Solving Constraint Problems
in Constraint Programming

Zeynep KIZILTAN
Department of Computer Science
University of Bologna

Email: zeynep@cs.unibo.it

What is it about?
7

e 10 hour lectures about the core of constraint solving in CP
- Part I: Overview of constraint programming
- Part ll: Local consistency & constraint propagation
— Part lll: Search algorithms
- Part IV: Advanced topics, useful pointers
o Aim:
— Teach the basics of constraint programming.

- Emphasize the importance of local consistency & constraint
propagation & search.

- Point out the advanced topics.
- Inform about the literature.

Warning
S

e \We will see how constraint programming
Works.

e No programming examples.

PART I: Overview
of Constraint Programming

Outline
]

e Constraint Satisfaction Problems (CSPs)

e Constraint Programming (CP)
— Modelling
- Backtracking Tree Search
- Local Consistency and Constraint Propagation

Constraints are everywhere!

A\

J

e

/ F2RY
o &

No meetings before 9am.

No registration of marks
before May 15.

The lecture rooms have a
capacity.

Two lectures of a student
cannot overlap.

No two trains on the same
track at the same time.

Salary > 45k Euros ©

Constraint Satisfaction Problems
]

e A constraint is a restriction.

e There are many real-life problems that require to give a
decision in the presence of constraints:
— flight / train scheduling;
— scheduling of events in an operating system;
— staff rostering at a company;
— course time tabling at a university ...

e Such problems are called Constraint Satisfaction
Problems (CSPs).

Sudoku: An everyday-life example

6 | - S
13 516
2 |
S 4 7 6
6 3

9 | 4
S 2
712 619
4 5 8 7

CSPs: More formally

.
e A CSP is atriple <X,D,C> where:

— Xis a set of decision variables {Xj,...,X_}.

— D is a set of domains {D,...,D,} for X:
e D, is a set of possible values for X..
e usually assume finite domain.

— Cis a set of constraints {C,...,C, }:

e C, is arelation over X;,...,X,, giving the set of combination of allowed
values.

e C, C D(X) x ...x D(X,)

e A solution to a CSP is an assignment of values to the
variables which satisfies all the constraints
simultaneously.

CSPs: A simple example
-

e \ariables
X ={Xq, Xy, X3}
e Domains
D(X;) = {1,2}, D(Xp) = {0,1,2,3}, D(Xs) = {2,3}
e Constraints
X,>X, and X, +X,=X;and X; # X, # X5 # X,
e Solution l
X;=2,X,=1,X,=3 alldifferent([X,, X,, X])

Sudoku: An everyday-life example

X11 —Ft |6 - 4 S| +— X91
8|3 5016
2 |
8 4 7 6
6 3
7 9 | 4
5 2
712 619
X19 —t 4 S 8 N 4+— X99

e A simple CSP
- 9x9 variables (X;) with domains {1,...,9}
— Not-equals constraints on the rows, columns, and 3x3 boxes. E.g.,
alldifferent([X;4, X541, X34, ---, Xg4])
alldifferent([X,4, X5, X43, -+, X40])
alldifferent([X;1, Xo1, X31, X1z, X2, X320 X1, Xog, X33])

Job-Shop Scheduling: A real-life example

0

" nel [ad
\\
\
Mgl [® e - -7\
™ o
Ltime g

e Schedule jobs, each using a resource for a period, in time D by
obeying the precedence and capacity constraints

e A very common industrial problem.
o CSP:
— variables represent the jobs;

— domains represent the start times;
— constraints specify precedence and exclusivity.

CSPs
.]

e Search space: D(X;) x D(X,) x ... x D(X,)
— very large!

e Constraint satisfaction is NP-complete:
-~ no polynomial time algorithm is known to exist!
- | can get no satisfaction ®

e \We need general and efficient methods to solve CSPs:

— Integer and Linear Programming (satisfying linear constraints
on 0/1 variables and optimising a criterion)

- SAT (satisfying CNF formulas on 0/1 variables)

— Constraint Programming
How does it exactly work?

CP Machinery
-

e CP is composed of two phases that are strongly
interconnected:

B

Modelling

S
1. The CP user models the problem as a CSP:

define the variables and their domains;

specify solutions by posting constraints on the
variables:
e oOff-the-shelf constraints or user-defined constraints.

a constraint can be thought of a reusable component
with its own propagation algorithm.
WAIT TO UNDERSTAND WHAT | MEAN ©

Modelling
-

e Modelling is a critical aspect.

e Given the human understanding of a problem, we need
to answer questions like:

which variables shall we choose?
which constraints shall we enforce?

shall we use off-the-self constraints, or define and integrate
our own?

are some constraints redundant, therefore can be avoided?
are there any implied constraints?
among alternative models, which one shall | prefer?

A problem with a simple model

X11 —Ft |6 - 4 S| +— X91
8|3 5016
2 |
8 4 7 6
6 3
7 9 | 4
5 2
712 619
X19 —t 4 S 8 N 4+— X99

e Asimple CSP
- 9x9 variables (X;) with domains {1,...,9}
-~ Not-equals constraints on the rows, columns, and 3x3 boxes, eg.,
alldifferent([X,;, X51, X34, -+, Xg4])
alldifferent([X,;, X12, X435 --., X40])
alldifferent([Xy1, X1, Xa1, X2, Xo2, X2, X13, X3, Xg3])

A problem with a complex model
c---

e Consider a permutation problem:

- find a permutation of the numbers {1,...,n} s.t. some constraints are
satisfied.

e One model:

— variables (X;) for positions, domains for numbers {1,...,n}.
e Dual model:

— variables (Y;) for numbers {1,...,n}, domains for positions.

e Often different views allow different expression of the constraints
and different implied constraints:

— can be hard to decide which is better!

e \We can use multiple models and combine them via channelling
constraints to keep consistency between the variables:

Solving
—

2. The user lets the CP technology solve the CSP:

— choose a search algorithm:

e usually backtracking search performing a depth-first traversal of a
search tree.

-~ integrate local consistency and propagation.

— choose heuristics for branching:
e which variable to branch on?

e which value to branch on? -ﬂ_
|

Heuristics

Backtracking Search
.

e A possible efficient and simple method.
e Variables are instantiated sequentially.

e \Whenever all the variables of a constraint is instantiated,
the validity of the constraint is checked.

e If a (partial) instantiation violates a constraint,
backtracking is performed to the most recently
iInstantiated variable that still has alternative values.

e Backtracking eliminates a subspace from the cartesian
product of all variable domains.

e Essentially performs a depth-first search.

Backtracking Search

o X, E{1,2} X, €{0,1,2,3} X, € {2,3}
o X,>X, and X, + X, =X, and alldifferent([X;, X,, X5])
Backtracking search

Ix|
backtracking |
cktr /\ Eails 8 times!
7%0)
Xy

Backtracking Search

e Backtracking suffers from thrashing ® :
- performs checks only with the current and past variables;
— search keeps failing for the same reasons.

.
(%))

Constraint Programming
.

e Integrates local consistency and constraint
propagation into the search.
e Consequently:

— we can reason about the properties of constraints and their
effect on their variables;

— some values can be filtered from some domains, reducing
the backtracking search space significantly!

Constraint Programming
.

e X, €{1,2} X, €{0,1.2.3} X; € {2,3}
e X,>X, and X, + X, =X, and alldifferent([X;, X,, X5])
Backtracking search + local consistency/propagation

filter and propagate
i

IXI\I
./

Constraint Programming

o X; {12} X, €{0.0} X; € {2.8}
e X,>X, and X, + X, =X, and alldifferent([X;, X,, X5])
Backtracking search + local consistency/propagation

o
lXI\I

_/
I
filter and propagate

\ O g

backtracking

Constraint Programming
.

e X, €{1,2} X, €{0,1.2.3} X; € {2,3}
e X,>X, and X, + X, =X, and alldifferent([X;, X,, X5])
Backtracking search + local consistency/propagation

filter and propagate
i

IXI\I
./

Constraint Programming

o X, E {/,2} X, € gb,1} X, € 9&,3}
e X,>X, and X, + X, =X, and alldifferent([X;, X,, X5])
Backtracking search + local consistency/propagation

S~
(X|

\
Y Fails only once!
I \
fﬂge\r and propagate
N
/

X3l

3

Local consistency & Propagation

e Central to the process of solving CSPs which
are inherently intractable.

=

1

Heuristics

CP
<

e Programming, in the sense of mathematical
programming:
- the user states declaratively the constraints on a set of decision
variables.
- an underlying solver solves the constraints and returns a
solution.
e Programming, in the sense of computer programming:

- the user needs to program a strategy to search for a solution
e search algorithm, heuristics, ...

- otherwise, solving process can be inefficient.

CP

Artificial Discrete Logic Operations
Intelligence Mathematics programming Research

C%“asf:,“y\\ | T
7N T—

A 4

Algorithms

Planning Networks Vehicle ~ Configuration f Bio-
| informatics
& Scheduling Routing

CP

S
e Solve SUDOKU using CP!
http://www.cs.cornell.edu/gomes/SUDOKU/Sudoku.html

— very easy, not worth spending minutes ©

— you can decide which newspaper provides the toughest Sudoku
instances ©

CP
<

e Constraints can be embedded into:
— logic programming (constraint logic programming)
e Prolog lll, CLP(R), SICStus Prolog, ECLiIPSe, CHIP, ...
— functional programming
o Oz
— Imperative programming
e often via a separate library
e |IBM CP Solver, Gecode, Choco, Minion, ...

NOTE: We will not commit to any CP language/library, rather
use a mathematical and/or natural notation.

PART ll: Local Consistency &
Constraint Propagation

Local Consistency & Constraint
Propagation

PART I: The user lets the CP technology solve the CSP:
-~ choose a search algorithm;
- design heuiristics for branching;
- integrate local consistency and propagation.

L=

1

Heuristics

Have central affect

What exactly are they?
How do they work?

Outline
]

e Local Consistency
- Arc Consistency (AC)
— Generalised Arc Consistency (GAC)
- Bounds Consistency (BC)
- Higher Levels of Consistency
e Constraint Propagation
- Propagation Algorithms
e Specialised Propagation Algorithms
— Global Constraints

e Generalised Propagation Algorithms
- AC algorithms

Local Consistency
c_

Backtrack tree search aims to extend a partial
instantiation of variables to a complete and consistent one.
- The search space is too large!

Some inconsistent partial assignments obviously cannot
be completed.

Local consistency is a form of inference which detects
iInconsistent partial assignments.

- Consequently, the backtrack search commits into less inconsistent
iInstantiations.

Local, because we examine individual constraints.
- Remember that global consistency is NP-complete!

Local Consistency: An example
.

o D(X,)={1,2}, D(X,) ={3,4}, C.: X, =X,, C,: X; + X, = 1
o X, = 1)

P)(1 =92 all inconsistent partial assignments

o X,=3 g wrt the constraint X, = X,

o X4 = 4.)

no need to check the individual assignments.
no need to check the other constraint.

unsatisfiability of the CSP can be inferred without having to
search!

Several Local Consistencies
O

e Most popular local consistencies:
— Arc Consistency (AC)
— Generalised Arc Consistency (GAC)
- Bounds Consistency (BC)
e They detect inconsistent partial assignments
of the form X, = |, hence:
—] can be removed from D(X;) via propagation;
— propagation can be implemented easily.

Arc Consistency (AC)
c-—

e Defined for binary constraints.

e A binary constraint C is a relation on two variables X,
and X;, giving the set of allowed combinations of values
(i.e. tuples):

- C C D(X;) x D(X))

e Cis AC iff:

- forall v € D(X)), exists w € D(X) s.t. (v,w) € C.

e v € D(X) is said to have a support wrt the constraint C.
- forallw € D(X), exists v € D(X)) s.t. (v,w) € C.

e w € D(X)) is said to have a support wrt the constraint C.

e A CSP is AC iff all its binary constraints are AC.

AC: An example

o D(X,)={1,2,3}, D(X,) ={2,3,4}, C: X, =X,

e AC(C)?
- 1 € D(X,) does not have a support. \
- 2 € D(X,) has 2 € D(X,) as support. Propagation!
- 3 € D(X,) has 3 € D(X,) as support.

- 2 € D(X,) has 2 € D(X,) as support.

- 3 € D(X,) has 3 € D(X,) as support.

- 4 € D(X,) does not have a support.

e X, =1and X, =4 are inconsistenf partialassignments.
e 1 e D(X,)and4 e D(X,) must b o achieve AC.
~ AC(C)

Generalised Arc Consistency
c__

e Generalisation of AC to n-ary constraints.
e A constraint C is a relation on k variables X,,..., X:
- CC D(X,) x ... x D(X,)

e A supportis atuple <d,,...,d,> € C where d, € D(X)).
e Cis GAC iff:

- forall X, in {X,,..., X,}, forall v € D(X,), v belongs to a support.
e AC is a special case of GAC.
e A CSP is GAC iff all its constraints are GAC.

GAC: An example

G
® D(X1) = {1 ’2’3}1 D(XZ) - {1 ’2}1 D(X3) - {1 !2}
C: alldifferent([X;, X,, X;])

e GAC(C)?
- X;=1and X, = 2 are not supported!

o D(Xy) = {3}, D(X;) = 1,2}, D(X;) = 11,2}
C: Xi#F X% X,
- GAC(C)

Bounds Consistency (BC)
c__

e Defined for totally ordered (e.g. integer) domains.
e Relaxes the domain of X, from D(X)) to [min(X;)..max(X))].

e Advantages:

— it might be easier to look for a support in a range than in a
domain;

— achieving BC is often cheaper than achieving GAC;
— achieving BC is enough to achieve GAC for monotonic
constraints.
e Disadvantage:
- BC might not detect all GAC inconsistencies in general.

Bounds Consistency (BC)

e A constraint C is a relation on k variables X,,..., X,:
- CC D(X,) x ... x D(X,)

e A bound supportis a tuple <d,,...,d,> € C where d. €
[Min(X)..max(Xi)].

e Cis BC iff:

- forall X, in {X,,..., X,}, min(X;) and max(X,) belong to a
bound support.

GAC > BC: An example
-

® D(X1) = D(XZ) = {1 ’2}’ D(X3) = D(X4) = {2’3’5’6}’ D(X5) = {5}’ D(XG) =
{3,4,5,6,7}

C: alldifferent([X,, X,, X5, X4, X5, X51)
e BC(C): 2 € D(X;)and 2 & D(X,) have no support.

XIX2X3X+XsXe X1 X2 X3 X4X5 X6

e = e I
e B - e R

Original

GAC > BC: An example
-

® D(X1) - D(XZ) - {1 ’2}’ D(X3) - D(X4) - {2’3’5’6}v D(XS) - {5}’ D(XG) -
{3,4,5,6,7}
C: alldifferent([X,, X, , X5, X, , X5, X51])

e GAC(C): {2,5} € D(X,), {2,5} € D(X,), {3,5,6} € D(X;) have no

support.
X1 X2 X3 X4 XS X6 XIX2 X3 X4 X5 Xé€ LRI RRNTAS

e I~ e I S N
e - e A A N

GAC

Original

GAC = BC: An example

S
e D(X,)={1,2,3}, D(X,) = {1,2,3}, C: X, < X,
e BC(C):
- D(Xq) ={1,2}, D(X;) ={2,3}
e BC(C)= GAC(C):
~ a support for min(X,) supports all the values in D(X,).
— a support for max(X1) supports all the values in D(X1).

Higher Levels of Consistencies
.

e Path consistency, k-consistencies, (i,j) consistencies, ...

e Not much used in practice:

— detect inconsistent partial assignments with more than one
<variable,value> pair.

— cannot be enforced by removing single values from domains.

e Domain based consistencies stronger than (G)AC.

- Singleton consistencies, triangle-based consistencies, ...

- Becoming popular:
e shaving in scheduling.

Outline
]

e Local Consistency
— Arc Consistency (AC)
— Generalised Arc Consistency (GAC)
- Bounds Consistency (BC)
— Higher Levels of Consistency
e Constraint Propagation
— Constraint Propagation Algorithms

e Specialised Propagation Algorithms
— Global Constraints

e Generalised Propagation Algorithms
-~ AC Algorithms

Constraint Propagation
.

e Can appear under different names:
— constraint relaxation
— filtering algorithm
— local consistency enforcing, ...
e Similar concepts in other fields:
— unit propagation in SAT.
e Local consistencies define properties that a CSP must
satisfy after constraint propagation:
- the operational behaviour is completely left open;

- the only requirement is to achieve the required property on the
CSP.

Constraint Propagation: A simple example
o 00|

Input CSP:D(X,) = {1,2}, D(X,) = {1,2} , C: X, < X,

l We can write
different

A constraint propagation algorithms with

algorithm for enforcing AC different
complexities to

l achieve the
same effect.

Output CSP:D(X,) = {1}, D(X,) = {2}, C: X, < X,

Constraint Propagation Algorithms

e A constraint propagation algorithm propagates a
constraint C.
— It removes the inconsistent values from the domains of
the variables of C.
— It makes C locally consistent.

- The level of consistency depends on C:
e GAC might be NP-complete, BC might not be possible, ...

Constraint Propagation Algorithms
|

e \When solving a CSP with multiple constraints:
— propagation algorithms interact;

— a propagation algorithm can wake up an already
propagated constraint to be propagated again!

- in the end, propagation reaches a fixed-point and all
constraints reach a level of consistency;

- the whole process is referred as constraint
propagation.

Constraint Propagation: An example
S

D(X,) = D(X,) = D(X5)= {1,2,3}
C,: alldifferent([X,, X;, X3]) C,: X, <3 Cj3: X53<3
Let's assume:

~ the order of propagation is C,, C,, Cy;

— each algorithm maintains (G)AC.

Propagation of C,:

- nothing happens, C, is GAC.

Propagation of C,:

- 3is removed from D(X,), C, is now AC.
Propagation of Cj:

- 3is removed from D(X;), C5 is now AC.

C, is not GAC anymore, because the supports of {1,2} € D(X,) in
DzXZ) and D(X;) are removed by the propagation of C, and C,.

Re-propagation of C,:
- 1 and 2 are removed from D(X,), C, is now AC.

Properties of Constraint Propagation Algorithms

e Itis not enough to be able to remove inconsistent values
from domains.

e A constraint propagation algorithm must wake up when
necessary, otherwise may not achieve the desired local
consistency property.

e Events that trigger a constraint propagation:
- when the domain of a variable changes;
- when a variable is assigned a value;
-~ when the minimum or the maximum values of a domain changes.

Outline
]

e Local Consistency
— Arc Consistency (AC)
— Generalised Arc Consistency (GAC)
- Bounds Consistency (BC)
— Higher Levels of Consistency

e Constraint Propagation
- Propagation Algorithms

e Specialised Propagation Algorithms

- Global Constraints
e Decompositions
e Ad-hoc algorithms

e Generalised Propagation Algorithms
- AC Algorithms

Specialised Propagation Algorithms
-

e A constraint propagation algorithm can be general or specialised:
- general, if it is applicable to any constraint;
- specialised, if it is specific to a constraint.

e Specialised algorithms:

- Disadvantage:
e has limited use;
e is not always easy to develop one.

- Advantages:
e exploits the constraint semantics;
e is potentially more efficient than a general algorithm.

e Worth developing specialised algorithms for recurring constraints
with a reasonable semantics.

Specialised Propagation Algorithms

S
o C: X, =X,
e Observation:
— a support of min(X,) supports all the values in D(X,);
~ a support of max(X,) supports all the values in D(X,).
e Propagation algorithm:
~ filter D(X,) s.t. max(X,) < max(X,);
— filter D(X,) s.t. min(X,) < min(X,).
e The result is GAC (and thus BC).

Example

c.
e D(X,)={3,4,7,8},D(X,)={1,2, 3,5}, C: X, <X,

Example
-
e D(X,)={3,4,7,8,D(X,)={1, 2, 3,5}, C: X, £ X,

e Propagation:
— filter D(X,) s.t. max(X,) < max(X,);

Example
_
o D(X,)={3,4,7,8,D(X,)) = {1, 2, 3,5}, C: X, < X,

e Propagation:
— filter D(X,) s.t. max(X,) < max(X,);

Example

_
o D(X,)={3,4,7,8,D(X,)) = {1, 2, 3,5}, C: X, < X,
e Propagation:

— filter D(X,) s.t. max(X,) < max(X,);
~ filter D(X,) s.t. min(X;) < min(X,);

Example

o]
o D(X,)={3,4,7,8,D(X,) ={f, 2, 3,5, C: X; £ X,
e Propagation:
— filter D(X,) s.t. max(X,) < max(X,);
~ filter D(X,) s.t. min(X;) = min(X,);

Global Constraints
7

e Many real-life constraints are complex and not binary.
- Specialised algorithms are often developed for such constraints!

e A complex and n-ary constraint which encapsulates a
specialised propagation algorithm is called a global
constraint.

Examples of Global Constraints
o 00|

e Alldifferent constraint:

- alldifferent([X,, X,, ..., X]) holds iff
X #X fori<je{l,..n}

— useful in a variety of context

e Timetabling (e.g. exams with common students must occur at
different times)

o Towi(n)ament scheduling (e.g. a team can play at most once in a
wee

e Configuration (e.g. a particular product cannot have repeating
components)

Beyond Alldifferent
-

e NValue constraint:

— one generalisation of alldifferent

- nvalue [X;, X5, ..., X,], N) holds iff
§<|11_2, <)

- nvalue ([1, 2, 2,1, 3], 3)

— alldifferent when N =n

- Useful when values represent resources and we want
to limit the usage of resources. E.g.,

e Minimise the total number of resources used;

e The total number of resources used must be between a
specific interval;
o ...

Beyond Alldifferent
-

e Global cardinality constraint:
— another generalisation of alldifferent

gce([Xy, X,, ..., X
orallj € {1,..., m} O, =[{Xi| Xj=v,1=sisn}

—h

gcee([1, 1, 3, 2, 3],

[V ooy Vi, [O4, .., O] iff

1, 2, 3,4],[2,1, 2, 0])

Useful again when values represent resources
We can now limit the usage of each resource

individually. E.g.,

e Resource 1 can be used at most three times
e Resource 2 can be used min 2 max 5 times

Symmetry Breaking Constraints
S

e Consider the following scenario:

- Xy Xy, oo, X Jand [Y,, Y, ..., Y,] represent the 2 day event
assignments of a conference

- Each day has n slots and the days are indistinguishable
- Need to avoid symmetric assignments

e Global constraints developed for this purpose are called
symmetry breaking constraints.

e Lexicographic ordering constraint:
— lex([Xq, Xy, ..o, X 1, [Y1, Y, ..., Y,]) holds iff:
X, <Y, OR (X,=Y,AND X,<Y,) OR ...
(X; =Y, AND X, =Y, AND AND X_<Y,)
_ lex ([1, 2, 41,[1, 3, 3])

Grammar Constraints
7

e We might sometimes want a sequence of variables obey certain
patterns. E.g.,

— regulations in scheduling

e A promising direction in CP is the ability of modelling problems via
automata/grammar.

e Global constraints developed for this purpose are called grammar
constraints.
e Regular constraint:

- regular([X;, X,, ..., X.], A) holds iff <X,, X,, ..., X,;> forms a string
accepted by the DFA A (which accepts a regular language).

- regular([a, a, b], A), regular([b], A), regular([b, c, c, c, c, c], A) with A

G20

Specialised Algorithms for Global Constraints

e How do we develop specialised algorithms
for global constraints?
e [woO main approaches:

— constraint decomposition
— ad-hoc algorithm

Constraint Decomposition

e A global constraint is decomposed into smaller

and simpler constraints each which has a known
propagation algorithm.

e Propagating each of the constraints gives a
propagation algorithm for the original global
constraint.

- A very effective and efficient method for some global
constraints

Decomposition of Among

o]
e among([X,, X,, ..., X], [d4, d,, ..., d.], N) holds iff
N=[X|Xe&{dds, ..., d }T=<1<n}
e Decomposition:
- B,with D(B;) ={0, 1} for 1 <i<n
- C:B =1 Xe{dd,, ...,d} for1<is<n
- Y B=N
e AC(C)for1<i<nandBC(DB=N)ensures GAC
on among.

Decomposition of Lex

o]
o |€X([X1, X2, ey Xn]; [Y’]! Y27 L Yn])

e Decomposition:

- B, with D(B;) = {0, 1} for 1 £i < n+1 to indicate the vectors have been
ordered by position i-1

- B=0

- C:(B;=B;,;=0AND X.=Y,)OR (B;=0ANDB,;=1AND X.<Y;) OR
(Bj=B,,=1)for1<i<n

e GAC(C)) ensures GAC on lex.

Constraint Decompositions
-

e May not always provide an effective propagation.

e Often GAC on the original constraint is stronger than
(G)AC on the constraints in the decomposition.

e E.g., C: alldifferent([X;, X,, ..., X.])

e Decomposition following the definition:
- Ci X #X fori<je {1,...,n}
- AC on the decomposition is weaker than GAC on alldifferent.
- E.g., D(X,) = D(X,) = D(Xy) = {1,2}, C: alldifferent([X,, X,, X;])
- Cyy Cy3, Cyg are all AC, but C is not GAC.

Constraint Decompositions
-

e Eg., C:lex([X:, Xy, ..o, X1, [Y4, Yo ooy Y.

e OR decomposition:

- X;<Y,; OR (X;=Y, AND X,<Y,) OR ...
(X;=Y,AND X, =Y, AND AND X_ <Y,)

- AC on the decomposition is weaker than GAC on lex.

- E.g., D(X)={0, 1, 2}, D(X;) ={0, 1}, D(Y4) ={0, 1}, D(Y5) = {0, 1}
C: Lex([Xq, X3, [Y4, Yal)

-~ Cis not GAC but the decomposition does not prune anything.

Constraint Decompositions

e AND decomposition of lex([X;, X,, ..., X/], [Y4, Yo, ..., Y,]):
- X4<Y, AND (X;=Y, > X,<Y,) AND ...
(X;=Y,AND X, =Y,AND X =Y, ., —> X £Y,)
- AC on the decomposition is weaker than GAC on lex.
- E.g., D(X;) = {0, 1}, D(X,) = {0, 1}, D(Y,) = {1}, D(Y,) = {0}
C: Lex([Xy, X5l, [Y4, Y3l)
-~ Cis not GAC but the decomposition does not prune anything.

Constraint Decompositions
-

e Different decompositions of a constraint may be
Incomparable.

e Difficult to know which one gives a better propagation for a given
instance of a constraint.

o C:Lex([X4, X5], [Y4, Y5
o D(X;)={0, 1}, D(X;) = {0, 1}, D(Yy) = {1}, D(Y) = {0}

— AND decomposition is weaker than GAC on lex, whereas OR
decomposition maintains GAC.

o D(X1) - {07 1’ 2} ’ D(XZ) - {O’ 1}’ D(Y1) - {07 1}) D(YZ) - {Ov 1}

— OR decomposition is weaker than GAC on lex, whereas OR
decomposition maintains GAC.

Constraint Decompositions
-

e Even if effective, may not always provide an efficient
propagation.

e Often GAC on a constraint via a specialised algorithm is
maintained faster than (G)AC on the constraints in the
decomposition.

Constraint Decompositions
c---

o C:Lex([X4, X,], [Yq, Yol
¢ D(x1) = {O’ 1} ’ D(XZ) = {O’ 1}’ D(Y1) = {1} ’ D(YZ) = {O}

— AND decomposition is weaker than GAC on lex, whereas OR
decomposition maintains GAC

e D(X;)={0,1,2}, D(X;) ={0, 1}, D(Y,) ={0, 1}, D(Y3) = {0, 1}

— OR decomposition is weaker than GAC on lex, whereas OR
decomposition maintains GAC

e AND or OR decompositions have complementary strengths!

-~ Combining them gives us a decomposition which maintains GAC on
lex.

e [00 many constraints to post and propagate!
e A dedicated algorithm runs amortised in O(1).

Dedicated Algorithms
-

e Dedicated ad-hoc algorithms provide
effective and efficient propagation.

e Often:

- GAC is maintained in polynomial time.

- Many more inconsistent values are detected
compared to the decompositions.

Benefits of Global Constraints
7

e Modelling benefits

- Reduce the gap between the problem statement and the
model.

— Capture recurring modelling patterns.
- May allow the expression of constraints that are otherwise
not possible to state using primitive constraints (semantic).
e Solving benefits

- More inference in propagation (operational).
— More efficient propagation (algorithmic).

Dedicated Algorithm for Alldifferent

o]
e GAC algorithm based on matching theory.

- Establishes a relation between the solutions of the constraint
and the properties of a graph.

-~ Runs in time O(dn'>).

e \/alue graph: bipartite graph between variables and their
possible values.

e Matching: set of edges with no two edges having a node
In common.

e Maximal matching: largest possible matching.

Dedicated Algorithm for Alldifferent
S

e An assignment of values to the variables
X4, X,, ..., X, is a solution iff it corresponds to
a maximal matching.

— Edges that do not belong to a maximal matching
can be deleted.

e [he challenge is to compute such edges
efficiently.

— Exploit concepts like strongly connected
components, alternating paths, ...

Dedicated Algorithm for Alldifferent

e D(X4) ={1,3}, D(Xy) ={1,3}, D(X3)=1{1.2}

Variable-value
graph

Dedicated Algorithm for Alldifferent

® D(X1) - {1 ’3} / D(XZ) - {1 ’3}’ D(X3)= {1 ’2}

A maximal
matching

Dedicated Algorithm for Alldifferent

e D(X;) ={1,3}, D(X;) = {1,3}, D(Xq)={f,2}

Another maximal
matching

Does not belong to
any maximal matching

Dedicated Algorithms
-

e [s it always easy to develop a dedicated algorithm for
a given constraint?

e There’'s no single recipe!

e A nice semantics often gives us a clue!

— Graph Theory

— Flow Theory

-~ Combinatorics

— Complexity Theory, ...

e GAC may as well be NP-hard!

- In that case, algorithms which maintain weaker
consistencies (like BC) are of interest.

GAC for Nvalue Constraint
]

e nvalue([X, X,, ..., X.], N)holds iff N=|{X, |1<i<n}
e Reduction from 3 SAT.

Given a Boolean fomula in k variables (labelled from 1 to k) and m
clauses, we construct an instance of nvalue([X,, X,, ..., Ximl, N):

- D(X) ={i, i’} fori e {1,..., Kk} where X, represents the truth assignment
of the SAT variables;

X, where i > k represents a SAT clause (disjunction of literals);
— for agiven clause like x Vy' V z, D(X)) = {x, Y, z}.
By construction, X,, ..., X, will consume all the k distinct values.
When N = k, nvalue has a solution iff the original SAT problem has a
satisfying assignment.
— Otherwise we will have more than k distinct values.

— Hence, testing a value for support is NP-complete, and enforcing GAC is
NP-hard!

GAC for Nvalue Constraint
]

e Eg,C;:(@aORD ORc)AND
C,: (@ ORb ORd) AND
C;: (" OR ¢’ ORd)
e The formula has 4 variables (a, b, ¢, d) and 3 clauses (C,, C,, C,).
e We construct nvalue([X,, X, ..., X,], 4) where:
o D(X;)={a, a7}, D(X;) ={b, b}, D(X3) = {c, ¢}, D(X,) = {d, d’}, D(X;)
={a, b’, c}, D(Xy) ={a’, b, d}, D(X;) ={b’, ¢, d}
e An assignment to X,, ..., X, will consume 4 distinct values.

e Not to exceed 4 distinct values, the rest of the variables must have
intersecting values with X,, ..., X,.

e Such assignments will make the SAT formula TRUE.

Outline
]

e Local Consistency
— Arc Consistency (AC)
— Generalised Arc Consistency (GAC)
- Bounds Consistency (BC)
— Higher Levels of Consistency

e Constraint Propagation
- Propagation Algorithms

e Specialised Propagation Algorithms

— Global Constraints
e Decompositions
e Ad-hoc algorithms

e Generalised Propagation Algorithms
- AC Algorithms

Generalised Propagation Algorithms
|

e Not all constraints have nice semantics we can exploit
to devise an efficient specialised propagation algorithm.

e Consider a product configuration problem:
— compatibility constraints on hardware components:
e only certain combinations of components work together.
— compatibility may not be a simple pairwise relationship:

e video cards supported function of motherboard, CPU, clock speed,
Qofs, ...

Production Configuration Problem

e 5-ary constraint:

- Compatible (motherboard345, intel CPU,
2GHz, 1GBRam, 80GBdrive).

- Compatible (motherboard346, intel CPU,
3GHz, 2GBRam, 100GBdrive).

— Compatible (motherboard346, amdCPU,
2GHz, 2GBRam, 100GBdrive).

Crossword Puzzle
G

e Constraints with different

. Al T FsPa P elml ™
arlty' “el c| AR H| T| ol I T| U| R| T| L| E
_ W()rd1 ([X1’X2’X3]) "s| | 1|"8| A| 1| n| U 0| r| R 0| R
20 ral 22 23
Ll Al 1] ¢ aAl”B| E| R Fl w| D
- WOI’d2 ([X11X13=X16]) “8ol w| LI «|"al n| el s|”H| E| D] |
“siwl Al LI'clR| Al s|"PI 0| Wl E| N
- 35 36 |37 38 39
Nl G HI"al m| s| 7| EI'R| s Rl G
e No simple way to decide s 1w 1l Al el
“S 45F 45P A R 47A IBK 49E E T 50U 518 52A
tabl rds other than [Fd[&* . %S|
dacceptable words othe a c|l el*1] ¢ el v| gl s sIk| 1| n| s
58 5 60 61 62
. Rl | 7| AW Al N| E['W el R| E| H
to put them in a table. AR AR R
68 69 70 71 72 73
T| E Al E| s e|"u| K Ai u|"8[A
74 75 76 7
cl r|™al T| E| s Ll al €| R al ul o
78 79 a0
Hl s| al E| L s| | N| T Al T| L

GAC Schema
«

e A generic propagation algorithm.

- Enforces GAC on an n-ary constraint given by:
e a set of allowed tuples;
e a set of disallowed tuples;
e a predicate answering if a constraint is satisfied or not.

- Sometimes called the “table” constraint:
e user supplies table of acceptable values.

e Complexity: O(ed") time
e Hence, n cannot be too large!
- Many solvers limits it to 3 or so.

Arc Consistency Algorithms
c_

e Generic AC algorithms with different
complexities and advantages:
- AC3
- AC4
- ACo6
- AC2001

AC-3
<

e Idea:

- Revise (X, C): removes unsupported values of X
and returns TRUE.

- Place each (X,, C) where X participates to C and its
domain is potentially not AC, in a queue Q;

- While Q is not empty:
e Select and remove (X, C) from Q;
e Ifrevise(X, C) then
—~ If D(X) = { } then return FALSE;
- else place {(X;, C') | X;, X, participate in some C’} into Q.

AC-3

e AC-3 achieves AC on binary CSPs in O(ed?)

time and O(e) space.
e Time complexity is not optimal ®

e Revise does not remember anything about past
computations and re-does unnecessary work.

cl: c2:

z X x<=y Y yviz 2
7\ / \ 4 7\
’;' 'n| || \ / ' ,j /| (

- | | /'2'\ |-- {,/2\ '| I'
3| l '.-;-,T«_/)
A\ . g >/
7'| I 3/ T i [' ey |'

| vI b J-'; N |
'u .' 4 = "'(4 ';' '||. .‘l
) \/

10 + 4 constraint 4 +\| constraint 9 constraint
checks checks checks
(a) \ (b)

(X, C,)is putin Q

only check of X «— 3 was
necessary!

AC-4
<

e Stores max. amount of info in a preprocessing step so
as to avoid redoing the same constraints checks.

e |dea:
— Start with an empty queue Q.
- Maintain counter[X;, v;, X,] where X;, X, participate in a
constraint C, and v; € D(X))
e Stores the number of supports for X; < v,on C.

- Place all supports of X; < v; (in all constraints) in a list S[X;, v].

AC-4
<

e |[nitialisation:
- All possible constraint checks are performed.

- Each time a support for X; < v; is found, the corresponding counters
and lists are updated.

- Each time a support for X; < v; is not found, remove v, from D(X;) and
place (X, v;) in Q for future propagation.

- If D(X)) ={} then return FALSE.

AC-4
<

e Propagation:
— While Q is not empty:
o Select and remove (X;, v;) from Q;
e Foreach (X, vy in S[X, v]
- If v, e D(X,) then
o decrement counter[X,, v;, X]
. If counter[X,, v;, X]] = 0 then
. Remove v, from D(X,); add (X,, v;) to Q
o If D(X,) = {} then return FALSE.

cl c2:

X X<y Y viz Z
/_ L] L]
A M\ No additional
' \ ; \./ I |' ‘, .
/2\' T' 2| N constraint
N
. (3) ‘ :
G ,T 3 I~ check!
'”4}—~\4\
\ V4 V4
10 + 4 constraint 4 + 1 constraint 9 constraint
checks checks checks

(2) (b) (y,3) is putin Q

counter|z, 1,
counter|x, 2,
counter|z, 3,
counter|x, 4,

[y Sy

oW

b = NN =
N v S N N’
S e S e’ e’
[S

PN N TN N
NG

AC-4

e AC-3 achieves AC on binary CSPs in O(ed?)

time and O(ed?) space.
e Time complexity is optimal ©
e Space complexity is not optimal ®

e AC-6 and AC-2001 achieve AC on binary
CSPs in O(ed?) time and O(ed) space.
- Time complexity is optimal ©
- Space complexity is optimal ©

PART IV: Search Algorithms

Outline

o]
e Depth-first Search Algorithms

- Chronological Backtracking

— Conflict Directed Backjumping
- Dynamic Backtracking

- Branching Strategies

— Heuristics

e Best-First Search Algorithms
— Limited Discrepancy Search

Depth-first Search Algorithms
c_

e Backtracking tree search algorithms essentially
perform depth-first traversal of a search tree.

- Every node represents a decision made on a
variable.

— At each node:
e check every completely assigned constraint;
e If consistent continue down in the tree;

e otherwise prune the underlying subtrees and backtrack to an
uninstantiated variable that still has alternative values.

Chronological Backtracking

e Backtracks to the most recent variable.

®, ® 00

&

solution

Chronological Backtracking
.

e Suffers from trashing.

- The same failure can be remade an exponential
number of times.

the first choice is
incompatible with

any last choice

Non-Chronological Backtracking
S

e Backtrack on a culprit variable.

dead-end

X
X
X
X,
Xs
Xs
X
X

— Backtracking to X; is pointless.
— Better to backtrack on X,.

Conflict Sets
«

e CS(X,): assigned variables in conflict with
some value of X,.

X
X
X,
X,
X
X
X
X

Conflict Directed Backjumping

e Backtracks to the last variable in the conflict set.
e |Intermediate decisions are removed.

No-goods
c

e Subset of incompatible assignments.

e E.g., map colouring problem.
- X4, Xy, X4 are adjacent with D = {1, 2}.
- (Xy=aand X;=a) or equivalently (X, =a — X;# a)
IS a no-good.

e No-good resolution:

- Xy=a— X;#a

Dynamic Backtracking

e One no-good for each incompatible value is
maintained.
- Empty domain: new no-good by no-good resolution.
— Backtrack to the variable in the right hand side of the no-good.

Dynamic Backtracking
S

e Backtracks to the last decision responsible for the
dead-end.

e Intermediate decisions are not removed.

{x;,7«1} o

{4} o
new tree

Branching Strategies
.

e The method of extending a node in the search tree.

- Usually consists of posting a unary constraint on a chosen
variable X.

- X, & the ordering of the branches are chosen by the heuristics.
e D-way branching:
- One branch is generated for each v, € D(X) by X; < v;.
e 2-way branching:
- 2 branches are generated for each v, € D(X) by X; < v; and
X «\ V.
e Domain splitting:

- kbranches are generated by X; € D; where D,...D, are
partitions of D,.

Variable and Value Ordering Heuristics
S

e (Guide the search.

e Problem specific vs generic heuristics.

e Static Heuristics:
— a variable is associated with each level;

— branches are generated in the same order all over the tree;

— calculated once and for all before search starts, hence
cheap to evaluate.

Variable and Value Ordering Heuristics
S

e Dynamic Heuristics:
- at any node, any variable & branch can be considered;
- decided dynamically during search, hence costly;
— takes into account the current state of the search tree.

Variable Ordering Heuristics
c_

e Fail-first principle: to succeed, try first where
you are most likely to falil.

e Min domain (dom):
- choose next the variable with minimum domain.

e Most constrained (deg):

— choose next the variable involved in most number
of constraints.

e Combinations
- dom + deg; dom / deg

Value Ordering Heuristics
c_

e Succeed-first principle: choose next the value
most likely to be part of a solution.
— Approximating the number of solutions.

- Looking at the remaining domain sizes when a
value is assigned to a variable.

Problems with Depth-first Search
-

The branches out of a node, ordered by a value
ordering heuristic, are explored in left-to-right order,
the left-most branch being the most promising.

For many problems, heuristics are more accurate at
deep nodes.

Depth-first search:

- puts tremendous burden on the heuristics early in the search and
light burden deep in the search;

- consequently mistakes made near the root of the tree can be
costly to correct.

Best-first search strategy is of interest.

Limited Discrepancy Search
c_

e A discrepancy is the case where the search
does not follow the value ordering heuristic
and thus does not take the left-most branch
out of a node.

o LDS:

— Trusts the value ordering heuristic and gives
priority to the left branches.

— lteratively searches the tree by increasing number
of discrepancies, preferring discrepancies that
occur near the root of the tree.

Limited Discrepancy Search
c_

e The search recovers from mistakes made
early in the search.

Figure 1: Paths with 0, 1, 2, and 3 Discrepancies in a Depth 3 Binary Tree

PART IV: Some Useful Pointers
about CP

(Incomplete) List of Advanced Topics
|

Modelling

Global constraints,
propagation algorithms

Search algorithms

Heuristics

Symmetry breaking
Optimisation

Local search

Soft constraints, preferences
Temporal constraints
Quantified constraints
Continuous constraints

Planning and scheduling
SAT

Complexity and tractability
Uncertainty

Robustness

Structured domains
Randomisation

Hybrid systems
Applications

Constraint systems

No good learning
Explanations
Visualisation

Literature
R

e Books

- Handbook of Constraint Programming
F. Rossi, P. van Beek, T. Walsh (eds), Elsevier Science, 2006.

Some online chapters:

Chapter 1 - Introduction

Chapter 3 - Constraint Propagation
Chapter 6 - Global Constraints
Chapter 10 - Symmetry in CP
Chapter 11 - Modelling

Literature
R

Books

Constraint Logic Programming Using Eclipse

K. Apt and M. Wallace, Cambridge University Press, 2006.
Principles of Constraint Programming

K. Apt, Cambridge University Press, 2003.

Constraint Processing
Rina Dechter, Morgan Kaufmann, 2003.

Constraint-based Local Search
Pascal van Hentenryck and Laurent Michel, MIT Presss, 2005.

The OPL Optimization Programming Languages
Pascal Van Hentenryck, MIT Press, 1999.

Literature
R

e People

- Barbara Smith
e Modelling, symmetry breaking, search heuristics
e Tutorials and book chapter

— Christian Bessiere
e Constraint propagation

e Global constraints
— Nvalue constraint

e Book chapter
- Jean-Charles Regin

e Global constraints
— Alldifferent, global cardinality, cardinality matrix

—~ Toby Walsh
e Modelling, symmetry breaking, global constraints
e Various tutorials

Literature
R

e Journals
— Constraints
— Atrtificial Intelligence
— Journal of Artificial Intelligence Research
— Journal of Heuristics
— Intelligenza Artificiale (AlI*IA)
— Informs Journal on Computing
- Annals of Mathematics and Artificial Intelligence

Literature
R

Conferences

Principles and Practice of Constraint Programming (CP)
http://www.cs.ualberta.ca/~ai/cp/

Integration of Al and OR Techniques in CP (CP-AI-OR)

http://www.cs.cornell.edu/~vanhoeve/cpaior/

National Conference on Al (AAAI)

http://www.aaai.org

International Joint Conference on Artificial Intelligence (IJCAI)
http://www.ijcai.org

European Conference on Atrtificial Intelligence (ECAI)
http://www.eccai.org

International Symposium on Practical Aspects of Declarative
Languages (PADL)

http://www.informatik.uni-trier.de/~ley/db/conf/padl/index.html

Literature
R

e Schools and Tutorials

- ACP summer schools:
2005: http://www.math.unipd.it/~frossi/cp-school/
2006: http://www.cse.unsw.edu.au/~tw/school.html|
2007: http://www.iiia.csic.es/summerschools/sscp2007/
2008: http://www-circa.mcs.st-and.ac.uk/cpss2008/
2009: http://www.cs.ucc.ie/~osullb/ACPSS2009/Welcome.html
2010: http://becool.info.ucl.ac.be/summerschool2010/

- Al conference tutorials (IJCAI'09, 07, 05, ECAI'04 ...).

— CP conference tutorials.

— CP-AI-OR master classes.

Literature
R

e Solvers & Languages
— Choco (http://choco.sourceforge.net/)
— Comet (http://www.comet-online.org/)

- Eclipse (http://eclipse.crosscoreop.com/)

- FaCilLe (http://www.recherche.enac.fr/opti/facile/)

- Gecode (http://www.gecode.org/)

- IBM ILOG Solver (http://www-01.ibm.com/software/
websphere/products/optimization/)

- Koalog Constraint Solver (http://www.gecode.org/)

— Minion (http://minion.sourceforge.net/)
- OPL (http://www.ilog.com/products/oplstudio/)

- Sicstus Prolog (http://www.sics.se/isl/sicstuswww/site/
index.html)

