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What is it about? 

  10 hour lectures about the core of constraint solving in CP 
–  Part I:  Overview of constraint programming 
–  Part II: Local consistency & constraint propagation 
–  Part III: Search algorithms 
–  Part IV: Advanced topics, useful pointers 

  Aim: 
–  Teach the basics of constraint programming. 
–  Emphasize the importance of local consistency & constraint 

propagation & search. 
–  Point out the advanced topics. 
–  Inform about the literature. 



Warning 

  We will see how constraint programming 
works. 

  No programming examples. 



PART I: Overview  
of Constraint Programming  



Outline 

  Constraint Satisfaction Problems (CSPs) 
  Constraint Programming (CP) 

–  Modelling 
–  Backtracking Tree Search 
–  Local Consistency and Constraint Propagation 



Constraints are everywhere! 

  No meetings before 9am. 
  No registration of marks 

before May 15. 
  The lecture rooms have a 

capacity. 
  Two lectures of a student 

cannot overlap. 
  No two trains on the same 

track at the same time. 
  Salary > 45k Euros  
     … 



Constraint Satisfaction Problems 

  A constraint is a restriction. 
  There are many real-life problems that require to give a 

decision in the presence of constraints: 
–  flight / train scheduling; 
–  scheduling of events in an operating system; 
–  staff rostering at a company; 
–  course time tabling at a university … 

  Such problems are called Constraint Satisfaction 
Problems (CSPs). 



Sudoku: An everyday-life example 



CSPs: More formally 

  A CSP is a triple <X,D,C> where: 
–  X is a set of decision variables {X1,...,Xn}. 
–  D is a set of domains {D1,...,Dn} for X: 

  Di is a set of possible values for Xi. 
  usually assume finite domain. 

–  C is a set of constraints {C1,…,Cm}: 
  Ci is a relation over Xj,...,Xk, giving the set of combination of allowed 

values. 
  Ci ⊆ D(Xj) x ...x D(Xk) 

  A solution to a CSP is an assignment of values to the 
variables which satisfies all the constraints 
simultaneously. 



CSPs: A simple example 

  Variables  
X = {X1, X2, X3} 

  Domains  
D(X1) = {1,2}, D(X2) = {0,1,2,3}, D(X3) = {2,3} 

  Constraints 
X1 > X2  and  X1 + X2 = X3 and X1 ≠ X2 ≠ X3 ≠ X1  

  Solution  
X1 = 2, X2 = 1, X3 = 3   alldifferent([X1, X2, X3]) 



Sudoku: An everyday-life example 

  A simple CSP 
–  9x9 variables (Xij) with domains {1,...,9} 
–  Not-equals constraints on the rows, columns, and 3x3 boxes. E.g.,  

alldifferent([X11, X21, X31, …, X91]) 

alldifferent([X11, X12, X13,  …, X19]) 

alldifferent([X11, X21, X31, X12, X22, X32, X13,  X23, X33]) 

X11 

. 

. 

. 

X19 X99 

. 

. 

. 

X91 



Job-Shop Scheduling: A real-life example 

  Schedule jobs, each using a resource for a period, in time D by 
obeying the precedence and capacity constraints 

  A very common industrial problem. 
  CSP: 

–  variables represent the jobs; 
–  domains represent the start times; 
–  constraints specify precedence and exclusivity. 



CSPs 

  Search space: D(X1) x D(X2) x … x D(Xn) 
–  very large! 

  Constraint satisfaction is NP-complete: 
–  no polynomial time algorithm is known to exist! 
–  I can get no satisfaction  

  We need general and efficient methods to solve CSPs: 
–  Integer and Linear Programming (satisfying linear constraints 

on 0/1 variables and optimising a criterion) 
–  SAT (satisfying CNF formulas on 0/1 variables) 
–  … 
–  Constraint Programming 

How does it exactly work? 



CP Machinery 

 Solving  Modelling 

  CP is composed of two phases that are strongly 
interconnected: 



Modelling 

1.  The CP user models the problem as a CSP: 
–  define the variables and their domains; 
–  specify solutions by posting constraints on the 

variables: 
  off-the-shelf constraints or user-defined constraints. 

–  a constraint can be thought of a reusable component 
with its own propagation algorithm.  

 WAIT TO UNDERSTAND WHAT I MEAN     



Modelling 

  Modelling is a critical aspect.  
  Given the human understanding of a problem, we need 

to answer questions like: 
–  which variables shall we choose? 
–  which constraints shall we enforce?  
–  shall we use off-the-self constraints, or define and integrate 

our own? 
–  are some constraints redundant, therefore can be avoided? 
–  are there any implied constraints? 
–  among alternative models, which one shall I prefer? 



A problem with a simple model 

X11 

. 

. 

. 

X19 X99 

. 

. 

. 

X91 

  A simple CSP 
–  9x9 variables (Xij) with domains {1,...,9} 
–  Not-equals constraints on the rows, columns, and 3x3 boxes, eg.,  

alldifferent([X11, X21, X31, …, X91]) 
alldifferent([X11, X12, X13, …, X19]) 
alldifferent([X11, X21, X31, X12, X22, X32, X13, X23, X33]) 



A problem with a complex model 

  Consider a permutation problem: 
–  find a permutation of the numbers {1,...,n} s.t. some constraints are 

satisfied. 
  One model:  

–  variables (Xi) for positions, domains for numbers {1,...,n}. 
  Dual model:  

–  variables (Yi) for numbers {1,…,n}, domains for positions. 
  Often different views allow different expression of the constraints 

and different implied constraints: 
–  can be hard to decide which is better! 

  We can use multiple models and combine them via channelling 
constraints to keep consistency between the variables: 

–  Xi = j ↔ Yj = i 



Solving 

2.  The user lets the CP technology solve the CSP: 
–  choose a search algorithm: 

  usually backtracking search performing a depth-first traversal of a 
search tree. 

–  integrate local consistency and propagation. 
–  choose heuristics for branching: 

  which variable to branch on?  
  which value to branch on? Search  Local consistency &  

Propagation 

Heuristics 



Backtracking Search 

  A possible efficient and simple method. 
  Variables are instantiated sequentially. 
  Whenever all the variables of a constraint is instantiated, 

the validity of the constraint is checked. 
  If a (partial) instantiation violates a constraint, 

backtracking is performed to the most recently 
instantiated variable that still has alternative values. 

  Backtracking eliminates a subspace from the cartesian 
product of all variable domains.  

  Essentially performs a depth-first search.  



Backtracking Search 

  X1 ∈ {1,2}  X2 ∈ {0,1,2,3}  X3 ∈ {2,3} 
  X1 > X2  and  X1 + X2 = X3 and alldifferent([X1, X2, X3 ])  

           Backtracking search  

Fails 8 times! backtracking 



Backtracking Search 

  Backtracking suffers from thrashing  : 
–  performs checks only with the current and past variables; 
–  search keeps failing for the same reasons. 

X1 = X3 

X1 ≤ X2 



Constraint Programming 

  Integrates local consistency and constraint 
propagation into the search.  

  Consequently: 
–  we can reason about the properties of constraints and their 

effect on their variables; 
–  some values can be filtered from some domains, reducing 

the backtracking search space significantly!  



Constraint Programming 

  X1 ∈ {1,2}  X2 ∈ {0,1,2,3}  X3 ∈ {2,3} 
  X1 > X2  and  X1 + X2 = X3 and alldifferent([X1, X2, X3 ])  

 Backtracking search + local consistency/propagation 



Constraint Programming 

  X1 ∈ {1,2}  X2 ∈ {0,1}  X3 ∈ {2,3} 
  X1 > X2  and  X1 + X2 = X3 and alldifferent([X1, X2, X3 ])  

 Backtracking search + local consistency/propagation 

backtracking 



Constraint Programming 

  X1 ∈ {1,2}  X2 ∈ {0,1,2,3}  X3 ∈ {2,3} 
  X1 > X2  and  X1 + X2 = X3 and alldifferent([X1, X2, X3 ])  

 Backtracking search + local consistency/propagation 



Constraint Programming 

  X1 ∈ {1,2}  X2 ∈ {0,1}  X3 ∈ {2,3} 
  X1 > X2  and  X1 + X2 = X3 and alldifferent([X1, X2, X3 ])  

 Backtracking search + local consistency/propagation 

Fails only once! 



Local consistency & Propagation  

  Central to the process of solving CSPs which 
are inherently intractable. 

Search  Local consistency &  
Propagation 

Heuristics 



CP 

  Programming, in the sense of mathematical 
programming: 

–  the user states declaratively the constraints on a set of decision 
variables. 

–  an underlying solver solves the constraints and returns a 
solution. 

  Programming, in the sense of computer programming: 
–  the user needs to program a strategy to search for a solution 

  search algorithm, heuristics, … 

–  otherwise, solving process can be inefficient. 



CP 

CP 

Artificial 
Intelligence 

Discrete 
Mathematics 

Logic 
Programming 

Operations 
Research Algorithms … 

Networks Vehicle 
Routing 

Configuration Bio-
informatics 

Planning 

& Scheduling 
… 

Complexity 
Theory 



CP 

  Solve SUDOKU using CP! 
    http://www.cs.cornell.edu/gomes/SUDOKU/Sudoku.html 

–  very easy, not worth spending minutes  
–  you can decide which newspaper provides the toughest Sudoku 

instances  



CP 

  Constraints can be embedded into: 
–  logic programming (constraint logic programming) 

  Prolog III, CLP(R), SICStus Prolog, ECLiPSe, CHIP, … 

–  functional programming 
  Oz 

–  imperative programming 
  often via a separate library 
  IBM CP Solver, Gecode, Choco, Minion, … 

NOTE: We will not commit to any CP language/library, rather 
use a mathematical and/or natural notation. 



PART II: Local Consistency & 
Constraint Propagation 



Local Consistency & Constraint 
Propagation 

     What exactly are they?  
     How do they work?  

PART I: The user lets the CP technology solve the CSP: 
–  choose a search algorithm; 
–  design heuristics for branching; 
–  integrate local consistency and propagation. 

Search  Local consistency &  
Propagation 

Heuristics Have central affect 



Outline 

  Local Consistency 
–  Arc Consistency (AC) 
–  Generalised Arc Consistency (GAC) 
–  Bounds Consistency (BC) 
–  Higher Levels of Consistency 

  Constraint Propagation 
–  Propagation Algorithms 

  Specialised Propagation Algorithms  
–  Global Constraints 

  Generalised Propagation Algorithms 
–  AC algorithms 



Local Consistency 

  Backtrack tree search aims to extend a partial  
instantiation of variables to a complete and consistent one. 

–  The search space is too large! 
  Some inconsistent partial assignments obviously cannot 

be completed. 
  Local consistency is a form of inference which detects 

inconsistent partial assignments. 
–  Consequently, the backtrack search commits into less inconsistent 

instantiations.  
  Local, because we examine individual constraints. 

–  Remember that global consistency is NP-complete! 



Local Consistency: An example 

  D(X1) = {1,2}, D(X2) = {3,4}, C1: X1 = X2, C2: X1 + X2 ≥ 1 
  X1 = 1 
  X1 = 2 
  X2 = 3 
  X4 = 4  

–  no need to check the individual assignments. 
–  no need to check the other constraint. 
–  unsatisfiability of the CSP can be inferred without having to 

search! 

all inconsistent partial assignments  
wrt the constraint X1 = X2 



Several Local Consistencies 

  Most popular local consistencies: 
–  Arc Consistency (AC) 
–  Generalised Arc Consistency (GAC) 
–  Bounds Consistency (BC) 

  They detect inconsistent partial assignments 
of the form Xi = j, hence: 
–  j can be removed from D(Xi) via propagation; 
–  propagation can be implemented easily. 



Arc Consistency (AC) 

  Defined for binary constraints. 
  A binary constraint C is a relation on two variables Xi 

and Xj, giving the set of allowed combinations of values 
(i.e. tuples):   
–  C ⊆ D(Xi) x D(Xj) 

  C is AC iff: 
–  forall v ∈ D(Xi), exists w ∈ D(Xj) s.t. (v,w) ∈ C.    

  v ∈ D(Xi) is said to have a support wrt the constraint C. 
–  forall w ∈ D(Xj), exists v ∈ D(Xi) s.t. (v,w) ∈ C. 

  w ∈ D(Xj) is said to have a support wrt the constraint C. 
  A CSP is AC iff all its binary constraints are AC. 



AC: An example 

  D(X1) = {1,2,3}, D(X2) = {2,3,4}, C: X1 = X2  
  AC(C)? 

–  1 ∈ D(X1) does not have a support.  
–  2 ∈ D(X1) has 2 ∈ D(X2) as support.  
–  3 ∈ D(X1) has 3 ∈ D(X2) as support. 
–  2 ∈ D(X2) has 2 ∈ D(X1) as support. 
–  3 ∈ D(X2) has 3 ∈ D(X1) as support. 
–  4 ∈ D(X2) does not have a support.  

  X1 = 1 and X2 = 4 are inconsistent partial assignments. 
  1 ∈ D(X1) and 4 ∈ D(X2) must be removed to achieve AC. 
  D(X1) = {2,3}, D(X2) = {2,3}, C: X1 = X2. 

–  AC(C)  

Propagation! 



Generalised Arc Consistency 

  Generalisation of AC to n-ary constraints. 
  A constraint C is a relation on k variables X1,…, Xk:  

–  C ⊆ D(X1) x … x D(Xk) 
  A support is a tuple <d1,…,dk> ∈ C where di ∈ D(Xi). 
  C is GAC iff: 

–  forall Xi in {X1,…, Xk}, forall v ∈ D(Xi), v belongs to a support.  

  AC is a special case of GAC. 
  A CSP is GAC iff all its constraints are GAC. 



GAC: An example 

  D(X1) = {1,2,3}, D(X2) = {1,2}, D(X3) = {1,2} 
     C: alldifferent([X1, X2, X3])  

  GAC(C)? 
–  X1 = 1 and X1 = 2 are not supported! 

  D(X1) = {3}, D(X2) = {1,2}, D(X3) = {1,2} 
     C: X1 ≠ X2 ≠ X3 

–  GAC(C) 



Bounds Consistency (BC) 

  Defined for totally ordered (e.g. integer) domains. 
  Relaxes the domain of Xi from D(Xi) to [min(Xi)..max(Xi)]. 
  Advantages:  

–  it might be easier to look for a support in a range than in a 
domain; 

–  achieving BC is often cheaper than achieving GAC; 
–  achieving BC is enough to achieve GAC for monotonic 

constraints. 

  Disadvantage:  
–  BC might not detect all GAC inconsistencies in general. 



Bounds Consistency (BC) 

  A constraint C is a relation on k variables X1,…, Xk:  
–  C ⊆ D(X1) x … x D(Xk) 

  A bound support is a tuple <d1,…,dk> ∈ C where di ∈ 
[min(Xi)..max(Xi)]. 

  C is BC iff: 
–  forall Xi in {X1,…, Xk}, min(Xi) and max(Xi) belong to a 

bound support.  



GAC > BC: An example 

  D(X1) = D(X2) = {1,2}, D(X3) = D(X4) = {2,3,5,6}, D(X5) = {5}, D(X6) = 
{3,4,5,6,7} 

     C: alldifferent([X1, X2 , X3 , X4 , X5 , X6 ]) 

  BC(C): 2 ∈ D(X3) and 2 ∈ D(X4) have no support. 

    
   Original                BC 



GAC > BC: An example 

  D(X1) = D(X2) = {1,2}, D(X3) = D(X4) = {2,3,5,6}, D(X5) = {5}, D(X6) = 
{3,4,5,6,7} 

     C: alldifferent([X1, X2 , X3 , X4 , X5 , X6 ]) 

  GAC(C): {2,5} ∈ D(X3) , {2,5} ∈ D(X4), {3,5,6} ∈ D(X6) have no 
support. 

        
     Original         BC     GAC  



GAC = BC: An example 

  D(X1) = {1,2,3}, D(X2) = {1,2,3}, C: X1 < X2 

  BC(C):  
–  D(X1) = {1,2}, D(X2) = {2,3} 

  BC(C) = GAC(C): 
–  a support for min(X2) supports all the values in D(X2). 
–  a support for max(X1) supports all the values in D(X1). 



Higher Levels of Consistencies 

  Path consistency, k-consistencies, (i,j) consistencies, … 
  Not much used in practice: 

–  detect inconsistent partial assignments with more than one 
<variable,value> pair. 

–  cannot be enforced by removing single values from domains. 

  Domain based consistencies stronger than (G)AC. 
–  Singleton consistencies,  triangle-based consistencies, … 
–  Becoming popular: 

  shaving in scheduling. 



Outline 

  Local Consistency 
–  Arc Consistency (AC) 
–  Generalised Arc Consistency (GAC) 
–  Bounds Consistency (BC) 
–  Higher Levels of Consistency 

  Constraint Propagation 
–  Constraint Propagation Algorithms 

  Specialised Propagation Algorithms  
–  Global Constraints 

  Generalised Propagation Algorithms 
–  AC Algorithms 



Constraint Propagation 

  Can appear under different names: 
–  constraint relaxation 
–  filtering algorithm 
–  local consistency enforcing, … 

  Similar concepts in other fields: 
–  unit propagation in SAT. 

  Local consistencies define properties that a CSP must 
satisfy after constraint propagation: 

–  the operational behaviour is completely left open; 
–  the only requirement is to achieve the required property on the 

CSP. 



Constraint Propagation: A simple example 

Input CSP:D(X1) = {1,2}, D(X2) = {1,2} , C: X1 < X2 

Output CSP:D(X1) = {1}, D(X2) = {2} , C: X1 < X2 

A constraint propagation 
algorithm for enforcing AC 

We can write 
different 

algorithms with 
different 

complexities to 
achieve the 
same effect. 



Constraint Propagation Algorithms 

  A constraint propagation algorithm propagates a 
constraint C. 
–  It removes the inconsistent values from the domains of 

the variables of C. 
–  It makes C locally consistent. 
–  The level of consistency depends on C: 

  GAC might be NP-complete, BC might not be possible, … 



Constraint Propagation Algorithms 

  When solving a CSP with multiple constraints: 
–  propagation algorithms interact; 
–  a propagation algorithm can wake up an already 

propagated constraint to be propagated again! 
–  in the end, propagation reaches a fixed-point and all 

constraints reach a level of consistency; 
–  the whole process is referred as constraint 

propagation. 



Constraint Propagation: An example 

  D(X1) = D(X2) = D(X3)= {1,2,3} 
    C1: alldifferent([X1, X2 , X3 ])  C2: X2 < 3  C3: X3 < 3 
  Let’s assume:  

–  the order of propagation is C1, C2, C3; 
–  each algorithm maintains (G)AC. 

  Propagation of C1:  
–  nothing happens, C1 is GAC. 

  Propagation of C2:   
–  3 is removed from D(X2), C2 is now AC. 

  Propagation of C3:  
–  3 is removed from D(X3), C3 is now AC. 

  C1 is not GAC anymore, because the supports of {1,2} ∈ D(X1) in 
D(X2) and D(X3) are removed by the propagation of C2 and C3. 

  Re-propagation of C1:  
–  1 and 2 are removed from D(X1), C1 is now AC. 



Properties of Constraint Propagation Algorithms 

  It is not enough to be able to remove inconsistent values 
from domains. 

  A constraint propagation algorithm must wake up when 
necessary, otherwise may not achieve the desired local 
consistency property. 

  Events that trigger a constraint propagation: 
–  when the domain of a variable changes; 
–  when a variable is assigned a value; 
–  when the minimum or the maximum values of a domain changes. 



Outline 

  Local Consistency 
–  Arc Consistency (AC) 
–  Generalised Arc Consistency (GAC) 
–  Bounds Consistency (BC) 
–  Higher Levels of Consistency 

  Constraint Propagation 
–  Propagation Algorithms 

  Specialised Propagation Algorithms  
–  Global Constraints 

  Decompositions 
  Ad-hoc algorithms 

  Generalised Propagation Algorithms 
–  AC Algorithms 



Specialised Propagation Algorithms  

  A constraint propagation algorithm can be general or specialised: 
–  general, if it is applicable to any constraint; 
–  specialised, if it is specific to a constraint. 

  Specialised algorithms: 
–  Disadvantage: 

  has limited use; 
  is not always easy to develop one. 

–  Advantages: 
  exploits the constraint semantics; 
  is potentially more efficient than a general algorithm. 

  Worth developing specialised algorithms for recurring constraints 
with a reasonable semantics. 



Specialised Propagation Algorithms  

  C: X1 ≤ X2 

  Observation: 
–  a support of min(X2) supports all the values in D(X2); 
–  a support of max(X1) supports all the values in D(X1). 

  Propagation algorithm: 
–  filter D(X1) s.t. max(X1) ≤ max(X2); 
–  filter D(X2) s.t. min(X1) ≤ min(X2). 

  The result is GAC (and thus BC). 



Example 

  D(X1) = {3, 4, 7, 8} , D(X2) = {1, 2, 3, 5}, C: X1 ≤ X2 



Example 

  D(X1) = {3, 4, 7, 8} , D(X2) = {1, 2, 3, 5}, C: X1 ≤ X2 

  Propagation: 
–  filter D(X1) s.t. max(X1) ≤ max(X2); 



Example 

  D(X1) = {3, 4, 7, 8} , D(X2) = {1, 2, 3, 5}, C: X1 ≤ X2 

  Propagation: 
–  filter D(X1) s.t. max(X1) ≤ max(X2); 



Example 

  D(X1) = {3, 4, 7, 8} , D(X2) = {1, 2, 3, 5}, C: X1 ≤ X2 

  Propagation: 
–  filter D(X1) s.t. max(X1) ≤ max(X2); 
–  filter D(X2) s.t. min(X1) ≤ min(X2); 



Example 

  D(X1) = {3, 4, 7, 8} , D(X2) = {1, 2, 3, 5}, C: X1 ≤ X2 

  Propagation: 
–  filter D(X1) s.t. max(X1) ≤ max(X2); 
–  filter D(X2) s.t. min(X1) ≤ min(X2); 



Global Constraints 

  Many real-life constraints are complex and not binary. 
–  Specialised algorithms are often developed for such constraints! 

  A complex and n-ary constraint which encapsulates a 
specialised propagation algorithm is called a global 
constraint. 



Examples of Global Constraints 

  Alldifferent constraint: 

–  alldifferent([X1, X2, …, Xn]) holds iff                                          
                Xi ≠ Xj   for i < j ∈ {1,…,n} 

–  useful in a variety of context 
  Timetabling (e.g. exams with common students must occur at 

different times) 
  Tournament scheduling (e.g. a team can play at most once in a 

week) 
  Configuration (e.g. a particular product cannot have repeating 

components) 
  … 



Beyond Alldifferent 

  NValue constraint: 
–  one generalisation of alldifferent 
–  nvalue([X1, X2, …, Xn], N) holds iff    

 N = |{Xi | 1 ≤ i ≤ n }|  
–  nvalue([1, 2, 2, 1, 3], 3) 
–  alldifferent when N = n 
–  Useful when values represent resources and we want 

to limit the usage of resources. E.g.,  
  Minimise the total number of resources used; 
  The total number of resources used must be between a 

specific interval; 
  … 



Beyond Alldifferent 

  Global cardinality constraint: 
–  another generalisation of alldifferent 
–  gcc([X1, X2, …, Xn], [v1, …, vm], [O1, …, Om]) iff  

     forall j ∈ {1,…, m}  Oj = |{Xi | Xi = vj, 1 ≤ i ≤ n }|   
–  gcc([1, 1, 3, 2, 3], [1, 2, 3, 4], [2, 1, 2, 0]) 
–  Useful again when values represent resources 
–  We can now limit the usage of each resource 

individually. E.g.,  
  Resource 1 can be used at most three times 
  Resource 2 can be used min 2 max 5 times 
  … 



Symmetry Breaking Constraints 

  Consider the following scenario:  
–  [X1, X2, …, Xn] and [Y1, Y2, …, Yn]  represent the 2 day event 

assignments of a conference 
–  Each day has n slots and the days are indistinguishable 
–  Need to avoid symmetric assignments 

  Global constraints developed for this purpose are called 
symmetry breaking constraints. 

  Lexicographic ordering constraint: 
–  lex([X1, X2, …, Xn], [Y1, Y2, …, Yn]) holds iff: 
  X1 < Y1   OR   (X1 = Y1  AND  X2 < Y2)   OR  … 
  (X1 = Y1  AND  X2 = Y2 AND …. AND Xn ≤ Yn)  
–  lex ([1, 2, 4],[1, 3, 3]) 



  We might sometimes want a sequence of variables obey certain 
patterns. E.g., 

–  regulations in scheduling 
  A promising direction in CP is the ability of modelling problems via 

automata/grammar. 
  Global constraints developed for this purpose are called grammar 

constraints.  
  Regular constraint: 

–  regular([X1, X2, …, Xn], A) holds iff <X1, X2, …, Xn> forms a string 
accepted by the DFA A (which accepts a regular language). 

–  regular([a, a, b], A), regular([b], A), regular([b, c, c, c, c, c], A) with A 

Grammar Constraints 

a b 
c 



Specialised Algorithms for Global Constraints 

  How do we develop specialised algorithms 
for global constraints? 

  Two main approaches: 
–  constraint decomposition 
–  ad-hoc algorithm 



Constraint Decomposition 

  A global constraint is decomposed into smaller 
and simpler constraints each which has a known 
propagation algorithm. 

  Propagating each of the constraints gives a 
propagation algorithm for the original global 
constraint. 
–  A very effective and efficient method for some global 

constraints 



Decomposition of Among 

  among([X1, X2, …, Xn], [d1, d2, …, dm], N) holds iff               
    N = |{Xi | Xi ∈ {d1, d2, …, dm} 1 ≤ i ≤ n }| 

  Decomposition: 
–  Bi with D(Bi) = {0, 1} for 1 ≤ i ≤ n  
–  Ci: Bi = 1 ↔  Xi ∈ {d1, d2, …, dm}   for 1 ≤ i ≤ n  
–    
  AC(Ci) for 1 ≤ i ≤ n and BC(           ) ensures GAC 

on among. 

€ 

Bi = N
i∑

€ 

Bi = N
i∑



Decomposition of Lex 

   lex([X1, X2, …, Xn], [Y1, Y2, …, Yn])  
  Decomposition: 
–  Bi with D(Bi) = {0, 1} for 1 ≤ i ≤ n+1 to indicate the vectors have been 

ordered by position i-1  
–  B1= 0 
–  Ci: (Bi = Bi+1 = 0 AND Xi = Yi ) OR  (Bi = 0 AND Bi+1 = 1 AND Xi < Yi ) OR 

(Bi = Bi+1 = 1) for 1 ≤ i ≤ n    

  GAC(Ci) ensures GAC on lex. 



Constraint Decompositions 

  May not always provide an effective propagation. 
  Often GAC on the original constraint is stronger than 

(G)AC  on the constraints in the decomposition. 
  E.g., C: alldifferent([X1, X2, …, Xn]) 
  Decomposition following the definition:  

–  Cij: Xi ≠ Xj  for i < j ∈ {1,…,n} 
–  AC on the decomposition is weaker than GAC on alldifferent. 
–  E.g., D(X1) = D(X2) = D(X3) = {1,2}, C: alldifferent([X1, X2, X3])  
–  C12, C13, C23 are all AC, but C is not GAC. 



Constraint Decompositions 

  E.g., C: lex([X1, X2, …, Xn], [Y1, Y2, …, Yn]) 
  OR decomposition: 
–  X1 < Y1   OR   (X1 = Y1  AND  X2 < Y2)   OR  … 
  (X1 = Y1  AND  X2 = Y2 AND …. AND Xn ≤ Yn)  
–  AC on the decomposition is weaker than GAC on lex. 
–  E.g., D(X1) = {0, 1, 2} , D(X2) = {0, 1}, D(Y1) = {0, 1} , D(Y2) = {0, 1}     

C: Lex([X1, X2], [Y1, Y2]) 
–   C is not GAC but the decomposition does not prune anything. 



Constraint Decompositions 

  AND decomposition of lex([X1, X2, …, Xn], [Y1, Y2, …, Yn]): 
–  X1 ≤ Y1   AND   (X1 = Y1  →  X2 ≤ Y2)   AND  … 
  (X1 = Y1  AND  X2 = Y2 AND …. Xn-1 = Yn-1 → Xn ≤ Yn)  
–  AC on the decomposition is weaker than GAC on lex. 
–  E.g., D(X1) = {0, 1} , D(X2) = {0, 1}, D(Y1) = {1} , D(Y2) = {0}                  

C: Lex([X1, X2], [Y1, Y2]) 
–   C is not GAC but the decomposition does not prune anything. 



Constraint Decompositions 

  Different decompositions of a constraint may be 
incomparable. 
  Difficult to know which one gives a better propagation for a given 

instance of a constraint. 

  C: Lex([X1, X2], [Y1, Y2]) 
  D(X1) = {0, 1} , D(X2) = {0, 1}, D(Y1) = {1} , D(Y2) = {0} 

–  AND decomposition is weaker than GAC on lex, whereas OR 
decomposition maintains GAC. 

  D(X1) = {0, 1, 2} , D(X2) = {0, 1}, D(Y1) = {0, 1} , D(Y2) = {0, 1} 
–  OR decomposition is weaker than GAC on lex, whereas OR 

decomposition maintains GAC. 



Constraint Decompositions 

  Even if effective, may not always provide an efficient 
propagation. 

  Often GAC on a constraint via a specialised algorithm is 
maintained faster than (G)AC  on the constraints in the 
decomposition. 



Constraint Decompositions 

  C: Lex([X1, X2], [Y1, Y2]) 
  D(X1) = {0, 1} , D(X2) = {0, 1}, D(Y1) = {1} , D(Y2) = {0} 

–  AND decomposition is weaker than GAC on lex, whereas OR 
decomposition maintains GAC 

  D(X1) = {0, 1, 2} , D(X2) = {0, 1}, D(Y1) = {0, 1} , D(Y2) = {0, 1} 
–  OR decomposition is weaker than GAC on lex, whereas OR 

decomposition maintains GAC 

  AND or OR decompositions have complementary strengths! 
–  Combining them  gives us a decomposition which maintains GAC on 

lex. 

  Too many constraints to post and propagate! 
  A dedicated algorithm runs amortised in O(1). 



Dedicated Algorithms 

  Dedicated ad-hoc algorithms provide 
effective and efficient propagation. 

  Often: 
–  GAC is maintained in polynomial time. 
–  Many more inconsistent values are detected 

compared to the decompositions. 



Benefits of Global Constraints 

  Modelling benefits 
–  Reduce the gap between the problem statement and the 

model. 
–  Capture recurring modelling patterns. 
–  May allow the expression of constraints that are otherwise 

not possible to state using primitive constraints (semantic). 

  Solving benefits 
–  More inference in propagation (operational). 
–  More efficient propagation (algorithmic). 



Dedicated Algorithm for Alldifferent 

  GAC algorithm based on matching theory. 
–  Establishes a relation between the solutions of  the constraint 

and the properties of a graph. 
–  Runs in time O(dn1.5). 

  Value graph: bipartite graph between variables and their 
possible values. 

  Matching: set of edges with no two edges having a node 
in common. 

  Maximal matching: largest possible matching. 



Dedicated Algorithm for Alldifferent  

  An assignment of values to the variables      
X1, X2, …, Xn is a solution iff it corresponds to 
a maximal matching. 
–  Edges that do not belong to a maximal matching 

can be deleted. 
  The challenge is to compute such edges 

efficiently. 
–  Exploit concepts like strongly connected 

components, alternating paths, …    



Dedicated Algorithm for Alldifferent  

  D(X1) = {1,3} , D(X2) = {1,3},  D(X3)= {1,2} 
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Dedicated Algorithm for Alldifferent  

  D(X1) = {1,3} , D(X2) = {1,3},  D(X3)= {1,2} 
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Dedicated Algorithm for Alldifferent  

  D(X1) = {1,3} , D(X2) = {1,3},  D(X3)= {1,2} 
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any maximal matching 



Dedicated Algorithms 

  Is it always easy to develop a dedicated algorithm for 
a given constraint? 

  There’s no single recipe! 
  A nice semantics often gives us a clue! 

–  Graph Theory 
–  Flow Theory 
–  Combinatorics 
–  Complexity Theory, … 

  GAC may as well be NP-hard! 
–  In that case, algorithms which maintain weaker 

consistencies (like BC) are of interest. 



GAC for Nvalue Constraint 

  nvalue([X1, X2, …, Xn], N) holds iff  N = |{Xi | 1 ≤ i ≤ n }|  
  Reduction from 3 SAT. 

  Given a Boolean fomula in k variables (labelled from 1 to k) and m 
clauses, we construct an instance of nvalue([X1, X2, …, Xk+m], N): 

–  D(Xi) = {i, i’} for i ∈ {1,…, k} where Xi represents the truth assignment             
of the  SAT variables; 

–  Xi where i > k represents a SAT clause (disjunction of literals); 
–  for a given clause like x V y’ V z, D(Xi) = {x, y’, z}. 

  By construction, X1, …, Xk will consume all the k distinct values. 
  When N = k, nvalue has a solution iff  the original SAT problem has a 

satisfying assignment. 
–  Otherwise we will have more than k distinct values. 
–  Hence, testing  a value for support is NP-complete, and enforcing  GAC is   

NP-hard! 



GAC for Nvalue Constraint 

  E.g., C1: (a OR b’ OR c) AND                                                                  
 C2: (a’ OR b OR d) AND                                                                      
 C3: (b’ OR c’ OR d) 

  The formula has 4 variables (a, b, c, d) and 3 clauses (C1, C2, C3). 
  We construct nvalue([X1, X2, …, X7], 4) where: 

  D(X1) = {a, a’}, D(X2) = {b, b’}, D(X3) = {c, c’}, D(X4) = {d, d’}, D(X5) 
= {a, b’, c}, D(X6) = {a’, b, d}, D(X7) = {b’, c’, d} 

  An assignment to X1, …, X4 will consume 4 distinct values. 
  Not to exceed 4 distinct values, the rest of the variables must have 

intersecting values with X1, …, X4. 
  Such assignments will make the SAT formula TRUE.  



Outline 

  Local Consistency 
–  Arc Consistency (AC) 
–  Generalised Arc Consistency (GAC) 
–  Bounds Consistency (BC) 
–  Higher Levels of Consistency 

  Constraint Propagation 
–  Propagation Algorithms 

  Specialised Propagation Algorithms  
–  Global Constraints 

  Decompositions 
  Ad-hoc algorithms 

  Generalised Propagation Algorithms 
–  AC Algorithms 



Generalised Propagation Algorithms 

  Not all constraints have nice semantics we can exploit 
to devise an efficient specialised propagation algorithm. 

  Consider a product configuration problem: 
–  compatibility constraints on hardware components: 

  only certain combinations of components work together. 
–  compatibility may not be a simple pairwise relationship: 

  video cards supported function of motherboard, CPU, clock speed, 
O/S, ... 



Production Configuration Problem 

  5-ary constraint: 
–  Compatible (motherboard345, intelCPU, 

2GHz, 1GBRam, 80GBdrive).) 
–  Compatible (motherboard346, intelCPU, 

3GHz, 2GBRam, 100GBdrive). 
–  Compatible (motherboard346, amdCPU, 

2GHz, 2GBRam, 100GBdrive). 
–  … 



Crossword Puzzle 

  Constraints with different 
arity: 

–  Word1 ([X1,X2,X3]) 
–  Word2 ([X1,X13,X16]) 
–  … 

  No simple way to decide 
acceptable words other than 
to put them in a table.  



GAC Schema   

  A generic propagation algorithm. 
–  Enforces GAC on an n-ary constraint given by: 

  a set of allowed tuples; 
  a set of disallowed tuples; 
  a predicate answering if a constraint is satisfied or not. 

–  Sometimes called the “table” constraint: 
  user supplies table of acceptable values. 

  Complexity: O(edn) time 
  Hence, n cannot be too large! 

–  Many solvers limits it to 3 or so. 



Arc Consistency Algorithms 

  Generic AC algorithms with different 
complexities and advantages: 

–  AC3  
–  AC4 
–  AC6 
–  AC2001 
–  … 



AC-3 

  Idea: 
–  Revise (Xi, C): removes unsupported values of Xi 

and returns TRUE.  
–  Place each (Xi, C) where Xi participates to C and its 

domain is potentially not AC, in a queue Q; 
–  While Q is not empty: 

  Select and remove (Xi, C) from Q; 
  If revise(Xi, C) then 

–  If D(Xi) = { } then return FALSE; 
–  else place {(Xj, C’) | Xi, Xj  participate in some C’} into Q. 



AC-3 

  AC-3 achieves AC on binary CSPs in O(ed3) 
time and O(e) space.  

  Time complexity is not optimal  
  Revise does not remember anything about past 

computations and re-does unnecessary work. 



AC-3 

(X, C1) is put in Q 

only check of X ← 3 was 
necessary! 



AC-4 

  Stores max. amount of info in a preprocessing step so 
as to avoid redoing the same constraints checks. 

  Idea: 
–  Start with an empty queue Q. 
–  Maintain counter[Xi, vj, Xk] where Xi, Xk participate in a 

constraint Cik and vj ∈ D(Xi) 
  Stores the number of supports  for Xi ← vj on Cik. 

–  Place all supports of Xi ← vj  (in all constraints) in a list S[Xi, vj]. 



AC-4 

  Initialisation: 
–  All possible constraint checks are performed. 
–  Each time a support for Xi ← vj  is found, the corresponding counters 

and lists are updated.  
–  Each time a support for Xi ← vj  is not found, remove vj from D(Xi) and 

place (Xi, vj) in Q for future propagation. 
–  If D(Xi) = { } then return FALSE. 



AC-4 

  Propagation:  
–  While Q is not empty: 

  Select and remove (Xi, vj) from Q; 
  For each (Xk, vt) in S[Xi, vj] 

–  If vt ∈ D(Xk) then 
  decrement counter[Xk, vt, Xi] 
  If counter[Xk, vt, Xi] = 0 then 

  Remove vt from D(Xk); add (Xk, vt) to Q 
  If D(Xk) = { } then return FALSE. 



AC-4 

(y,3) is put in Q 

No additional 
constraint 

check! 



AC-4 

  AC-3 achieves AC on binary CSPs in O(ed2) 
time and O(ed2) space.  

  Time complexity is optimal  
  Space complexity is not optimal  

  AC-6 and AC-2001 achieve AC on binary 
CSPs in O(ed2) time and O(ed) space.   

–  Time complexity is optimal  
–  Space complexity is optimal  



PART IV: Search Algorithms 



Outline 

  Depth-first Search Algorithms 
–  Chronological Backtracking 
–  Conflict Directed Backjumping 
–  Dynamic Backtracking 
–  Branching Strategies 
–  Heuristics 

  Best-First Search Algorithms 
–  Limited Discrepancy Search 



Depth-first Search Algorithms 

  Backtracking tree search algorithms essentially 
perform depth-first traversal of a search tree. 
–  Every node represents a decision made on a 

variable. 
–  At each node: 

  check every completely assigned constraint; 
  If consistent continue down in the tree; 
  otherwise prune the underlying subtrees and backtrack to an 

uninstantiated variable that still has alternative values. 



Chronological Backtracking 

  Backtracks to the most recent variable. 



Chronological Backtracking 

  Suffers from trashing. 
–  The same failure can be remade an exponential 

number of times. 



Non-Chronological Backtracking 

  Backtrack on a culprit variable. 
  E.g.,  

–  Backtracking to X5 is pointless. 
–  Better to backtrack on X4. 



Conflict Sets 

  CS(Xk): assigned variables in conflict with 
some value of Xk. 



Conflict Directed Backjumping 

  Backtracks to the last variable in the conflict set. 
  Intermediate decisions are removed. 



No-goods 

  Subset of incompatible assignments. 
  E.g., map colouring problem. 

–  X1, X2, X3 are adjacent with D = {1, 2}. 
–  (X1 = a and X3 = a) or equivalently (X1 = a → X3 ≠ a) 

is a no-good. 
  No-good resolution:  

–  X1 = a → X3 ≠ a 
–  X2 = b → X3 ≠ b         X1 = a → X2 ≠ b 



Dynamic Backtracking 

  One no-good for each incompatible value is 
maintained. 

–  Empty domain: new no-good by no-good resolution. 
–  Backtrack to the variable in the right hand side of the no-good.



Dynamic Backtracking 

  Backtracks to the last decision responsible for the 
dead-end. 

  Intermediate decisions are not removed. 



Branching Strategies 

  The method of extending a node in the search tree. 
–  Usually consists of posting a unary constraint on a chosen 

variable Xi.   
–  Xi  & the ordering of the branches are chosen by the heuristics. 

  D-way branching:  
–  One branch is generated for each vj ∈ D(Xi) by Xi ← vj . 

  2-way branching: 
–  2 branches are generated for each vj ∈ D(Xi) by Xi ← vj  and      

Xi ←\ vj. 

  Domain splitting: 
–  k branches are generated by Xi ∈ Dj where D1…Dk are 

partitions of Di. 



Variable and Value Ordering Heuristics 

  Guide the search. 
  Problem specific vs generic heuristics. 
  Static Heuristics: 

–  a variable is associated with each level; 
–  branches are generated in the same order all over the tree; 
–  calculated once and for all before search starts, hence 

cheap to evaluate. 



Variable and Value Ordering Heuristics 

  Dynamic Heuristics:   
–  at any node, any variable & branch can be considered; 
–  decided dynamically during search, hence costly; 
–  takes into account the current state of the search tree. 



Variable Ordering Heuristics 

  Fail-first principle: to succeed, try first where 
you are most likely to fail. 

  Min domain (dom): 
–  choose next the variable with minimum domain. 

  Most constrained (deg): 
–  choose next the variable involved in most number 

of constraints. 
  Combinations 

–  dom + deg; dom / deg 



Value Ordering Heuristics 

  Succeed-first principle: choose next the value 
most likely to be part of a solution. 
–  Approximating the number of solutions. 
–  Looking at the remaining domain sizes when a 

value is assigned to a variable. 



Problems with Depth-first Search 

  The branches out of a node, ordered by a value 
ordering heuristic, are explored in left-to-right order, 
the left-most branch being the most promising. 

  For many problems, heuristics are more accurate at 
deep nodes. 

  Depth-first search: 
–  puts tremendous burden on the heuristics early in the search and 

light burden deep in the search; 
–  consequently mistakes made near the root of the tree can be 

costly to correct. 

  Best-first search strategy is of interest. 



Limited Discrepancy Search 

  A discrepancy is the case where the search 
does not follow the value ordering heuristic 
and thus does not take the left-most branch 
out of a node. 

  LDS: 
–  Trusts the value ordering heuristic and gives 

priority to the left branches. 
–  Iteratively searches the tree by increasing number 

of discrepancies, preferring discrepancies that 
occur near the root of the tree. 



Limited Discrepancy Search 

  The search recovers from mistakes made 
early in the search. 



PART IV: Some Useful Pointers 
about CP 



(Incomplete) List of Advanced Topics 

  Modelling 
  Global constraints, 

propagation algorithms 
  Search algorithms 
  Heuristics 
  Symmetry breaking 
  Optimisation 
  Local search 
  Soft constraints, preferences 
  Temporal constraints 
  Quantified constraints 
  Continuous constraints 

  Planning and scheduling 
  SAT 
  Complexity and tractability 
  Uncertainty 
  Robustness 
  Structured domains 
  Randomisation 
  Hybrid systems 
  Applications 
  Constraint systems 
  No good learning 
  Explanations 
  Visualisation 



Literature 

  Books 
–  Handbook of Constraint Programming 

 F. Rossi, P. van Beek, T. Walsh (eds), Elsevier Science, 2006. 

Some online chapters: 
Chapter 1   - Introduction 
Chapter 3   - Constraint Propagation 
Chapter 6   - Global Constraints 
Chapter 10 - Symmetry in CP 
Chapter 11 - Modelling 



Literature 

  Books 
–  Constraint Logic Programming Using Eclipse 

 K. Apt and M. Wallace, Cambridge University Press, 2006. 
–  Principles of Constraint Programming 

 K. Apt, Cambridge University Press, 2003. 
–  Constraint Processing 

 Rina Dechter, Morgan Kaufmann, 2003. 
–  Constraint-based Local Search 

 Pascal van Hentenryck and Laurent Michel, MIT Presss, 2005. 
–  The OPL Optimization Programming Languages 

 Pascal Van Hentenryck,  MIT Press, 1999.  



Literature 

  People 
–  Barbara Smith 

  Modelling, symmetry breaking, search heuristics 
  Tutorials and book chapter 

–  Christian Bessiere 
  Constraint propagation 
  Global constraints 

–  Nvalue constraint 
  Book chapter 

–  Jean-Charles Regin 
  Global constraints 

–  Alldifferent, global cardinality, cardinality matrix 
–  Toby Walsh  

  Modelling, symmetry breaking, global constraints 
  Various tutorials 



Literature 

  Journals 
–  Constraints 
–  Artificial Intelligence 
–  Journal of Artificial Intelligence Research 
–  Journal of Heuristics 
–  Intelligenza Artificiale (AI*IA) 
–  Informs Journal on Computing 
–  Annals of Mathematics and Artificial Intelligence 



Literature 

  Conferences 
–  Principles and Practice of Constraint Programming (CP) 

 http://www.cs.ualberta.ca/~ai/cp/ 
–  Integration of AI and OR Techniques in CP (CP-AI-OR) 

 http://www.cs.cornell.edu/~vanhoeve/cpaior/  
–  National Conference on AI (AAAI) 

 http://www.aaai.org 
–  International Joint Conference on Artificial Intelligence (IJCAI) 

 http://www.ijcai.org 
–  European Conference on Artificial Intelligence (ECAI) 

 http://www.eccai.org 
–  International Symposium on Practical Aspects of Declarative 

Languages (PADL) 
 http://www.informatik.uni-trier.de/~ley/db/conf/padl/index.html 



Literature 

  Schools and Tutorials 
–  ACP summer schools: 

2005: http://www.math.unipd.it/~frossi/cp-school/ 
2006: http://www.cse.unsw.edu.au/~tw/school.html 
2007: http://www.iiia.csic.es/summerschools/sscp2007/ 
2008: http://www-circa.mcs.st-and.ac.uk/cpss2008/ 
2009: http://www.cs.ucc.ie/~osullb/ACPSS2009/Welcome.html 
2010: http://becool.info.ucl.ac.be/summerschool2010/ 

–  AI conference tutorials (IJCAI’09, 07, 05, ECAI’04 …). 
–  CP conference tutorials. 
–  CP-AI-OR master classes. 



Literature 

  Solvers & Languages 
–  Choco (http://choco.sourceforge.net/) 
–  Comet (http://www.comet-online.org/) 
–  Eclipse (http://eclipse.crosscoreop.com/) 
–  FaCiLe (http://www.recherche.enac.fr/opti/facile/) 
–  Gecode (http://www.gecode.org/) 
–  IBM ILOG Solver (http://www-01.ibm.com/software/

websphere/products/optimization/) 
–  Koalog Constraint Solver (http://www.gecode.org/) 
–  Minion (http://minion.sourceforge.net/) 
–  OPL (http://www.ilog.com/products/oplstudio/) 
–  Sicstus Prolog (http://www.sics.se/isl/sicstuswww/site/

index.html) 


