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What is it about? 

  10 hour lectures about the core of constraint solving in CP 
–  Part I:  Overview of constraint programming 
–  Part II: Local consistency & constraint propagation 
–  Part III: Search algorithms 
–  Part IV: Advanced topics, useful pointers 

  Aim: 
–  Teach the basics of constraint programming. 
–  Emphasize the importance of local consistency & constraint 

propagation & search. 
–  Point out the advanced topics. 
–  Inform about the literature. 



Warning 

  We will see how constraint programming 
works. 

  No programming examples. 



PART I: Overview  
of Constraint Programming  



Outline 

  Constraint Satisfaction Problems (CSPs) 
  Constraint Programming (CP) 

–  Modelling 
–  Backtracking Tree Search 
–  Local Consistency and Constraint Propagation 



Constraints are everywhere! 

  No meetings before 9am. 
  No registration of marks 

before May 15. 
  The lecture rooms have a 

capacity. 
  Two lectures of a student 

cannot overlap. 
  No two trains on the same 

track at the same time. 
  Salary > 45k Euros  
     … 



Constraint Satisfaction Problems 

  A constraint is a restriction. 
  There are many real-life problems that require to give a 

decision in the presence of constraints: 
–  flight / train scheduling; 
–  scheduling of events in an operating system; 
–  staff rostering at a company; 
–  course time tabling at a university … 

  Such problems are called Constraint Satisfaction 
Problems (CSPs). 



Sudoku: An everyday-life example 



CSPs: More formally 

  A CSP is a triple <X,D,C> where: 
–  X is a set of decision variables {X1,...,Xn}. 
–  D is a set of domains {D1,...,Dn} for X: 

  Di is a set of possible values for Xi. 
  usually assume finite domain. 

–  C is a set of constraints {C1,…,Cm}: 
  Ci is a relation over Xj,...,Xk, giving the set of combination of allowed 

values. 
  Ci ⊆ D(Xj) x ...x D(Xk) 

  A solution to a CSP is an assignment of values to the 
variables which satisfies all the constraints 
simultaneously. 



CSPs: A simple example 

  Variables  
X = {X1, X2, X3} 

  Domains  
D(X1) = {1,2}, D(X2) = {0,1,2,3}, D(X3) = {2,3} 

  Constraints 
X1 > X2  and  X1 + X2 = X3 and X1 ≠ X2 ≠ X3 ≠ X1  

  Solution  
X1 = 2, X2 = 1, X3 = 3   alldifferent([X1, X2, X3]) 



Sudoku: An everyday-life example 

  A simple CSP 
–  9x9 variables (Xij) with domains {1,...,9} 
–  Not-equals constraints on the rows, columns, and 3x3 boxes. E.g.,  

alldifferent([X11, X21, X31, …, X91]) 

alldifferent([X11, X12, X13,  …, X19]) 

alldifferent([X11, X21, X31, X12, X22, X32, X13,  X23, X33]) 

X11 

. 

. 

. 

X19 X99 

. 

. 

. 

X91 



Job-Shop Scheduling: A real-life example 

  Schedule jobs, each using a resource for a period, in time D by 
obeying the precedence and capacity constraints 

  A very common industrial problem. 
  CSP: 

–  variables represent the jobs; 
–  domains represent the start times; 
–  constraints specify precedence and exclusivity. 



CSPs 

  Search space: D(X1) x D(X2) x … x D(Xn) 
–  very large! 

  Constraint satisfaction is NP-complete: 
–  no polynomial time algorithm is known to exist! 
–  I can get no satisfaction  

  We need general and efficient methods to solve CSPs: 
–  Integer and Linear Programming (satisfying linear constraints 

on 0/1 variables and optimising a criterion) 
–  SAT (satisfying CNF formulas on 0/1 variables) 
–  … 
–  Constraint Programming 

How does it exactly work? 



CP Machinery 

 Solving  Modelling 

  CP is composed of two phases that are strongly 
interconnected: 



Modelling 

1.  The CP user models the problem as a CSP: 
–  define the variables and their domains; 
–  specify solutions by posting constraints on the 

variables: 
  off-the-shelf constraints or user-defined constraints. 

–  a constraint can be thought of a reusable component 
with its own propagation algorithm.  

 WAIT TO UNDERSTAND WHAT I MEAN     



Modelling 

  Modelling is a critical aspect.  
  Given the human understanding of a problem, we need 

to answer questions like: 
–  which variables shall we choose? 
–  which constraints shall we enforce?  
–  shall we use off-the-self constraints, or define and integrate 

our own? 
–  are some constraints redundant, therefore can be avoided? 
–  are there any implied constraints? 
–  among alternative models, which one shall I prefer? 



A problem with a simple model 

X11 

. 

. 

. 

X19 X99 

. 

. 

. 

X91 

  A simple CSP 
–  9x9 variables (Xij) with domains {1,...,9} 
–  Not-equals constraints on the rows, columns, and 3x3 boxes, eg.,  

alldifferent([X11, X21, X31, …, X91]) 
alldifferent([X11, X12, X13, …, X19]) 
alldifferent([X11, X21, X31, X12, X22, X32, X13, X23, X33]) 



A problem with a complex model 

  Consider a permutation problem: 
–  find a permutation of the numbers {1,...,n} s.t. some constraints are 

satisfied. 
  One model:  

–  variables (Xi) for positions, domains for numbers {1,...,n}. 
  Dual model:  

–  variables (Yi) for numbers {1,…,n}, domains for positions. 
  Often different views allow different expression of the constraints 

and different implied constraints: 
–  can be hard to decide which is better! 

  We can use multiple models and combine them via channelling 
constraints to keep consistency between the variables: 

–  Xi = j ↔ Yj = i 



Solving 

2.  The user lets the CP technology solve the CSP: 
–  choose a search algorithm: 

  usually backtracking search performing a depth-first traversal of a 
search tree. 

–  integrate local consistency and propagation. 
–  choose heuristics for branching: 

  which variable to branch on?  
  which value to branch on? Search  Local consistency &  

Propagation 

Heuristics 



Backtracking Search 

  A possible efficient and simple method. 
  Variables are instantiated sequentially. 
  Whenever all the variables of a constraint is instantiated, 

the validity of the constraint is checked. 
  If a (partial) instantiation violates a constraint, 

backtracking is performed to the most recently 
instantiated variable that still has alternative values. 

  Backtracking eliminates a subspace from the cartesian 
product of all variable domains.  

  Essentially performs a depth-first search.  



Backtracking Search 

  X1 ∈ {1,2}  X2 ∈ {0,1,2,3}  X3 ∈ {2,3} 
  X1 > X2  and  X1 + X2 = X3 and alldifferent([X1, X2, X3 ])  

           Backtracking search  

Fails 8 times! backtracking 



Backtracking Search 

  Backtracking suffers from thrashing  : 
–  performs checks only with the current and past variables; 
–  search keeps failing for the same reasons. 

X1 = X3 

X1 ≤ X2 



Constraint Programming 

  Integrates local consistency and constraint 
propagation into the search.  

  Consequently: 
–  we can reason about the properties of constraints and their 

effect on their variables; 
–  some values can be filtered from some domains, reducing 

the backtracking search space significantly!  



Constraint Programming 

  X1 ∈ {1,2}  X2 ∈ {0,1,2,3}  X3 ∈ {2,3} 
  X1 > X2  and  X1 + X2 = X3 and alldifferent([X1, X2, X3 ])  

 Backtracking search + local consistency/propagation 



Constraint Programming 

  X1 ∈ {1,2}  X2 ∈ {0,1}  X3 ∈ {2,3} 
  X1 > X2  and  X1 + X2 = X3 and alldifferent([X1, X2, X3 ])  

 Backtracking search + local consistency/propagation 

backtracking 



Constraint Programming 

  X1 ∈ {1,2}  X2 ∈ {0,1,2,3}  X3 ∈ {2,3} 
  X1 > X2  and  X1 + X2 = X3 and alldifferent([X1, X2, X3 ])  

 Backtracking search + local consistency/propagation 



Constraint Programming 

  X1 ∈ {1,2}  X2 ∈ {0,1}  X3 ∈ {2,3} 
  X1 > X2  and  X1 + X2 = X3 and alldifferent([X1, X2, X3 ])  

 Backtracking search + local consistency/propagation 

Fails only once! 



Local consistency & Propagation  

  Central to the process of solving CSPs which 
are inherently intractable. 

Search  Local consistency &  
Propagation 

Heuristics 



CP 

  Programming, in the sense of mathematical 
programming: 

–  the user states declaratively the constraints on a set of decision 
variables. 

–  an underlying solver solves the constraints and returns a 
solution. 

  Programming, in the sense of computer programming: 
–  the user needs to program a strategy to search for a solution 

  search algorithm, heuristics, … 

–  otherwise, solving process can be inefficient. 



CP 

CP 

Artificial 
Intelligence 

Discrete 
Mathematics 

Logic 
Programming 

Operations 
Research Algorithms … 

Networks Vehicle 
Routing 

Configuration Bio-
informatics 

Planning 

& Scheduling 
… 

Complexity 
Theory 



CP 

  Solve SUDOKU using CP! 
    http://www.cs.cornell.edu/gomes/SUDOKU/Sudoku.html 

–  very easy, not worth spending minutes  
–  you can decide which newspaper provides the toughest Sudoku 

instances  



CP 

  Constraints can be embedded into: 
–  logic programming (constraint logic programming) 

  Prolog III, CLP(R), SICStus Prolog, ECLiPSe, CHIP, … 

–  functional programming 
  Oz 

–  imperative programming 
  often via a separate library 
  IBM CP Solver, Gecode, Choco, Minion, … 

NOTE: We will not commit to any CP language/library, rather 
use a mathematical and/or natural notation. 



PART II: Local Consistency & 
Constraint Propagation 



Local Consistency & Constraint 
Propagation 

     What exactly are they?  
     How do they work?  

PART I: The user lets the CP technology solve the CSP: 
–  choose a search algorithm; 
–  design heuristics for branching; 
–  integrate local consistency and propagation. 

Search  Local consistency &  
Propagation 

Heuristics Have central affect 



Outline 

  Local Consistency 
–  Arc Consistency (AC) 
–  Generalised Arc Consistency (GAC) 
–  Bounds Consistency (BC) 
–  Higher Levels of Consistency 

  Constraint Propagation 
–  Propagation Algorithms 

  Specialised Propagation Algorithms  
–  Global Constraints 

  Generalised Propagation Algorithms 
–  AC algorithms 



Local Consistency 

  Backtrack tree search aims to extend a partial  
instantiation of variables to a complete and consistent one. 

–  The search space is too large! 
  Some inconsistent partial assignments obviously cannot 

be completed. 
  Local consistency is a form of inference which detects 

inconsistent partial assignments. 
–  Consequently, the backtrack search commits into less inconsistent 

instantiations.  
  Local, because we examine individual constraints. 

–  Remember that global consistency is NP-complete! 



Local Consistency: An example 

  D(X1) = {1,2}, D(X2) = {3,4}, C1: X1 = X2, C2: X1 + X2 ≥ 1 
  X1 = 1 
  X1 = 2 
  X2 = 3 
  X4 = 4  

–  no need to check the individual assignments. 
–  no need to check the other constraint. 
–  unsatisfiability of the CSP can be inferred without having to 

search! 

all inconsistent partial assignments  
wrt the constraint X1 = X2 



Several Local Consistencies 

  Most popular local consistencies: 
–  Arc Consistency (AC) 
–  Generalised Arc Consistency (GAC) 
–  Bounds Consistency (BC) 

  They detect inconsistent partial assignments 
of the form Xi = j, hence: 
–  j can be removed from D(Xi) via propagation; 
–  propagation can be implemented easily. 



Arc Consistency (AC) 

  Defined for binary constraints. 
  A binary constraint C is a relation on two variables Xi 

and Xj, giving the set of allowed combinations of values 
(i.e. tuples):   
–  C ⊆ D(Xi) x D(Xj) 

  C is AC iff: 
–  forall v ∈ D(Xi), exists w ∈ D(Xj) s.t. (v,w) ∈ C.    

  v ∈ D(Xi) is said to have a support wrt the constraint C. 
–  forall w ∈ D(Xj), exists v ∈ D(Xi) s.t. (v,w) ∈ C. 

  w ∈ D(Xj) is said to have a support wrt the constraint C. 
  A CSP is AC iff all its binary constraints are AC. 



AC: An example 

  D(X1) = {1,2,3}, D(X2) = {2,3,4}, C: X1 = X2  
  AC(C)? 

–  1 ∈ D(X1) does not have a support.  
–  2 ∈ D(X1) has 2 ∈ D(X2) as support.  
–  3 ∈ D(X1) has 3 ∈ D(X2) as support. 
–  2 ∈ D(X2) has 2 ∈ D(X1) as support. 
–  3 ∈ D(X2) has 3 ∈ D(X1) as support. 
–  4 ∈ D(X2) does not have a support.  

  X1 = 1 and X2 = 4 are inconsistent partial assignments. 
  1 ∈ D(X1) and 4 ∈ D(X2) must be removed to achieve AC. 
  D(X1) = {2,3}, D(X2) = {2,3}, C: X1 = X2. 

–  AC(C)  

Propagation! 



Generalised Arc Consistency 

  Generalisation of AC to n-ary constraints. 
  A constraint C is a relation on k variables X1,…, Xk:  

–  C ⊆ D(X1) x … x D(Xk) 
  A support is a tuple <d1,…,dk> ∈ C where di ∈ D(Xi). 
  C is GAC iff: 

–  forall Xi in {X1,…, Xk}, forall v ∈ D(Xi), v belongs to a support.  

  AC is a special case of GAC. 
  A CSP is GAC iff all its constraints are GAC. 



GAC: An example 

  D(X1) = {1,2,3}, D(X2) = {1,2}, D(X3) = {1,2} 
     C: alldifferent([X1, X2, X3])  

  GAC(C)? 
–  X1 = 1 and X1 = 2 are not supported! 

  D(X1) = {3}, D(X2) = {1,2}, D(X3) = {1,2} 
     C: X1 ≠ X2 ≠ X3 

–  GAC(C) 



Bounds Consistency (BC) 

  Defined for totally ordered (e.g. integer) domains. 
  Relaxes the domain of Xi from D(Xi) to [min(Xi)..max(Xi)]. 
  Advantages:  

–  it might be easier to look for a support in a range than in a 
domain; 

–  achieving BC is often cheaper than achieving GAC; 
–  achieving BC is enough to achieve GAC for monotonic 

constraints. 

  Disadvantage:  
–  BC might not detect all GAC inconsistencies in general. 



Bounds Consistency (BC) 

  A constraint C is a relation on k variables X1,…, Xk:  
–  C ⊆ D(X1) x … x D(Xk) 

  A bound support is a tuple <d1,…,dk> ∈ C where di ∈ 
[min(Xi)..max(Xi)]. 

  C is BC iff: 
–  forall Xi in {X1,…, Xk}, min(Xi) and max(Xi) belong to a 

bound support.  



GAC > BC: An example 

  D(X1) = D(X2) = {1,2}, D(X3) = D(X4) = {2,3,5,6}, D(X5) = {5}, D(X6) = 
{3,4,5,6,7} 

     C: alldifferent([X1, X2 , X3 , X4 , X5 , X6 ]) 

  BC(C): 2 ∈ D(X3) and 2 ∈ D(X4) have no support. 

    
   Original                BC 



GAC > BC: An example 

  D(X1) = D(X2) = {1,2}, D(X3) = D(X4) = {2,3,5,6}, D(X5) = {5}, D(X6) = 
{3,4,5,6,7} 

     C: alldifferent([X1, X2 , X3 , X4 , X5 , X6 ]) 

  GAC(C): {2,5} ∈ D(X3) , {2,5} ∈ D(X4), {3,5,6} ∈ D(X6) have no 
support. 

        
     Original         BC     GAC  



GAC = BC: An example 

  D(X1) = {1,2,3}, D(X2) = {1,2,3}, C: X1 < X2 

  BC(C):  
–  D(X1) = {1,2}, D(X2) = {2,3} 

  BC(C) = GAC(C): 
–  a support for min(X2) supports all the values in D(X2). 
–  a support for max(X1) supports all the values in D(X1). 



Higher Levels of Consistencies 

  Path consistency, k-consistencies, (i,j) consistencies, … 
  Not much used in practice: 

–  detect inconsistent partial assignments with more than one 
<variable,value> pair. 

–  cannot be enforced by removing single values from domains. 

  Domain based consistencies stronger than (G)AC. 
–  Singleton consistencies,  triangle-based consistencies, … 
–  Becoming popular: 

  shaving in scheduling. 



Outline 

  Local Consistency 
–  Arc Consistency (AC) 
–  Generalised Arc Consistency (GAC) 
–  Bounds Consistency (BC) 
–  Higher Levels of Consistency 

  Constraint Propagation 
–  Constraint Propagation Algorithms 

  Specialised Propagation Algorithms  
–  Global Constraints 

  Generalised Propagation Algorithms 
–  AC Algorithms 



Constraint Propagation 

  Can appear under different names: 
–  constraint relaxation 
–  filtering algorithm 
–  local consistency enforcing, … 

  Similar concepts in other fields: 
–  unit propagation in SAT. 

  Local consistencies define properties that a CSP must 
satisfy after constraint propagation: 

–  the operational behaviour is completely left open; 
–  the only requirement is to achieve the required property on the 

CSP. 



Constraint Propagation: A simple example 

Input CSP:D(X1) = {1,2}, D(X2) = {1,2} , C: X1 < X2 

Output CSP:D(X1) = {1}, D(X2) = {2} , C: X1 < X2 

A constraint propagation 
algorithm for enforcing AC 

We can write 
different 

algorithms with 
different 

complexities to 
achieve the 
same effect. 



Constraint Propagation Algorithms 

  A constraint propagation algorithm propagates a 
constraint C. 
–  It removes the inconsistent values from the domains of 

the variables of C. 
–  It makes C locally consistent. 
–  The level of consistency depends on C: 

  GAC might be NP-complete, BC might not be possible, … 



Constraint Propagation Algorithms 

  When solving a CSP with multiple constraints: 
–  propagation algorithms interact; 
–  a propagation algorithm can wake up an already 

propagated constraint to be propagated again! 
–  in the end, propagation reaches a fixed-point and all 

constraints reach a level of consistency; 
–  the whole process is referred as constraint 

propagation. 



Constraint Propagation: An example 

  D(X1) = D(X2) = D(X3)= {1,2,3} 
    C1: alldifferent([X1, X2 , X3 ])  C2: X2 < 3  C3: X3 < 3 
  Let’s assume:  

–  the order of propagation is C1, C2, C3; 
–  each algorithm maintains (G)AC. 

  Propagation of C1:  
–  nothing happens, C1 is GAC. 

  Propagation of C2:   
–  3 is removed from D(X2), C2 is now AC. 

  Propagation of C3:  
–  3 is removed from D(X3), C3 is now AC. 

  C1 is not GAC anymore, because the supports of {1,2} ∈ D(X1) in 
D(X2) and D(X3) are removed by the propagation of C2 and C3. 

  Re-propagation of C1:  
–  1 and 2 are removed from D(X1), C1 is now AC. 



Properties of Constraint Propagation Algorithms 

  It is not enough to be able to remove inconsistent values 
from domains. 

  A constraint propagation algorithm must wake up when 
necessary, otherwise may not achieve the desired local 
consistency property. 

  Events that trigger a constraint propagation: 
–  when the domain of a variable changes; 
–  when a variable is assigned a value; 
–  when the minimum or the maximum values of a domain changes. 



Outline 

  Local Consistency 
–  Arc Consistency (AC) 
–  Generalised Arc Consistency (GAC) 
–  Bounds Consistency (BC) 
–  Higher Levels of Consistency 

  Constraint Propagation 
–  Propagation Algorithms 

  Specialised Propagation Algorithms  
–  Global Constraints 

  Decompositions 
  Ad-hoc algorithms 

  Generalised Propagation Algorithms 
–  AC Algorithms 



Specialised Propagation Algorithms  

  A constraint propagation algorithm can be general or specialised: 
–  general, if it is applicable to any constraint; 
–  specialised, if it is specific to a constraint. 

  Specialised algorithms: 
–  Disadvantage: 

  has limited use; 
  is not always easy to develop one. 

–  Advantages: 
  exploits the constraint semantics; 
  is potentially more efficient than a general algorithm. 

  Worth developing specialised algorithms for recurring constraints 
with a reasonable semantics. 



Specialised Propagation Algorithms  

  C: X1 ≤ X2 

  Observation: 
–  a support of min(X2) supports all the values in D(X2); 
–  a support of max(X1) supports all the values in D(X1). 

  Propagation algorithm: 
–  filter D(X1) s.t. max(X1) ≤ max(X2); 
–  filter D(X2) s.t. min(X1) ≤ min(X2). 

  The result is GAC (and thus BC). 



Example 

  D(X1) = {3, 4, 7, 8} , D(X2) = {1, 2, 3, 5}, C: X1 ≤ X2 



Example 

  D(X1) = {3, 4, 7, 8} , D(X2) = {1, 2, 3, 5}, C: X1 ≤ X2 

  Propagation: 
–  filter D(X1) s.t. max(X1) ≤ max(X2); 



Example 

  D(X1) = {3, 4, 7, 8} , D(X2) = {1, 2, 3, 5}, C: X1 ≤ X2 

  Propagation: 
–  filter D(X1) s.t. max(X1) ≤ max(X2); 



Example 

  D(X1) = {3, 4, 7, 8} , D(X2) = {1, 2, 3, 5}, C: X1 ≤ X2 

  Propagation: 
–  filter D(X1) s.t. max(X1) ≤ max(X2); 
–  filter D(X2) s.t. min(X1) ≤ min(X2); 



Example 

  D(X1) = {3, 4, 7, 8} , D(X2) = {1, 2, 3, 5}, C: X1 ≤ X2 

  Propagation: 
–  filter D(X1) s.t. max(X1) ≤ max(X2); 
–  filter D(X2) s.t. min(X1) ≤ min(X2); 



Global Constraints 

  Many real-life constraints are complex and not binary. 
–  Specialised algorithms are often developed for such constraints! 

  A complex and n-ary constraint which encapsulates a 
specialised propagation algorithm is called a global 
constraint. 



Examples of Global Constraints 

  Alldifferent constraint: 

–  alldifferent([X1, X2, …, Xn]) holds iff                                          
                Xi ≠ Xj   for i < j ∈ {1,…,n} 

–  useful in a variety of context 
  Timetabling (e.g. exams with common students must occur at 

different times) 
  Tournament scheduling (e.g. a team can play at most once in a 

week) 
  Configuration (e.g. a particular product cannot have repeating 

components) 
  … 



Beyond Alldifferent 

  NValue constraint: 
–  one generalisation of alldifferent 
–  nvalue([X1, X2, …, Xn], N) holds iff    

 N = |{Xi | 1 ≤ i ≤ n }|  
–  nvalue([1, 2, 2, 1, 3], 3) 
–  alldifferent when N = n 
–  Useful when values represent resources and we want 

to limit the usage of resources. E.g.,  
  Minimise the total number of resources used; 
  The total number of resources used must be between a 

specific interval; 
  … 



Beyond Alldifferent 

  Global cardinality constraint: 
–  another generalisation of alldifferent 
–  gcc([X1, X2, …, Xn], [v1, …, vm], [O1, …, Om]) iff  

     forall j ∈ {1,…, m}  Oj = |{Xi | Xi = vj, 1 ≤ i ≤ n }|   
–  gcc([1, 1, 3, 2, 3], [1, 2, 3, 4], [2, 1, 2, 0]) 
–  Useful again when values represent resources 
–  We can now limit the usage of each resource 

individually. E.g.,  
  Resource 1 can be used at most three times 
  Resource 2 can be used min 2 max 5 times 
  … 



Symmetry Breaking Constraints 

  Consider the following scenario:  
–  [X1, X2, …, Xn] and [Y1, Y2, …, Yn]  represent the 2 day event 

assignments of a conference 
–  Each day has n slots and the days are indistinguishable 
–  Need to avoid symmetric assignments 

  Global constraints developed for this purpose are called 
symmetry breaking constraints. 

  Lexicographic ordering constraint: 
–  lex([X1, X2, …, Xn], [Y1, Y2, …, Yn]) holds iff: 
  X1 < Y1   OR   (X1 = Y1  AND  X2 < Y2)   OR  … 
  (X1 = Y1  AND  X2 = Y2 AND …. AND Xn ≤ Yn)  
–  lex ([1, 2, 4],[1, 3, 3]) 



  We might sometimes want a sequence of variables obey certain 
patterns. E.g., 

–  regulations in scheduling 
  A promising direction in CP is the ability of modelling problems via 

automata/grammar. 
  Global constraints developed for this purpose are called grammar 

constraints.  
  Regular constraint: 

–  regular([X1, X2, …, Xn], A) holds iff <X1, X2, …, Xn> forms a string 
accepted by the DFA A (which accepts a regular language). 

–  regular([a, a, b], A), regular([b], A), regular([b, c, c, c, c, c], A) with A 

Grammar Constraints 

a b 
c 



Specialised Algorithms for Global Constraints 

  How do we develop specialised algorithms 
for global constraints? 

  Two main approaches: 
–  constraint decomposition 
–  ad-hoc algorithm 



Constraint Decomposition 

  A global constraint is decomposed into smaller 
and simpler constraints each which has a known 
propagation algorithm. 

  Propagating each of the constraints gives a 
propagation algorithm for the original global 
constraint. 
–  A very effective and efficient method for some global 

constraints 



Decomposition of Among 

  among([X1, X2, …, Xn], [d1, d2, …, dm], N) holds iff               
    N = |{Xi | Xi ∈ {d1, d2, …, dm} 1 ≤ i ≤ n }| 

  Decomposition: 
–  Bi with D(Bi) = {0, 1} for 1 ≤ i ≤ n  
–  Ci: Bi = 1 ↔  Xi ∈ {d1, d2, …, dm}   for 1 ≤ i ≤ n  
–    
  AC(Ci) for 1 ≤ i ≤ n and BC(           ) ensures GAC 

on among. 

€ 

Bi = N
i∑

€ 

Bi = N
i∑



Decomposition of Lex 

   lex([X1, X2, …, Xn], [Y1, Y2, …, Yn])  
  Decomposition: 
–  Bi with D(Bi) = {0, 1} for 1 ≤ i ≤ n+1 to indicate the vectors have been 

ordered by position i-1  
–  B1= 0 
–  Ci: (Bi = Bi+1 = 0 AND Xi = Yi ) OR  (Bi = 0 AND Bi+1 = 1 AND Xi < Yi ) OR 

(Bi = Bi+1 = 1) for 1 ≤ i ≤ n    

  GAC(Ci) ensures GAC on lex. 



Constraint Decompositions 

  May not always provide an effective propagation. 
  Often GAC on the original constraint is stronger than 

(G)AC  on the constraints in the decomposition. 
  E.g., C: alldifferent([X1, X2, …, Xn]) 
  Decomposition following the definition:  

–  Cij: Xi ≠ Xj  for i < j ∈ {1,…,n} 
–  AC on the decomposition is weaker than GAC on alldifferent. 
–  E.g., D(X1) = D(X2) = D(X3) = {1,2}, C: alldifferent([X1, X2, X3])  
–  C12, C13, C23 are all AC, but C is not GAC. 



Constraint Decompositions 

  E.g., C: lex([X1, X2, …, Xn], [Y1, Y2, …, Yn]) 
  OR decomposition: 
–  X1 < Y1   OR   (X1 = Y1  AND  X2 < Y2)   OR  … 
  (X1 = Y1  AND  X2 = Y2 AND …. AND Xn ≤ Yn)  
–  AC on the decomposition is weaker than GAC on lex. 
–  E.g., D(X1) = {0, 1, 2} , D(X2) = {0, 1}, D(Y1) = {0, 1} , D(Y2) = {0, 1}     

C: Lex([X1, X2], [Y1, Y2]) 
–   C is not GAC but the decomposition does not prune anything. 



Constraint Decompositions 

  AND decomposition of lex([X1, X2, …, Xn], [Y1, Y2, …, Yn]): 
–  X1 ≤ Y1   AND   (X1 = Y1  →  X2 ≤ Y2)   AND  … 
  (X1 = Y1  AND  X2 = Y2 AND …. Xn-1 = Yn-1 → Xn ≤ Yn)  
–  AC on the decomposition is weaker than GAC on lex. 
–  E.g., D(X1) = {0, 1} , D(X2) = {0, 1}, D(Y1) = {1} , D(Y2) = {0}                  

C: Lex([X1, X2], [Y1, Y2]) 
–   C is not GAC but the decomposition does not prune anything. 



Constraint Decompositions 

  Different decompositions of a constraint may be 
incomparable. 
  Difficult to know which one gives a better propagation for a given 

instance of a constraint. 

  C: Lex([X1, X2], [Y1, Y2]) 
  D(X1) = {0, 1} , D(X2) = {0, 1}, D(Y1) = {1} , D(Y2) = {0} 

–  AND decomposition is weaker than GAC on lex, whereas OR 
decomposition maintains GAC. 

  D(X1) = {0, 1, 2} , D(X2) = {0, 1}, D(Y1) = {0, 1} , D(Y2) = {0, 1} 
–  OR decomposition is weaker than GAC on lex, whereas OR 

decomposition maintains GAC. 



Constraint Decompositions 

  Even if effective, may not always provide an efficient 
propagation. 

  Often GAC on a constraint via a specialised algorithm is 
maintained faster than (G)AC  on the constraints in the 
decomposition. 



Constraint Decompositions 

  C: Lex([X1, X2], [Y1, Y2]) 
  D(X1) = {0, 1} , D(X2) = {0, 1}, D(Y1) = {1} , D(Y2) = {0} 

–  AND decomposition is weaker than GAC on lex, whereas OR 
decomposition maintains GAC 

  D(X1) = {0, 1, 2} , D(X2) = {0, 1}, D(Y1) = {0, 1} , D(Y2) = {0, 1} 
–  OR decomposition is weaker than GAC on lex, whereas OR 

decomposition maintains GAC 

  AND or OR decompositions have complementary strengths! 
–  Combining them  gives us a decomposition which maintains GAC on 

lex. 

  Too many constraints to post and propagate! 
  A dedicated algorithm runs amortised in O(1). 



Dedicated Algorithms 

  Dedicated ad-hoc algorithms provide 
effective and efficient propagation. 

  Often: 
–  GAC is maintained in polynomial time. 
–  Many more inconsistent values are detected 

compared to the decompositions. 



Benefits of Global Constraints 

  Modelling benefits 
–  Reduce the gap between the problem statement and the 

model. 
–  Capture recurring modelling patterns. 
–  May allow the expression of constraints that are otherwise 

not possible to state using primitive constraints (semantic). 

  Solving benefits 
–  More inference in propagation (operational). 
–  More efficient propagation (algorithmic). 



Dedicated Algorithm for Alldifferent 

  GAC algorithm based on matching theory. 
–  Establishes a relation between the solutions of  the constraint 

and the properties of a graph. 
–  Runs in time O(dn1.5). 

  Value graph: bipartite graph between variables and their 
possible values. 

  Matching: set of edges with no two edges having a node 
in common. 

  Maximal matching: largest possible matching. 



Dedicated Algorithm for Alldifferent  

  An assignment of values to the variables      
X1, X2, …, Xn is a solution iff it corresponds to 
a maximal matching. 
–  Edges that do not belong to a maximal matching 

can be deleted. 
  The challenge is to compute such edges 

efficiently. 
–  Exploit concepts like strongly connected 

components, alternating paths, …    



Dedicated Algorithm for Alldifferent  

  D(X1) = {1,3} , D(X2) = {1,3},  D(X3)= {1,2} 

X1 
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X3 
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Variable-value 
graph 



Dedicated Algorithm for Alldifferent  

  D(X1) = {1,3} , D(X2) = {1,3},  D(X3)= {1,2} 
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A maximal 
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Dedicated Algorithm for Alldifferent  

  D(X1) = {1,3} , D(X2) = {1,3},  D(X3)= {1,2} 

X1 

X2 

X3 
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Another maximal 
matching 

Does not belong to 
any maximal matching 



Dedicated Algorithms 

  Is it always easy to develop a dedicated algorithm for 
a given constraint? 

  There’s no single recipe! 
  A nice semantics often gives us a clue! 

–  Graph Theory 
–  Flow Theory 
–  Combinatorics 
–  Complexity Theory, … 

  GAC may as well be NP-hard! 
–  In that case, algorithms which maintain weaker 

consistencies (like BC) are of interest. 



GAC for Nvalue Constraint 

  nvalue([X1, X2, …, Xn], N) holds iff  N = |{Xi | 1 ≤ i ≤ n }|  
  Reduction from 3 SAT. 

  Given a Boolean fomula in k variables (labelled from 1 to k) and m 
clauses, we construct an instance of nvalue([X1, X2, …, Xk+m], N): 

–  D(Xi) = {i, i’} for i ∈ {1,…, k} where Xi represents the truth assignment             
of the  SAT variables; 

–  Xi where i > k represents a SAT clause (disjunction of literals); 
–  for a given clause like x V y’ V z, D(Xi) = {x, y’, z}. 

  By construction, X1, …, Xk will consume all the k distinct values. 
  When N = k, nvalue has a solution iff  the original SAT problem has a 

satisfying assignment. 
–  Otherwise we will have more than k distinct values. 
–  Hence, testing  a value for support is NP-complete, and enforcing  GAC is   

NP-hard! 



GAC for Nvalue Constraint 

  E.g., C1: (a OR b’ OR c) AND                                                                  
 C2: (a’ OR b OR d) AND                                                                      
 C3: (b’ OR c’ OR d) 

  The formula has 4 variables (a, b, c, d) and 3 clauses (C1, C2, C3). 
  We construct nvalue([X1, X2, …, X7], 4) where: 

  D(X1) = {a, a’}, D(X2) = {b, b’}, D(X3) = {c, c’}, D(X4) = {d, d’}, D(X5) 
= {a, b’, c}, D(X6) = {a’, b, d}, D(X7) = {b’, c’, d} 

  An assignment to X1, …, X4 will consume 4 distinct values. 
  Not to exceed 4 distinct values, the rest of the variables must have 

intersecting values with X1, …, X4. 
  Such assignments will make the SAT formula TRUE.  



Outline 

  Local Consistency 
–  Arc Consistency (AC) 
–  Generalised Arc Consistency (GAC) 
–  Bounds Consistency (BC) 
–  Higher Levels of Consistency 

  Constraint Propagation 
–  Propagation Algorithms 

  Specialised Propagation Algorithms  
–  Global Constraints 

  Decompositions 
  Ad-hoc algorithms 

  Generalised Propagation Algorithms 
–  AC Algorithms 



Generalised Propagation Algorithms 

  Not all constraints have nice semantics we can exploit 
to devise an efficient specialised propagation algorithm. 

  Consider a product configuration problem: 
–  compatibility constraints on hardware components: 

  only certain combinations of components work together. 
–  compatibility may not be a simple pairwise relationship: 

  video cards supported function of motherboard, CPU, clock speed, 
O/S, ... 



Production Configuration Problem 

  5-ary constraint: 
–  Compatible (motherboard345, intelCPU, 

2GHz, 1GBRam, 80GBdrive).) 
–  Compatible (motherboard346, intelCPU, 

3GHz, 2GBRam, 100GBdrive). 
–  Compatible (motherboard346, amdCPU, 

2GHz, 2GBRam, 100GBdrive). 
–  … 



Crossword Puzzle 

  Constraints with different 
arity: 

–  Word1 ([X1,X2,X3]) 
–  Word2 ([X1,X13,X16]) 
–  … 

  No simple way to decide 
acceptable words other than 
to put them in a table.  



GAC Schema   

  A generic propagation algorithm. 
–  Enforces GAC on an n-ary constraint given by: 

  a set of allowed tuples; 
  a set of disallowed tuples; 
  a predicate answering if a constraint is satisfied or not. 

–  Sometimes called the “table” constraint: 
  user supplies table of acceptable values. 

  Complexity: O(edn) time 
  Hence, n cannot be too large! 

–  Many solvers limits it to 3 or so. 



Arc Consistency Algorithms 

  Generic AC algorithms with different 
complexities and advantages: 

–  AC3  
–  AC4 
–  AC6 
–  AC2001 
–  … 



AC-3 

  Idea: 
–  Revise (Xi, C): removes unsupported values of Xi 

and returns TRUE.  
–  Place each (Xi, C) where Xi participates to C and its 

domain is potentially not AC, in a queue Q; 
–  While Q is not empty: 

  Select and remove (Xi, C) from Q; 
  If revise(Xi, C) then 

–  If D(Xi) = { } then return FALSE; 
–  else place {(Xj, C’) | Xi, Xj  participate in some C’} into Q. 



AC-3 

  AC-3 achieves AC on binary CSPs in O(ed3) 
time and O(e) space.  

  Time complexity is not optimal  
  Revise does not remember anything about past 

computations and re-does unnecessary work. 



AC-3 

(X, C1) is put in Q 

only check of X ← 3 was 
necessary! 



AC-4 

  Stores max. amount of info in a preprocessing step so 
as to avoid redoing the same constraints checks. 

  Idea: 
–  Start with an empty queue Q. 
–  Maintain counter[Xi, vj, Xk] where Xi, Xk participate in a 

constraint Cik and vj ∈ D(Xi) 
  Stores the number of supports  for Xi ← vj on Cik. 

–  Place all supports of Xi ← vj  (in all constraints) in a list S[Xi, vj]. 



AC-4 

  Initialisation: 
–  All possible constraint checks are performed. 
–  Each time a support for Xi ← vj  is found, the corresponding counters 

and lists are updated.  
–  Each time a support for Xi ← vj  is not found, remove vj from D(Xi) and 

place (Xi, vj) in Q for future propagation. 
–  If D(Xi) = { } then return FALSE. 



AC-4 

  Propagation:  
–  While Q is not empty: 

  Select and remove (Xi, vj) from Q; 
  For each (Xk, vt) in S[Xi, vj] 

–  If vt ∈ D(Xk) then 
  decrement counter[Xk, vt, Xi] 
  If counter[Xk, vt, Xi] = 0 then 

  Remove vt from D(Xk); add (Xk, vt) to Q 
  If D(Xk) = { } then return FALSE. 



AC-4 

(y,3) is put in Q 

No additional 
constraint 

check! 



AC-4 

  AC-3 achieves AC on binary CSPs in O(ed2) 
time and O(ed2) space.  

  Time complexity is optimal  
  Space complexity is not optimal  

  AC-6 and AC-2001 achieve AC on binary 
CSPs in O(ed2) time and O(ed) space.   

–  Time complexity is optimal  
–  Space complexity is optimal  



PART IV: Search Algorithms 



Outline 

  Depth-first Search Algorithms 
–  Chronological Backtracking 
–  Conflict Directed Backjumping 
–  Dynamic Backtracking 
–  Branching Strategies 
–  Heuristics 

  Best-First Search Algorithms 
–  Limited Discrepancy Search 



Depth-first Search Algorithms 

  Backtracking tree search algorithms essentially 
perform depth-first traversal of a search tree. 
–  Every node represents a decision made on a 

variable. 
–  At each node: 

  check every completely assigned constraint; 
  If consistent continue down in the tree; 
  otherwise prune the underlying subtrees and backtrack to an 

uninstantiated variable that still has alternative values. 



Chronological Backtracking 

  Backtracks to the most recent variable. 



Chronological Backtracking 

  Suffers from trashing. 
–  The same failure can be remade an exponential 

number of times. 



Non-Chronological Backtracking 

  Backtrack on a culprit variable. 
  E.g.,  

–  Backtracking to X5 is pointless. 
–  Better to backtrack on X4. 



Conflict Sets 

  CS(Xk): assigned variables in conflict with 
some value of Xk. 



Conflict Directed Backjumping 

  Backtracks to the last variable in the conflict set. 
  Intermediate decisions are removed. 



No-goods 

  Subset of incompatible assignments. 
  E.g., map colouring problem. 

–  X1, X2, X3 are adjacent with D = {1, 2}. 
–  (X1 = a and X3 = a) or equivalently (X1 = a → X3 ≠ a) 

is a no-good. 
  No-good resolution:  

–  X1 = a → X3 ≠ a 
–  X2 = b → X3 ≠ b         X1 = a → X2 ≠ b 



Dynamic Backtracking 

  One no-good for each incompatible value is 
maintained. 

–  Empty domain: new no-good by no-good resolution. 
–  Backtrack to the variable in the right hand side of the no-good.



Dynamic Backtracking 

  Backtracks to the last decision responsible for the 
dead-end. 

  Intermediate decisions are not removed. 



Branching Strategies 

  The method of extending a node in the search tree. 
–  Usually consists of posting a unary constraint on a chosen 

variable Xi.   
–  Xi  & the ordering of the branches are chosen by the heuristics. 

  D-way branching:  
–  One branch is generated for each vj ∈ D(Xi) by Xi ← vj . 

  2-way branching: 
–  2 branches are generated for each vj ∈ D(Xi) by Xi ← vj  and      

Xi ←\ vj. 

  Domain splitting: 
–  k branches are generated by Xi ∈ Dj where D1…Dk are 

partitions of Di. 



Variable and Value Ordering Heuristics 

  Guide the search. 
  Problem specific vs generic heuristics. 
  Static Heuristics: 

–  a variable is associated with each level; 
–  branches are generated in the same order all over the tree; 
–  calculated once and for all before search starts, hence 

cheap to evaluate. 



Variable and Value Ordering Heuristics 

  Dynamic Heuristics:   
–  at any node, any variable & branch can be considered; 
–  decided dynamically during search, hence costly; 
–  takes into account the current state of the search tree. 



Variable Ordering Heuristics 

  Fail-first principle: to succeed, try first where 
you are most likely to fail. 

  Min domain (dom): 
–  choose next the variable with minimum domain. 

  Most constrained (deg): 
–  choose next the variable involved in most number 

of constraints. 
  Combinations 

–  dom + deg; dom / deg 



Value Ordering Heuristics 

  Succeed-first principle: choose next the value 
most likely to be part of a solution. 
–  Approximating the number of solutions. 
–  Looking at the remaining domain sizes when a 

value is assigned to a variable. 



Problems with Depth-first Search 

  The branches out of a node, ordered by a value 
ordering heuristic, are explored in left-to-right order, 
the left-most branch being the most promising. 

  For many problems, heuristics are more accurate at 
deep nodes. 

  Depth-first search: 
–  puts tremendous burden on the heuristics early in the search and 

light burden deep in the search; 
–  consequently mistakes made near the root of the tree can be 

costly to correct. 

  Best-first search strategy is of interest. 



Limited Discrepancy Search 

  A discrepancy is the case where the search 
does not follow the value ordering heuristic 
and thus does not take the left-most branch 
out of a node. 

  LDS: 
–  Trusts the value ordering heuristic and gives 

priority to the left branches. 
–  Iteratively searches the tree by increasing number 

of discrepancies, preferring discrepancies that 
occur near the root of the tree. 



Limited Discrepancy Search 

  The search recovers from mistakes made 
early in the search. 



PART IV: Some Useful Pointers 
about CP 



(Incomplete) List of Advanced Topics 

  Modelling 
  Global constraints, 

propagation algorithms 
  Search algorithms 
  Heuristics 
  Symmetry breaking 
  Optimisation 
  Local search 
  Soft constraints, preferences 
  Temporal constraints 
  Quantified constraints 
  Continuous constraints 

  Planning and scheduling 
  SAT 
  Complexity and tractability 
  Uncertainty 
  Robustness 
  Structured domains 
  Randomisation 
  Hybrid systems 
  Applications 
  Constraint systems 
  No good learning 
  Explanations 
  Visualisation 



Literature 

  Books 
–  Handbook of Constraint Programming 

 F. Rossi, P. van Beek, T. Walsh (eds), Elsevier Science, 2006. 

Some online chapters: 
Chapter 1   - Introduction 
Chapter 3   - Constraint Propagation 
Chapter 6   - Global Constraints 
Chapter 10 - Symmetry in CP 
Chapter 11 - Modelling 



Literature 

  Books 
–  Constraint Logic Programming Using Eclipse 

 K. Apt and M. Wallace, Cambridge University Press, 2006. 
–  Principles of Constraint Programming 

 K. Apt, Cambridge University Press, 2003. 
–  Constraint Processing 

 Rina Dechter, Morgan Kaufmann, 2003. 
–  Constraint-based Local Search 

 Pascal van Hentenryck and Laurent Michel, MIT Presss, 2005. 
–  The OPL Optimization Programming Languages 

 Pascal Van Hentenryck,  MIT Press, 1999.  



Literature 

  People 
–  Barbara Smith 

  Modelling, symmetry breaking, search heuristics 
  Tutorials and book chapter 

–  Christian Bessiere 
  Constraint propagation 
  Global constraints 

–  Nvalue constraint 
  Book chapter 

–  Jean-Charles Regin 
  Global constraints 

–  Alldifferent, global cardinality, cardinality matrix 
–  Toby Walsh  

  Modelling, symmetry breaking, global constraints 
  Various tutorials 



Literature 

  Journals 
–  Constraints 
–  Artificial Intelligence 
–  Journal of Artificial Intelligence Research 
–  Journal of Heuristics 
–  Intelligenza Artificiale (AI*IA) 
–  Informs Journal on Computing 
–  Annals of Mathematics and Artificial Intelligence 



Literature 

  Conferences 
–  Principles and Practice of Constraint Programming (CP) 

 http://www.cs.ualberta.ca/~ai/cp/ 
–  Integration of AI and OR Techniques in CP (CP-AI-OR) 

 http://www.cs.cornell.edu/~vanhoeve/cpaior/  
–  National Conference on AI (AAAI) 

 http://www.aaai.org 
–  International Joint Conference on Artificial Intelligence (IJCAI) 

 http://www.ijcai.org 
–  European Conference on Artificial Intelligence (ECAI) 

 http://www.eccai.org 
–  International Symposium on Practical Aspects of Declarative 

Languages (PADL) 
 http://www.informatik.uni-trier.de/~ley/db/conf/padl/index.html 



Literature 

  Schools and Tutorials 
–  ACP summer schools: 

2005: http://www.math.unipd.it/~frossi/cp-school/ 
2006: http://www.cse.unsw.edu.au/~tw/school.html 
2007: http://www.iiia.csic.es/summerschools/sscp2007/ 
2008: http://www-circa.mcs.st-and.ac.uk/cpss2008/ 
2009: http://www.cs.ucc.ie/~osullb/ACPSS2009/Welcome.html 
2010: http://becool.info.ucl.ac.be/summerschool2010/ 

–  AI conference tutorials (IJCAI’09, 07, 05, ECAI’04 …). 
–  CP conference tutorials. 
–  CP-AI-OR master classes. 



Literature 

  Solvers & Languages 
–  Choco (http://choco.sourceforge.net/) 
–  Comet (http://www.comet-online.org/) 
–  Eclipse (http://eclipse.crosscoreop.com/) 
–  FaCiLe (http://www.recherche.enac.fr/opti/facile/) 
–  Gecode (http://www.gecode.org/) 
–  IBM ILOG Solver (http://www-01.ibm.com/software/

websphere/products/optimization/) 
–  Koalog Constraint Solver (http://www.gecode.org/) 
–  Minion (http://minion.sourceforge.net/) 
–  OPL (http://www.ilog.com/products/oplstudio/) 
–  Sicstus Prolog (http://www.sics.se/isl/sicstuswww/site/

index.html) 


