
Solving Constraint Problems
in Constraint Programming

Zeynep KIZILTAN
Department of Computer Science

University of Bologna

Email: zeynep@cs.unibo.it

What is it about?

  10 hour lectures about the core of constraint solving in CP
–  Part I: Overview of constraint programming
–  Part II: Local consistency & constraint propagation
–  Part III: Search algorithms
–  Part IV: Advanced topics, useful pointers

  Aim:
–  Teach the basics of constraint programming.
–  Emphasize the importance of local consistency & constraint

propagation & search.
–  Point out the advanced topics.
–  Inform about the literature.

Warning

  We will see how constraint programming
works.

  No programming examples.

PART I: Overview
of Constraint Programming

Outline

  Constraint Satisfaction Problems (CSPs)
  Constraint Programming (CP)

–  Modelling
–  Backtracking Tree Search
–  Local Consistency and Constraint Propagation

Constraints are everywhere!

  No meetings before 9am.
  No registration of marks

before May 15.
  The lecture rooms have a

capacity.
  Two lectures of a student

cannot overlap.
  No two trains on the same

track at the same time.
  Salary > 45k Euros
 …

Constraint Satisfaction Problems

  A constraint is a restriction.
  There are many real-life problems that require to give a

decision in the presence of constraints:
–  flight / train scheduling;
–  scheduling of events in an operating system;
–  staff rostering at a company;
–  course time tabling at a university …

  Such problems are called Constraint Satisfaction
Problems (CSPs).

Sudoku: An everyday-life example

CSPs: More formally

  A CSP is a triple <X,D,C> where:
–  X is a set of decision variables {X1,...,Xn}.
–  D is a set of domains {D1,...,Dn} for X:

  Di is a set of possible values for Xi.
  usually assume finite domain.

–  C is a set of constraints {C1,…,Cm}:
  Ci is a relation over Xj,...,Xk, giving the set of combination of allowed

values.
  Ci ⊆ D(Xj) x ...x D(Xk)

  A solution to a CSP is an assignment of values to the
variables which satisfies all the constraints
simultaneously.

CSPs: A simple example

  Variables
X = {X1, X2, X3}

  Domains
D(X1) = {1,2}, D(X2) = {0,1,2,3}, D(X3) = {2,3}

  Constraints
X1 > X2 and X1 + X2 = X3 and X1 ≠ X2 ≠ X3 ≠ X1

  Solution
X1 = 2, X2 = 1, X3 = 3 alldifferent([X1, X2, X3])

Sudoku: An everyday-life example

  A simple CSP
–  9x9 variables (Xij) with domains {1,...,9}
–  Not-equals constraints on the rows, columns, and 3x3 boxes. E.g.,

alldifferent([X11, X21, X31, …, X91])

alldifferent([X11, X12, X13, …, X19])

alldifferent([X11, X21, X31, X12, X22, X32, X13, X23, X33])

X11

.

.

.

X19 X99

.

.

.

X91

Job-Shop Scheduling: A real-life example

  Schedule jobs, each using a resource for a period, in time D by
obeying the precedence and capacity constraints

  A very common industrial problem.
  CSP:

–  variables represent the jobs;
–  domains represent the start times;
–  constraints specify precedence and exclusivity.

CSPs

  Search space: D(X1) x D(X2) x … x D(Xn)
–  very large!

  Constraint satisfaction is NP-complete:
–  no polynomial time algorithm is known to exist!
–  I can get no satisfaction

  We need general and efficient methods to solve CSPs:
–  Integer and Linear Programming (satisfying linear constraints

on 0/1 variables and optimising a criterion)
–  SAT (satisfying CNF formulas on 0/1 variables)
–  …
–  Constraint Programming

How does it exactly work?

CP Machinery

 Solving Modelling

  CP is composed of two phases that are strongly
interconnected:

Modelling

1.  The CP user models the problem as a CSP:
–  define the variables and their domains;
–  specify solutions by posting constraints on the

variables:
  off-the-shelf constraints or user-defined constraints.

–  a constraint can be thought of a reusable component
with its own propagation algorithm.

 WAIT TO UNDERSTAND WHAT I MEAN

Modelling

  Modelling is a critical aspect.
  Given the human understanding of a problem, we need

to answer questions like:
–  which variables shall we choose?
–  which constraints shall we enforce?
–  shall we use off-the-self constraints, or define and integrate

our own?
–  are some constraints redundant, therefore can be avoided?
–  are there any implied constraints?
–  among alternative models, which one shall I prefer?

A problem with a simple model

X11

.

.

.

X19 X99

.

.

.

X91

  A simple CSP
–  9x9 variables (Xij) with domains {1,...,9}
–  Not-equals constraints on the rows, columns, and 3x3 boxes, eg.,

alldifferent([X11, X21, X31, …, X91])
alldifferent([X11, X12, X13, …, X19])
alldifferent([X11, X21, X31, X12, X22, X32, X13, X23, X33])

A problem with a complex model

  Consider a permutation problem:
–  find a permutation of the numbers {1,...,n} s.t. some constraints are

satisfied.
  One model:

–  variables (Xi) for positions, domains for numbers {1,...,n}.
  Dual model:

–  variables (Yi) for numbers {1,…,n}, domains for positions.
  Often different views allow different expression of the constraints

and different implied constraints:
–  can be hard to decide which is better!

  We can use multiple models and combine them via channelling
constraints to keep consistency between the variables:

–  Xi = j ↔ Yj = i

Solving

2.  The user lets the CP technology solve the CSP:
–  choose a search algorithm:

  usually backtracking search performing a depth-first traversal of a
search tree.

–  integrate local consistency and propagation.
–  choose heuristics for branching:

  which variable to branch on?
  which value to branch on? Search Local consistency &

Propagation

Heuristics

Backtracking Search

  A possible efficient and simple method.
  Variables are instantiated sequentially.
  Whenever all the variables of a constraint is instantiated,

the validity of the constraint is checked.
  If a (partial) instantiation violates a constraint,

backtracking is performed to the most recently
instantiated variable that still has alternative values.

  Backtracking eliminates a subspace from the cartesian
product of all variable domains.

  Essentially performs a depth-first search.

Backtracking Search

  X1 ∈ {1,2} X2 ∈ {0,1,2,3} X3 ∈ {2,3}
  X1 > X2 and X1 + X2 = X3 and alldifferent([X1, X2, X3])

 Backtracking search

Fails 8 times! backtracking

Backtracking Search

  Backtracking suffers from thrashing :
–  performs checks only with the current and past variables;
–  search keeps failing for the same reasons.

X1 = X3

X1 ≤ X2

Constraint Programming

  Integrates local consistency and constraint
propagation into the search.

  Consequently:
–  we can reason about the properties of constraints and their

effect on their variables;
–  some values can be filtered from some domains, reducing

the backtracking search space significantly!

Constraint Programming

  X1 ∈ {1,2} X2 ∈ {0,1,2,3} X3 ∈ {2,3}
  X1 > X2 and X1 + X2 = X3 and alldifferent([X1, X2, X3])

 Backtracking search + local consistency/propagation

Constraint Programming

  X1 ∈ {1,2} X2 ∈ {0,1} X3 ∈ {2,3}
  X1 > X2 and X1 + X2 = X3 and alldifferent([X1, X2, X3])

 Backtracking search + local consistency/propagation

backtracking

Constraint Programming

  X1 ∈ {1,2} X2 ∈ {0,1,2,3} X3 ∈ {2,3}
  X1 > X2 and X1 + X2 = X3 and alldifferent([X1, X2, X3])

 Backtracking search + local consistency/propagation

Constraint Programming

  X1 ∈ {1,2} X2 ∈ {0,1} X3 ∈ {2,3}
  X1 > X2 and X1 + X2 = X3 and alldifferent([X1, X2, X3])

 Backtracking search + local consistency/propagation

Fails only once!

Local consistency & Propagation

  Central to the process of solving CSPs which
are inherently intractable.

Search Local consistency &
Propagation

Heuristics

CP

  Programming, in the sense of mathematical
programming:

–  the user states declaratively the constraints on a set of decision
variables.

–  an underlying solver solves the constraints and returns a
solution.

  Programming, in the sense of computer programming:
–  the user needs to program a strategy to search for a solution

  search algorithm, heuristics, …

–  otherwise, solving process can be inefficient.

CP

CP

Artificial
Intelligence

Discrete
Mathematics

Logic
Programming

Operations
Research Algorithms …

Networks Vehicle
Routing

Configuration Bio-
informatics

Planning

& Scheduling
…

Complexity
Theory

CP

  Solve SUDOKU using CP!
 http://www.cs.cornell.edu/gomes/SUDOKU/Sudoku.html

–  very easy, not worth spending minutes
–  you can decide which newspaper provides the toughest Sudoku

instances

CP

  Constraints can be embedded into:
–  logic programming (constraint logic programming)

  Prolog III, CLP(R), SICStus Prolog, ECLiPSe, CHIP, …

–  functional programming
  Oz

–  imperative programming
  often via a separate library
  IBM CP Solver, Gecode, Choco, Minion, …

NOTE: We will not commit to any CP language/library, rather
use a mathematical and/or natural notation.

PART II: Local Consistency &
Constraint Propagation

Local Consistency & Constraint
Propagation

 What exactly are they?
 How do they work?

PART I: The user lets the CP technology solve the CSP:
–  choose a search algorithm;
–  design heuristics for branching;
–  integrate local consistency and propagation.

Search Local consistency &
Propagation

Heuristics Have central affect

Outline

  Local Consistency
–  Arc Consistency (AC)
–  Generalised Arc Consistency (GAC)
–  Bounds Consistency (BC)
–  Higher Levels of Consistency

  Constraint Propagation
–  Propagation Algorithms

  Specialised Propagation Algorithms
–  Global Constraints

  Generalised Propagation Algorithms
–  AC algorithms

Local Consistency

  Backtrack tree search aims to extend a partial
instantiation of variables to a complete and consistent one.

–  The search space is too large!
  Some inconsistent partial assignments obviously cannot

be completed.
  Local consistency is a form of inference which detects

inconsistent partial assignments.
–  Consequently, the backtrack search commits into less inconsistent

instantiations.
  Local, because we examine individual constraints.

–  Remember that global consistency is NP-complete!

Local Consistency: An example

  D(X1) = {1,2}, D(X2) = {3,4}, C1: X1 = X2, C2: X1 + X2 ≥ 1
  X1 = 1
  X1 = 2
  X2 = 3
  X4 = 4

–  no need to check the individual assignments.
–  no need to check the other constraint.
–  unsatisfiability of the CSP can be inferred without having to

search!

all inconsistent partial assignments
wrt the constraint X1 = X2

Several Local Consistencies

  Most popular local consistencies:
–  Arc Consistency (AC)
–  Generalised Arc Consistency (GAC)
–  Bounds Consistency (BC)

  They detect inconsistent partial assignments
of the form Xi = j, hence:
–  j can be removed from D(Xi) via propagation;
–  propagation can be implemented easily.

Arc Consistency (AC)

  Defined for binary constraints.
  A binary constraint C is a relation on two variables Xi

and Xj, giving the set of allowed combinations of values
(i.e. tuples):
–  C ⊆ D(Xi) x D(Xj)

  C is AC iff:
–  forall v ∈ D(Xi), exists w ∈ D(Xj) s.t. (v,w) ∈ C.

  v ∈ D(Xi) is said to have a support wrt the constraint C.
–  forall w ∈ D(Xj), exists v ∈ D(Xi) s.t. (v,w) ∈ C.

  w ∈ D(Xj) is said to have a support wrt the constraint C.
  A CSP is AC iff all its binary constraints are AC.

AC: An example

  D(X1) = {1,2,3}, D(X2) = {2,3,4}, C: X1 = X2
  AC(C)?

–  1 ∈ D(X1) does not have a support.
–  2 ∈ D(X1) has 2 ∈ D(X2) as support.
–  3 ∈ D(X1) has 3 ∈ D(X2) as support.
–  2 ∈ D(X2) has 2 ∈ D(X1) as support.
–  3 ∈ D(X2) has 3 ∈ D(X1) as support.
–  4 ∈ D(X2) does not have a support.

  X1 = 1 and X2 = 4 are inconsistent partial assignments.
  1 ∈ D(X1) and 4 ∈ D(X2) must be removed to achieve AC.
  D(X1) = {2,3}, D(X2) = {2,3}, C: X1 = X2.

–  AC(C)

Propagation!

Generalised Arc Consistency

  Generalisation of AC to n-ary constraints.
  A constraint C is a relation on k variables X1,…, Xk:

–  C ⊆ D(X1) x … x D(Xk)
  A support is a tuple <d1,…,dk> ∈ C where di ∈ D(Xi).
  C is GAC iff:

–  forall Xi in {X1,…, Xk}, forall v ∈ D(Xi), v belongs to a support.

  AC is a special case of GAC.
  A CSP is GAC iff all its constraints are GAC.

GAC: An example

  D(X1) = {1,2,3}, D(X2) = {1,2}, D(X3) = {1,2}
 C: alldifferent([X1, X2, X3])

  GAC(C)?
–  X1 = 1 and X1 = 2 are not supported!

  D(X1) = {3}, D(X2) = {1,2}, D(X3) = {1,2}
 C: X1 ≠ X2 ≠ X3

–  GAC(C)

Bounds Consistency (BC)

  Defined for totally ordered (e.g. integer) domains.
  Relaxes the domain of Xi from D(Xi) to [min(Xi)..max(Xi)].
  Advantages:

–  it might be easier to look for a support in a range than in a
domain;

–  achieving BC is often cheaper than achieving GAC;
–  achieving BC is enough to achieve GAC for monotonic

constraints.

  Disadvantage:
–  BC might not detect all GAC inconsistencies in general.

Bounds Consistency (BC)

  A constraint C is a relation on k variables X1,…, Xk:
–  C ⊆ D(X1) x … x D(Xk)

  A bound support is a tuple <d1,…,dk> ∈ C where di ∈
[min(Xi)..max(Xi)].

  C is BC iff:
–  forall Xi in {X1,…, Xk}, min(Xi) and max(Xi) belong to a

bound support.

GAC > BC: An example

  D(X1) = D(X2) = {1,2}, D(X3) = D(X4) = {2,3,5,6}, D(X5) = {5}, D(X6) =
{3,4,5,6,7}

 C: alldifferent([X1, X2 , X3 , X4 , X5 , X6])

  BC(C): 2 ∈ D(X3) and 2 ∈ D(X4) have no support.

 Original BC

GAC > BC: An example

  D(X1) = D(X2) = {1,2}, D(X3) = D(X4) = {2,3,5,6}, D(X5) = {5}, D(X6) =
{3,4,5,6,7}

 C: alldifferent([X1, X2 , X3 , X4 , X5 , X6])

  GAC(C): {2,5} ∈ D(X3) , {2,5} ∈ D(X4), {3,5,6} ∈ D(X6) have no
support.

 Original BC GAC

GAC = BC: An example

  D(X1) = {1,2,3}, D(X2) = {1,2,3}, C: X1 < X2

  BC(C):
–  D(X1) = {1,2}, D(X2) = {2,3}

  BC(C) = GAC(C):
–  a support for min(X2) supports all the values in D(X2).
–  a support for max(X1) supports all the values in D(X1).

Higher Levels of Consistencies

  Path consistency, k-consistencies, (i,j) consistencies, …
  Not much used in practice:

–  detect inconsistent partial assignments with more than one
<variable,value> pair.

–  cannot be enforced by removing single values from domains.

  Domain based consistencies stronger than (G)AC.
–  Singleton consistencies, triangle-based consistencies, …
–  Becoming popular:

  shaving in scheduling.

Outline

  Local Consistency
–  Arc Consistency (AC)
–  Generalised Arc Consistency (GAC)
–  Bounds Consistency (BC)
–  Higher Levels of Consistency

  Constraint Propagation
–  Constraint Propagation Algorithms

  Specialised Propagation Algorithms
–  Global Constraints

  Generalised Propagation Algorithms
–  AC Algorithms

Constraint Propagation

  Can appear under different names:
–  constraint relaxation
–  filtering algorithm
–  local consistency enforcing, …

  Similar concepts in other fields:
–  unit propagation in SAT.

  Local consistencies define properties that a CSP must
satisfy after constraint propagation:

–  the operational behaviour is completely left open;
–  the only requirement is to achieve the required property on the

CSP.

Constraint Propagation: A simple example

Input CSP:D(X1) = {1,2}, D(X2) = {1,2} , C: X1 < X2

Output CSP:D(X1) = {1}, D(X2) = {2} , C: X1 < X2

A constraint propagation
algorithm for enforcing AC

We can write
different

algorithms with
different

complexities to
achieve the
same effect.

Constraint Propagation Algorithms

  A constraint propagation algorithm propagates a
constraint C.
–  It removes the inconsistent values from the domains of

the variables of C.
–  It makes C locally consistent.
–  The level of consistency depends on C:

  GAC might be NP-complete, BC might not be possible, …

Constraint Propagation Algorithms

  When solving a CSP with multiple constraints:
–  propagation algorithms interact;
–  a propagation algorithm can wake up an already

propagated constraint to be propagated again!
–  in the end, propagation reaches a fixed-point and all

constraints reach a level of consistency;
–  the whole process is referred as constraint

propagation.

Constraint Propagation: An example

  D(X1) = D(X2) = D(X3)= {1,2,3}
 C1: alldifferent([X1, X2 , X3]) C2: X2 < 3 C3: X3 < 3
  Let’s assume:

–  the order of propagation is C1, C2, C3;
–  each algorithm maintains (G)AC.

  Propagation of C1:
–  nothing happens, C1 is GAC.

  Propagation of C2:
–  3 is removed from D(X2), C2 is now AC.

  Propagation of C3:
–  3 is removed from D(X3), C3 is now AC.

  C1 is not GAC anymore, because the supports of {1,2} ∈ D(X1) in
D(X2) and D(X3) are removed by the propagation of C2 and C3.

  Re-propagation of C1:
–  1 and 2 are removed from D(X1), C1 is now AC.

Properties of Constraint Propagation Algorithms

  It is not enough to be able to remove inconsistent values
from domains.

  A constraint propagation algorithm must wake up when
necessary, otherwise may not achieve the desired local
consistency property.

  Events that trigger a constraint propagation:
–  when the domain of a variable changes;
–  when a variable is assigned a value;
–  when the minimum or the maximum values of a domain changes.

Outline

  Local Consistency
–  Arc Consistency (AC)
–  Generalised Arc Consistency (GAC)
–  Bounds Consistency (BC)
–  Higher Levels of Consistency

  Constraint Propagation
–  Propagation Algorithms

  Specialised Propagation Algorithms
–  Global Constraints

  Decompositions
  Ad-hoc algorithms

  Generalised Propagation Algorithms
–  AC Algorithms

Specialised Propagation Algorithms

  A constraint propagation algorithm can be general or specialised:
–  general, if it is applicable to any constraint;
–  specialised, if it is specific to a constraint.

  Specialised algorithms:
–  Disadvantage:

  has limited use;
  is not always easy to develop one.

–  Advantages:
  exploits the constraint semantics;
  is potentially more efficient than a general algorithm.

  Worth developing specialised algorithms for recurring constraints
with a reasonable semantics.

Specialised Propagation Algorithms

  C: X1 ≤ X2

  Observation:
–  a support of min(X2) supports all the values in D(X2);
–  a support of max(X1) supports all the values in D(X1).

  Propagation algorithm:
–  filter D(X1) s.t. max(X1) ≤ max(X2);
–  filter D(X2) s.t. min(X1) ≤ min(X2).

  The result is GAC (and thus BC).

Example

  D(X1) = {3, 4, 7, 8} , D(X2) = {1, 2, 3, 5}, C: X1 ≤ X2

Example

  D(X1) = {3, 4, 7, 8} , D(X2) = {1, 2, 3, 5}, C: X1 ≤ X2

  Propagation:
–  filter D(X1) s.t. max(X1) ≤ max(X2);

Example

  D(X1) = {3, 4, 7, 8} , D(X2) = {1, 2, 3, 5}, C: X1 ≤ X2

  Propagation:
–  filter D(X1) s.t. max(X1) ≤ max(X2);

Example

  D(X1) = {3, 4, 7, 8} , D(X2) = {1, 2, 3, 5}, C: X1 ≤ X2

  Propagation:
–  filter D(X1) s.t. max(X1) ≤ max(X2);
–  filter D(X2) s.t. min(X1) ≤ min(X2);

Example

  D(X1) = {3, 4, 7, 8} , D(X2) = {1, 2, 3, 5}, C: X1 ≤ X2

  Propagation:
–  filter D(X1) s.t. max(X1) ≤ max(X2);
–  filter D(X2) s.t. min(X1) ≤ min(X2);

Global Constraints

  Many real-life constraints are complex and not binary.
–  Specialised algorithms are often developed for such constraints!

  A complex and n-ary constraint which encapsulates a
specialised propagation algorithm is called a global
constraint.

Examples of Global Constraints

  Alldifferent constraint:

–  alldifferent([X1, X2, …, Xn]) holds iff
 Xi ≠ Xj for i < j ∈ {1,…,n}

–  useful in a variety of context
  Timetabling (e.g. exams with common students must occur at

different times)
  Tournament scheduling (e.g. a team can play at most once in a

week)
  Configuration (e.g. a particular product cannot have repeating

components)
  …

Beyond Alldifferent

  NValue constraint:
–  one generalisation of alldifferent
–  nvalue([X1, X2, …, Xn], N) holds iff

 N = |{Xi | 1 ≤ i ≤ n }|
–  nvalue([1, 2, 2, 1, 3], 3)
–  alldifferent when N = n
–  Useful when values represent resources and we want

to limit the usage of resources. E.g.,
  Minimise the total number of resources used;
  The total number of resources used must be between a

specific interval;
  …

Beyond Alldifferent

  Global cardinality constraint:
–  another generalisation of alldifferent
–  gcc([X1, X2, …, Xn], [v1, …, vm], [O1, …, Om]) iff

 forall j ∈ {1,…, m} Oj = |{Xi | Xi = vj, 1 ≤ i ≤ n }|
–  gcc([1, 1, 3, 2, 3], [1, 2, 3, 4], [2, 1, 2, 0])
–  Useful again when values represent resources
–  We can now limit the usage of each resource

individually. E.g.,
  Resource 1 can be used at most three times
  Resource 2 can be used min 2 max 5 times
  …

Symmetry Breaking Constraints

  Consider the following scenario:
–  [X1, X2, …, Xn] and [Y1, Y2, …, Yn] represent the 2 day event

assignments of a conference
–  Each day has n slots and the days are indistinguishable
–  Need to avoid symmetric assignments

  Global constraints developed for this purpose are called
symmetry breaking constraints.

  Lexicographic ordering constraint:
–  lex([X1, X2, …, Xn], [Y1, Y2, …, Yn]) holds iff:
 X1 < Y1 OR (X1 = Y1 AND X2 < Y2) OR …
 (X1 = Y1 AND X2 = Y2 AND …. AND Xn ≤ Yn)
–  lex ([1, 2, 4],[1, 3, 3])

  We might sometimes want a sequence of variables obey certain
patterns. E.g.,

–  regulations in scheduling
  A promising direction in CP is the ability of modelling problems via

automata/grammar.
  Global constraints developed for this purpose are called grammar

constraints.
  Regular constraint:

–  regular([X1, X2, …, Xn], A) holds iff <X1, X2, …, Xn> forms a string
accepted by the DFA A (which accepts a regular language).

–  regular([a, a, b], A), regular([b], A), regular([b, c, c, c, c, c], A) with A

Grammar Constraints

a b
c

Specialised Algorithms for Global Constraints

  How do we develop specialised algorithms
for global constraints?

  Two main approaches:
–  constraint decomposition
–  ad-hoc algorithm

Constraint Decomposition

  A global constraint is decomposed into smaller
and simpler constraints each which has a known
propagation algorithm.

  Propagating each of the constraints gives a
propagation algorithm for the original global
constraint.
–  A very effective and efficient method for some global

constraints

Decomposition of Among

  among([X1, X2, …, Xn], [d1, d2, …, dm], N) holds iff
 N = |{Xi | Xi ∈ {d1, d2, …, dm} 1 ≤ i ≤ n }|

  Decomposition:
–  Bi with D(Bi) = {0, 1} for 1 ≤ i ≤ n
–  Ci: Bi = 1 ↔ Xi ∈ {d1, d2, …, dm} for 1 ≤ i ≤ n
– 
  AC(Ci) for 1 ≤ i ≤ n and BC() ensures GAC

on among.

€

Bi = N
i∑

€

Bi = N
i∑

Decomposition of Lex

  lex([X1, X2, …, Xn], [Y1, Y2, …, Yn])
  Decomposition:
–  Bi with D(Bi) = {0, 1} for 1 ≤ i ≤ n+1 to indicate the vectors have been

ordered by position i-1
–  B1= 0
–  Ci: (Bi = Bi+1 = 0 AND Xi = Yi) OR (Bi = 0 AND Bi+1 = 1 AND Xi < Yi) OR

(Bi = Bi+1 = 1) for 1 ≤ i ≤ n

  GAC(Ci) ensures GAC on lex.

Constraint Decompositions

  May not always provide an effective propagation.
  Often GAC on the original constraint is stronger than

(G)AC on the constraints in the decomposition.
  E.g., C: alldifferent([X1, X2, …, Xn])
  Decomposition following the definition:

–  Cij: Xi ≠ Xj for i < j ∈ {1,…,n}
–  AC on the decomposition is weaker than GAC on alldifferent.
–  E.g., D(X1) = D(X2) = D(X3) = {1,2}, C: alldifferent([X1, X2, X3])
–  C12, C13, C23 are all AC, but C is not GAC.

Constraint Decompositions

  E.g., C: lex([X1, X2, …, Xn], [Y1, Y2, …, Yn])
  OR decomposition:
–  X1 < Y1 OR (X1 = Y1 AND X2 < Y2) OR …
 (X1 = Y1 AND X2 = Y2 AND …. AND Xn ≤ Yn)
–  AC on the decomposition is weaker than GAC on lex.
–  E.g., D(X1) = {0, 1, 2} , D(X2) = {0, 1}, D(Y1) = {0, 1} , D(Y2) = {0, 1}

C: Lex([X1, X2], [Y1, Y2])
–  C is not GAC but the decomposition does not prune anything.

Constraint Decompositions

  AND decomposition of lex([X1, X2, …, Xn], [Y1, Y2, …, Yn]):
–  X1 ≤ Y1 AND (X1 = Y1 → X2 ≤ Y2) AND …
 (X1 = Y1 AND X2 = Y2 AND …. Xn-1 = Yn-1 → Xn ≤ Yn)
–  AC on the decomposition is weaker than GAC on lex.
–  E.g., D(X1) = {0, 1} , D(X2) = {0, 1}, D(Y1) = {1} , D(Y2) = {0}

C: Lex([X1, X2], [Y1, Y2])
–  C is not GAC but the decomposition does not prune anything.

Constraint Decompositions

  Different decompositions of a constraint may be
incomparable.
  Difficult to know which one gives a better propagation for a given

instance of a constraint.

  C: Lex([X1, X2], [Y1, Y2])
  D(X1) = {0, 1} , D(X2) = {0, 1}, D(Y1) = {1} , D(Y2) = {0}

–  AND decomposition is weaker than GAC on lex, whereas OR
decomposition maintains GAC.

  D(X1) = {0, 1, 2} , D(X2) = {0, 1}, D(Y1) = {0, 1} , D(Y2) = {0, 1}
–  OR decomposition is weaker than GAC on lex, whereas OR

decomposition maintains GAC.

Constraint Decompositions

  Even if effective, may not always provide an efficient
propagation.

  Often GAC on a constraint via a specialised algorithm is
maintained faster than (G)AC on the constraints in the
decomposition.

Constraint Decompositions

  C: Lex([X1, X2], [Y1, Y2])
  D(X1) = {0, 1} , D(X2) = {0, 1}, D(Y1) = {1} , D(Y2) = {0}

–  AND decomposition is weaker than GAC on lex, whereas OR
decomposition maintains GAC

  D(X1) = {0, 1, 2} , D(X2) = {0, 1}, D(Y1) = {0, 1} , D(Y2) = {0, 1}
–  OR decomposition is weaker than GAC on lex, whereas OR

decomposition maintains GAC

  AND or OR decompositions have complementary strengths!
–  Combining them gives us a decomposition which maintains GAC on

lex.

  Too many constraints to post and propagate!
  A dedicated algorithm runs amortised in O(1).

Dedicated Algorithms

  Dedicated ad-hoc algorithms provide
effective and efficient propagation.

  Often:
–  GAC is maintained in polynomial time.
–  Many more inconsistent values are detected

compared to the decompositions.

Benefits of Global Constraints

  Modelling benefits
–  Reduce the gap between the problem statement and the

model.
–  Capture recurring modelling patterns.
–  May allow the expression of constraints that are otherwise

not possible to state using primitive constraints (semantic).

  Solving benefits
–  More inference in propagation (operational).
–  More efficient propagation (algorithmic).

Dedicated Algorithm for Alldifferent

  GAC algorithm based on matching theory.
–  Establishes a relation between the solutions of the constraint

and the properties of a graph.
–  Runs in time O(dn1.5).

  Value graph: bipartite graph between variables and their
possible values.

  Matching: set of edges with no two edges having a node
in common.

  Maximal matching: largest possible matching.

Dedicated Algorithm for Alldifferent

  An assignment of values to the variables
X1, X2, …, Xn is a solution iff it corresponds to
a maximal matching.
–  Edges that do not belong to a maximal matching

can be deleted.
  The challenge is to compute such edges

efficiently.
–  Exploit concepts like strongly connected

components, alternating paths, …

Dedicated Algorithm for Alldifferent

  D(X1) = {1,3} , D(X2) = {1,3}, D(X3)= {1,2}

X1

X2

X3

1

2

3

Variable-value
graph

Dedicated Algorithm for Alldifferent

  D(X1) = {1,3} , D(X2) = {1,3}, D(X3)= {1,2}

X1

X2

X3

1

2

3

A maximal
matching

Dedicated Algorithm for Alldifferent

  D(X1) = {1,3} , D(X2) = {1,3}, D(X3)= {1,2}

X1

X2

X3

1

2

3

Another maximal
matching

Does not belong to
any maximal matching

Dedicated Algorithms

  Is it always easy to develop a dedicated algorithm for
a given constraint?

  There’s no single recipe!
  A nice semantics often gives us a clue!

–  Graph Theory
–  Flow Theory
–  Combinatorics
–  Complexity Theory, …

  GAC may as well be NP-hard!
–  In that case, algorithms which maintain weaker

consistencies (like BC) are of interest.

GAC for Nvalue Constraint

  nvalue([X1, X2, …, Xn], N) holds iff N = |{Xi | 1 ≤ i ≤ n }|
  Reduction from 3 SAT.

  Given a Boolean fomula in k variables (labelled from 1 to k) and m
clauses, we construct an instance of nvalue([X1, X2, …, Xk+m], N):

–  D(Xi) = {i, i’} for i ∈ {1,…, k} where Xi represents the truth assignment
of the SAT variables;

–  Xi where i > k represents a SAT clause (disjunction of literals);
–  for a given clause like x V y’ V z, D(Xi) = {x, y’, z}.

  By construction, X1, …, Xk will consume all the k distinct values.
  When N = k, nvalue has a solution iff the original SAT problem has a

satisfying assignment.
–  Otherwise we will have more than k distinct values.
–  Hence, testing a value for support is NP-complete, and enforcing GAC is

NP-hard!

GAC for Nvalue Constraint

  E.g., C1: (a OR b’ OR c) AND
 C2: (a’ OR b OR d) AND
 C3: (b’ OR c’ OR d)

  The formula has 4 variables (a, b, c, d) and 3 clauses (C1, C2, C3).
  We construct nvalue([X1, X2, …, X7], 4) where:

  D(X1) = {a, a’}, D(X2) = {b, b’}, D(X3) = {c, c’}, D(X4) = {d, d’}, D(X5)
= {a, b’, c}, D(X6) = {a’, b, d}, D(X7) = {b’, c’, d}

  An assignment to X1, …, X4 will consume 4 distinct values.
  Not to exceed 4 distinct values, the rest of the variables must have

intersecting values with X1, …, X4.
  Such assignments will make the SAT formula TRUE.

Outline

  Local Consistency
–  Arc Consistency (AC)
–  Generalised Arc Consistency (GAC)
–  Bounds Consistency (BC)
–  Higher Levels of Consistency

  Constraint Propagation
–  Propagation Algorithms

  Specialised Propagation Algorithms
–  Global Constraints

  Decompositions
  Ad-hoc algorithms

  Generalised Propagation Algorithms
–  AC Algorithms

Generalised Propagation Algorithms

  Not all constraints have nice semantics we can exploit
to devise an efficient specialised propagation algorithm.

  Consider a product configuration problem:
–  compatibility constraints on hardware components:

  only certain combinations of components work together.
–  compatibility may not be a simple pairwise relationship:

  video cards supported function of motherboard, CPU, clock speed,
O/S, ...

Production Configuration Problem

  5-ary constraint:
–  Compatible (motherboard345, intelCPU,

2GHz, 1GBRam, 80GBdrive).)
–  Compatible (motherboard346, intelCPU,

3GHz, 2GBRam, 100GBdrive).
–  Compatible (motherboard346, amdCPU,

2GHz, 2GBRam, 100GBdrive).
–  …

Crossword Puzzle

  Constraints with different
arity:

–  Word1 ([X1,X2,X3])
–  Word2 ([X1,X13,X16])
–  …

  No simple way to decide
acceptable words other than
to put them in a table.

GAC Schema

  A generic propagation algorithm.
–  Enforces GAC on an n-ary constraint given by:

  a set of allowed tuples;
  a set of disallowed tuples;
  a predicate answering if a constraint is satisfied or not.

–  Sometimes called the “table” constraint:
  user supplies table of acceptable values.

  Complexity: O(edn) time
  Hence, n cannot be too large!

–  Many solvers limits it to 3 or so.

Arc Consistency Algorithms

  Generic AC algorithms with different
complexities and advantages:

–  AC3
–  AC4
–  AC6
–  AC2001
–  …

AC-3

  Idea:
–  Revise (Xi, C): removes unsupported values of Xi

and returns TRUE.
–  Place each (Xi, C) where Xi participates to C and its

domain is potentially not AC, in a queue Q;
–  While Q is not empty:

  Select and remove (Xi, C) from Q;
  If revise(Xi, C) then

–  If D(Xi) = { } then return FALSE;
–  else place {(Xj, C’) | Xi, Xj participate in some C’} into Q.

AC-3

  AC-3 achieves AC on binary CSPs in O(ed3)
time and O(e) space.

  Time complexity is not optimal
  Revise does not remember anything about past

computations and re-does unnecessary work.

AC-3

(X, C1) is put in Q

only check of X ← 3 was
necessary!

AC-4

  Stores max. amount of info in a preprocessing step so
as to avoid redoing the same constraints checks.

  Idea:
–  Start with an empty queue Q.
–  Maintain counter[Xi, vj, Xk] where Xi, Xk participate in a

constraint Cik and vj ∈ D(Xi)
  Stores the number of supports for Xi ← vj on Cik.

–  Place all supports of Xi ← vj (in all constraints) in a list S[Xi, vj].

AC-4

  Initialisation:
–  All possible constraint checks are performed.
–  Each time a support for Xi ← vj is found, the corresponding counters

and lists are updated.
–  Each time a support for Xi ← vj is not found, remove vj from D(Xi) and

place (Xi, vj) in Q for future propagation.
–  If D(Xi) = { } then return FALSE.

AC-4

  Propagation:
–  While Q is not empty:

  Select and remove (Xi, vj) from Q;
  For each (Xk, vt) in S[Xi, vj]

–  If vt ∈ D(Xk) then
  decrement counter[Xk, vt, Xi]
  If counter[Xk, vt, Xi] = 0 then

  Remove vt from D(Xk); add (Xk, vt) to Q
  If D(Xk) = { } then return FALSE.

AC-4

(y,3) is put in Q

No additional
constraint

check!

AC-4

  AC-3 achieves AC on binary CSPs in O(ed2)
time and O(ed2) space.

  Time complexity is optimal
  Space complexity is not optimal

  AC-6 and AC-2001 achieve AC on binary
CSPs in O(ed2) time and O(ed) space.

–  Time complexity is optimal
–  Space complexity is optimal

PART IV: Search Algorithms

Outline

  Depth-first Search Algorithms
–  Chronological Backtracking
–  Conflict Directed Backjumping
–  Dynamic Backtracking
–  Branching Strategies
–  Heuristics

  Best-First Search Algorithms
–  Limited Discrepancy Search

Depth-first Search Algorithms

  Backtracking tree search algorithms essentially
perform depth-first traversal of a search tree.
–  Every node represents a decision made on a

variable.
–  At each node:

  check every completely assigned constraint;
  If consistent continue down in the tree;
  otherwise prune the underlying subtrees and backtrack to an

uninstantiated variable that still has alternative values.

Chronological Backtracking

  Backtracks to the most recent variable.

Chronological Backtracking

  Suffers from trashing.
–  The same failure can be remade an exponential

number of times.

Non-Chronological Backtracking

  Backtrack on a culprit variable.
  E.g.,

–  Backtracking to X5 is pointless.
–  Better to backtrack on X4.

Conflict Sets

  CS(Xk): assigned variables in conflict with
some value of Xk.

Conflict Directed Backjumping

  Backtracks to the last variable in the conflict set.
  Intermediate decisions are removed.

No-goods

  Subset of incompatible assignments.
  E.g., map colouring problem.

–  X1, X2, X3 are adjacent with D = {1, 2}.
–  (X1 = a and X3 = a) or equivalently (X1 = a → X3 ≠ a)

is a no-good.
  No-good resolution:

–  X1 = a → X3 ≠ a
–  X2 = b → X3 ≠ b X1 = a → X2 ≠ b

Dynamic Backtracking

  One no-good for each incompatible value is
maintained.

–  Empty domain: new no-good by no-good resolution.
–  Backtrack to the variable in the right hand side of the no-good.

Dynamic Backtracking

  Backtracks to the last decision responsible for the
dead-end.

  Intermediate decisions are not removed.

Branching Strategies

  The method of extending a node in the search tree.
–  Usually consists of posting a unary constraint on a chosen

variable Xi.
–  Xi & the ordering of the branches are chosen by the heuristics.

  D-way branching:
–  One branch is generated for each vj ∈ D(Xi) by Xi ← vj .

  2-way branching:
–  2 branches are generated for each vj ∈ D(Xi) by Xi ← vj and

Xi ←\ vj.

  Domain splitting:
–  k branches are generated by Xi ∈ Dj where D1…Dk are

partitions of Di.

Variable and Value Ordering Heuristics

  Guide the search.
  Problem specific vs generic heuristics.
  Static Heuristics:

–  a variable is associated with each level;
–  branches are generated in the same order all over the tree;
–  calculated once and for all before search starts, hence

cheap to evaluate.

Variable and Value Ordering Heuristics

  Dynamic Heuristics:
–  at any node, any variable & branch can be considered;
–  decided dynamically during search, hence costly;
–  takes into account the current state of the search tree.

Variable Ordering Heuristics

  Fail-first principle: to succeed, try first where
you are most likely to fail.

  Min domain (dom):
–  choose next the variable with minimum domain.

  Most constrained (deg):
–  choose next the variable involved in most number

of constraints.
  Combinations

–  dom + deg; dom / deg

Value Ordering Heuristics

  Succeed-first principle: choose next the value
most likely to be part of a solution.
–  Approximating the number of solutions.
–  Looking at the remaining domain sizes when a

value is assigned to a variable.

Problems with Depth-first Search

  The branches out of a node, ordered by a value
ordering heuristic, are explored in left-to-right order,
the left-most branch being the most promising.

  For many problems, heuristics are more accurate at
deep nodes.

  Depth-first search:
–  puts tremendous burden on the heuristics early in the search and

light burden deep in the search;
–  consequently mistakes made near the root of the tree can be

costly to correct.

  Best-first search strategy is of interest.

Limited Discrepancy Search

  A discrepancy is the case where the search
does not follow the value ordering heuristic
and thus does not take the left-most branch
out of a node.

  LDS:
–  Trusts the value ordering heuristic and gives

priority to the left branches.
–  Iteratively searches the tree by increasing number

of discrepancies, preferring discrepancies that
occur near the root of the tree.

Limited Discrepancy Search

  The search recovers from mistakes made
early in the search.

PART IV: Some Useful Pointers
about CP

(Incomplete) List of Advanced Topics

  Modelling
  Global constraints,

propagation algorithms
  Search algorithms
  Heuristics
  Symmetry breaking
  Optimisation
  Local search
  Soft constraints, preferences
  Temporal constraints
  Quantified constraints
  Continuous constraints

  Planning and scheduling
  SAT
  Complexity and tractability
  Uncertainty
  Robustness
  Structured domains
  Randomisation
  Hybrid systems
  Applications
  Constraint systems
  No good learning
  Explanations
  Visualisation

Literature

  Books
–  Handbook of Constraint Programming

 F. Rossi, P. van Beek, T. Walsh (eds), Elsevier Science, 2006.

Some online chapters:
Chapter 1 - Introduction
Chapter 3 - Constraint Propagation
Chapter 6 - Global Constraints
Chapter 10 - Symmetry in CP
Chapter 11 - Modelling

Literature

  Books
–  Constraint Logic Programming Using Eclipse

 K. Apt and M. Wallace, Cambridge University Press, 2006.
–  Principles of Constraint Programming

 K. Apt, Cambridge University Press, 2003.
–  Constraint Processing

 Rina Dechter, Morgan Kaufmann, 2003.
–  Constraint-based Local Search

 Pascal van Hentenryck and Laurent Michel, MIT Presss, 2005.
–  The OPL Optimization Programming Languages

 Pascal Van Hentenryck, MIT Press, 1999.

Literature

  People
–  Barbara Smith

  Modelling, symmetry breaking, search heuristics
  Tutorials and book chapter

–  Christian Bessiere
  Constraint propagation
  Global constraints

–  Nvalue constraint
  Book chapter

–  Jean-Charles Regin
  Global constraints

–  Alldifferent, global cardinality, cardinality matrix
–  Toby Walsh

  Modelling, symmetry breaking, global constraints
  Various tutorials

Literature

  Journals
–  Constraints
–  Artificial Intelligence
–  Journal of Artificial Intelligence Research
–  Journal of Heuristics
–  Intelligenza Artificiale (AI*IA)
–  Informs Journal on Computing
–  Annals of Mathematics and Artificial Intelligence

Literature

  Conferences
–  Principles and Practice of Constraint Programming (CP)

 http://www.cs.ualberta.ca/~ai/cp/
–  Integration of AI and OR Techniques in CP (CP-AI-OR)

 http://www.cs.cornell.edu/~vanhoeve/cpaior/
–  National Conference on AI (AAAI)

 http://www.aaai.org
–  International Joint Conference on Artificial Intelligence (IJCAI)

 http://www.ijcai.org
–  European Conference on Artificial Intelligence (ECAI)

 http://www.eccai.org
–  International Symposium on Practical Aspects of Declarative

Languages (PADL)
 http://www.informatik.uni-trier.de/~ley/db/conf/padl/index.html

Literature

  Schools and Tutorials
–  ACP summer schools:

2005: http://www.math.unipd.it/~frossi/cp-school/
2006: http://www.cse.unsw.edu.au/~tw/school.html
2007: http://www.iiia.csic.es/summerschools/sscp2007/
2008: http://www-circa.mcs.st-and.ac.uk/cpss2008/
2009: http://www.cs.ucc.ie/~osullb/ACPSS2009/Welcome.html
2010: http://becool.info.ucl.ac.be/summerschool2010/

–  AI conference tutorials (IJCAI’09, 07, 05, ECAI’04 …).
–  CP conference tutorials.
–  CP-AI-OR master classes.

Literature

  Solvers & Languages
–  Choco (http://choco.sourceforge.net/)
–  Comet (http://www.comet-online.org/)
–  Eclipse (http://eclipse.crosscoreop.com/)
–  FaCiLe (http://www.recherche.enac.fr/opti/facile/)
–  Gecode (http://www.gecode.org/)
–  IBM ILOG Solver (http://www-01.ibm.com/software/

websphere/products/optimization/)
–  Koalog Constraint Solver (http://www.gecode.org/)
–  Minion (http://minion.sourceforge.net/)
–  OPL (http://www.ilog.com/products/oplstudio/)
–  Sicstus Prolog (http://www.sics.se/isl/sicstuswww/site/

index.html)

