Software Engineering and the Internet: a roadmap

Luca Bompani, Paolo Ciancarini, Fabio Vitali

Dept. of Computer Science,
University of Bologna
MuraA. Zamboni, 7

e-mail: [borrpani |

ABSTRACT

We argue that a roadmap for software engineering and the
Internet currently should be based on standards for complex
data and document structures, like the Extensible Markup
Language (XML). In fact, XML and its cohort of related
standards are likely to become an epochal innovation for
designing Internet-based software systems. The fidds of
application of these new notations and related technologies
are only limited by human imagination, and simply cannot
be enumerated at the moment. Our interests currently
concern a concept that we call declaratively active
document, for which these standards offer an important
support. In this paper we describe shortly the state of the art
of these new standards, and how we are using the concept of
declaratively active document for software engineering
purposes.

INTRODUCTION

Internet, and in particular the World Wide Web, have given
the software engineering field a distributed environment that
is world-sized and actualy working. The World Wide Web
makes collaboration of remote shops possible, and
furthermore it really allows the sharing and collaborative
drafting of documents, code and al the objects of the
workflow that are part of daly life of the software
engineering.

But in our view it isin the field of markup languages that
the Internet has provided the most important advancements
to the field. Within and outside of the World Wide Web, the
Extensible Markup Language (XML, [5]) and its cohort of
related standards (XSLT [9], XSL [1], XPointer, XPath and
Xlink [12], [10] and [11], DOM [20], RDF [15] and XML-
Namespaces [4]) are likdy to become an epochal
innovation. The fidds of application of these new
approaches are only limited by human imagination, and
simply cannot be enumerated a the moment.

Thanks to XML, any software engineer can define a syntax

SPACE FR ACM COPYRI GHT | NFORMATI ON.
REMEMBER TO DELETE TH'S BEFCRE
SUBM TTI NG FI NAL VERSI ON. (USE A
CCLUWN BREAK IN M5 WORD TO STOP TEXT
FROM OVERWRI TI NG THI S AREA.

ci ancarini

| vitali]@s.unibo.it

(i.e., a Document Type Definition, or DTD) tailored for his
own needs, and use standard XML toolsto create and verify
complex data structures which can be exchanged between
applications. This makes of XML a very powerful tool for
system integreation. In fact, the strength of XML lies beyond
the capabilities to define community-specific DTDs: for
instance, it is becoming convenient to use it for application-
specific data objects that are not really meant to be displayed
to ahuman user.

Additiondly, XSLT provides much to XML in terms of
reach and flexibility. XSLT is a mapping language that can
be used to transform an XML document into another one. Its
most important useis to transform an XML document into a
format that can be displayed by a browser: thus for instance
MS Explorer 5 can accept XML documents satisfying an
arbitrary DTD and use XSLT to transform them into HTML
documents that can then be properly displayed on a
computer screen.

XML-Namespace, on the other hand, is a specification to
allow the intermixing of tags defined for different document
types. Thus, instead of defining a new DTD from scratch
whenever a new tag is needed, it is possible to extend it or
even to merge different DTDs in a single document. For
instance, a mathematician may write the text parts of a
textbook using plain HTML and intersperse the HTML with
MathML formulas without needing to create a new DTD
including the two tag sets.

The extreme flexibility in composition and creation that is
granted by the XML language is not yet equated by
analogous flexibility in software: currently, browsers only
provide a closed and specific set of visualization features
(e.g., the HTML + VML [16] object model of Internet
Explorer 5), so that any visuaization need that exceeds
those provided by thetool are naturaly frugtrated.

In past papers we discussed displets ([8] and [3]), our
proposal to provide flexible support for special rendering
needs that authors of complex documents may have.
Displets are software modules (currently they are Java
classes) that are associated to each element in an XML
document and provide some rendering behavior for that
element. Support for the most common element types is
given (for instance, text elements), but it is possible at any
time to add new modules providing specidized rendering
semantics for specific needs.

In this paper we maintain that the architecture previoudy
proposed can be fruitfully used for more than visualization,
for it is an extremely generd way to associate behaviors to
XML elements, and thus to produce active documents that
perform computations, enact goals, produce results. The
idea behind this assertion is as simple as displets. by
associating XML elements to Java classes that are able to
perform such activities;, XML documents become
collections of active components that can be commanded to
perform arbitrarily complex computations. This means that
displets can be used for both the mere display of information
on screen (either via text, or via any specific notation) and
the redlization of active information elements that provide
interactivity, self-update, or any kind of complex
computation.

Our approach is particularly useful to make software
engineering environments "WWW-aware": the documents
of the software process tend to be composed of several
different chunks, some of text, some of formulasin special
notations, and some of structured graphical diagrams.
Currently it is very difficult to turn these documents into
pages that can be made available through a Web browser,
since each formula and each diagram need to be converted
into a passive image. Displets provide a way around these
limitations, by allowing the semantically-rich description of
formulas and diagrams to be expressed in XML and to be
displayed in the browser in their full graphical rendering.
Additiondly the possibility of activating in some ways the
diagrams, verifying their correctness and providing multiple
views seem important and easily possible in a general way
with the displet approach. Thus some parts of the document
can be declared active, rather than executed. We call these
documents declaratively active documents (or DADS)
because of thischaracteristic.

This paper is structured as follows: in section 2 we discuss
our idea of active documents, and compare it with similar
well-known approaches. In section 3 we discuss the current
architecture of displets, and provide examples of some of
the displet classes we have created. In section 4 we discuss
the concept of active displets and provide some examples,
including some applications of both XML and the displet
technology to the field of software engineering, and in
section 5 we try to derive some conclusive reflections on the
application of markup languages and active documents to
the future environments of software engineering.

2 ACTIVE DOCUMENTS

Traditiondly, electronic documents have been seen as static
entities to be subjected to actions, such as displaying or
printing, rather than actively taking part to a process.
Documents internal data formats were decided by the
applications that created them, which made it very difficult
to manage documents as collections of heterogeneous data
types, since a different program had to manipul ate each one.
Furthermore, relations between different documents that are
strictly related were difficult if not impossibleto express.

On the Internet the old application-centered computation
paradigm is slowly fading, and we are moving towards a
new data-centered model. Documents do not necessarily

belong to a specific application, as in the past, but they may
be made of several components that can be independently
displayed, printed or made to interact with other components
or with the user. It is now possible to build documents with
heterogeneous data, coming from different sources and
expressed in different formats. This object-oriented
paradigm sees thus the document not as the persistent format
of some application’s data, but as a container of smaller
autonomous chunks of heterogeneous data.

Furthermore, the new model makes it possible to build new
document types, that were not conceivable previoudy.
Documents can now contain not just static elements such as
images or text, but also buttons, fields, and other widget
elements that can directly interact with users. Documents
become active, they can react to externa inputs, can produce
computation, can dynamically modify themselves.

2.1 Current generation active documents

Currently, most operating systems provide a generic object
model and integrate APls and services to manage the
communication between the objects that compose these
complex documents. Many architectures have been defined
to support active documents, including OpenDoc (Apple,
IBM, etc.), ActiveX (Microsoft), and JavaBeans (Sun).

OpenDoc [14] was an open platform for compound
documents defined by CIL (Component Integration Labs,
co-founded by Apple, IBM, and other organizations). The
ill-fated OpenDoc architecture is based on a few different
modules used to organize the content of the documents: the
layout system manages the partition of space between
document components (called parts), activates the parts and
refresh them for the display; the event dispatching system
routes events to parts and interacts with the layout system to
activate the event target; the storage system helps parts to
store their data in one shared compound document. The
OpenDoc platform provides arich set of API tha a software
developer must use instead of system calls to write parties.
This uniformity grants portability of parts across multiple
platforms to move a part to a different OpenDoc platform it
isonly necessary to recompileit.

ActiveX [17] is Microsoft’s platform for active documents,
currently available for the Windows operating systems and
some UNIX implementations. The name ActiveX does not
identify a well-defined architecture, but rather it is the
marketing term used to refer to a set of technologies related
to the Web and the generation of compound documents. At
the core of ActiveX is COM (Common Object Moddl), a
Microsoft standard that specify a way for software
components to communicate with each other. It's a binary
and network standard that allows any two components to
communicate regardless of what machine they are running
on, what operating systems the machine are running and
what language the components are written in. ActiveX
objects thus are generic software components that export
their methods and properties through a COM interface.
Contrary to OpenDoc parts, ActiveX call directly system
call of the operating system they are running on: this allow
ActiveX to use al the operating system API, but introduces
alot of portability problems.

JavaBean [19] is the software component modd proposed
by Sun for Java A JavaBean is a reusable software
component that can be graphically manipulated inside a
visua environment. As ActiveX components, JavaBeans
can use the full Java APl set without any limitation: the
JavaBean model define only how a JavaBean can be
graphically manipulated but not what it can do, and how it
do it. JavaBean model grants a full binary portability, thanks
to Java binary portability.

2.2 Active documents with XML

In our opinion, athough all these architectures alow
documents to become more complex and sophisticated and
to include text, structured data, images, multimedia, etc.,
they suffer from a fundamenta weakness: the persistent
representation that is used to store the data on disk or to
exchange it among applications (i.e.,, the data format) is
usualy extremely complex, necessarily in a binary format,
and often it explicitly includes the code necessary to create
their active components.

Even an HTML document with some Javascript or a
Postscript file are in some sense active documents. the
former is a displayable document containing some widgets
that can exhibit active behaviors, such as type checking or
conditiond display; the latter isareal program that produces
as output the bitmap of the page, and thus can contain any
arbitrarily complex computation. Thus in the first example
the active part is explicitly contained as executable code,
using adifferent syntax and explicit, cumbersome separators
to tell the content of the document from the code; in the
second case the active part actually isthe document.

We discuss in this paper a new approach to provide generic
active documents without including specific executable code
in any form, thus differentiating our proposal from all of the
above mentioned methods. Our approach relieson XML [5]
as away to express both the content and the active parts of a
document, and on executable modules to be loaded
dynamically and on demand to provide the activation
framework for theactive parts.

Every kind of structured information has a chance of being
better described and managed using an XM L-derived syntax
rather than any other traditiond one. Examples abound in
showing how industry, practitioners and academics are
starting to understand the power and flexibility of a meta-
grammar for data formas as embodied in the XML
approach. In a sense, XML may become as ubiquitous and
obvious for the representations of data structures as ASCI|
has been in the last thirty years for the representation of
Western characters (and XML even considered
internationalization issues!)

Many of the DTDs that are being created and will be created
in the next future will be thought for structuring XML
documents for rendering either on a screen, a piece of paper,
or a generated voice. On the other hand, many other DTDs
are not even thought for human consumption (CDF and
DRP being important examples), but are designed to specify
objects and parameters for some kinds of computation. This
shows that XML is not necessarily used as a language to

structure text documents (or any other specific kind of
documents), but, more generaly, it is a language to
associate some computer-performed activity to data. This
activity can be the display of the content for text documents,
or the activation of a new channel with some given
parameter for CDF, etc.

Of course there are different ways to exploit this innovation.
In our opinion, some ways are naturaly more elegant and
flexible than others, and are more likely to stand longer the
test of time. For instance, we believe that writing an XML
DTD for a specific data structure, and then creating a closed
application around this DTD only exploits little of the
flexibility given by XML, and by appropriately using XSL
and XML-Namespaces we could deploy particularly
sophisticated XML applications.

XSL ([9] and [1]) provides an enormous flexibility in the
use of XML, since it allows us to decouple the DTD used by
the application from the one used by the human authors
provided a mapping is created between the element names
that are meaningful to the users, and the ones that are
meaningful to the application, each can work proficiently
using their own approach.

XML-Namespaces [4], on the other hand, builds into XML
the right to freely mix and match different document types:
for instance, when the structure of a piece of data goes
beyond the structure as described in its associated DTD, it is
possible to re-use elements from another DTD without
modifying either one; also, when a piece of data needs to
contain two different types of structures, each with its own
DTD, it is possible to do so without the need to create a
single, combined DTD.

Thus the authoring architecture clearly shows a noteworthy
flexibility: the author selects a DTD containing the
structuring rules and constructs that best fit the class of
documents she intends to write; she then adds the few
needed tags that were not present in the original DTD and
creates one or more documents exactly matching her own
authoring needs. Then via X SL the document is transformed
into another one whose el ements are known to the rendering
application (eg., a Web browser) and consequently the
display is created.

Unfortunaely, in the aforementioned architecture, the
flexibility stops with the description of documents: the
rendering application usually has a fixed set of displayable
elements (e.g., text blocks, paragraphs, in-line elements,
tables, etc.), and can only show those documents whose
rendering needs matches the application’s features. In past
papers we discussed displets ([8] and [3]), our proposd to
provide flexible support for specia rendering needs that
authors may have. Displets are software modules (currently
they are Java classes) that are dynamically associated to
each element in an XML document and that provide the
rendering behavior for that element. Support for the most
common element typesis given (for instance, text e ements),
and it is possible at any time to add new modules providing
specialized rendering semantics for specific needs.

In the next section this will be explained in greater detail,
and in the following one this idea will be extended to
introduce our idea of active document using the technology
of digplets.

3 XMLC

XMLC (XML Compiler) is our architecture for rendering
displets. XMLC relies on technologies and languages such
as XML, XSL and DOM, to provideits functionalities.

The main purpose of XMLC is to read an XML document
and to produce a displayable tree of Java objects. This
happensin afew steps: first, the XML document is read and
transformed by a norma XML parser into an internal tree
representation based on DOM. Then one or more layers of
XSL stylesheets are applied to the DOM tree through the
use of an XSLT processor. This creates a find DOM tree
where for every element type in the tree there must be an
available displet that can be activated. XMLC will finaly
instantiate all the required displets, creating a tree of
runnable objects. Figure 1 shows a schema of the
architecture,

Java

Objects

'S

HTML

XML
Lis

I
[
O =><

r'd v A
XSL SL
CELL CELL CELL
p— p— head=TRU text=second text=third
— — [
XMLManager

Fig. 1: The architecture of the XMLC application.

Each element in the DOM tree is transformed into a displet
according to thefollowing rules:

the element's name determines the Java class to be
loaded;

the element's attributes determine the settable properties
of theinstance of the class;

the element's content (both sub-elements and text
content) is added to the tree as children of the class
instance.

The current implementation of the XMLC architecture isin
Java; adisplet can be any sort of Java classes, but using the
concept of JavaBeans it is easy to create sophigticated and
interoperable displets: the use of JavaBeans Containers and
Components, which can be easily organized in hierarchies,
nicely fits with the hierarchical nature of DOM trees and
XML documents.

Currently, our main use of XMLC is wrapped inside an
applet within an HTML document. Parameters of the applet

are the XML document to be displayed and the XSL
stylesheets to be applied to it. This alows us to display
XML documents within well-known Internet browsers, as
showninfig. 2.

Furthermore, since XML elements are transformed into
JavaBeans objects, complex behaviors can be easily added
during the lifetime of the visualization, providing support
for hypertext jumps, animations, interactions with the
reader, and in general all the computational capabilities of
the Java language.

P L B R TEETTEE A TREE A R T8 G TRT T e == j2
W e Sl

|F ==
-

,Ewhtl L 1 e

NTPAT Tesi

i oo e Y i] i i
—
fé'l'

-U—J.I-m- T | |
] | | — e —

-'IIIIIIP—II_‘ T —
= i gi—=s =}

]t —| -

Jbif)] o o

UL e | || [A — —
fitw v —|'|'|'|—

e —

(S| A 1 St (] R TS

gt
=

il [T e L

Fig. 2: An HTML document showing the text displets

In the following we briefly report on the simple, display-
oriented displets that have been implemented.

3.1 Text and images

We have implemented support for text oriented XML
elements. The level of support is comparable to that of
HTML 1.0 text elements. basic blocks (P, UL, OL and
header elements) and inline chunks (like I, B, TT elements,
etc.), plus an image tag and a simple inline hypertextua

link. In table 1 we show a smple HTML document, and tree.
show how this is transformed via XSL into a displayable
<HTM_>
<BODY> <Bl ock>
<P> <|5ér agr aph>

This is normal text,

<BR/ >
this is a new line:

start bold

<I>talic</I|>
end bol d</ B>

this is normal text
</ P>
<H1>
<I MG src="images/java.gif"/>
</ H1>
</ BODY>
</ HTM_>

<Wrd text="This"/><Wrd text="is"/>

<Wrd text="nornal "/><Word text="text,"/>

<NewLi ne/ >

<Wrd text="this"/>Wrd text="is"/>

<Wrd text="a"/><Wrd text="new'/>

<Word text="line:"/>

<Wrd bol d="true" text="start"/>

<Word bol d="true" text="bold"/>

<Word bol d="true" italic="true"
text="italic"/>

<Wrd bol d="true" text="end"/>

<Word bol d="true" text="bold"/>

<Wrd text="this"/><Wrd text="is"/>

<Word text="normal "/ ><Wrd text="text"/>

</ Par agr aph>

<Par agr aph font-size="30"
al i gnnent =" CENTER" >
<Picture font-size="30" alignnment="CENTER"
src="images/java.gif"/>
</ Par agr aph>

</“I.3I ock>

Table 1: A fragment of the HTML document in fig. 2, before and after the XSL transformation

There are three basic Java displets taking care of the display
of text elements. Paragraph, Word and MultiWord. A
Paragraph is a container spaced verticaly (that is, two or
more Paregraphs are put one above the other), with
parameterized margins, line height and severa other aspects.
A Word isa component taking care of thedisplay of asngle
word (separated by variable-width white space). Words are
spaced horizontally and can control font, size, style, baseline
and a few other parameters of their content. A MultiWord is
a container for Words that is still spaced horizontally. It is
used to group together Words that share a common propriety
(for instance, that belong to the same run of bold characters,
or to the same hypertext anchor).

3.2 Hypertext links

W3C is proposing two languages to express hypertext links
in XML. XPointer [12] provides a way to express sub-
resource addresses within XML documents and other
resources, and XLink [11] defines a syntax for hypertextual
links between XML documents. XPointers can specify
locations within XML documents by collecting
progressively detailed location specifiers. This makes it
possible to specify an arbitrarily small location without
marking it with atag asin HTML. Instead XLinks extends
HTML linksby introdudng several new features:

Links can refer to multiple end-points;

Links can be multi-dirediond;

Links can be stored externally to the resources they
link;

Links can be activated in a variety of ways (they may
open a new window, substitute the current content, or

expand within the current content, etc)
Links can create groups of related documents to be
loaded together.

We have provided a complete implementation of XLink for
our XMLC architecture. This has added a few steps to the
sequence of transformations of the XMLC application, as
shownin fig. 3.

XML

Preprocessore Link
XML .
Parser Link Manager
DOM DoM
Tree Tree X
. M
b L
C
: DOM
XPointer Tree XLink
- —
Manager b Manager
D/ ’b

Fig. 3: The XLink-enabled architecture of XMLC

After parsing the XML document, all link elements are
identified and added to alist. Then, an identifier is added to
all the addressable elements of the document, since after the
application of the XSL stylesheets the structure of the
document can become arbitrarily different from the origina
one, and it is necessary to provide a way to identify the
elements that can be located through XPointers. The
document then are subjected to the wusua XSL
transformations. Before displaying, though, additional
wrapper classes are added around the document elements
that are starting points of links, to provide the most
appropriate jumping functionality. When the user clicks on
one such element, the class reacts, consults the list of
destinations, and activates the jump.

The management of document groups we implemented is
rather sophisticated and takes into consideration whether the
destination document will replace the current one, it will be
created in anew window, or it will integrate with the current
document. Fig. 4 shows a sample hyperlinked document

group.

: | _ N

.....

.= I_J __ Himpe ey =
q = =
l‘l—r' —_ = —a = = — =
L (—
= |-
] ————————— —————
.l =(=| = -
-
I .

Fig. 4: A simple hyperlinked document group

External links made possible with XLink make it possible to
create, for instance, guided tours [2], that is, sets of links
that are not stored in the documents, and that are activated
on demand to provide additiond paths through a set of
documents. These documents are not necessarily related in
the mind of their authors, but can become so according to
the ideas of a third party that may find it important to
provide a navigation path through these documents. The
external links, therefore, would superimpose to the ones
originaly present in the documents.

4 ACTIVE DOCUMENTS FOR SW ENGINEERING

Displets provide the flexibility needed to create displayable
documents of arbitrary graphic complexity, but they also
provide a new way to create active documents. we can in
fact associate not just rendering behaviors to XML elements,
but any kind of behavior. The “being a paragraph” is a
characterigtic of an XML elements only when we want to
print or display it. When classifying it or indexing it, we
may want to associate to it the idea of “being a introductory
remark” or of “being searchable’, etc. In general, the
application to which the document is subjected provides the
semantic framework to evaluate each XML element, and
requires each XML element to exhibit a behavior that is
appropriae with the purpose of the application itself.

In our framework, then, active documents are XML
documents some of whose elements are required to show an
active behavior. By providing appropriate stylesheets, XSL
can be used to associate a displet to every element of an
XML document, according to the needs of the application
controlling the stylesheet itself. The displets would then be
loaded to perform the appropriae actions and thus behave as
required.

It is clear therefore that in this architecture the active
documents are not opaque collections of executable objects,
or programs or mixed containers of data and scripts, but
rather a simple collection of markup and content that are
dynamically associated to executable code only on demand,
and depending on the application activated. Thus the active
part of the document is not a procedura chunk side by side
with other declarative parts, but rather it is as declarative as
the rest of the passive content of the document, and indeed
indistinguishable from them. Active or non active parts only
become so according to the stylesheet used, and thus of the
application the document is subjected to. This provides an
extreme flexibility in associating behaviors to XML
elements. We call these documents “declaratively active
documents’, because the activity is not procedura, but
declared within the document just as the passive content.

The recent advent and present phenomena success of the
World Wide Web, as a hypertext document management
system available worldwide to access resources for
educationd, industrid, and marketing purposes, is strongly
influencing also the way in which software processes and
related documents are produced and managed.

The XML family of languages provides a solution to most
problems involved in writing complex documentation for
software processes, that is usually varied in nature, purpose,
and contents. Here we shortly recall three important issues:
documents involved in a software process are usualy
structured, are hypertextua in nature, and contain parts of
differing type, including some formd notations and
requiring special care for the display. Given any software
engineering notation, XML can be used to define a uniform
abstract syntax useful to integrate different tools specific for
such a notation; XML sublanguages like XLink and
XPointer can be used to represent hypertext relationships,
XSL stylesheets can be used to display software engineering
documentsinside standard, XML-enabled browsers.

In our research group we have adopted an XML-based
approach to build tools for software engineering notations,
like for instance Z [6] and Petri Nets. We have developed in
the last year a number of specialized browsers/editors for
several well known notations, applying systematicaly the
following approach:

Given aformal notation (e.g., Petri Nets diagrams), define a
DTD capturing itsabstract syntax. Thisis usually a complex
task if the originad notation is complex or based on a not
well defined syntax. When a DTD is available then it is
possible to create XML documents representing the origina
notation and parse them according to theDTD.

Starting form the DTD, define the XSL stylesheets able to
manipulate a document aiming at staticaly analyzing or
transforming it. For instance, given a Petri Net Diagram, a
possible static andysis consists of looking for loops.
Instead, a transformation could be required to add some
behavior in order to render the animation of a Petri Net.

The final step consists usually of enabling the editing and
interactive display of the notation inside a Java-enabled
browser developing a library of specific displets. We have
developed displets for Petri Nets, Z, Statecharts, Data Flow

'; Elmuth - UML Metamodel Example - Microsoft Internet Explorer

Diagrams, Entity-Rdationship diagrams, Workflow
Diagrams, and most UML diagrams. Interactive display is
possible when some behavioral semantics is associated to
the notations. For instance, the Petri Nets displets can play
the token game typical of such a notation.

4.1 UML specifications

A key issue is how to define a DTD for a complex sw
engineering notation. For instance, if an organization uses
the UML family of notations and related development
process and tools, it is how available XMI (XML Metadata
Interchange, by IBM and others), an XML-based
metamodel. All UML documents written according to XMl
can be displayed by XML-aware browsers [18] and
manipulated by XML-based tools to check for some
semantics condgtraints, like consistency [13]. We are
applying our approach to XMI as well. A displet has been
developed in our group to provide visudization of XMI. An
editor called EImuth (reverse acronym for HyperTextual
UML Environment) has been developed. Elmuth is able to
create hypertextual and active visualizations of UML
documents. Figure 5 shows an instance of MS Explorer
including an active document describing (part of) the UML
metamodel.

| |ndisto - ﬂ ﬁ Qﬁerca [3] Preferiti QCronologia e
AE Irmuthhexarnples\backbonehdictionary. html
+ Element
UML Metamodel Tree View T
-Document
-UML Metamodel: Core Package - Backhone + ModelElement
-Foundation. Core #* cymedElement 1.# constrainedElement
Element - hame : Name
_ModelFlenent - wisihility : Visibilitykind
name
wvisibility
+Feature
Namespace
+Parameter
+Constraint
foeneralizableElenent . | + Feature | .
4 | v |4l | »
sl eeas ianasiag Data Dictionary Data details
Feature ? AssociationEnd specification __:j name : ModelElement
|Wanespace ‘_] ? AzsociationEnd owmer id : idModelElement
Parame':'?r 7 hszociationEnd namespace
Const,ra:?.nt. - Attribute isdbstract wisibility : public
GeneralizableRlement _.:j + Class BehavioralFeature element type : Class
Clas=ifier - Attribute isPolymorphic
package Foundation. Core; _:_j + Class ModelElement ghstract i true
+ Class Class root : false
import Foundation. Core.*: ? hzsociation idissocMEtoCT leaf 1 false
import Foundation.Datalypes.®: + Class Element actiwve : falze
- Attribute specification
public abstract class ModelElement extends Element > DataType Expression =
{ : <] »
£/ attributes
private Name name; Hyperlinks
private WisibilityKind wisibility; -
Overview Relations] Attributes
rE
:fconSt'ruCt'or _:j Operations ELE 1 Check]

|#€] Applet avviata

Fig. 5: The representation of a UML diagram

Hypertext multidirectiond link among diagrams are
managed using our implementation of XLink. The browser
includes here four areas: the uppermost left area shows an
HTML index useful to navigate the document; the
uppermost right area shows a class diagram, the lower right
area is a data dictionary, the lower left area shows some
code automatically generated from the class diagram.

<schemadef style="vert" purpose="state">
PhoneDB
<decpart >
<decl arati on>
_known: &pset; NAME
</ decl arati on>
<decl arati on>
phone: NAME &f pfun; PHONE
</ decl ar ati on>
</ decpart >
<formal s> K, L,Z </formal s>
<axpart >
<predi cat e>
known = &Jom phone
</ pr edi cat e>
</ axpart >
</ schenmadef >

Table 2: An example of a Z specification in ZIF

4.2 Other notations

A complete support for the Z notation has been implemented
(see also [7]). The DTD for the notation we use is based on
the ZIF Interchange Format [6], although, through the use of
different XSL stylesheets, other syntaxes can be used as
well.

The support for Z elements is provided through the use of a
single displet class, zElement, for all the box types that are
present in Z specifications (e.g., schema, axioms, etc.), and a
special downloadable font for al the mathematical glyphs
specific of the Z language (e.g., function, subset, the set of
integers, etc.). All other elements of the Z language are
mapped onto plan HTML elements such as P, DIV and
SPAN. An additional layer of XSL will then transform them
into Paragraph and Word objects as needed.

In table 2 we show a small fragment of a Z specification
(expressed in ZIF) and in fig. 6 the display of the whole
specification in a Web browser.

The development of a notation specific library of displetsis
not complex. As said, with the help of our students we have
developed interactive displets for the most well known
software engineering notations, like Petri Nets and Data
Flow Diagrams. We have defined specia behavioral
semantics for such notations, which help in animating the
related active documents. For instance, an engineer can play
any "token game" interacting with a document including a
Petri Net.

e 111 F ==

Fig. 6: The visualization of the Z specification

5 MARKUP LANGUAGES AND SW ENGINEERING

The World Wide Wed has brought forth many
advancements for many fieds, including that of software
engineering. The advantages of the WWW are clear and
well-known: it is the resulting illuson of severa easy,
simple languages and protocols that work well together and
allow developers to compose them to build complex
architectures and environments. HTTP, URLs, HTML,
server-side computations, client-side scripts have been the
foremost elements of the world-wide success of the Web.

Each of the languages and protocols of the WWW are even
now evolving to more and more complex potentidities,
functionalities, services. The WWW is now a much more
complex place than it used to be even a few years ago. This
means that it is now possible to build environments of
unprecedented sophistication and complexity.

In our opinion, one of the most important recent
advancements has been the introduction of the XML family.
We strongly believe that the software engineering field, just
like many other sophigticated fields, can improve
considerably because of the XML family. In particular we
single out support for meaningful structure, sophisticated
hypertext links and namespaces as the three most important
aspects of XML family.

Meaningful structure refers to the possibility to define
structures in XML documents and applying to them many
sorts of user-defined semantics and compostion rules
(DTDs now, XML Schema soon). The documentation of a

software project has often to follow predefined structures
and should be verified for adherence to predefined
composition rules. With XML it is very easy to enforce
structure and to provide general means to verify the validity
of documents with respect to these rules. Furthermore,
specifications expressed with XML syntax can be verified
for interna and externd consistency partly by expressing
their consistencies with DTD rules, that can then be verified
with generic XML tools. An important experiment in that
direction can befoundin[13].

Support for namespaces means that it is possible to mix and
match different, orthogondly independent document
structures. For instance, it becomes possible to describe
generaly the structure of a document, and then, in certain
given special cases, to include chunks of content described
by specific rules not contained in the main document class.
For instance, it is possible to include Z schemata in a
specification document that does not usually alow them.

Finally, hypertext links enable software engineers to provide
complex functiondities. Links, in XML, are much more
sophigticated than with HTML. Of particular importance in
our view is that XLink, the linking protocol of XML,
supports links that can have multiple destinations, be
external and be non directiona. The ability to specify non-
directiond linksto multiple destinations makes it possible to
express generic relationships between different parts of the
documents; external links allow authors to specify different,
and possibly independent sets of links on the same
documents, for different purposes, readers, or situations.

Applying these functionalities in software engineering
would mean providing sophisticated inter-relationship
support within the whole software process. Multiple links
from each document would point to relevant passages in the
documents of all the phases of the process, independent link
sets could be activated to enable bird's eye views of the
document set, or careful examinations of the specific
interrel ationships among the parts of a specification, etc.

The one drawback we find in the current state of the XML
family isthelack of an adequately flexible activation engine
that permits the construction of flexible applications driven
by XML documents. These engine could then specialize for
screen rendering, or any other kind of relevant
computations. We believe that the displet approach is an
important step in that direction, providing a generic and
flexible environment for any ind of XML-driven
computation to take place.

CONCLUSIONS

The XML family is an important step in the direction of a
fully fledged document specification language for the
Internet. XML and its cohort can actually let users and
authors express their data and wishes in a sophisticated,
customizable and expandable way. Novel software
architectures have to be implemented to take advantage of
the generality of these languages. Our XMLC is a very
customizable and expandable architecture for displaying
XML documents. Being expandable, it has been easy to add
support for several sophisticated hypertext functionalities

such as the ones alowed by XLinks and XPointers Work is
under way to add more of them to future implementations.

XMLC is a working prototype, and can be examined,
downloaded and used. Elmuth is still under development.
See http://ww. cs. uni bo.it/projects/displets/
for further information.

ACKNOWLEDGMENTS

We would like to acknowledge here the contribution of all
the people that have worked on this architecture: Michael
Bieber, Chao-Min Chiu, CeciliaMascolo, Stefano Pancaldi,
Alfredo Rizzi, Alessandro Rocca, Alessandro Ronchi, Silvia
Villa, and all the students of the 1999 undergraduate course
in Software Engineering at the Computer Science
Department of the University of Bologna

REFERENCES

[1] S. Adler, A. Berglund, J. Caruso, S. Deach, A.
Milowski, S. Parndll, J. Richman, S. Zilles Extensible
Sylesheet Language (XSL) 1.0, W3C Working Draft
12 January 2000,
http://mww.w3.0rg/ TR/2000/WD-xd -20000112/

[2] M. Bieber, F. Vitdi, H. Ashman, V. Balasubramanian,
H. Oinas-Kukkonen, 'Fourth Generation Hypertext:
Some Missing Links for the World Wide Web,
International Journal of Human-Computer Studies 47,
Academic Press, 1997, p. 31-65.

[3] L. Bompani, P. Ciancarini, F. Vitdi, 'Active
Documents in XML', ACM SgWeb Newsletter, 8 (1),
1999, p. 27-32.

[4] T. Bray, D. Hollander, A. Layman, Namespaces in
XML, World Wide Web Consortium, 14 January 1999,
http://www.w3.0org/TR/REC-xml-names

[5] T.Bray, J. Padli, C. M. Sperberg-McQueen, Extensible
Markup Language, (XML) 1.0, W3C Recommendation
10 February 1998, http://mww.w3.0rg/ TR/REC-
xml

[6] S. Brien and J. Nicholls, Z Base Sandard,
Progranming Research Group, Oxford, UK, 1992.

[7] P. Ciancarini, A. Rizzi and F. Vitali, "An Extensible
Rendering Engine for XML and HTML", Computer
Networks and | SDN Systems, 30(1-7):225-238, 1998.

[8] P. Ciancarini, F. Vitdi, C. Mascolo, “Managing
complex documents over the WWW: a case study for
XML™, IEEE Transactions on Knowledge and Data
Engineering 11 (4), 1999, p. 629-638.

[9] J Clark, X9 Transformation (XS.T) 1.0, W3C
Recommendation 16 November 1999,
http://mww.w3.0org/ TR/xsIt/

[10] J. Clark, S. DeRose XML Path Language (XPath) 1.0,
W3C Recommendation 16 November 1999,
http://mww.w3.0rg/ TR/xpath/

[11] S. DeRose, E. Mder, D. Orchard, B. Trafford, XML
Linking Language (XLink), W3C Working Draft 20
December 1999, http://www.w3.0rg/TR/1999/WD-
xlink-19991220

[12] S. DeRose, R. Danid Jr., XML Pointer Language
(XPointer), W3C Working Draft, 9 July 1999,
http://www.w3.org/TR/WD-xptr

[13] E. Ellmer, W. Emmerich, A. Finkelstein, D. Smolko
and A. Zisman. Consisency Management of
Distributed Documents using XML and Related
Technologies. University College London, UCL-CS
Research Note 99/94. Submitted for Publication. 1999.

[14] J. Feler, A. Meadow, Essential Opendoc:. Cross
Platform Development for Os/2, Macintosh, and
Windows Programmers, Addison Wesley Publishing
Company, 1996

[15] O. Lassila, R. R. Swick, Resource Description
Framework (RDF) Modd and Syntax Specification,
W3C Recommendation 22 February 1999,
http://mww.w3.0org/ TR/REC-rdf-syntax

[16] B. Mathews, D. Lee, B. Dister, J. Bowler, H.
Cooperstein, A. Jinda, T. Nguyen, P. Wu, T. Sandal,
Vector Markup Language (VML), World Wide Web
Consortium Note, 13-May-1998,
http://imww.w3.0rg/ TRINOTE-VML

[17] Microsoft ActiveX: http://mww.microsoft.com/com/

[18] C. Nentwich, W. Emmerich, A. Finkestein and A.
Zisman. BOX: Browsing Objects in XML., University
College London, UCL-CS Research Note 99/41.
Submitted for Publication.1999.

[19] Sun Microsystems, The JavaBeansTM 1.01,
ftp://ftp.javasoft.com/docs/beans/beans. 101. pdf

[20] L. Wood, A. Le Hors, V. Apparao, L. Cable, M.
Champion, J. Kesselman, P. Le Hégaret, T. Pixley, J.
Robie, P. Sharpe, C. Wilson Document Object Modd,
(DOM) Level 2 Specification 1.0, W3C Candidate
Recommendation 10 December 1999,
http://www.w3.0org/ TR'DOM-Level-2/

