
1

Active Documents in XML

Luca Bompani, Paolo Ciancarini, Fabio Vitali
Dept. of Computer Science, University of Bologna
{bompani|ciancarini|vitali}@cs.unibo.it

Abstract

XML is an extremely promising approach to the
standardization of most data structures, but the
rendering semantics proposed with XSL is not
sufficiently general, lacking support for arbitrary
graphic objects and sophisticated notations.

In this paper we introduce XMLC, a generic, modular
XML browser that can display any kind of notation
required for XML documents, and we also discuss the
use of XMLC for active documents.

Introduction

The introduction of XML has provided the World
Wide Web with a powerful data format to express most
kinds of data structures. XML can be used to represent
structured text documents, specialized data structures,
and any kind of sophisticated notations for specific
needs.

Currently, XML tools are either meant to display text-
oriented documents (belonging to one of the myriad
document types expressed in XML DTDs) or to rely on
XML comfortable syntax for their run-time parameters.
Although specialized, non textual notations have been
defined in XML (for instance for mathematics and
chemistry), they were meant for specialized browsers
developed just for the display of the specific notation.

Currently, no tool exists that allow the display of all
kinds of XML documents, including text structures,
specialized notations, and any mix of structured
documents and specific rendering needs. To overcome
these limitations we have created a generic, modular
XML browser called XMLC. Each XML element is
associated to a special rendering module, called displet,
that creates the visual representation of the element
[CRV98].

But the power of displets goes beyond the simple
visualization of XML documents. Since we can
associate any module to an XML element, we can
associate a behavior to XML documents. The
rendering of the document becomes thus just one of the
possible behaviors activated upon it. We provide thus a
general environment for active documents.

While a traditional document is a consistent piece of
information created to be subjected to an action (for

instance to be displayed or printed), in our view an
active document is a document that can provide some
autonomous active behavior: the same document may
be displayed, be printed, be searched, perform
computations, produce additional documentation,
perform animations, etc.

Active documents are not unheard of: just to name one
case, Active-X has been marketed with this evocative
term. "Traditional" active documents may have some
clearly distinguished passive and active parts (as is the
case of Active X objects within a traditional word
processor or spreadsheet document), or they may
contain code executable by the display engine (for
instance, a complex PostScript page), or they may have
special localized markup that activates some particular
behavior in the display engine (for instance, a scripted
HTML page, or a Word document containing some
macros). The model of active documents we are
suggesting, on the other hand, does not distinguish
"active" from "passive" documents, since they are all
expressed in plain XML format, but are associated to
program modules on request, depending on the
application they are subjected to. Thus the same
document may be displayed, printed, or "activated" for
some complex computation, without any change to the
source.

In this paper, we discuss the current status of the
languages connected to XML, and provide some
background information to XMLC and its use as both a
general rendering application for XML documents, and
as a general runtime environment for activatable XML
documents.

XML and related standards

Formed in 1994 by the special interest group on SGML
of the World Wide Web Committee, the XML working
group set to work to provide an SGML-based
generalized markup language that could provide most
of the functionalities of SGML, while retaining the
same simplicity of HTML for the casual author and the
developer of tools. The working group divided the
effort in several independent but related languages that
cooperate in order to provide a complete and
sophisticated markup environment. For our purposes,
the most important proposals of the XML family are
the XML generalized markup language itself, the XSL
stylesheet language, and the DOM document object
model, which will be discussed singularly in the
following sections.

2

XML 1.0

XML 1.0 (Extensible Markup Language, [BPS98]) is
the first and most stable proposal of the XML family. It
is a proper subset of SGML, rather than an application
of it (like HTML). XML is a generalized markup
language, where authors can decide the set of tags they
are going to use in writing their documents, and it is
used at its best to express the structure of the document
and the semantically relevant elements, rather than
their typographical properties.

XSL

Just like SGML documents, XML documents lack any
machine-interpretable semantics. That is, XML dictates
about the syntax of the markup, not about its meaning.
This means on the one hand that authors are free to
assign whatever meaning they want to the elements
they choose to employ, but also that there must be a
way for programs to make use of these elements in an
appropriate way.

The solution taken within the XML family is to map
(or rewrite) the source XML document (containing
elements meaningful to the author) into a different
XML document containing elements meaningful for
the program that has to perform the application. Thus,
a document containing elements such as section, titles,
formulas, sentences, etc., all meaningful to its human
author, will be rewritten into a new document
containing elements such as blocks, paragraphs, inline
styles, white regions, and so on, all meaningful to a
displaying or printing program.

This is done by XSL (Extensible Stylesheet Language,
[CD98]). XSL is a mapping language for XML
elements. Each XSL stylesheet is made of rules
composed of a pattern and an action. The pattern
identifies an element of the XML source to which the
action should apply; a pattern may specify all elements
of a given type, all elements contained in a given
subtree, all elements having a given attribute, etc.
When the most appropriate pattern is found for the
current XML element, the action part is considered.
XSL actions are simply XML subtrees that are written
in the destination document in place of the element
being considered.

DOM

The Document Object Model is a platform- and
language-neutral interface that allows programs and
scripts to dynamically access and update the content,
structure and style of documents. The Document
Object Model provides a standard set of objects for
representing HTML and XML documents, a standard
model of how these objects can be combined, and a

standard interface for accessing and manipulating
them. Through DOM it is possible to develop
applications that use XML documents in a very general
way.

Displets for the activation of XML
elements

Since XML elements have no predefined meaning or
rendering semantics, it is up to the visualization
software to provide it. This happens by mapping the
document's element names to the program's element
names through XSL stylesheets. Thus, the
sophistication of the final rendering is independent of
the markup, but heavily depends on the sophistication
of the rendering program. This is an extremely sensible
consideration, but has its weak points: we can write
extremely complex documents in XML, but we can
display only those that do not have extremely complex
rendering needs. In the current use, we can map XML
documents onto HTML and display them on standard
WWW browsers, but specialized DTDs for strange
notation (mathematics and chemistry come to mind)
still require a specialized browser to be displayed
correctly.

XSL also provides a set of required visualization
objects, that is, objects that are known to be available
in all XSL implementations, but these only cover
standard typographical aspects of the visualization of
text, and do not provide support for non standard
requirements.

The displet approach [CRV98], on the other hand,
provides a generic solution to this problem. The idea
behind displets is to create a generic rendering browser
that can load and activate little independent software
modules tailored to create specific visualization
objects. The rendering browser would then activate
these modules depending on the content of the
document, and deliver all kinds of required rendering
needs. Displets (display applets) such little software
modules, designed to be fully interoperable and to be
activated by a generic display module.

XMLC

We have designed and created an architecture for
rendering displets. In figure 1 we show the general
architecture of the application, called XMLC (XML
Compiler).

3

Figure 1: The general architecture of the XMLC
prototype

The XML document is read and transformed by a
normal XML parser into a internal tree representation
using DOM. Then one or more layers of XSL
stylesheets are applied to the DOM tree through the use
of an XSL processor. This transforms the tree, at the
end of all these passages, into another DOM tree that
has an important property: for every element name in
the tree there exist an available Java class, called
displets, that provides the rendering. The XMLC
application will then activate all the Java classes of the
required displets, creating a tree of runnable Java
objects.

The Java classes are free to be of any type, but using
the newly introduced concept of JavaBeans it is easy to
create sophisticated and interoperable displets: the use
of JavaBeans Containers and Components, which can
be easily organized in hierarchies, nicely fits with the
hierarchical nature of DOM trees and XML documents.

XMLManager

XMLC is the environment we have implemented for
associating Java displets to XML elements and for
activating them. XMLC main use is inside a Java
applet that renders an XML document within well
known Internet browsers, as shown in figure 2.

The main advantage of this approach is that the
browser itself does not have a fixed and limited set of
visualization objects, but can load and activate any
Java class for the purpose of specialized rendering
needs. This means that there is no limit to the number
of different notations and sophisticated graphic objects
that can be satisfied by the XMLC approach.

Furthermore, since the XML elements transform into
JavaBeans objects, it is easy to add complex and

behaviors during the lifetime of the visualization,
providing support for hypertext jumps, animations,
interactions with the reader, and in general all the
computational capabilities of the Java language. The
kind of currently supported notations is the topic of the
next sections.

Text, images and links

We have implemented support for text oriented XML
elements. The level of support is comparable to that of
HTML 1.0 text elements: basic blocks (P, UL, OL and
header elements) and inline chunks (like I, B, TT
elements, etc.), plus an image tag and a simple inline
hypertextual link.

Furthermore, a very simple type of XLink extended
links [MD98] has been implemented. The Locator class
can display an inline extended link with multiple
destinations. When the user clicks on the
corresponding word, the link object activates and
shows a pop-up menu with all the specified
destinations.

The Z notation

A complete support for the Z notation has been
implemented (see also [CVM99]). The DTD for the
notation we use derives from the ZIF Interchange
Format [BN92], but, through the use of additional XSL
stylesheets, any other syntax can be used. The support
for Z elements is provided through the use of a single
displet class, zElement, for the all the boxes that are
present in Z specifications (schema, axioms, etc.), and
a special downloadable font for all the mathematical
glyphs specific of the Z language. All the other
elements of the Z language are mapped onto plain
HTML elements such as P, DIV and SPAN. An
additional layer of XSL stylesheet will then transform
them into Paragraph and Word objects as needed. We
show here a small fragment of a Z specification
(expressed in ZIF):

<schemadef style="vert" purpose="state">
 PhoneDB
 <decpart>
 <declaration>
 _known:&pset;NAME
 </declaration>
 <declaration>
 phone: NAME &fpfun; PHONE
 </declaration>
 </decpart>
 <formals> K,L,Z </formals>
 <axpart>
 <predicate>
 known = dom phone
 </predicate>
 </axpart>
</schemadef>

This fragment is transformed in a displayable XML
document and rendered on the display as in figure 3.

4

Figure 4: The display of a simple Z structure.

TBJava

A prototype that allows XMLC to execute Toolbook
books within an Internet browser has been
implemented [BOMPANI98]. TBJava translates
Toolbook books in XML documents, and displays and
activates them in an XMLC applet within a browser, as
shown in figure 5.

Figure 5: TBJava, an active displet

ToolBook is an authoring tool that allow the creation
of multimedia applications combining together several
types of predefined objects and specifying their
behavior with scripts written in a specific language
called OpenScript.

TBjava is composed by three different components:

• TBK2XML: a ToolBook filter that transforms
ToolBook books into XML documents

• A Java-based OpenScript interpreter

• A set of JavaBeans that implement the ToolBook
runtime objects

In figure 6 we show the architecture of TBJava.

Figure 6: The general architecture of TBJava

TBJava relies on XMLC as the runtime environment of
the ToolBook book. Since all ToolBook objects have
associated properties, behaviors and scripts, XMLC
supports them and supports several specific paradigms
for message passing and event handling, such as the
one of ToolScript and the one of Javascript.

Conclusions

Displets provide an exciting working environment for
XML. Since they support but are not limited to
traditional text documents, any kind of different
applications can be foreseen.

Currently XMLC is a prototype, and thus is not
comparable in speed to other, professional applications.
We are planning a new implementation of the XSL
engine that should considerably increase the speed of
the application.

Furthermore, we are continuously enriching the set of
displet classes, and are going to provide soon some
support for XLinks.

For more information, please consult our site
http://www.cs.unibo.it/projects/displets/

Acknowledgements

We wish to thank Cecilia Mascolo, Alfredo Rizzi,
Stefano Pancaldi and Milena Roncarati, who helped
study, design, implement, and test our implementation.

References

[ABC98] V. Apparao, S. Byrne, M. Champion, S.
Isaacs, I. Jacobs, A. Le Hors, G. Nicol, J. Robie, T.
Research, R. Sutor, C. Wilson and L. Wood Document
Object Model, (DOM) 1.0, W3C Recommendation 1-
October-1998, http://www.w3.org/TR/1998/REC-

5

DOM-Level-1

[BN92] S.Brien and J.Nicholls, Z Base Standard,
Programming Research Group, Oxford, UK, 1992.

[BOMPANI98] L. Bompani, Documenti Attivi in XML,
"Laurea" degree thesis, University of Bologna,
December 1998 (in Italian).

[BPS98] T. Bray, J. Paoli, C. M. Sperberg-McQueen,
Extensible Markup Language, (XML) 1.0, W3C
Recommendation 10-February-1998,
http://www.w3.org/TR/REC-xml

[CD98] J. Clark, S. Deach, Extensible Stylesheet
Language, (XSL) 1.0, W3C Draft 18-August-1998,
http://www.w3.org/TR/1998/WD-xsl

[CRV98] P. Ciancarini, A. Rizzi and F. Vitali, "An
Extensible Rendering Engine for XML and HTML",
Computer Networks and ISDN Systems, 30(1-7):225-
238, 1998.

[CVM99] P. Ciancarini, F. Vitali, C. Mascolo,
"Managing complex documents over the WWW: a case
study for XML", IEEE Transaction on Knowledge and
Data Engineering, 1999, to appear.

[MD98b] E. Maler, S. DeRose, XML Linking
Language (XLink), World Wide Web Consortium
Working Draft 3 March 1998,
http://www.w3.org/TR/WD-xlink

