
Solving Constraint Problems
in Constraint Programming

Zeynep KIZILTAN
Department of Computer Science

University of Bologna

Email: zeynep@cs.unibo.it

What is it about?

  10 hour lectures about the core of constraint solving in CP
–  Part I: Overview of constraint programming
–  Part II: Local consistency & constraint propagation
–  Part III: Search algorithms
–  Part IV: Advanced topics, useful pointers

  Aim:
–  Teach the basics of constraint programming.
–  Emphasize the importance of local consistency & constraint

propagation & search.
–  Point out the advanced topics.
–  Inform about the literature.

Warning

  We will see how constraint programming
works.

  No programming examples.

PART I: Overview
of Constraint Programming

Outline

  Constraint Satisfaction Problems (CSPs)
  Constraint Programming (CP)

–  Modelling
–  Backtracking Tree Search
–  Local Consistency and Constraint Propagation

Constraints are everywhere!

  No meetings before 9am.
  No registration of marks

before May 15.
  The lecture rooms have a

capacity.
  Two lectures of a student

cannot overlap.
  No two trains on the same

track at the same time.
  Salary > 45k Euros 
 …

Constraint Satisfaction Problems

  A constraint is a restriction.
  There are many real-life problems that require to give a

decision in the presence of constraints:
–  flight / train scheduling;
–  scheduling of events in an operating system;
–  staff rostering at a company;
–  course time tabling at a university …

  Such problems are called Constraint Satisfaction
Problems (CSPs).

Sudoku: An everyday-life example

CSPs: More formally

  A CSP is a triple <X,D,C> where:
–  X is a set of decision variables {X1,...,Xn}.
–  D is a set of domains {D1,...,Dn} for X:

  Di is a set of possible values for Xi.
  usually assume finite domain.

–  C is a set of constraints {C1,…,Cm}:
  Ci is a relation over Xj,...,Xk, giving the set of combination of allowed

values.
  Ci ⊆ D(Xj) x ...x D(Xk)

  A solution to a CSP is an assignment of values to the
variables which satisfies all the constraints
simultaneously.

CSPs: A simple example

  Variables
X = {X1, X2, X3}

  Domains
D(X1) = {1,2}, D(X2) = {0,1,2,3}, D(X3) = {2,3}

  Constraints
X1 > X2 and X1 + X2 = X3 and X1 ≠ X2 ≠ X3 ≠ X1

  Solution
X1 = 2, X2 = 1, X3 = 3 alldifferent([X1, X2, X3])

Sudoku: An everyday-life example

  A simple CSP
–  9x9 variables (Xij) with domains {1,...,9}
–  Not-equals constraints on the rows, columns, and 3x3 boxes. E.g.,

alldifferent([X11, X21, X31, …, X91])

alldifferent([X11, X12, X13, …, X19])

alldifferent([X11, X21, X31, X12, X22, X32, X13, X23, X33])

X11

.

.

.

X19 X99

.

.

.

X91

Job-Shop Scheduling: A real-life example

  Schedule jobs, each using a resource for a period, in time D by
obeying the precedence and capacity constraints

  A very common industrial problem.
  CSP:

–  variables represent the jobs;
–  domains represent the start times;
–  constraints specify precedence and exclusivity.

CSPs

  Search space: D(X1) x D(X2) x … x D(Xn)
–  very large!

  Constraint satisfaction is NP-complete:
–  no polynomial time algorithm is known to exist!
–  I can get no satisfaction 

  We need general and efficient methods to solve CSPs:
–  Integer and Linear Programming (satisfying linear constraints

on 0/1 variables and optimising a criterion)
–  SAT (satisfying CNF formulas on 0/1 variables)
–  …
–  Constraint Programming

How does it exactly work?

CP Machinery

 Solving Modelling

  CP is composed of two phases that are strongly
interconnected:

Modelling

1.  The CP user models the problem as a CSP:
–  define the variables and their domains;
–  specify solutions by posting constraints on the

variables:
  off-the-shelf constraints or user-defined constraints.

–  a constraint can be thought of a reusable component
with its own propagation algorithm.

 WAIT TO UNDERSTAND WHAT I MEAN 

Modelling

  Modelling is a critical aspect.
  Given the human understanding of a problem, we need

to answer questions like:
–  which variables shall we choose?
–  which constraints shall we enforce?
–  shall we use off-the-self constraints, or define and integrate

our own?
–  are some constraints redundant, therefore can be avoided?
–  are there any implied constraints?
–  among alternative models, which one shall I prefer?

A problem with a simple model

X11

.

.

.

X19 X99

.

.

.

X91

  A simple CSP
–  9x9 variables (Xij) with domains {1,...,9}
–  Not-equals constraints on the rows, columns, and 3x3 boxes, eg.,

alldifferent([X11, X21, X31, …, X91])
alldifferent([X11, X12, X13, …, X19])
alldifferent([X11, X21, X31, X12, X22, X32, X13, X23, X33])

A problem with a complex model

  Consider a permutation problem:
–  find a permutation of the numbers {1,...,n} s.t. some constraints are

satisfied.
  One model:

–  variables (Xi) for positions, domains for numbers {1,...,n}.
  Dual model:

–  variables (Yi) for numbers {1,…,n}, domains for positions.
  Often different views allow different expression of the constraints

and different implied constraints:
–  can be hard to decide which is better!

  We can use multiple models and combine them via channelling
constraints to keep consistency between the variables:

–  Xi = j ↔ Yj = i

Solving

2.  The user lets the CP technology solve the CSP:
–  choose a search algorithm:

  usually backtracking search performing a depth-first traversal of a
search tree.

–  integrate local consistency and propagation.
–  choose heuristics for branching:

  which variable to branch on?
  which value to branch on? Search Local consistency &

Propagation

Heuristics

Backtracking Search

  A possible efficient and simple method.
  Variables are instantiated sequentially.
  Whenever all the variables of a constraint is instantiated,

the validity of the constraint is checked.
  If a (partial) instantiation violates a constraint,

backtracking is performed to the most recently
instantiated variable that still has alternative values.

  Backtracking eliminates a subspace from the cartesian
product of all variable domains.

  Essentially performs a depth-first search.

Backtracking Search

  X1 ∈ {1,2} X2 ∈ {0,1,2,3} X3 ∈ {2,3}
  X1 > X2 and X1 + X2 = X3 and alldifferent([X1, X2, X3])

 Backtracking search

Fails 8 times! backtracking

Backtracking Search

  Backtracking suffers from thrashing  :
–  performs checks only with the current and past variables;
–  search keeps failing for the same reasons.

X1 = X3

X1 ≤ X2

Constraint Programming

  Integrates local consistency and constraint
propagation into the search.

  Consequently:
–  we can reason about the properties of constraints and their

effect on their variables;
–  some values can be filtered from some domains, reducing

the backtracking search space significantly!

Constraint Programming

  X1 ∈ {1,2} X2 ∈ {0,1,2,3} X3 ∈ {2,3}
  X1 > X2 and X1 + X2 = X3 and alldifferent([X1, X2, X3])

 Backtracking search + local consistency/propagation

Constraint Programming

  X1 ∈ {1,2} X2 ∈ {0,1} X3 ∈ {2,3}
  X1 > X2 and X1 + X2 = X3 and alldifferent([X1, X2, X3])

 Backtracking search + local consistency/propagation

backtracking

Constraint Programming

  X1 ∈ {1,2} X2 ∈ {0,1,2,3} X3 ∈ {2,3}
  X1 > X2 and X1 + X2 = X3 and alldifferent([X1, X2, X3])

 Backtracking search + local consistency/propagation

Constraint Programming

  X1 ∈ {1,2} X2 ∈ {0,1} X3 ∈ {2,3}
  X1 > X2 and X1 + X2 = X3 and alldifferent([X1, X2, X3])

 Backtracking search + local consistency/propagation

Fails only once!

Local consistency & Propagation

  Central to the process of solving CSPs which
are inherently intractable.

Search Local consistency &
Propagation

Heuristics

CP

  Programming, in the sense of mathematical
programming:

–  the user states declaratively the constraints on a set of decision
variables.

–  an underlying solver solves the constraints and returns a
solution.

  Programming, in the sense of computer programming:
–  the user needs to program a strategy to search for a solution

  search algorithm, heuristics, …

–  otherwise, solving process can be inefficient.

CP

CP

Artificial
Intelligence

Discrete
Mathematics

Logic
Programming

Operations
Research Algorithms …

Networks Vehicle
Routing

Configuration Bio-
informatics

Planning

& Scheduling
…

Complexity
Theory

CP

  Solve SUDOKU using CP!
 http://www.cs.cornell.edu/gomes/SUDOKU/Sudoku.html

–  very easy, not worth spending minutes 
–  you can decide which newspaper provides the toughest Sudoku

instances 

CP

  Constraints can be embedded into:
–  logic programming (constraint logic programming)

  Prolog III, CLP(R), SICStus Prolog, ECLiPSe, CHIP, …

–  functional programming
  Oz

–  imperative programming
  often via a separate library
  IBM CP Solver, Gecode, Choco, Minion, …

NOTE: We will not commit to any CP language/library, rather
use a mathematical and/or natural notation.

PART II: Local Consistency &
Constraint Propagation

Local Consistency & Constraint
Propagation

 What exactly are they?
 How do they work?

PART I: The user lets the CP technology solve the CSP:
–  choose a search algorithm;
–  design heuristics for branching;
–  integrate local consistency and propagation.

Search Local consistency &
Propagation

Heuristics Have central affect

Outline

  Local Consistency
–  Arc Consistency (AC)
–  Generalised Arc Consistency (GAC)
–  Bounds Consistency (BC)
–  Higher Levels of Consistency

  Constraint Propagation
–  Propagation Algorithms

  Specialised Propagation Algorithms
–  Global Constraints

  Generalised Propagation Algorithms
–  AC algorithms

Local Consistency

  Backtrack tree search aims to extend a partial
instantiation of variables to a complete and consistent one.

–  The search space is too large!
  Some inconsistent partial assignments obviously cannot

be completed.
  Local consistency is a form of inference which detects

inconsistent partial assignments.
–  Consequently, the backtrack search commits into less inconsistent

instantiations.
  Local, because we examine individual constraints.

–  Remember that global consistency is NP-complete!

Local Consistency: An example

  D(X1) = {1,2}, D(X2) = {3,4}, C1: X1 = X2, C2: X1 + X2 ≥ 1
  X1 = 1
  X1 = 2
  X2 = 3
  X4 = 4

–  no need to check the individual assignments.
–  no need to check the other constraint.
–  unsatisfiability of the CSP can be inferred without having to

search!

all inconsistent partial assignments
wrt the constraint X1 = X2

Several Local Consistencies

  Most popular local consistencies:
–  Arc Consistency (AC)
–  Generalised Arc Consistency (GAC)
–  Bounds Consistency (BC)

  They detect inconsistent partial assignments
of the form Xi = j, hence:
–  j can be removed from D(Xi) via propagation;
–  propagation can be implemented easily.

Arc Consistency (AC)

  Defined for binary constraints.
  A binary constraint C is a relation on two variables Xi

and Xj, giving the set of allowed combinations of values
(i.e. tuples):
–  C ⊆ D(Xi) x D(Xj)

  C is AC iff:
–  forall v ∈ D(Xi), exists w ∈ D(Xj) s.t. (v,w) ∈ C.

  v ∈ D(Xi) is said to have a support wrt the constraint C.
–  forall w ∈ D(Xj), exists v ∈ D(Xi) s.t. (v,w) ∈ C.

  w ∈ D(Xj) is said to have a support wrt the constraint C.
  A CSP is AC iff all its binary constraints are AC.

AC: An example

  D(X1) = {1,2,3}, D(X2) = {2,3,4}, C: X1 = X2
  AC(C)?

–  1 ∈ D(X1) does not have a support.
–  2 ∈ D(X1) has 2 ∈ D(X2) as support.
–  3 ∈ D(X1) has 3 ∈ D(X2) as support.
–  2 ∈ D(X2) has 2 ∈ D(X1) as support.
–  3 ∈ D(X2) has 3 ∈ D(X1) as support.
–  4 ∈ D(X2) does not have a support.

  X1 = 1 and X2 = 4 are inconsistent partial assignments.
  1 ∈ D(X1) and 4 ∈ D(X2) must be removed to achieve AC.
  D(X1) = {2,3}, D(X2) = {2,3}, C: X1 = X2.

–  AC(C)

Propagation!

Generalised Arc Consistency

  Generalisation of AC to n-ary constraints.
  A constraint C is a relation on k variables X1,…, Xk:

–  C ⊆ D(X1) x … x D(Xk)
  A support is a tuple <d1,…,dk> ∈ C where di ∈ D(Xi).
  C is GAC iff:

–  forall Xi in {X1,…, Xk}, forall v ∈ D(Xi), v belongs to a support.

  AC is a special case of GAC.
  A CSP is GAC iff all its constraints are GAC.

GAC: An example

  D(X1) = {1,2,3}, D(X2) = {1,2}, D(X3) = {1,2}
 C: alldifferent([X1, X2, X3])

  GAC(C)?
–  X1 = 1 and X1 = 2 are not supported!

  D(X1) = {3}, D(X2) = {1,2}, D(X3) = {1,2}
 C: X1 ≠ X2 ≠ X3

–  GAC(C)

Bounds Consistency (BC)

  Defined for totally ordered (e.g. integer) domains.
  Relaxes the domain of Xi from D(Xi) to [min(Xi)..max(Xi)].
  Advantages:

–  it might be easier to look for a support in a range than in a
domain;

–  achieving BC is often cheaper than achieving GAC;
–  achieving BC is enough to achieve GAC for monotonic

constraints.

  Disadvantage:
–  BC might not detect all GAC inconsistencies in general.

Bounds Consistency (BC)

  A constraint C is a relation on k variables X1,…, Xk:
–  C ⊆ D(X1) x … x D(Xk)

  A bound support is a tuple <d1,…,dk> ∈ C where di ∈
[min(Xi)..max(Xi)].

  C is BC iff:
–  forall Xi in {X1,…, Xk}, min(Xi) and max(Xi) belong to a

bound support.

GAC > BC: An example

  D(X1) = D(X2) = {1,2}, D(X3) = D(X4) = {2,3,5,6}, D(X5) = {5}, D(X6) =
{3,4,5,6,7}

 C: alldifferent([X1, X2 , X3 , X4 , X5 , X6])

  BC(C): 2 ∈ D(X3) and 2 ∈ D(X4) have no support.

 Original BC

GAC > BC: An example

  D(X1) = D(X2) = {1,2}, D(X3) = D(X4) = {2,3,5,6}, D(X5) = {5}, D(X6) =
{3,4,5,6,7}

 C: alldifferent([X1, X2 , X3 , X4 , X5 , X6])

  GAC(C): {2,5} ∈ D(X3) , {2,5} ∈ D(X4), {3,5,6} ∈ D(X6) have no
support.

 Original BC GAC

GAC = BC: An example

  D(X1) = {1,2,3}, D(X2) = {1,2,3}, C: X1 < X2

  BC(C):
–  D(X1) = {1,2}, D(X2) = {2,3}

  BC(C) = GAC(C):
–  a support for min(X2) supports all the values in D(X2).
–  a support for max(X1) supports all the values in D(X1).

Higher Levels of Consistencies

  Path consistency, k-consistencies, (i,j) consistencies, …
  Not much used in practice:

–  detect inconsistent partial assignments with more than one
<variable,value> pair.

–  cannot be enforced by removing single values from domains.

  Domain based consistencies stronger than (G)AC.
–  Singleton consistencies, triangle-based consistencies, …
–  Becoming popular:

  shaving in scheduling.

Outline

  Local Consistency
–  Arc Consistency (AC)
–  Generalised Arc Consistency (GAC)
–  Bounds Consistency (BC)
–  Higher Levels of Consistency

  Constraint Propagation
–  Constraint Propagation Algorithms

  Specialised Propagation Algorithms
–  Global Constraints

  Generalised Propagation Algorithms
–  AC Algorithms

Constraint Propagation

  Can appear under different names:
–  constraint relaxation
–  filtering algorithm
–  local consistency enforcing, …

  Similar concepts in other fields:
–  unit propagation in SAT.

  Local consistencies define properties that a CSP must
satisfy after constraint propagation:

–  the operational behaviour is completely left open;
–  the only requirement is to achieve the required property on the

CSP.

Constraint Propagation: A simple example

Input CSP:D(X1) = {1,2}, D(X2) = {1,2} , C: X1 < X2

Output CSP:D(X1) = {1}, D(X2) = {2} , C: X1 < X2

A constraint propagation
algorithm for enforcing AC

We can write
different

algorithms with
different

complexities to
achieve the
same effect.

Constraint Propagation Algorithms

  A constraint propagation algorithm propagates a
constraint C.
–  It removes the inconsistent values from the domains of

the variables of C.
–  It makes C locally consistent.
–  The level of consistency depends on C:

  GAC might be NP-complete, BC might not be possible, …

Constraint Propagation Algorithms

  When solving a CSP with multiple constraints:
–  propagation algorithms interact;
–  a propagation algorithm can wake up an already

propagated constraint to be propagated again!
–  in the end, propagation reaches a fixed-point and all

constraints reach a level of consistency;
–  the whole process is referred as constraint

propagation.

Constraint Propagation: An example

  D(X1) = D(X2) = D(X3)= {1,2,3}
 C1: alldifferent([X1, X2 , X3]) C2: X2 < 3 C3: X3 < 3
  Let’s assume:

–  the order of propagation is C1, C2, C3;
–  each algorithm maintains (G)AC.

  Propagation of C1:
–  nothing happens, C1 is GAC.

  Propagation of C2:
–  3 is removed from D(X2), C2 is now AC.

  Propagation of C3:
–  3 is removed from D(X3), C3 is now AC.

  C1 is not GAC anymore, because the supports of {1,2} ∈ D(X1) in
D(X2) and D(X3) are removed by the propagation of C2 and C3.

  Re-propagation of C1:
–  1 and 2 are removed from D(X1), C1 is now AC.

Properties of Constraint Propagation Algorithms

  It is not enough to be able to remove inconsistent values
from domains.

  A constraint propagation algorithm must wake up when
necessary, otherwise may not achieve the desired local
consistency property.

  Events that trigger a constraint propagation:
–  when the domain of a variable changes;
–  when a variable is assigned a value;
–  when the minimum or the maximum values of a domain changes.

Outline

  Local Consistency
–  Arc Consistency (AC)
–  Generalised Arc Consistency (GAC)
–  Bounds Consistency (BC)
–  Higher Levels of Consistency

  Constraint Propagation
–  Propagation Algorithms

  Specialised Propagation Algorithms
–  Global Constraints

  Decompositions
  Ad-hoc algorithms

  Generalised Propagation Algorithms
–  AC Algorithms

Specialised Propagation Algorithms

  A constraint propagation algorithm can be general or specialised:
–  general, if it is applicable to any constraint;
–  specialised, if it is specific to a constraint.

  Specialised algorithms:
–  Disadvantage:

  has limited use;
  is not always easy to develop one.

–  Advantages:
  exploits the constraint semantics;
  is potentially more efficient than a general algorithm.

  Worth developing specialised algorithms for recurring constraints
with a reasonable semantics.

Specialised Propagation Algorithms

  C: X1 ≤ X2

  Observation:
–  a support of min(X2) supports all the values in D(X2);
–  a support of max(X1) supports all the values in D(X1).

  Propagation algorithm:
–  filter D(X1) s.t. max(X1) ≤ max(X2);
–  filter D(X2) s.t. min(X1) ≤ min(X2).

  The result is GAC (and thus BC).

Example

  D(X1) = {3, 4, 7, 8} , D(X2) = {1, 2, 3, 5}, C: X1 ≤ X2

Example

  D(X1) = {3, 4, 7, 8} , D(X2) = {1, 2, 3, 5}, C: X1 ≤ X2

  Propagation:
–  filter D(X1) s.t. max(X1) ≤ max(X2);

Example

  D(X1) = {3, 4, 7, 8} , D(X2) = {1, 2, 3, 5}, C: X1 ≤ X2

  Propagation:
–  filter D(X1) s.t. max(X1) ≤ max(X2);

Example

  D(X1) = {3, 4, 7, 8} , D(X2) = {1, 2, 3, 5}, C: X1 ≤ X2

  Propagation:
–  filter D(X1) s.t. max(X1) ≤ max(X2);
–  filter D(X2) s.t. min(X1) ≤ min(X2);

Example

  D(X1) = {3, 4, 7, 8} , D(X2) = {1, 2, 3, 5}, C: X1 ≤ X2

  Propagation:
–  filter D(X1) s.t. max(X1) ≤ max(X2);
–  filter D(X2) s.t. min(X1) ≤ min(X2);

Global Constraints

  Many real-life constraints are complex and not binary.
–  Specialised algorithms are often developed for such constraints!

  A complex and n-ary constraint which encapsulates a
specialised propagation algorithm is called a global
constraint.

Examples of Global Constraints

  Alldifferent constraint:

–  alldifferent([X1, X2, …, Xn]) holds iff
 Xi ≠ Xj for i < j ∈ {1,…,n}

–  useful in a variety of context
  Timetabling (e.g. exams with common students must occur at

different times)
  Tournament scheduling (e.g. a team can play at most once in a

week)
  Configuration (e.g. a particular product cannot have repeating

components)
  …

Beyond Alldifferent

  NValue constraint:
–  one generalisation of alldifferent
–  nvalue([X1, X2, …, Xn], N) holds iff

 N = |{Xi | 1 ≤ i ≤ n }|
–  nvalue([1, 2, 2, 1, 3], 3)
–  alldifferent when N = n
–  Useful when values represent resources and we want

to limit the usage of resources. E.g.,
  Minimise the total number of resources used;
  The total number of resources used must be between a

specific interval;
  …

Beyond Alldifferent

  Global cardinality constraint:
–  another generalisation of alldifferent
–  gcc([X1, X2, …, Xn], [v1, …, vm], [O1, …, Om]) iff

 forall j ∈ {1,…, m} Oj = |{Xi | Xi = vj, 1 ≤ i ≤ n }|
–  gcc([1, 1, 3, 2, 3], [1, 2, 3, 4], [2, 1, 2, 0])
–  Useful again when values represent resources
–  We can now limit the usage of each resource

individually. E.g.,
  Resource 1 can be used at most three times
  Resource 2 can be used min 2 max 5 times
  …

Symmetry Breaking Constraints

  Consider the following scenario:
–  [X1, X2, …, Xn] and [Y1, Y2, …, Yn] represent the 2 day event

assignments of a conference
–  Each day has n slots and the days are indistinguishable
–  Need to avoid symmetric assignments

  Global constraints developed for this purpose are called
symmetry breaking constraints.

  Lexicographic ordering constraint:
–  lex([X1, X2, …, Xn], [Y1, Y2, …, Yn]) holds iff:
 X1 < Y1 OR (X1 = Y1 AND X2 < Y2) OR …
 (X1 = Y1 AND X2 = Y2 AND …. AND Xn ≤ Yn)
–  lex ([1, 2, 4],[1, 3, 3])

  We might sometimes want a sequence of variables obey certain
patterns. E.g.,

–  regulations in scheduling
  A promising direction in CP is the ability of modelling problems via

automata/grammar.
  Global constraints developed for this purpose are called grammar

constraints.
  Regular constraint:

–  regular([X1, X2, …, Xn], A) holds iff <X1, X2, …, Xn> forms a string
accepted by the DFA A (which accepts a regular language).

–  regular([a, a, b], A), regular([b], A), regular([b, c, c, c, c, c], A) with A

Grammar Constraints

a b
c

Specialised Algorithms for Global Constraints

  How do we develop specialised algorithms
for global constraints?

  Two main approaches:
–  constraint decomposition
–  ad-hoc algorithm

Constraint Decomposition

  A global constraint is decomposed into smaller
and simpler constraints each which has a known
propagation algorithm.

  Propagating each of the constraints gives a
propagation algorithm for the original global
constraint.
–  A very effective and efficient method for some global

constraints

Decomposition of Among

  among([X1, X2, …, Xn], [d1, d2, …, dm], N) holds iff
 N = |{Xi | Xi ∈ {d1, d2, …, dm} 1 ≤ i ≤ n }|

  Decomposition:
–  Bi with D(Bi) = {0, 1} for 1 ≤ i ≤ n
–  Ci: Bi = 1 ↔ Xi ∈ {d1, d2, …, dm} for 1 ≤ i ≤ n
– 
  AC(Ci) for 1 ≤ i ≤ n and BC() ensures GAC

on among.

€

Bi = N
i∑

€

Bi = N
i∑

Decomposition of Lex

  lex([X1, X2, …, Xn], [Y1, Y2, …, Yn])
  Decomposition:
–  Bi with D(Bi) = {0, 1} for 1 ≤ i ≤ n+1 to indicate the vectors have been

ordered by position i-1
–  B1= 0
–  Ci: (Bi = Bi+1 = 0 AND Xi = Yi) OR (Bi = 0 AND Bi+1 = 1 AND Xi < Yi) OR

(Bi = Bi+1 = 1) for 1 ≤ i ≤ n

  GAC(Ci) ensures GAC on lex.

Constraint Decompositions

  May not always provide an effective propagation.
  Often GAC on the original constraint is stronger than

(G)AC on the constraints in the decomposition.
  E.g., C: alldifferent([X1, X2, …, Xn])
  Decomposition following the definition:

–  Cij: Xi ≠ Xj for i < j ∈ {1,…,n}
–  AC on the decomposition is weaker than GAC on alldifferent.
–  E.g., D(X1) = D(X2) = D(X3) = {1,2}, C: alldifferent([X1, X2, X3])
–  C12, C13, C23 are all AC, but C is not GAC.

Constraint Decompositions

  E.g., C: lex([X1, X2, …, Xn], [Y1, Y2, …, Yn])
  OR decomposition:
–  X1 < Y1 OR (X1 = Y1 AND X2 < Y2) OR …
 (X1 = Y1 AND X2 = Y2 AND …. AND Xn ≤ Yn)
–  AC on the decomposition is weaker than GAC on lex.
–  E.g., D(X1) = {0, 1, 2} , D(X2) = {0, 1}, D(Y1) = {0, 1} , D(Y2) = {0, 1}

C: Lex([X1, X2], [Y1, Y2])
–  C is not GAC but the decomposition does not prune anything.

Constraint Decompositions

  AND decomposition of lex([X1, X2, …, Xn], [Y1, Y2, …, Yn]):
–  X1 ≤ Y1 AND (X1 = Y1 → X2 ≤ Y2) AND …
 (X1 = Y1 AND X2 = Y2 AND …. Xn-1 = Yn-1 → Xn ≤ Yn)
–  AC on the decomposition is weaker than GAC on lex.
–  E.g., D(X1) = {0, 1} , D(X2) = {0, 1}, D(Y1) = {1} , D(Y2) = {0}

C: Lex([X1, X2], [Y1, Y2])
–  C is not GAC but the decomposition does not prune anything.

Constraint Decompositions

  Different decompositions of a constraint may be
incomparable.
  Difficult to know which one gives a better propagation for a given

instance of a constraint.

  C: Lex([X1, X2], [Y1, Y2])
  D(X1) = {0, 1} , D(X2) = {0, 1}, D(Y1) = {1} , D(Y2) = {0}

–  AND decomposition is weaker than GAC on lex, whereas OR
decomposition maintains GAC.

  D(X1) = {0, 1, 2} , D(X2) = {0, 1}, D(Y1) = {0, 1} , D(Y2) = {0, 1}
–  OR decomposition is weaker than GAC on lex, whereas OR

decomposition maintains GAC.

Constraint Decompositions

  Even if effective, may not always provide an efficient
propagation.

  Often GAC on a constraint via a specialised algorithm is
maintained faster than (G)AC on the constraints in the
decomposition.

Constraint Decompositions

  C: Lex([X1, X2], [Y1, Y2])
  D(X1) = {0, 1} , D(X2) = {0, 1}, D(Y1) = {1} , D(Y2) = {0}

–  AND decomposition is weaker than GAC on lex, whereas OR
decomposition maintains GAC

  D(X1) = {0, 1, 2} , D(X2) = {0, 1}, D(Y1) = {0, 1} , D(Y2) = {0, 1}
–  OR decomposition is weaker than GAC on lex, whereas OR

decomposition maintains GAC

  AND or OR decompositions have complementary strengths!
–  Combining them gives us a decomposition which maintains GAC on

lex.

  Too many constraints to post and propagate!
  A dedicated algorithm runs amortised in O(1).

Dedicated Algorithms

  Dedicated ad-hoc algorithms provide
effective and efficient propagation.

  Often:
–  GAC is maintained in polynomial time.
–  Many more inconsistent values are detected

compared to the decompositions.

Benefits of Global Constraints

  Modelling benefits
–  Reduce the gap between the problem statement and the

model.
–  Capture recurring modelling patterns.
–  May allow the expression of constraints that are otherwise

not possible to state using primitive constraints (semantic).

  Solving benefits
–  More inference in propagation (operational).
–  More efficient propagation (algorithmic).

Dedicated Algorithm for Alldifferent

  GAC algorithm based on matching theory.
–  Establishes a relation between the solutions of the constraint

and the properties of a graph.
–  Runs in time O(dn1.5).

  Value graph: bipartite graph between variables and their
possible values.

  Matching: set of edges with no two edges having a node
in common.

  Maximal matching: largest possible matching.

Dedicated Algorithm for Alldifferent

  An assignment of values to the variables
X1, X2, …, Xn is a solution iff it corresponds to
a maximal matching.
–  Edges that do not belong to a maximal matching

can be deleted.
  The challenge is to compute such edges

efficiently.
–  Exploit concepts like strongly connected

components, alternating paths, …

Dedicated Algorithm for Alldifferent

  D(X1) = {1,3} , D(X2) = {1,3}, D(X3)= {1,2}

X1

X2

X3

1

2

3

Variable-value
graph

Dedicated Algorithm for Alldifferent

  D(X1) = {1,3} , D(X2) = {1,3}, D(X3)= {1,2}

X1

X2

X3

1

2

3

A maximal
matching

Dedicated Algorithm for Alldifferent

  D(X1) = {1,3} , D(X2) = {1,3}, D(X3)= {1,2}

X1

X2

X3

1

2

3

Another maximal
matching

Does not belong to
any maximal matching

Dedicated Algorithms

  Is it always easy to develop a dedicated algorithm for
a given constraint?

  There’s no single recipe!
  A nice semantics often gives us a clue!

–  Graph Theory
–  Flow Theory
–  Combinatorics
–  Complexity Theory, …

  GAC may as well be NP-hard!
–  In that case, algorithms which maintain weaker

consistencies (like BC) are of interest.

GAC for Nvalue Constraint

  nvalue([X1, X2, …, Xn], N) holds iff N = |{Xi | 1 ≤ i ≤ n }|
  Reduction from 3 SAT.

  Given a Boolean fomula in k variables (labelled from 1 to k) and m
clauses, we construct an instance of nvalue([X1, X2, …, Xk+m], N):

–  D(Xi) = {i, i’} for i ∈ {1,…, k} where Xi represents the truth assignment
of the SAT variables;

–  Xi where i > k represents a SAT clause (disjunction of literals);
–  for a given clause like x V y’ V z, D(Xi) = {x, y’, z}.

  By construction, X1, …, Xk will consume all the k distinct values.
  When N = k, nvalue has a solution iff the original SAT problem has a

satisfying assignment.
–  Otherwise we will have more than k distinct values.
–  Hence, testing a value for support is NP-complete, and enforcing GAC is

NP-hard!

GAC for Nvalue Constraint

  E.g., C1: (a OR b’ OR c) AND
 C2: (a’ OR b OR d) AND
 C3: (b’ OR c’ OR d)

  The formula has 4 variables (a, b, c, d) and 3 clauses (C1, C2, C3).
  We construct nvalue([X1, X2, …, X7], 4) where:

  D(X1) = {a, a’}, D(X2) = {b, b’}, D(X3) = {c, c’}, D(X4) = {d, d’}, D(X5)
= {a, b’, c}, D(X6) = {a’, b, d}, D(X7) = {b’, c’, d}

  An assignment to X1, …, X4 will consume 4 distinct values.
  Not to exceed 4 distinct values, the rest of the variables must have

intersecting values with X1, …, X4.
  Such assignments will make the SAT formula TRUE.

Outline

  Local Consistency
–  Arc Consistency (AC)
–  Generalised Arc Consistency (GAC)
–  Bounds Consistency (BC)
–  Higher Levels of Consistency

  Constraint Propagation
–  Propagation Algorithms

  Specialised Propagation Algorithms
–  Global Constraints

  Decompositions
  Ad-hoc algorithms

  Generalised Propagation Algorithms
–  AC Algorithms

Generalised Propagation Algorithms

  Not all constraints have nice semantics we can exploit
to devise an efficient specialised propagation algorithm.

  Consider a product configuration problem:
–  compatibility constraints on hardware components:

  only certain combinations of components work together.
–  compatibility may not be a simple pairwise relationship:

  video cards supported function of motherboard, CPU, clock speed,
O/S, ...

Production Configuration Problem

  5-ary constraint:
–  Compatible (motherboard345, intelCPU,

2GHz, 1GBRam, 80GBdrive).)
–  Compatible (motherboard346, intelCPU,

3GHz, 2GBRam, 100GBdrive).
–  Compatible (motherboard346, amdCPU,

2GHz, 2GBRam, 100GBdrive).
–  …

Crossword Puzzle

  Constraints with different
arity:

–  Word1 ([X1,X2,X3])
–  Word2 ([X1,X13,X16])
–  …

  No simple way to decide
acceptable words other than
to put them in a table.

GAC Schema

  A generic propagation algorithm.
–  Enforces GAC on an n-ary constraint given by:

  a set of allowed tuples;
  a set of disallowed tuples;
  a predicate answering if a constraint is satisfied or not.

–  Sometimes called the “table” constraint:
  user supplies table of acceptable values.

  Complexity: O(edn) time
  Hence, n cannot be too large!

–  Many solvers limits it to 3 or so.

Arc Consistency Algorithms

  Generic AC algorithms with different
complexities and advantages:

–  AC3
–  AC4
–  AC6
–  AC2001
–  …

AC-3

  Idea:
–  Revise (Xi, C): removes unsupported values of Xi

and returns TRUE.
–  Place each (Xi, C) where Xi participates to C and its

domain is potentially not AC, in a queue Q;
–  While Q is not empty:

  Select and remove (Xi, C) from Q;
  If revise(Xi, C) then

–  If D(Xi) = { } then return FALSE;
–  else place {(Xj, C’) | Xi, Xj participate in some C’} into Q.

AC-3

  AC-3 achieves AC on binary CSPs in O(ed3)
time and O(e) space.

  Time complexity is not optimal 
  Revise does not remember anything about past

computations and re-does unnecessary work.

AC-3

(X, C1) is put in Q

only check of X ← 3 was
necessary!

AC-4

  Stores max. amount of info in a preprocessing step so
as to avoid redoing the same constraints checks.

  Idea:
–  Start with an empty queue Q.
–  Maintain counter[Xi, vj, Xk] where Xi, Xk participate in a

constraint Cik and vj ∈ D(Xi)
  Stores the number of supports for Xi ← vj on Cik.

–  Place all supports of Xi ← vj (in all constraints) in a list S[Xi, vj].

AC-4

  Initialisation:
–  All possible constraint checks are performed.
–  Each time a support for Xi ← vj is found, the corresponding counters

and lists are updated.
–  Each time a support for Xi ← vj is not found, remove vj from D(Xi) and

place (Xi, vj) in Q for future propagation.
–  If D(Xi) = { } then return FALSE.

AC-4

  Propagation:
–  While Q is not empty:

  Select and remove (Xi, vj) from Q;
  For each (Xk, vt) in S[Xi, vj]

–  If vt ∈ D(Xk) then
  decrement counter[Xk, vt, Xi]
  If counter[Xk, vt, Xi] = 0 then

  Remove vt from D(Xk); add (Xk, vt) to Q
  If D(Xk) = { } then return FALSE.

AC-4

(y,3) is put in Q

No additional
constraint

check!

AC-4

  AC-3 achieves AC on binary CSPs in O(ed2)
time and O(ed2) space.

  Time complexity is optimal 
  Space complexity is not optimal 

  AC-6 and AC-2001 achieve AC on binary
CSPs in O(ed2) time and O(ed) space.

–  Time complexity is optimal 
–  Space complexity is optimal 

PART IV: Search Algorithms

Outline

  Depth-first Search Algorithms
–  Chronological Backtracking
–  Conflict Directed Backjumping
–  Dynamic Backtracking
–  Branching Strategies
–  Heuristics

  Best-First Search Algorithms
–  Limited Discrepancy Search

Depth-first Search Algorithms

  Backtracking tree search algorithms essentially
perform depth-first traversal of a search tree.
–  Every node represents a decision made on a

variable.
–  At each node:

  check every completely assigned constraint;
  If consistent continue down in the tree;
  otherwise prune the underlying subtrees and backtrack to an

uninstantiated variable that still has alternative values.

Chronological Backtracking

  Backtracks to the most recent variable.

Chronological Backtracking

  Suffers from trashing.
–  The same failure can be remade an exponential

number of times.

Non-Chronological Backtracking

  Backtrack on a culprit variable.
  E.g.,

–  Backtracking to X5 is pointless.
–  Better to backtrack on X4.

Conflict Sets

  CS(Xk): assigned variables in conflict with
some value of Xk.

Conflict Directed Backjumping

  Backtracks to the last variable in the conflict set.
  Intermediate decisions are removed.

No-goods

  Subset of incompatible assignments.
  E.g., map colouring problem.

–  X1, X2, X3 are adjacent with D = {1, 2}.
–  (X1 = a and X3 = a) or equivalently (X1 = a → X3 ≠ a)

is a no-good.
  No-good resolution:

–  X1 = a → X3 ≠ a
–  X2 = b → X3 ≠ b X1 = a → X2 ≠ b

Dynamic Backtracking

  One no-good for each incompatible value is
maintained.

–  Empty domain: new no-good by no-good resolution.
–  Backtrack to the variable in the right hand side of the no-good.

Dynamic Backtracking

  Backtracks to the last decision responsible for the
dead-end.

  Intermediate decisions are not removed.

Branching Strategies

  The method of extending a node in the search tree.
–  Usually consists of posting a unary constraint on a chosen

variable Xi.
–  Xi & the ordering of the branches are chosen by the heuristics.

  D-way branching:
–  One branch is generated for each vj ∈ D(Xi) by Xi ← vj .

  2-way branching:
–  2 branches are generated for each vj ∈ D(Xi) by Xi ← vj and

Xi ←\ vj.

  Domain splitting:
–  k branches are generated by Xi ∈ Dj where D1…Dk are

partitions of Di.

Variable and Value Ordering Heuristics

  Guide the search.
  Problem specific vs generic heuristics.
  Static Heuristics:

–  a variable is associated with each level;
–  branches are generated in the same order all over the tree;
–  calculated once and for all before search starts, hence

cheap to evaluate.

Variable and Value Ordering Heuristics

  Dynamic Heuristics:
–  at any node, any variable & branch can be considered;
–  decided dynamically during search, hence costly;
–  takes into account the current state of the search tree.

Variable Ordering Heuristics

  Fail-first principle: to succeed, try first where
you are most likely to fail.

  Min domain (dom):
–  choose next the variable with minimum domain.

  Most constrained (deg):
–  choose next the variable involved in most number

of constraints.
  Combinations

–  dom + deg; dom / deg

Value Ordering Heuristics

  Succeed-first principle: choose next the value
most likely to be part of a solution.
–  Approximating the number of solutions.
–  Looking at the remaining domain sizes when a

value is assigned to a variable.

Problems with Depth-first Search

  The branches out of a node, ordered by a value
ordering heuristic, are explored in left-to-right order,
the left-most branch being the most promising.

  For many problems, heuristics are more accurate at
deep nodes.

  Depth-first search:
–  puts tremendous burden on the heuristics early in the search and

light burden deep in the search;
–  consequently mistakes made near the root of the tree can be

costly to correct.

  Best-first search strategy is of interest.

Limited Discrepancy Search

  A discrepancy is the case where the search
does not follow the value ordering heuristic
and thus does not take the left-most branch
out of a node.

  LDS:
–  Trusts the value ordering heuristic and gives

priority to the left branches.
–  Iteratively searches the tree by increasing number

of discrepancies, preferring discrepancies that
occur near the root of the tree.

Limited Discrepancy Search

  The search recovers from mistakes made
early in the search.

PART IV: Some Useful Pointers
about CP

(Incomplete) List of Advanced Topics

  Modelling
  Global constraints,

propagation algorithms
  Search algorithms
  Heuristics
  Symmetry breaking
  Optimisation
  Local search
  Soft constraints, preferences
  Temporal constraints
  Quantified constraints
  Continuous constraints

  Planning and scheduling
  SAT
  Complexity and tractability
  Uncertainty
  Robustness
  Structured domains
  Randomisation
  Hybrid systems
  Applications
  Constraint systems
  No good learning
  Explanations
  Visualisation

Literature

  Books
–  Handbook of Constraint Programming

 F. Rossi, P. van Beek, T. Walsh (eds), Elsevier Science, 2006.

Some online chapters:
Chapter 1 - Introduction
Chapter 3 - Constraint Propagation
Chapter 6 - Global Constraints
Chapter 10 - Symmetry in CP
Chapter 11 - Modelling

Literature

  Books
–  Constraint Logic Programming Using Eclipse

 K. Apt and M. Wallace, Cambridge University Press, 2006.
–  Principles of Constraint Programming

 K. Apt, Cambridge University Press, 2003.
–  Constraint Processing

 Rina Dechter, Morgan Kaufmann, 2003.
–  Constraint-based Local Search

 Pascal van Hentenryck and Laurent Michel, MIT Presss, 2005.
–  The OPL Optimization Programming Languages

 Pascal Van Hentenryck, MIT Press, 1999.

Literature

  People
–  Barbara Smith

  Modelling, symmetry breaking, search heuristics
  Tutorials and book chapter

–  Christian Bessiere
  Constraint propagation
  Global constraints

–  Nvalue constraint
  Book chapter

–  Jean-Charles Regin
  Global constraints

–  Alldifferent, global cardinality, cardinality matrix
–  Toby Walsh

  Modelling, symmetry breaking, global constraints
  Various tutorials

Literature

  Journals
–  Constraints
–  Artificial Intelligence
–  Journal of Artificial Intelligence Research
–  Journal of Heuristics
–  Intelligenza Artificiale (AI*IA)
–  Informs Journal on Computing
–  Annals of Mathematics and Artificial Intelligence

Literature

  Conferences
–  Principles and Practice of Constraint Programming (CP)

 http://www.cs.ualberta.ca/~ai/cp/
–  Integration of AI and OR Techniques in CP (CP-AI-OR)

 http://www.cs.cornell.edu/~vanhoeve/cpaior/
–  National Conference on AI (AAAI)

 http://www.aaai.org
–  International Joint Conference on Artificial Intelligence (IJCAI)

 http://www.ijcai.org
–  European Conference on Artificial Intelligence (ECAI)

 http://www.eccai.org
–  International Symposium on Practical Aspects of Declarative

Languages (PADL)
 http://www.informatik.uni-trier.de/~ley/db/conf/padl/index.html

Literature

  Schools and Tutorials
–  ACP summer schools:

2005: http://www.math.unipd.it/~frossi/cp-school/
2006: http://www.cse.unsw.edu.au/~tw/school.html
2007: http://www.iiia.csic.es/summerschools/sscp2007/
2008: http://www-circa.mcs.st-and.ac.uk/cpss2008/
2009: http://www.cs.ucc.ie/~osullb/ACPSS2009/Welcome.html
2010: http://becool.info.ucl.ac.be/summerschool2010/

–  AI conference tutorials (IJCAI’09, 07, 05, ECAI’04 …).
–  CP conference tutorials.
–  CP-AI-OR master classes.

Literature

  Solvers & Languages
–  Choco (http://choco.sourceforge.net/)
–  Comet (http://www.comet-online.org/)
–  Eclipse (http://eclipse.crosscoreop.com/)
–  FaCiLe (http://www.recherche.enac.fr/opti/facile/)
–  Gecode (http://www.gecode.org/)
–  IBM ILOG Solver (http://www-01.ibm.com/software/

websphere/products/optimization/)
–  Koalog Constraint Solver (http://www.gecode.org/)
–  Minion (http://minion.sourceforge.net/)
–  OPL (http://www.ilog.com/products/oplstudio/)
–  Sicstus Prolog (http://www.sics.se/isl/sicstuswww/site/

index.html)

