Solving Constraint Problems in Constraint Programming

Zeynep KIZILTAN Department of Computer Science University of Bologna

Email:

zeynep@cs.unibo.it

What is it about?

- 10 hour lectures about the core of constraint solving in CP
 - Part I: Overview of constraint programming
 - Part II: Local consistency & constraint propagation
 - Part III: Search algorithms
 - Part IV: Advanced topics, useful pointers
- Aim:
 - Teach the basics of constraint programming.
 - Emphasize the importance of local consistency & constraint propagation & search.
 - Point out the advanced topics.
 - Inform about the literature.

Warning

- We will see how constraint programming works.
- No programming examples.

PART I: Overview of Constraint Programming

Outline

- Constraint Satisfaction Problems (CSPs)
- Constraint Programming (CP)
 - Modelling
 - Backtracking Tree Search
 - Local Consistency and Constraint Propagation

Constraints are everywhere!

- No meetings before 9am.
- No registration of marks before May 15.
- The lecture rooms have a capacity.
- Two lectures of a student cannot overlap.
- No two trains on the same track at the same time.
- Salary > 45k Euros 🙂

Constraint Satisfaction Problems

- A constraint is a restriction.
- There are many real-life problems that require to give a decision in the presence of constraints:
 - flight / train scheduling;
 - scheduling of events in an operating system;
 - staff rostering at a company;
 - course time tabling at a university ...
- Such problems are called Constraint Satisfaction Problems (CSPs).

Sudoku: An everyday-life example

	6		1	4		5	
		8	3	5	6		
2							1
8			4	7			6
		6			3		
7			9	1			4
5							2
		7	2	6	9		
	4		5	8		7	

CSPs: More formally

- A CSP is a triple **<X,D,C>** where:
 - X is a set of decision variables $\{X_1, \dots, X_n\}$.
 - D is a set of domains {D₁,...,D_n} for X:
 - D_i is a set of possible values for X_i.
 - usually assume finite domain.
 - C is a set of constraints {C₁,...,C_m}:
 - C_i is a relation over X_j,...,X_k, giving the set of combination of allowed values.
 - $C_i \subseteq D(X_j) \times ... \times D(X_k)$
- A solution to a CSP is an assignment of values to the variables which satisfies all the constraints simultaneously.

CSPs: A simple example

Variables

 $X = \{X_1, X_2, X_3\}$

Domains

 $D(X_1) = \{1,2\}, D(X_2) = \{0,1,2,3\}, D(X_3) = \{2,3\}$

Constraints

 $X_1 > X_2$ and $X_1 + X_2 = X_3$ and $X_1 \neq X_2 \neq X_3 \neq X_1$

Solution

 $X_1 = 2, X_2 = 1, X_3 = 3$

alldifferent([X₁, X₂, X₃])

Sudoku: An everyday-life example

- A simple CSP
 - 9x9 variables (X_{ij}) with domains $\{1,...,9\}$
 - Not-equals constraints on the rows, columns, and 3x3 boxes. E.g., alldifferent([X₁₁, X₂₁, X₃₁, ..., X₉₁]) alldifferent([X₁₁, X₁₂, X₁₃, ..., X₁₉]) alldifferent([X₁₁, X₂₁, X₃₁, X₁₂, X₂₂, X₃₂, X₁₃, X₂₃, X₃₃])

Job-Shop Scheduling: A real-life example

- Schedule jobs, each using a resource for a period, in time D by obeying the precedence and capacity constraints
- A very common industrial problem.
- CSP:
 - variables represent the jobs;
 - domains represent the start times;
 - constraints specify precedence and exclusivity.

CSPs

- Search space: $D(X_1) \times D(X_2) \times ... \times D(X_n)$
 - very large!
- Constraint satisfaction is NP-complete:
 - no polynomial time algorithm is known to exist!
 - I can get no satisfaction $\ensuremath{\mathfrak{S}}$
- We need general and efficient methods to solve CSPs:
 - Integer and Linear Programming (satisfying linear constraints on 0/1 variables and optimising a criterion)
 - SAT (satisfying CNF formulas on 0/1 variables)
 - ...
 - Constraint Programming
 - How does it exactly work?

CP Machinery

• CP is composed of two phases that are strongly interconnected:

Modelling

- 1. The CP user models the problem as a CSP:
 - define the variables and their domains;
 - specify solutions by posting constraints on the variables:
 - off-the-shelf constraints or user-defined constraints.
 - a constraint can be thought of a reusable component with its own propagation algorithm.
 WAIT TO UNDERSTAND WHAT I MEAN [©]

Modelling

- Modelling is a critical aspect.
- Given the human understanding of a problem, we need to answer questions like:
 - which variables shall we choose?
 - which constraints shall we enforce?
 - shall we use off-the-self constraints, or define and integrate our own?
 - are some constraints redundant, therefore can be avoided?
 - are there any implied constraints?
 - among alternative models, which one shall I prefer?

A problem with a simple model

- A simple CSP
 - 9x9 variables (X_{ij}) with domains {1,...,9}
 - Not-equals constraints on the rows, columns, and 3x3 boxes, eg., alldifferent([X₁₁, X₂₁, X₃₁, ..., X₉₁]) alldifferent([X₁₁, X₁₂, X₁₃, ..., X₁₉]) alldifferent([X₁₁, X₂₁, X₃₁, X₁₂, X₂₂, X₃₂, X₁₃, X₂₃, X₃₃])

A problem with a complex model

- Consider a permutation problem:
 - find a permutation of the numbers {1,...,n} s.t. some constraints are satisfied.
- One model:
 - variables (X_i) for positions, domains for numbers $\{1,...,n\}$.
- Dual model:
 - variables (Y_i) for numbers $\{1, ..., n\}$, domains for positions.
- Often different views allow different expression of the constraints and different implied constraints:
 - can be hard to decide which is better!
- We can use multiple models and combine them via *channelling constraints* to keep consistency between the variables:

- $X_i = j \leftrightarrow Y_j = i$

Solving

- 2. The user lets the CP technology solve the CSP:
 - choose a search algorithm:
 - usually backtracking search performing a depth-first traversal of a search tree.
 - integrate local consistency and propagation.
 - choose heuristics for branching:
 - which variable to branch on?
 - which value to branch on?

Backtracking Search

- A possible efficient and simple method.
- Variables are instantiated sequentially.
- Whenever all the variables of a constraint is instantiated, the validity of the constraint is checked.
- If a (partial) instantiation violates a constraint, backtracking is performed to the most recently instantiated variable that still has alternative values.
- Backtracking eliminates a subspace from the cartesian product of all variable domains.
- Essentially performs a depth-first search.

Backtracking Search

Backtracking Search

- Backtracking suffers from thrashing 😕 :
 - performs checks only with the current and past variables;
 - search keeps failing for the same reasons.

- Integrates local consistency and constraint propagation into the search.
- Consequently:
 - we can reason about the properties of constraints and their effect on their variables;
 - some values can be filtered from some domains, reducing the backtracking search space significantly!

- $X_1 \in \{1,2\}$ $X_2 \in \{0,1,2,3\}$ $X_3 \in \{2,3\}$
- X₁ > X₂ and X₁ + X₂ = X₃ and alldifferent([X₁, X₂, X₃]) Backtracking search + local consistency/propagation

- $X_1 \in \{1, 2\}$ $X_2 \in \{0, 1\}$ $X_3 \in \{2, 3\}$
- X₁ > X₂ and X₁ + X₂ = X₃ and alldifferent([X₁, X₂, X₃]) Backtracking search + local consistency/propagation

- $X_1 \in \{1,2\}$ $X_2 \in \{0,1,2,3\}$ $X_3 \in \{2,3\}$
- X₁ > X₂ and X₁ + X₂ = X₃ and alldifferent([X₁, X₂, X₃]) Backtracking search + local consistency/propagation

- $X_1 \in \{1,2\} \ X_2 \in \{0,1\} \ X_3 \in \{2,3\}$
- X₁ > X₂ and X₁ + X₂ = X₃ and alldifferent([X₁, X₂, X₃]) Backtracking search + local consistency/propagation

Local consistency & Propagation

• Central to the process of solving CSPs which are inherently intractable.

CP

- Programming, in the sense of mathematical programming:
 - the user states declaratively the constraints on a set of decision variables.
 - an underlying solver solves the constraints and returns a solution.
- Programming, in the sense of computer programming:
 - the user needs to program a strategy to search for a solution
 - search algorithm, heuristics, ...
 - otherwise, solving process can be inefficient.

CP

• Solve SUDOKU using CP!

http://www.cs.cornell.edu/gomes/SUDOKU/Sudoku.html

- very easy, not worth spending minutes ©
- you can decide which newspaper provides the toughest Sudoku instances ⁽²⁾

CP

- Constraints can be embedded into:
 - logic programming (constraint logic programming)
 - Prolog III, CLP(R), SICStus Prolog, ECLiPSe, CHIP, ...
 - functional programming
 - Oz
 - imperative programming
 - often via a separate library
 - IBM CP Solver, Gecode, Choco, Minion, ...

NOTE: We will not commit to any CP language/library, rather use a mathematical and/or natural notation.

PART II: Local Consistency & Constraint Propagation

Local Consistency & Constraint Propagation

PART I: The user lets the CP technology solve the CSP:

- choose a search algorithm;
- design heuristics for branching;
- integrate local consistency and propagation.

Outline

- Local Consistency
 - Arc Consistency (AC)
 - Generalised Arc Consistency (GAC)
 - Bounds Consistency (BC)
 - Higher Levels of Consistency
- Constraint Propagation
 - Propagation Algorithms
- Specialised Propagation Algorithms
 Clobal Constraints
 - Global Constraints
- Generalised Propagation Algorithms
 - AC algorithms

Local Consistency

- Backtrack tree search aims to extend a partial instantiation of variables to a complete and consistent one.
 - The search space is too large!
- Some inconsistent partial assignments obviously cannot be completed.
- Local consistency is a form of inference which detects inconsistent partial assignments.
 - Consequently, the backtrack search commits into less inconsistent instantiations.
- Local, because we examine individual constraints.
 - Remember that global consistency is NP-complete!
Local Consistency: An example

- $D(X_1) = \{1,2\}, D(X_2) = \{3,4\}, C_1: X_1 = X_2, C_2: X_1 + X_2 \ge 1$
- $X_1 = 1$
- X₁ = 2
 X₂ = 3
- $X_4 = 4$
- all inconsistent partial assignments wrt the constraint $X_1 = X_2$
- no need to check the individual assignments.
- no need to check the other constraint.
- unsatisfiability of the CSP can be inferred without having to search!

Several Local Consistencies

- Most popular local consistencies:
 - Arc Consistency (AC)
 - Generalised Arc Consistency (GAC)
 - Bounds Consistency (BC)
- They detect inconsistent partial assignments of the form X_i = j, hence:
 - j can be removed from $D(X_i)$ via propagation;
 - propagation can be implemented easily.

Arc Consistency (AC)

- Defined for binary constraints.
- A binary constraint C is a relation on two variables X_i and X_j, giving the set of allowed combinations of values (i.e. tuples):
 - $C \subseteq D(X_i) \times D(X_j)$
- C is AC iff:
 - forall $v \in D(X_i)$, exists $w \in D(X_j)$ s.t. $(v,w) \in C$.
 - $v \in D(X_i)$ is said to have a *support* wrt the constraint C.
 - forall $w \in D(X_i)$, exists $v \in D(X_i)$ s.t. $(v,w) \in C$.
 - $w \in D(X_i)$ is said to have a *support* wrt the constraint C.
- A CSP is AC iff all its binary constraints are AC.

AC: An example

- $D(X_1) = \{1,2,3\}, D(X_2) = \{2,3,4\}, C: X_1 = X_2$
- AC(C)?
 - $1 \in D(X_1)$ does not have a support.
 - $2 \in D(X_1)$ has $2 \in D(X_2)$ as support.
 - $3 \in D(X_1)$ has $3 \in D(X_2)$ as support.
 - $2 \in D(X_2)$ has $2 \in D(X_1)$ as support.
 - $3 \in D(X_2)$ has $3 \in D(X_1)$ as support.
 - $4 \in D(X_2)$ does not have a support.
- $X_1 = 1$ and $X_2 = 4$ are inconsistent partial assignments.
- $1 \in D(X_1)$ and $4 \in D(X_2)$ must be *removed* to achieve AC.
- $D(X_1) = \{2,3\}, D(X_2) = \{2,3\}, C: X_1 = X_2.$ - AC(C)

Propagation!

Generalised Arc Consistency

- Generalisation of AC to n-ary constraints.
- A constraint C is a relation on k variables X₁,..., X_k:
 C ⊆ D(X₁) x ... x D(X_k)
- A support is a tuple $\langle d_1, ..., d_k \rangle \in C$ where $d_i \in D(X_i)$.
- C is GAC iff:
 - forall X_i in {**X**₁,..., **X**_k}, forall $v \in D(X_i)$, v belongs to a support.
- AC is a special case of GAC.
- A CSP is GAC iff all its constraints are GAC.

GAC: An example

- D(X₁) = {1,2,3}, D(X₂) = {1,2}, D(X₃) = {1,2}
 C: alldifferent([X₁, X₂, X₃])
- GAC(C)?
 - $X_1 = 1$ and $X_1 = 2$ are not supported!
- $D(X_1) = \{3\}, D(X_2) = \{1,2\}, D(X_3) = \{1,2\}$ C: $X_1 \neq X_2 \neq X_3$ - GAC(C)

Bounds Consistency (BC)

- Defined for totally ordered (e.g. integer) domains.
- Relaxes the domain of X_i from $D(X_i)$ to $[min(X_i)..max(X_i)]$.
- Advantages:
 - it might be easier to look for a support in a range than in a domain;
 - achieving BC is often cheaper than achieving GAC;
 - achieving BC is enough to achieve GAC for monotonic constraints.
- Disadvantage:
 - BC might not detect all GAC inconsistencies in general.

Bounds Consistency (BC)

- A constraint C is a relation on k variables X₁,..., X_k:
 C ⊆ D(X₁) x ... x D(X_k)
- A bound support is a tuple $\{d_1, ..., d_k\} \in C$ where $d_i \in [min(X_i)..max(Xi)]$.
- C is BC iff:
 - forall X_i in {X₁,..., X_k}, min(X_i) and max(X_i) belong to a bound support.

GAC > BC: An example

D(X₁) = D(X₂) = {1,2}, D(X₃) = D(X₄) = {2,3,5,6}, D(X₅) = {5}, D(X₆) = {3,4,5,6,7}
 C: alldifferent([X₁, X₂, X₃, X₄, X₅, X₆])

1 2

3

4 5

6 7

• BC(C): $2 \in D(X_3)$ and $2 \in D(X_4)$ have no support.

X1 X2 X3 X4 X5 X6

BC

GAC > BC: An example

- D(X₁) = D(X₂) = {1,2}, D(X₃) = D(X₄) = {2,3,5,6}, D(X₅) = {5}, D(X₆) = {3,4,5,6,7}
 C: alldifferent([X₁, X₂, X₃, X₄, X₅, X₆])
- GAC(C): {2,5} ∈ D(X₃), {2,5} ∈ D(X₄), {3,5,6} ∈ D(X₆) have no support.

X1 X2 X3 X4 X5 X6

1

2

3

4

5

6

7

GAC

GAC = BC: An example

- $D(X_1) = \{1,2,3\}, D(X_2) = \{1,2,3\}, C: X_1 < X_2$
- BC(C):
 - $D(X_1) = \{1,2\}, D(X_2) = \{2,3\}$
- BC(C) = GAC(C):
 - a support for $min(X_2)$ supports all the values in $D(X_2)$.
 - a support for max(X1) supports all the values in D(X1).

Higher Levels of Consistencies

- Path consistency, k-consistencies, (i,j) consistencies, ...
- Not much used in practice:
 - detect inconsistent partial assignments with more than one <variable,value> pair.
 - cannot be enforced by removing single values from domains.
- Domain based consistencies stronger than (G)AC.
 - Singleton consistencies, triangle-based consistencies, ...
 - Becoming popular:
 - shaving in scheduling.

Outline

- Local Consistency
 - Arc Consistency (AC)
 - Generalised Arc Consistency (GAC)
 - Bounds Consistency (BC)
 - Higher Levels of Consistency
- Constraint Propagation
 - Constraint Propagation Algorithms
- Specialised Propagation Algorithms

 Global Constraints
- Generalised Propagation Algorithms
 - AC Algorithms

Constraint Propagation

- Can appear under different names:
 - constraint relaxation
 - filtering algorithm
 - local consistency enforcing, ...
- Similar concepts in other fields:
 - unit propagation in SAT.
- Local consistencies define properties that a CSP must satisfy after constraint propagation:
 - the operational behaviour is completely left open;
 - the only requirement is to achieve the required property on the CSP.

Constraint Propagation: A simple example

Input CSP:D(X₁) = {1,2}, D(X₂) = {1,2}, C: X₁ < X₂
We can write
different
algorithm for enforcing AC
$$\downarrow$$
 We can write
different
complexities to
achieve the
same effect.
Output CSP:D(X₁) = {1}, D(X₂) = {2}, C: X₁ < X₂

Constraint Propagation Algorithms

- A constraint propagation algorithm propagates a constraint C.
 - It removes the inconsistent values from the domains of the variables of C.
 - It makes C locally consistent.
 - The level of consistency depends on C:
 - GAC might be NP-complete, BC might not be possible, ...

Constraint Propagation Algorithms

- When solving a CSP with multiple constraints:
 - propagation algorithms interact;
 - a propagation algorithm can wake up an already propagated constraint to be propagated again!
 - in the end, propagation reaches a fixed-point and all constraints reach a level of consistency;
 - the whole process is referred as constraint propagation.

Constraint Propagation: An example

- $D(X_1) = D(X_2) = D(X_3) = \{1, 2, 3\}$ C_1 : all different($[X_1, X_2, X_3]$) C_2 : $X_2 < 3$ C_3 : $X_3 < 3$
- Let's assume:
 - the order of propagation is C_1 , C_2 , C_3 ;
 - each algorithm maintains (G)AC.
- Propagation of C₁:
 - nothing happens, C_1 is GAC.
- Propagation of C₂:
 - 3 is removed from $D(X_2)$, C_2 is now AC.
- Propagation of C₃:
 - 3 is removed from $D(X_3)$, C_3 is now AC.
- C_1 is not GAC anymore, because the supports of $\{1,2\} \in D(X_1)$ in $D(X_2)$ and $D(X_3)$ are removed by the propagation of C_2 and C_3 .
- Re-propagation of C₁:
 - 1 and 2 are removed from $D(X_1)$, C_1 is now AC.

Properties of Constraint Propagation Algorithms

- It is not enough to be able to remove inconsistent values from domains.
- A constraint propagation algorithm must *wake up* when necessary, otherwise may not achieve the desired local consistency property.
- Events that trigger a constraint propagation:
 - when the domain of a variable changes;
 - when a variable is assigned a value;
 - when the minimum or the maximum values of a domain changes.

Outline

- Local Consistency
 - Arc Consistency (AC)
 - Generalised Arc Consistency (GAC)
 - Bounds Consistency (BC)
 - Higher Levels of Consistency
- Constraint Propagation
 - Propagation Algorithms
- Specialised Propagation Algorithms
 - Global Constraints
 - Decompositions
 - Ad-hoc algorithms
- Generalised Propagation Algorithms
 - AC Algorithms

Specialised Propagation Algorithms

- A constraint propagation algorithm can be general or specialised:
 - general, if it is applicable to any constraint;
 - specialised, if it is specific to a constraint.
- Specialised algorithms:
 - Disadvantage:
 - has limited use;
 - is not always easy to develop one.
 - Advantages:
 - exploits the constraint semantics;
 - is potentially more efficient than a general algorithm.
- Worth developing specialised algorithms for recurring constraints with a reasonable semantics.

Specialised Propagation Algorithms

- **C**: $X_1 \le X_2$
- Observation:
 - a support of $min(X_2)$ supports all the values in $D(X_2)$;
 - a support of $max(X_1)$ supports all the values in $D(X_1)$.
- Propagation algorithm:
 - filter $D(X_1)$ s.t. $max(X_1) \le max(X_2)$;
 - filter D(X₂) s.t. min(X₁) ≤ min(X₂).
- The result is GAC (and thus BC).

• $D(X_1) = \{3, 4, 7, 8\}$, $D(X_2) = \{1, 2, 3, 5\}$, $C: X_1 \le X_2$

- $D(X_1) = \{3, 4, 7, 8\}$, $D(X_2) = \{1, 2, 3, 5\}$, $C: X_1 \le X_2$
- Propagation:
 - filter D(X₁) s.t. max(X₁) ≤ max(X₂);

- $D(X_1) = \{3, 4, 7, 8\}, D(X_2) = \{1, 2, 3, 5\}, C: X_1 \le X_2$
- Propagation:
 - filter D(X₁) s.t. max(X₁) ≤ max(X₂);

- $D(X_1) = \{3, 4, 7, 8\}, D(X_2) = \{1, 2, 3, 5\}, C: X_1 \le X_2$
- Propagation:
 - filter D(X₁) s.t. max(X₁) ≤ max(X₂);
 - filter $D(X_2)$ s.t. min $(X_1) \le min(X_2)$;

- $D(X_1) = \{3, 4, 7, 8\}, D(X_2) = \{7, 2, 3, 5\}, C: X_1 \le X_2$
- Propagation:
 - filter D(X₁) s.t. max(X₁) ≤ max(X₂);
 - filter $D(X_2)$ s.t. $min(X_1) \le min(X_2)$;

Global Constraints

- Many real-life constraints are complex and not binary.
 - Specialised algorithms are often developed for such constraints!
- A complex and n-ary constraint which encapsulates a specialised propagation algorithm is called a global constraint.

Examples of Global Constraints

• Alldifferent constraint:

- alldifferent([X₁, X₂, ..., X_n]) holds iff $X_i \neq X_j$ for $i < j \in \{1,...,n\}$

- useful in a variety of context
 - Timetabling (e.g. exams with common students must occur at different times)
 - Tournament scheduling (e.g. a team can play at most once in a week)
 - Configuration (e.g. a particular product cannot have repeating components)

• ...

Beyond Alldifferent

- NValue constraint:
 - one generalisation of all different
 - nvalue([X₁, X₂, ..., X_n], N) holds iff N = $|\{X_i | 1 \le i \le n\}|$
 - nvalue([1, 2, 2, 1, 3], 3)
 - alldifferent when N = n
 - Useful when values represent resources and we want to limit the usage of resources. E.g.,
 - Minimise the total number of resources used;
 - The total number of resources used must be between a specific interval;
 - ...

Beyond Alldifferent

- Global cardinality constraint:
 - another generalisation of all different
 - $\begin{array}{l} \ gcc([X_1,\,X_2,\,\ldots,\,X_n],\,[v_1,\,\ldots,\,v_m],\,[O_1,\,\ldots,\,O_m]) \text{ iff} \\ \ forall \ j \in \{1,\ldots,\,m\} \ O_j = |\{X_i \ | \ X_i = v_j,\,1 \leq i \leq n \ \}| \end{array}$
 - gcc([1, 1, 3, 2, 3], [1, 2, 3, 4], [2, 1, 2, 0])
 - Useful again when values represent resources
 - We can now limit the usage of each resource individually. E.g.,
 - Resource 1 can be used at most three times
 - Resource 2 can be used min 2 max 5 times

• ...

Symmetry Breaking Constraints

- Consider the following scenario:
 - $[X_1, X_2, ..., X_n]$ and $[Y_1, Y_2, ..., Y_n]$ represent the 2 day event assignments of a conference
 - Each day has n slots and the days are indistinguishable
 - Need to avoid symmetric assignments
- Global constraints developed for this purpose are called symmetry breaking constraints.
- Lexicographic ordering constraint:
 - $\begin{array}{l} \ \, \mathsf{lex}([\mathsf{X}_1, \, \mathsf{X}_2, \, \dots, \, \mathsf{X}_n], \, [\mathsf{Y}_1, \, \mathsf{Y}_2, \, \dots, \, \mathsf{Y}_n]) \ \mathsf{holds} \ \mathsf{iff:} \\ \mathsf{X}_1 < \mathsf{Y}_1 \ \, \mathsf{OR} \quad (\mathsf{X}_1 = \mathsf{Y}_1 \ \mathsf{AND} \ \, \mathsf{X}_2 < \mathsf{Y}_2) \ \, \mathsf{OR} \ \, \dots \\ (\mathsf{X}_1 = \mathsf{Y}_1 \ \mathsf{AND} \ \, \mathsf{X}_2 = \mathsf{Y}_2 \ \mathsf{AND} \ \, \dots \ \, \mathsf{AND} \ \, \mathsf{X}_n \leq \mathsf{Y}_n) \end{array}$
 - lex ([1, 2, 4],[1, 3, 3])

Grammar Constraints

- We might sometimes want a sequence of variables obey certain patterns. E.g.,
 - regulations in scheduling
- A promising direction in CP is the ability of modelling problems via automata/grammar.
- Global constraints developed for this purpose are called grammar constraints.
- **Regular** constraint:
 - regular([X₁, X₂, ..., X_n], A) holds iff <X₁, X₂, ..., X_n> forms a string accepted by the DFA A (which accepts a regular language).
 - regular([a, a, b], A), regular([b], A), regular([b, c, c, c, c, c], A) with A

Specialised Algorithms for Global Constraints

- How do we develop specialised algorithms for global constraints?
- Two main approaches:
 - constraint decomposition
 - ad-hoc algorithm

Constraint Decomposition

- A global constraint is decomposed into smaller and simpler constraints each which has a known propagation algorithm.
- Propagating each of the constraints gives a propagation algorithm for the original global constraint.
 - A very effective and efficient method for some global constraints

Decomposition of Among

- among([X₁, X₂, ..., X_n], [d₁, d₂, ..., d_m], N) holds iff N = $|\{X_i \mid X_i \in \{d_1, d_2, ..., d_m\} \ 1 \le i \le n \}|$
- Decomposition:
- B_i with $D(B_i) = \{0, 1\}$ for $1 \le i \le n$
- $\ C_i: B_i = 1 \leftrightarrow \ X_i \in \{d_1, \, d_2, \, ..., \, d_m\} \ \text{ for } 1 \leq i \leq n$
- $-\sum_{i}B_{i}=N$
- AC(C_i) for $1 \le i \le n$ and BC($\sum_i B_i = N$) ensures GAC on among.
Decomposition of Lex

- $lex([X_1, X_2, ..., X_n], [Y_1, Y_2, ..., Y_n])$
- Decomposition:
- B_i with D(B_i) = {0, 1} for 1 ≤ i ≤ n+1 to indicate the vectors have been ordered by position i-1
- B₁= 0
- $\begin{array}{ll} & C_i: \ (B_i = B_{i+1} = 0 \ \text{AND} \ X_i = Y_i \) \ \text{OR} \ \ (B_i = 0 \ \text{AND} \ B_{i+1} = 1 \ \text{AND} \ X_i < Y_i \) \ \text{OR} \\ & (B_i = B_{i+1} = 1) \ \text{for} \ 1 \le i \le n \end{array}$
- $GAC(C_i)$ ensures GAC on lex.

- May not always provide an effective propagation.
- Often GAC on the original constraint is stronger than (G)AC on the constraints in the decomposition.
- E.g., C: all different($[X_1, X_2, ..., X_n]$)
- **Decomposition** following the definition:
 - C_{ij} : $X_i \neq X_j$ for $i \leq j \in \{1, \dots, n\}$
 - AC on the decomposition is weaker than GAC on all different.
 - E.g., $D(X_1) = D(X_2) = D(X_3) = \{1,2\}, C$: all different($[X_1, X_2, X_3]$)
 - C_{12} , C_{13} , C_{23} are all AC, but C is not GAC.

- E.g., C: $lex([X_1, X_2, ..., X_n], [Y_1, Y_2, ..., Y_n])$
- OR decomposition:
- $X_1 < Y_1$ OR $(X_1 = Y_1 \text{ AND } X_2 < Y_2)$ OR ... $(X_1 = Y_1 \text{ AND } X_2 = Y_2 \text{ AND } \dots \text{ AND } X_n \le Y_n)$
- AC on the decomposition is weaker than GAC on lex.
- E.g., $D(X_1) = \{0, 1, 2\}$, $D(X_2) = \{0, 1\}$, $D(Y_1) = \{0, 1\}$, $D(Y_2) = \{0, 1\}$ C: $Lex([X_1, X_2], [Y_1, Y_2])$
- C is not GAC but the decomposition does not prune anything.

- AND decomposition of lex([X₁, X₂, ..., X_n], [Y₁, Y₂, ..., Y_n]):
- $\begin{array}{ll} & X_1 \leq Y_1 \text{ AND } (X_1 = Y_1 \rightarrow X_2 \leq Y_2) \text{ AND } \dots \\ & (X_1 = Y_1 \text{ AND } X_2 = Y_2 \text{ AND } \dots X_{n-1} = Y_{n-1} \rightarrow X_n \leq Y_n) \end{array}$
- AC on the decomposition is weaker than GAC on lex.
- E.g., $D(X_1) = \{0, 1\}$, $D(X_2) = \{0, 1\}$, $D(Y_1) = \{1\}$, $D(Y_2) = \{0\}$ C: Lex([X₁, X₂], [Y₁, Y₂])
- C is not GAC but the decomposition does not prune anything.

- Different decompositions of a constraint may be incomparable.
 - Difficult to know which one gives a better propagation for a given instance of a constraint.
- **C**: Lex([X₁, X₂], [Y₁, Y₂])
 - $D(X_1) = \{0, 1\}$, $D(X_2) = \{0, 1\}$, $D(Y_1) = \{1\}$, $D(Y_2) = \{0\}$
 - AND decomposition is weaker than GAC on lex, whereas OR decomposition maintains GAC.
 - $D(X_1) = \{0, 1, 2\}, D(X_2) = \{0, 1\}, D(Y_1) = \{0, 1\}, D(Y_2) = \{0, 1\}$
 - OR decomposition is weaker than GAC on lex, whereas OR decomposition maintains GAC.

- Even if effective, may not always provide an efficient propagation.
- Often GAC on a constraint via a specialised algorithm is maintained faster than (G)AC on the constraints in the decomposition.

- **C**: Lex([X₁, X₂], [Y₁, Y₂])
 - $D(X_1) = \{0, 1\}, D(X_2) = \{0, 1\}, D(Y_1) = \{1\}, D(Y_2) = \{0\}$
 - AND decomposition is weaker than GAC on lex, whereas OR decomposition maintains GAC
 - $D(X_1) = \{0, 1, 2\}, D(X_2) = \{0, 1\}, D(Y_1) = \{0, 1\}, D(Y_2) = \{0, 1\}$
 - OR decomposition is weaker than GAC on lex, whereas OR decomposition maintains GAC
- AND or OR decompositions have complementary strengths!
- Combining them gives us a decomposition which maintains GAC on lex.
- Too many constraints to post and propagate!
- A dedicated algorithm runs amortised in O(1).

Dedicated Algorithms

- Dedicated ad-hoc algorithms provide effective and efficient propagation.
- Often:
 - GAC is maintained in polynomial time.
 - Many more inconsistent values are detected compared to the decompositions.

Benefits of Global Constraints

- Modelling benefits
 - Reduce the gap between the problem statement and the model.
 - Capture recurring modelling patterns.
 - May allow the expression of constraints that are otherwise not possible to state using primitive constraints (semantic).
- Solving benefits
 - More inference in propagation (operational).
 - More efficient propagation (algorithmic).

- GAC algorithm based on matching theory.
 - Establishes a relation between the solutions of the constraint and the properties of a graph.
 - Runs in time $O(dn^{1.5})$.
- Value graph: bipartite graph between variables and their possible values.
- Matching: set of edges with no two edges having a node in common.
- Maximal matching: largest possible matching.

- An assignment of values to the variables
 X₁, X₂, ..., X_n is a solution iff it corresponds to a maximal matching.
 - Edges that do not belong to a maximal matching can be deleted.
- The challenge is to compute such edges efficiently.
 - Exploit concepts like strongly connected components, alternating paths, …

•
$$D(X_1) = \{1,3\}$$
, $D(X_2) = \{1,3\}$, $D(X_3) = \{1,2\}$

Variable-value graph

•
$$D(X_1) = \{1,3\}, D(X_2) = \{1,3\}, D(X_3) = \{1,2\}$$

A maximal matching

•
$$D(X_1) = \{1,3\}, D(X_2) = \{1,3\}, D(X_3) = \{1,2\}$$

Another maximal matching

Does not belong to any maximal matching

Dedicated Algorithms

- Is it always easy to develop a dedicated algorithm for a given constraint?
- There's no single recipe!
- A nice semantics often gives us a clue!
 - Graph Theory
 - Flow Theory
 - Combinatorics
 - Complexity Theory, ...
- GAC may as well be NP-hard!
 - In that case, algorithms which maintain weaker consistencies (like BC) are of interest.

GAC for Nvalue Constraint

- nvalue([X₁, X₂, ..., X_n], N) holds iff N = |{X_i | 1 ≤ i ≤ n }|
- Reduction from 3 SAT.
 - Given a Boolean fomula in k variables (labelled from 1 to k) and m clauses, we construct an instance of nvalue([X₁, X₂, ..., X_{k+m}], N):
 - D(X_i) = {i, i'} for i ∈ {1,..., k} where X_i represents the truth assignment of the SAT variables;
 - X_i where i > k represents a SAT clause (disjunction of literals);
 - for a given clause like $x \vee y' \vee z$, $D(X_i) = \{x, y', z\}$.
 - By construction, X_1, \ldots, X_k will consume all the k distinct values.
 - When N = k, nvalue has a solution iff the original SAT problem has a satisfying assignment.
 - Otherwise we will have more than k distinct values.
 - Hence, testing a value for support is NP-complete, and enforcing GAC is NP-hard!

GAC for Nvalue Constraint

- E.g., C₁: (a OR b' OR c) AND C₂: (a' OR b OR d) AND C₃: (b' OR c' OR d)
- The formula has 4 variables (a, b, c, d) and 3 clauses (C₁, C₂, C₃).
- We construct nvalue([X₁, X₂, ..., X₇], 4) where:
 - $D(X_1) = \{a, a'\}, D(X_2) = \{b, b'\}, D(X_3) = \{c, c'\}, D(X_4) = \{d, d'\}, D(X_5) = \{a, b', c\}, D(X_6) = \{a', b, d\}, D(X_7) = \{b', c', d\}$
- An assignment to X_1, \ldots, X_4 will consume 4 distinct values.
- Not to exceed 4 distinct values, the rest of the variables must have intersecting values with X₁, ..., X₄.
- Such assignments will make the SAT formula TRUE.

Outline

- Local Consistency
 - Arc Consistency (AC)
 - Generalised Arc Consistency (GAC)
 - Bounds Consistency (BC)
 - Higher Levels of Consistency
- Constraint Propagation
 - Propagation Algorithms
- Specialised Propagation Algorithms
 - Global Constraints
 - Decompositions
 - Ad-hoc algorithms
- Generalised Propagation Algorithms
 - AC Algorithms

Generalised Propagation Algorithms

- Not all constraints have nice semantics we can exploit to devise an efficient specialised propagation algorithm.
- Consider a product configuration problem:
 - compatibility constraints on hardware components:
 - only certain combinations of components work together.
 - compatibility may not be a simple pairwise relationship:
 - video cards supported function of motherboard, CPU, clock speed, O/S, ...

Production Configuration Problem

- 5-ary constraint:
 - Compatible (motherboard345, intelCPU, 2GHz, 1GBRam, 80GBdrive).
 - Compatible (motherboard346, intelCPU, 3GHz, 2GBRam, 100GBdrive).
 - Compatible (motherboard346, amdCPU, 2GHz, 2GBRam, 100GBdrive).

Crossword Puzzle

- Constraints with different arity:
 - $Word_1 ([X_1, X_2, X_3])$

- ...

- $Word_2 ([X_1, X_{13}, X_{16}])$
- No simple way to decide acceptable words other than to put them in a table.

1 C	² A	³ T		⁴ T	⁵s	⁶ N	⁷ I			۴P	°E	¹⁰ R	¹¹ C	¹² H
¹³ E	с	Α		¹⁴ H	т	0	G		¹⁵ T	υ	R	т	L	Е
¹⁶ S	н	Т	¹⁷ B	Α	I	Ν	υ		¹⁸ 0	R	R		¹⁹ 0	R
		20 L	А	I	с		²¹ A	²² B	E	R		²³ F	W	D
²⁴ B	²⁵ 0	×	L		²⁶ K	²⁷ A	Ν	E		²⁸ S	²⁹ H	E	D	Ι
30 S	w	Α	L	³¹ C		³² R	Α	s	³³ P		³⁴ O	w	E	z
³⁵ E	Ν	G		³⁶ H	³⁷ A	М	s	Т	E	³⁸ R	s		³⁹ R	G
		40 S	⁴¹ S	I	М				⁴² T	Α	Е	⁴³ M		
⁴⁴ S	⁴⁵ F		⁴⁶ P	Α	R	⁴⁷ A	⁴⁸ K	⁴⁹ E	Е	т		50U	⁵¹ S	⁵² A
⁵³ C	E	⁵⁴ I	С		⁵⁵ E	Y	E	s		⁵⁶ S	57K	I	Ν	s
58 R	E	т	Α	59 W		60 A	Ν	Е	⁶¹ W		⁶² E	R	Е	н
⁶³ A	D	s		⁶⁴ H	⁶⁵ A	н	Ν		⁶⁶ O	⁶⁷ K	R	А		
⁶⁸ T	E		⁶⁹ A	E	s		⁷⁰ E	⁷¹ U	к	Α	N	U	⁷² B	⁷³ A
⁷⁴ C	R	⁷⁵ A	Т	E	s		⁷⁶ L	Α	Е	R		‴Q	U	0
⁷⁸ H	s	Α	Е	L			⁷⁹ S	Е	N	т		⁸⁰ A	т	L

GAC Schema

- A generic propagation algorithm.
 - Enforces GAC on an n-ary constraint given by:
 - a set of allowed tuples;
 - a set of disallowed tuples;
 - a predicate answering if a constraint is satisfied or not.
 - Sometimes called the "table" constraint:
 - user supplies table of acceptable values.
- Complexity: O(edⁿ) time
- Hence, n cannot be too large!
 - Many solvers limits it to 3 or so.

Arc Consistency Algorithms

- Generic AC algorithms with different complexities and advantages:
 - AC3
 - AC4
 - AC6
 - AC2001
 - ...

- Idea:
 - Revise (X_i, C): removes unsupported values of X_i and returns TRUE.
 - Place each (X_i, C) where X_i participates to C and its domain is potentially not AC, in a queue Q;
 - While Q is not empty:
 - Select and remove (X_i, C) from Q;
 - If revise(X_i, C) then
 - If $D(X_i) = \{\}$ then return FALSE;
 - else place $\{(X_j, C') | X_i, X_j \text{ participate in some C'}\}$ into Q.

AC-3 achieves AC on binary CSPs in O(ed³) time and O(e) space.

- Time complexity is not optimal ⊗
- Revise does not remember anything about past computations and re-does unnecessary work.

- Stores max. amount of info in a preprocessing step so as to avoid redoing the same constraints checks.
- Idea:
 - Start with an empty queue Q.
 - Maintain counter[X_i, v_j, X_k] where X_i, X_k participate in a constraint C_{ik} and v_i \in D(X_i)
 - Stores the number of supports for $X_i \leftarrow v_j$ on C_{ik} .
 - Place all supports of $X_i \leftarrow v_j$ (in all constraints) in a list S[X_i, v_j].

- Initialisation:
 - All possible constraint checks are performed.
 - Each time a support for $X_i \leftarrow v_j$ is found, the corresponding counters and lists are updated.
 - Each time a support for $X_i \leftarrow v_j$ is not found, remove v_j from $D(X_i)$ and place (X_i, v_j) in Q for future propagation.
 - If $D(X_i) = \{\}$ then return FALSE.

- Propagation:
 - While Q is not empty:
 - Select and remove (X_i, v_j) from Q;
 - For each (X_k, v_t) in S[X_i, v_j]
 - If $v_t \in D(X_k)$ then
 - decrement counter[X_k, v_t, X_i]
 - If counter[X_k , v_t , X_i] = 0 then
 - Remove v_t from D(X_k); add (X_k, v_t) to Q
 - If $D(X_k) = \{\}$ then return FALSE.

- AC-3 achieves AC on binary CSPs in O(ed²) time and O(ed²) space.
 - Time complexity is optimal ③
 - Space complexity is not optimal 🛞
- AC-6 and AC-2001 achieve AC on binary CSPs in O(ed²) time and O(ed) space.
 - Time complexity is optimal ③
 - Space complexity is optimal [©]

PART IV: Search Algorithms

Outline

- Depth-first Search Algorithms
 - Chronological Backtracking
 - Conflict Directed Backjumping
 - Dynamic Backtracking
 - Branching Strategies
 - Heuristics
- Best-First Search Algorithms
 - Limited Discrepancy Search

Depth-first Search Algorithms

- Backtracking tree search algorithms essentially perform depth-first traversal of a search tree.
 - Every node represents a decision made on a variable.
 - At each node:
 - check every completely assigned constraint;
 - If consistent continue down in the tree;
 - otherwise prune the underlying subtrees and backtrack to an uninstantiated variable that still has alternative values.

Chronological Backtracking

• Backtracks to the most recent variable.

Chronological Backtracking

- Suffers from trashing.
 - The same failure can be remade an exponential number of times.

Non-Chronological Backtracking

- Backtrack on a culprit variable.
- E.g.,

- Backtracking to X_5 is pointless.
- Better to backtrack on X_4 .

Conflict Sets

 CS(X_k): assigned variables in conflict with some value of X_k.

Conflict Directed Backjumping

- Backtracks to the last variable in the conflict set.
- Intermediate decisions are removed.

No-goods

- Subset of incompatible assignments.
- E.g., map colouring problem.
 - X_1 , X_2 , X_3 are adjacent with D = {1, 2}.
 - $(X_1 = a \text{ and } X_3 = a)$ or equivalently $(X_1 = a \rightarrow X_3 \neq a)$ is a no-good.
- No-good resolution:

$$X_1 = a \rightarrow X_3 \neq a$$

- $X_2 = b \rightarrow X_3 \neq b$ $X_1 = a \rightarrow X_2 \neq b$

Dynamic Backtracking

- One no-good for each incompatible value is maintained.
 - Empty domain: new no-good by no-good resolution.
 - Backtrack to the variable in the right hand side of the no-good.

Dynamic Backtracking

- Backtracks to the last decision responsible for the dead-end.
- Intermediate decisions are not removed.

Branching Strategies

- The method of extending a node in the search tree.
 - Usually consists of posting a unary constraint on a chosen variable X_i.
 - X_i & the ordering of the branches are chosen by the heuristics.
- D-way branching:
 - One branch is generated for each $v_i \in D(X_i)$ by $X_i \leftarrow v_i$.
- 2-way branching:
 - 2 branches are generated for each $v_j \in D(X_i)$ by $X_i \leftarrow v_j$ and $X_i \leftarrow \! \setminus v_j.$
- Domain splitting:
 - k branches are generated by $X_i \in D_j$ where $D_1...D_k$ are partitions of D_i .

Variable and Value Ordering Heuristics

- Guide the search.
- Problem specific vs generic heuristics.
- Static Heuristics:
 - a variable is associated with each level;
 - branches are generated in the same order all over the tree;
 - calculated once and for all before search starts, hence cheap to evaluate.

Variable and Value Ordering Heuristics

- Dynamic Heuristics:
 - at any node, any variable & branch can be considered;
 - decided dynamically during search, hence costly;
 - takes into account the current state of the search tree.

Variable Ordering Heuristics

- Fail-first principle: to succeed, try first where you are most likely to fail.
- Min domain (dom):
 - choose next the variable with minimum domain.
- Most constrained (deg):
 - choose next the variable involved in most number of constraints.
- Combinations
 - dom + deg; dom / deg

Value Ordering Heuristics

- Succeed-first principle: choose next the value most likely to be part of a solution.
 - Approximating the number of solutions.
 - Looking at the remaining domain sizes when a value is assigned to a variable.

Problems with Depth-first Search

- The branches out of a node, ordered by a value ordering heuristic, are explored in left-to-right order, the left-most branch being the most promising.
- For many problems, heuristics are more accurate at deep nodes.
- Depth-first search:
 - puts tremendous burden on the heuristics early in the search and light burden deep in the search;
 - consequently mistakes made near the root of the tree can be costly to correct.
- Best-first search strategy is of interest.

Limited Discrepancy Search

- A discrepancy is the case where the search does not follow the value ordering heuristic and thus does not take the left-most branch out of a node.
- LDS:
 - Trusts the value ordering heuristic and gives priority to the left branches.
 - Iteratively searches the tree by increasing number of discrepancies, preferring discrepancies that occur near the root of the tree.

Limited Discrepancy Search

• The search recovers from mistakes made early in the search.

Figure 1: Paths with 0, 1, 2, and 3 Discrepancies in a Depth 3 Binary Tree

PART IV: Some Useful Pointers about CP

(Incomplete) List of Advanced Topics

- Modelling
- Global constraints, propagation algorithms
- Search algorithms
- Heuristics
- Symmetry breaking
- Optimisation
- Local search
- Soft constraints, preferences
- Temporal constraints
- Quantified constraints
- Continuous constraints

- Planning and scheduling
- SAT
- Complexity and tractability
- Uncertainty
- Robustness
- Structured domains
- Randomisation
- Hybrid systems
- Applications
- Constraint systems
- No good learning
- Explanations
- Visualisation

Books

Handbook of Constraint Programming

F. Rossi, P. van Beek, T. Walsh (eds), Elsevier Science, 2006.

Some online chapters:

Chapter 1 - Introduction

Chapter 3 - <u>Constraint Propagation</u>

Chapter 6 - Global Constraints

Chapter 10 - Symmetry in CP

Chapter 11 - Modelling

Books

- Constraint Logic Programming Using Eclipse
 K. Apt and M. Wallace, Cambridge University Press, 2006.
- Principles of Constraint Programming
 K. Apt, Cambridge University Press, 2003.
- Constraint Processing
 Rina Dechter, Morgan Kaufmann, 2003.
- Constraint-based Local Search
 - Pascal van Hentenryck and Laurent Michel, MIT Presss, 2005.
- The OPL Optimization Programming Languages Pascal Van Hentenryck, MIT Press, 1999.

• People

- Barbara Smith
 - Modelling, symmetry breaking, search heuristics
 - Tutorials and book chapter

- Christian Bessiere

- Constraint propagation
- Global constraints
 - Nvalue constraint
- Book chapter
- Jean-Charles Regin
 - Global constraints
 - Alldifferent, global cardinality, cardinality matrix
- Toby Walsh
 - Modelling, symmetry breaking, global constraints
 - Various tutorials

• Journals

- Constraints
- Artificial Intelligence
- Journal of Artificial Intelligence Research
- Journal of Heuristics
- Intelligenza Artificiale (AI*IA)
- Informs Journal on Computing
- Annals of Mathematics and Artificial Intelligence

Conferences

- Principles and Practice of Constraint Programming (CP) <u>http://www.cs.ualberta.ca/~ai/cp/</u>
- Integration of AI and OR Techniques in CP (CP-AI-OR) <u>http://www.cs.cornell.edu/~vanhoeve/cpaior/</u>
- National Conference on AI (AAAI) <u>http://www.aaai.org</u>
- International Joint Conference on Artificial Intelligence (IJCAI) http://www.ijcai.org
- European Conference on Artificial Intelligence (ECAI) <u>http://www.eccai.org</u>
- International Symposium on Practical Aspects of Declarative Languages (PADL)

http://www.informatik.uni-trier.de/~ley/db/conf/padl/index.html

Schools and Tutorials

- ACP summer schools:
 - 2005: <u>http://www.math.unipd.it/~frossi/cp-school/</u>
 - 2006: http://www.cse.unsw.edu.au/~tw/school.html
 - 2007: <u>http://www.iiia.csic.es/summerschools/sscp2007/</u>
 - 2008: http://www-circa.mcs.st-and.ac.uk/cpss2008/
 - 2009: http://www.cs.ucc.ie/~osullb/ACPSS2009/Welcome.html
 - 2010: http://becool.info.ucl.ac.be/summerschool2010/
- AI conference tutorials (IJCAI'09, 07, 05, ECAI'04 ...).
- CP conference tutorials.
- CP-AI-OR master classes.

Solvers & Languages

- Choco (http://choco.sourceforge.net/)
- Comet (http://www.comet-online.org/)
- Eclipse (http://eclipse.crosscoreop.com/)
- FaCiLe (http://www.recherche.enac.fr/opti/facile/)
- Gecode (http://www.gecode.org/)
- IBM ILOG Solver (http://www-01.ibm.com/software/ websphere/products/optimization/)
- Koalog Constraint Solver (http://www.gecode.org/)
- Minion (http://minion.sourceforge.net/)
- OPL (http://www.ilog.com/products/oplstudio/)
- Sicstus Prolog (http://www.sics.se/isl/sicstuswww/site/ index.html)