | K̃, S̃1, S̃2, C; T and
sp@H ′

1\H ′
2 ⇔ D′ | B̃; T ′ is a simpagation rule

where chr(S̃1, S̃2) is identical to (H ′
1, H

′
2)θ, that is, the con-

straints H ′
1 in the head of rule sp match with chr(S̃1) and H ′

2

matches with chr(S̃2) by using the substitution θ. Furthermore as-
sume that C is the conjunction of all the built-in constraints in the



body of r, that m is the greatest identifier which appears in the rule
r and that (B̃1, T1, m1) = inst(B̃, T ′, m). Then the unfolded rule
is:

r@H1\H2 ⇔ D, (D′′θ) | K̃, S̃1, B̃1, C, chr(S̃1, S̃2) = (H ′
1, H

′
2); T

′′

where sp@id(S̃1, S̃2) 6∈ T , D′′ = D′\V , V ⊆ D′, either
CT |= C → V θ or CT |= D → V θ, the constraint (D, (D′′θ))
is satisfiable and

• if H ′
2 = ∅ then T ′′ = clean((K̃, S̃1), T )∪T1 ∪{sp@id(S̃1)}

• if H ′
2 6= ∅ then T ′′ = clean((K̃, S̃1), T ) ∪ T1.

Note that we use the function inst (defined in Definition 4) in
order to increment the value of the identifiers associated to atoms in
the unfolded rule. This allows us to distinguish the new identifiers
introduced in the unfolded rule from the old ones. Note also that
the condition on the token store is needed to obtain a correct rule.
Consider for example a ground annotated program P = {r1@h ⇔
k̃, r2@k ⇒ s̃, r3@s, s ⇔ B̃} and let h be the start goal. In this
case the unfolding could change the semantics if the token store
were not used. In fact, according to the semantics proposed in Table
1 or 2, we have the following computation: h̃ →(r1) k̃ →(r2)

k̃, s̃ 6→ωt . On the other hand, considering an unfolding without
the update of the token store one would have r1@h ⇔ k̃

unfold using r2−→
r1@h ⇔ k̃, s̃

unfold using r2−→ r1@h ⇔ k̃, s̃, s̃
unfold using r3−→ r1@h ⇔ k̃, B̃

so, starting from the constraint h we could arrive to constraint k, B,
that is not possible in the original program (the clause obtained after
the wrongly applied unfolding rule is underlined).

As previously mentioned, the unfolding rules for simplification
and propagation can be obtained as particular cases of Definition 7,
by setting H ′

1 = ∅ and H ′
2 = ∅, respectively, and by considering

accordingly the resulting unfolded rule. In the following examples
we will use � to denote both ⇔ and ⇒.

EXAMPLE 1. The following program P = {r1, r2, r̄2} deduces
information about genealogy. Predicate f is considered as father,
g as grandfather, gs as grandson and gg as great-grandfather. The
following rules are such that we can unfold some constraints in the
body of r1 using the rule r2 [r̄2].

r1@f(X, Y ), f(Y, Z), f(Z, W )� g(X, Z)#1,
f(Z, W )#2, gs(Z, X)#3.

r2@g(X, Y ), f(Y, Z)� gg(X, Z)#1.
r̄2@g(X, Y )\f(Y, Z) ⇔ gg(X, Z)#1.

Now we unfold the body of rule r1 by using the rule r2 where
we assume � =⇔ (so we have a simplification rule). We use
inst(gg(X, Z)#1, ∅, 3) = (gg(X, Z)#4, ∅, 4) and a renamed
version of r2

r2@g(X ′, Y ′), f(Y ′, Z′) ⇔ gg(X ′, Z′)#1.

in order to avoid variable clashes. So the new unfolded rule is:

r1@f(X, Y ), f(Y, Z), f(Z, W )� gg(X ′, Z′)#4,
gs(Z, X)#3, X ′ = X, Y ′ = Z, Z′ = W.

Now, we unfold the body of rule r1 by using the simplification
rule r̄2. As before,

inst(gg(X, Z)#1, ∅, 3) = (gg(X, Z)#4, ∅, 4)

and a renamed version of r̄2

r̄2@g(X ′, Y ′)\f(Y ′, Z′) ⇔ gg(X ′, Z′)#1.

is used to avoid variable clashes. The new unfolded rule is:

r1@f(X, Y ), f(Y, Z), f(Z, W )� g(X, Z)#1,
gg(X ′, Z′)#4, gs(Z, X)#3, X ′ = X, Y ′ = Z, Z′ = W.

Finally we unfold the body of r1 by using the r2 rule where
� = ⇒ is assumed (so we have a propagation rule). As usual,
inst(gg(X, Z)#1, ∅, 3) = (gg(X, Z)#4, ∅, 4) and a renamed
version of r2 is used to avoid variable clashes:

r2@g(X ′, Y ′), f(Y ′, Z′) ⇒ gg(X ′, Z′)#1.

and so the new unfolded rule is:

r1@f(X, Y ), f(Y, Z), f(Z, W )� g(X, Z)#1,
f(Z, W )#2, gs(Z, X)#3, gg(X ′, Z′)#4, X ′ = X,
Y ′ = Z, Z′ = W ; {r2@1, 2}.

The following example considers more specialized rules with
guards which are not true.

EXAMPLE 2. The following program P = {r1, r2, r̄2} specializes
the rules introduced in Example 1 to the genealogy of Adam. So
here we remember that Adam was father of Seth; Seth was father
of Enosh; Enosh was father of Kenan. As before, we consider the
predicate f as father, g as grandfather, gs as grandson and gg as
great-grandfather.

r1@f(X, Y ), f(Y, Z)f(Z, W )�X = Adam, Y = Seth |
g(X, Z)#1, f(Z, W )#2, gs(Z, X)#3, Z = Enosh.

r2@g(X, Y ), f(Y, Z)�X = Adam, Y = Enosh |
gg(X, Z)#1, Z = Kenan.

r̄2@g(X, Y )\f(Y, Z) ⇔ X = Adam, Y = Enosh |
gg(X, Z)#1, Z = Kenan.

If we unfold r1 by using (a suitable renamed version of) r2,
where we assume � =⇔, we obtain:

r1@f(X, Y ), f(Y, Z)f(Z, W )�X = Adam,
Y = Seth | gg(X ′, Z′)#4, Z′ = Kenan, gs(Z, X)#3,
Z = Enosh, X ′ = X, Y ′ = Z, Z′ = W.

When r̄2 is considered to unfold r1 we have

r1@f(X, Y ), f(Y, Z)f(Z, W )�X = Adam,
Y = Seth | g(X, Z)#1, gg(X ′, Z′)#4, Z′ = Kenan,
gs(Z, X)#3, Z = Enosh, X ′ = X, Y ′ = Z, Z′ = W.

Finally if we assume � =⇒ in r2 from the unfolding we obtain

r1@f(X, Y ), f(Y, Z), f(Z, W )�X = Adam,
Y = Seth | g(X, Z)#1, f(Z, W )#2, gs(Z, X)#3,
gg(X ′, Z′)#4, Z′ = Kenan, Z = Enosh, X ′ = X,
Y ′ = Z, Z′ = W ; {r2@1, 2}.

Note that X ′ = Adam, Y ′ = Enosh are not added to the
guard of the unfolded rule because X ′ = Adam is entailed by the
guard of r1 and Y ′ = Enosh is entailed by the built-in constraints
in the body of r1.

We prove now the correctness of our unfolding rule. The proof
of the following proposition is done by induction on the length of
the computations.

PROPOSITION 2. Let P be an annotated CHR program with r, v ∈
P . Let r′ be the result of the unfolding of r w.r.t. v and let P ′ be the
program obtained from P by adding rule r′. Then, for every goal
G, QA′

P ′(G) = QA′
P (G) holds.

PROOF[SKETCH]. We prove that QA′
P ′(G) ⊆ QA′

P (G). The
proof of the other inclusion is an obvious consequence of the op-
erational semantics of CHR, since in a computation step one may
apply any applicable rule.

First we recall the definition of rule redundancy, given in [2]
in terms of finite computation, by considering annotated CHR pro-
grams and the transition system →ω′

t
. A rule r′ is redundant in an



annotated CHR program P ′ if and only if for all the configurations
S

If S →∗
ω′

t
S1 in P ′ then S →∗

ω′
t

S2 in P ′ \ {r′},
where S1 and S2 are final configurations and S1 and S2 are identi-
cal up to renaming of logical variables not in S and logical equiva-
lence of built-in constraints.

Now, by definition of unfolding, we can prove that if r′ is the
result of the unfolding of r w.r.t. v, with r, v ∈ P and P ′ is the
program obtained from P by adding rule r′, then r′ is redundant in
P ′. In fact, each transition step obtained in P ′ by using the clause
r′ can be obtained in P also only using rules r, v and some solve
transition steps. Therefore for all the configurations S

If S →∗
ω′

t
S1 in P ′ then S →∗

ω′
t

S2 in P,

where S1 and S2 are defined as before. Therefore, by definition of
QA′, QA′

P ′(G) ⊆ QA′
P (G) and then the thesis holds.
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The proof of the following result follows immediately from
previous proposition and Proposition 1

COROLLARY 1 (Correctness). Let P be CHR program and let
Ann(P ) be its annotated version (as previously defined). Let P ′

be the program obtained from Ann(P ) by adding a rule which
is obtained by unfolding a rule in Ann(P ). Then, for every G,
QA′

P ′(G) = QAP (G) holds.

5. Safe rule replacement
Previous corollary shows that we can safely add to a program P a
rule resulting from the unfolding, while preserving the semantics
of P (in terms of qualified answers). However, when a rule r in
program P has been unfolded producing the new rule r′, in some
cases we would like also to replace r by r′ in P , since this could
improve the efficiency of the resulting program. Performing such
a replacement while preserving the semantics is in general a very
difficult task for two reasons.

First of all, anticipating the guard of v in the guard of r (as we
do in the unfold operation) could lead to loose some computations
when the unfolded rule r′ is used rather than the original rule r.
This is shown by the following example.

EXAMPLE 3. Consider the rules
h(X) ⇔ p(X), q(X).
p(X) ⇔ X = a | .
q(X) ⇔ X = a.

where we do not consider the identifiers (and the local token store)
in the body of rules, because we do not have propagation rules in
P .

It is clear that the goal h(X) has a successful derivation which
computes X = a by using the above rules. On the other hand, this
is not the case if one uses the unfolded rule

h(X) ⇔ X = a | q(X).

together with the rules

p(X) ⇔ X = a | .
q(X) ⇔ X = a.

For this reason deleting the unfolded rule in general is not safe.

The second problem is related to multiple heads. In fact, the
unfolding that we have defined assume that the head of a rule
matches completely with the body of another one, while in general,
during a CHR computation, a rule can match with constraints
produced by more than one rule and/or introduced by the initial
goal. The following example illustrates this point.

EXAMPLE 4. Let us consider the program

P = { r@p(Y ) ⇔ q(Y ), h(b).
r′@q(Z), h(V ) ⇔ Z = V.}

where we do not consider the identifiers and the token store in the
body of rules, because we do not have propagation rules in P .

The unfolding of r by using r′ returns the new rule

r@p(Y ) ⇔ Y = Z, V = b, Z = V.

Now the the program

P ′ = { r@p(Y ) ⇔ Y = Z, V = b, Z = V.
r′@q(Z), h(V ) ⇔ Z = V.}

where we substitute the original rule by its unfolded version is
not semantically equivalent to P . In fact, given the goal G =
p(X), h(a), q(b), we have that (X = a) ∈ QA′

P (G) (X = a
is a qualified answer for G in P ) while (X = a) 6∈ QA′

P ′(G).

We have individuated a case in which we can safely replace
the original rule r by its unfolded version while maintaining the
qualified answers semantics. Intuitively, this holds when: 1) the
constraints of the body of r can be rewritten only by CHR rules with
a single-head and 2) there exists no rule v which has a multiple head
H such that a part of H can match with a part of the constraints
introduced in the body of r (that is, there exists no rule v which can
be fired by using a part of constraints introduced in the body of r
plus some other constraints).

Before defining formally these conditions we need some further
notations. First of all, given a rule r@H1\H2 ⇔ D | Ã; T , we
define two sets. The first one contains a set of pairs, whose first
component is a rule that can be used to unfold r@H1\H2 ⇔
D | Ã; T , while the second one is the sequence of the identifiers
of the atoms in the body of r, which are used in the unfolding.

The second set contains all the rules that can be used for the
partial unfolding of r@H1\H2 ⇔ D | Ã; T , namely is the set of
rules that can fire by using at least an atom in the body Ã of the
rule and some others CHR and built-in constraints.

DEFINITION 8. Let P be an annotated CHR program and let

r@H1\H2 ⇔ D | Ã; T and
r′@H ′

1\H ′
2 ⇔ D′ | B̃; T ′

be two annotated rules, such that r, r′ ∈ P and r′ is renamed apart
w.r.t. r. We define U+ and U# as follows:

• (r′@H ′
1\H ′

2 ⇔ D′ | B̃; T ′, (i1, . . . , in)) ∈
U+

P (r@H1\H2 ⇔ D | Ã; T )

if and only if r@H1\H2 ⇔ D | Ã; T can be unfolded with
r′@H ′

1\H ′
2 ⇔ D′ | B̃; T ′ (by Definition 7) by using the se-

quence of the identified atoms in Ã with identifiers (i1, . . . , in).
• r′@H ′

1\H ′
2 ⇔ D′ | B̃; T ′ ∈ U#

P (r@H1\H2 ⇔ D | Ã; T ) if
and only if one of the following holds:

- either there exist Ã′ = (Ã1, Ã2) ⊆ Ã and a built in con-
straint C′ such that Fv(C′) ∩ Fv(r′) = ∅, the constraint
D∧C′ is satisfiable, CT |= (D∧C′) → ∃x((chr(Ã1, Ã2) =
(H ′

1, H
′
2)) ∧D′), r′@id(Ã1, Ã2) 6∈ T and

(r′@H ′
1\H ′

2 ⇔ D′ | B̃; T ′, id(Ã1, Ã2) 6∈
U+

P (r@H1\H2 ⇔ D | Ã; T )

- or there exist Ã′ ⊆ Ã, a multiset of CHR constraints
H ′ 6= ∅ and a built in constraint C′ such that Ã′ 6= ∅,
Fv(C′) ∩ Fv(r′) = ∅, the constraint D ∧ C′ is satisfi-
able, {chr(A′), H ′} = {K1, K2} and CT |= (D ∧ C′) →
∃x(((K1, K2) = (H ′

1, H
′
2)) ∧D′).



Note that if U+
P (r@H1\H2 ⇔ D | Ã; T ) contains a pair, whose

first component is not a rule with a single atom in the head, then by
definition, U#

P (r@H1\H2 ⇔ D | Ã; T ) 6= ∅.
Finally, given an annotated CHR program P and an annotated

rule r@H1\H2 ⇔ D | Ã; T , we define

UnfP (r@H1\H2 ⇔ D | Ã; T )

as the set of all annotated rules obtained by unfolding the rule
r@H1\H2 ⇔ D | Ã; T with a rule in P , by using Definition 7.

We can now give the central definition of this section.

DEFINITION 9. (SAFE RULE REPLACEMENT) Let P be an anno-
tated CHR program and let r@H1\H2 ⇔ D | Ã; T ∈ P , such that
the following holds

i) U#
P ((r@H1\H2 ⇔ D | Ã; T ) = ∅ and

ii) {U+
P (r@H1\H2 ⇔ D | Ã; T ) 6= ∅ and for each

r@H1\H2 ⇔ D′ | Ã′; T ′ ∈
UnfP (r@H1\H2 ⇔ D | Ã; T )

we have that CT |= D ↔ D′.

Then we say that the rule r@H1\H2 ⇔ D | Ã; T can be safely
replaced (by its unfolded version) in P .

Some explanations are in order here. The condition CT |=
D ↔ D′ avoids the problems discussed in Example 3, thus allows
the anticipation of the guard in the unfolded rule.

Condition i) of previous definition implies that r@H1\H2 ⇔
D | Ã; T can be safely deleted from P only if
U+

P (r@H1\H2 ⇔ D | Ã; T ) contains only pairs, whose first com-
ponent is a rule with a single atom in the head. The condition i)
states that a sequence of identified atoms of body of the rule r can
be used to (partially) fire a rule r′ only if r can be unfolded with r′

by using the same sequence of the identified atoms.
Condition ii) states that each annotated clause obtained by the

unfolding of r in P must have guard equivalent to that of r. If such
a condition is not verified we could have the problem exemplified
by the following example.

EXAMPLE 5. Let us consider the program

P = { r@p(Y ) ⇔ q(Y ).
r′@q(Z) ⇔ Z = a | .}

where we do not consider the identifiers (and the local token store)
in the body of rules, because we do not have propagation rules in
P .

The unfolding of r by using the rule r′ returns the new rule
r@p(Y ) ⇔ Y = a |Y = Z. The program

P ′ = { r@p(Y ) ⇔ Y = a |Y = Z.
r′@q(Z) ⇔ Z = a | .}

is not semantically equivalent to P in terms of qualified answers.
In fact, given the goal G = p(X) we have q(X) ∈ QA′

P (G),
while q(X) 6∈ QA′

P ′(G).

We can now provide the result which shows the correctness of
the safe rule replacement condition.

THEOREM 1. Let P be an annotated program,
r@H1\H2 ⇔ D | Ã; T be a rule in P such that
r@H1\H2 ⇔ D | Ã; T can be safely replaced in P according to
Definition 9. Assume also that

P ′ = (P \ {(r@H1\H2 ⇔ D | Ã; T )})∪
UnfP (r@H1\H2 ⇔ D | Ã; T ).

Then QA′
P ′(G) = QA′

P (G) for any arbitrary goal G.

PROOF.[SKETCH] First observe that, by Proposition 1, the addition
of redundant rules preserves the qualified answers and therefore if
r@H1\H2 ⇔ D | Ã; T is a rule in P

QA′
P (G) = QA′

P ∪UnfP (r@H1\H2⇔D | Ã;T )(G)

for any arbitrary goal G.
Moreover, by definition of redundant rule, is obvious that the

removal of a redundant rule preserves the qualified answers. Then
the proof follows by observing that, by Definition 9 (Safe rule
replacement), we have that a rule r@H1\H2 ⇔ D | Ã; T ∈ P
is redundant in P ′ ∪ UnfP (r@H1\H2 ⇔ D | Ã; T ).
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Of course, previous result can be applied to a sequence of
program transformations. Let us define such a sequence as follows.

DEFINITION 10. Let P be an annotated CHR program. An U-
sequence of programs starting from P is a sequence of annotated
CHR programs P0, . . . , Pn, such that

P0 = P and
Pi+1 = Pi \ {(r@H1\H2 ⇔ D | Ã; T )})∪

UnfPi(r@H1\H2 ⇔ D | Ã; T ),

where i ∈ [0, n − 1], (r@H1\H2 ⇔ D | Ã; T ) ∈ Pi and
(r@H1\H2 ⇔ D | Ã; T ) is safety deleting from Pi

Then from Theorem 1 and Proposition 1 we have immediately
the following.

COROLLARY 2. Let P be a program and let P0, . . . , Pn be an U-
sequence starting from Ann(P ). Then QAP (G) = QA′

Pn(G)
for any arbitrary goal G.

It is also possible to prove that our unfolding preserves conflu-
ence.

The confluence property guarantees that any computation for a
goal results in the same final state, no matter which of the applica-
ble rules are applied (see [2] for a formal definition).

PROPOSITION 3 (Confluence). Let P be a program and let P0, . . . , Pn

be an U-sequence starting from Ann(P ). If P satisfies confluence
then Pn satisfies confluence too.

PROOF. [SKETCH] The proof follows immediately from Corollary
2.
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6. Conclusions
In this paper we have defined an unfold operation for CHR which
preserves the qualified answers of a program. This has been ob-
tained by transforming a CHR program into an annotated one
which is then unfolded. The equivalence of the unfolded program
and the original (non annotated) one is proved (Corollary 1) by
using a slightly modified operational semantics for annotated pro-
grams (defined in Section 3). We have then provided a condition
that could be used to safely replace a rule by its unfolded version,
while preserving qualified answers, for a restricted class of rules.

There are only few other papers that consider source to source
transformation of CHR programs. [6] rather than considering a
generic transformation system focuses on the specialization of rules
w.r.t. a specific goal, analogously to what happen in partial evalua-
tion. In [9] CHR rules are transformed in a relational normal form
over which a source to source transformation is performed, how-
ever the correctness of such a transformation is not proved. Some
form of transformation for probabilistic CHR is considered in [8],
while guard optimization was studied in [11].



Both general and goal specific approaches are important in or-
der to define practical transformation systems for CHR: In fact, on
one hand one need surely some general unfold rule, on the other
hand, given the difficulties in removing rules from the transformed
program, some goal specific techniques can help to improve the ef-
ficiency of the transformed program for specific classes of goals. A
method for deleting redundant CHR rules is considered in [2], how-
ever this is based on a semantic check and it is not clear whether it
can be transformed in some syntactic program transformation rule.

When considering more generally the field of concurrent logic
languages we find a few papers which address the issue of programs
transformation. Notable examples are [4] that deals with transfor-
mation of concurrent constraint programming (ccp) and [13] that
considers Guarded Horn Clauses (GHC). The results in these are
not directly applicable to CHR because neither ccp not GHC allow
rules with multiple heads.

Our paper can be considered as a first step in the direction
of defining a transformation system for CHR programs based on
unfolding. This step can be extended along several directions. First
of all, the condition that we have provided for safely replacing a
rule could be generalized to include more cases. Also, we could
extend to CHR some of the other transformations, notably folding,
which have been defined in [4] for ccp. Finally we would like to
investigate from a practical perspective to what extend the program
transformation can improve the performances of the CHR solver.
Clearly the application of an unfolded rule avoid some computation
steps (assuming that unfolding is done at compile time, of course),
even though the increase in the number of rules could vanish this
improvement when the original rule cannot be removed. Here it
would probably be important to consider some unfolding strategy,
in order to decide which rules have to be unfolded.
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