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Abstract

We utilize the situation calculus to develop a logical

model of hypertext systems. The work builds upon the

earlier work of Bieber and Kimbrough in the logical

modeling of hypertext systems. In our presentation, a

particular version of the situation calculus (which in-

cludes a language for programming complex actions)

developed for the modeling of dynamic worlds and for

the control of robotic agents (as studied in arti�cial

intelligence) is used to represent the dynamics of a hy-

pertext system. We argue that the formulation besides

being of interest in itself has a number of advantages

over other methods of formalizing hypertext systems.

1 Introduction
Hypertext and related systems are becoming ubiq-

uitous. A wide variety of systems have been built.
Each of these systems [7]:

provides its users with the ability to create,
manipulate, and/or examine a network of
information-containing nodes interconnected
by relational links.

There is both a database of interconnected pieces of
information and facilities for navigating and modifying
this database.

Bieber and Kimbrough [1] have developed an ini-
tial logic model of a generic hypertext system and
then built upon that model a notion of generalized
hypertext. Generalized hypertext uses logical infer-
encing rather than manual (human) speci�cation to
create links, nodes, and impose views. In addition to
serving as the foundation for generalized hypertext,
the logic model also proved useful for the speci�cation
and coding of the generalized hypertext system Max
[1]. We feel that logic models of hypertext systems can
in general play a useful role in the comparison of var-
ious hypertext systems, as well as in the speci�cation
and coding of speci�c systems, much in the same way
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as a speci�cation in a formal language such as Z. Once
inferencing is added, as in generalized hypertext, the
logic model becomes essential.

But the logic model developed by Bieber and Kim-
brough [1] su�ers from a major drawback. It does not
have a means of representing the dynamic aspects that
are essential to a hypertext systems. It really is only a
logic model for certain elements of the hypertext sys-
tem. The central aspect, the changes that occur as
links are traversed, is left outside of the model. In the
situation calculus model developed here, it is possible
given an axiomatization to ask whether or not a par-
ticular sentence must be true after the execution of a
particular sequence of actions.

The modeling of dynamic worlds has been studied
in arti�cial intelligence where the common sense rea-
soning needed by a robotic agent is a major concern.
A wide variety of formalisms have been developed to
capture this sort of common sense reasoning about
change. Researchers have struggled with a number of
di�cult problems such as the frame1 problem [19].

One of the oldest formalisms for representing dy-
namically changing worlds is the situation calculus
[12]. Recently it has been enjoying a revival because
its expressiveness is much richer than what had been
commonly believed [5, 14], and it has proven useful
both as a method for specifying and for implementing
robotic agents [10, 9, 8, 15].

The situation calculus provides a formalism for rea-
soning about actions and their e�ects on the world.
Axioms are used to specify the prerequisites of ac-
tions as well as their e�ects, that is, the 
uents that
they change. In general, it is also necessary to pro-
vide frame axioms to specify which 
uents remain un-
changed by the actions. In the worst case this might

1This is the problem of having to add extra axioms called

frame axioms to specify the intuitively obvious common facts

about what we know from common sense does not change after

an action occurs.
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require an axiom for every combination of action and

uent. Recently, Reiter [15] (generalizing the work of
Haas [6], Schubert [18] and Pednault [13]) has given a
set of conditions under which the explicit speci�cation
of frame axioms can be avoided. Under these circum-
stances a relatively simple solution su�ces. We utilize
the formulation of Reiter in this paper.

Building upon Reiter's work, the Cognitive
Robotics group at the Univesity of Toronto [10, 9, 8]
has further developed the situation calculus to both
model a robotic agent in a dynamic world and to
develop a high-level programming language called
GOLOG for declaratively de�ning complex actions
(such as iteration, conditionals, and loops) that are
built upon the basic primitive actions of the situation
calculus. Thus speci�cation and implementation are
accomplished in a uni�ed framework.

This does not mean that all problems are solved.
But as discussed in [10, 9, 8] there is an imple-
mented interpreter for GOLOG. Thus a speci�cation
in GOLOG can be executed by this interpreter. This
interpreted code can then serve as the basis for com-
pilation into an e�cient program, or can serve as a
speci�cation language that has the added advantage
of being executed in an interpreted mode.

In this paper, we utilize both the situation calculus
and GOLOG to represent the dynamics of a hyper-
text system. Even though the situation calculus was
initially developed and studied with A.I. problems in
mind, it and the approach to the frame problem has
been applied to the formalization of software systems.
For example it has been used to formalize the evo-
lution of a database under the e�ect of an arbitrary
sequence of update transactions [17]. Additionally, the
approach has been used as the foundations for a lan-
guage for software speci�cation [2]

Here we explore another domain, hypertext, in
which the simple solution to the frame problem ([15])
proves to be su�cient for most aspects of the problem.
Additionally, we feel that the formulation besides be-
ing of interest in itself has a number of advantages over
other methods of formalizing hypertext systems. It
preserves all of the advantages of the Bieber and Kim-
brough [1] logic model in that one can easily specify
aspects of generalized hypertext.

Also, the approach based on the situation calcu-
lus gives us automatically a formalism for representing
and reasoning about context. We wish to model appli-
cations that determine which links to display based on
the dynamic situation of the user interacting with the
database. A number of hypertext systems incorporate
such features. For example, in Trellis [4] it is possi-
1060-3425/98 $1
ble to control the navigational possibilities available to
the user, and to let him/her access and activate links
based on the previous steps that the user has taken.
Context is also utilized in [20, 3].

We utilize the situation calculus to develop a logical
model of a core sort of hypertext system, very close
to the basic hypertext of [1]. It does not, for example,
have all of the features of the Dexter model [7]. These
can all be readily added. For example, the only links
considered in this paper are binary and we do not
consider composite nodes.

In [7], a hypertext system is divided into three lay-
ers. These are the run-time layer, the storage layer,
and the within-component layer. The run-time layer
consists of the mechanisms that enable the user to in-
teract with the hypertext system. The storage layer
is the network of nodes and the links between them.
The internal structure of the nodes is captured by the
within-component layer. In this paper nothing more
will be said about the within-component layer as we
will not be considering composite nodes.

In the next section, the situation calculus back-
ground is given. Then, in Section 3, a model of the
core hypertext system is developed. This discussion
includes the representation of the storage layer, and
the basic actions needed by the run-time layer. But
it does not include a representation of the overall op-
eration of the run-time layer, because that requires a
discussion of the complex actions that form the basis
of GOLOG.

In Section 4 complex actions and the GOLOG pro-
gramming language are discussed and in Section 5
these features are used to specify the run-time compo-
nent. At this point, the model can be used to reason
about what is true after the execution of a particu-
lar sequence of actions and to represent the hypertext
system as an ongoing process, a read-evaluate-print
loop.

Section 6 covers the problem of reasoning about
global properties of the axiomatization. These are
properties that hold in any state of the system. Es-
tablishing these properties requires justifying the use
of inductive reasoning over situations.

Section 7 discusses the issues involved in adding no-
tions from generalized hypertext. Finally, in Section 8,
the paper is summarized and future work is discussed.

2 The Situation Calculus: A Language

for Specifying Dynamics

The situation calculus (following the presentation
in [15]) is a �rst-order language for representing dy-
namically changing worlds in which all of the changes
0.00 (c) 1998 IEEE



are the result of named actions performed by some
agent. For example

drop(x)

represents the action of dropping some object x.
Terms are used to represent states of the world{i.e.
situations. If � is an action and s a situation, the re-
sult of performing � in s is represented by do (�; s).
The constant S0 is used to denote the initial situa-
tion. Relations whose truth values vary from situa-
tion to situation, called 
uents , are denoted by predi-
cate symbols taking a situation term as the last argu-
ment. For example, Broken (x; s) means that object
x is broken in situation s. Functions whose denota-
tions vary from situation to situation are called func-

tional 
uents . They are denoted by function symbols
with an extra argument taking a situation term, as in
position(robot; s), i.e., the position of the robot in s.

It is assumed that the axiomatizer has provided for
each action �(~x), an action precondition axiom of the
form given in 1, where ��(~x; s) is a formula specifying
the preconditions for action �(~x).

Poss(�(~x); s) � ��(~x; s) (1)

An action precondition axiom for the action drop is
given below.

Poss(drop(x); s) � Holding(x; s) (2)

The axiom states that the drop action is possible if
and only if the agent is holding an object.

The core of the method of axiomatization is the
construction of successor state axioms. Their general
form is given below:

Poss (a; s) ! [F (~x; do(a; s)) �



+

F (~x; a; s) _ (F (~x; s) ^ :
�F (~x; a; s))]
(3)

Similar successor state axioms may be written for
functional 
uents. A successor state axiom is needed
for each 
uent F , and an action precondition axiom is
needed for each action a.

Reiter[15] shows how to derive a set of successor
state axioms of the form given in 3 from the usual
positive and negative e�ect axioms, a completeness
assumption2, and the restriction that there are no
rami�cations, i.e., indirect e�ects of actions3. Often
it is possible to code axioms directly in the form of

2Reiter[15] also discusses the need for unique name axioms

for actions and situations.
3This last condition can be ensured by prohibiting state con-

straints, i.e., sentences that specify an interaction between 
u-

ents. An example of such a sentence is 8sP(s) � Q(s). If an
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successor state axioms. That is what we will do in the
next section of this paper.

Given such an axiomatization, one can give the ax-
iomatization of the initial situation F0, the axiom-
atization of the hypertext system Fss and then ask
whether or not the axiomatization entails that a par-
ticular sentence G will be true after the execution of
a particular sequence of actions (contained in sgr).

F0

S
Fss j= G(sgr)

Methods for e�ciently automating such queries are
discussed in [15].

3 Hypertext
Following [1], a hypertext consists of an arbitrary

number of interrelated nodes, links, and buttons.
Nodes are objects that are declared in a data base
and, when displayed, are represented as text on the
screen. Links, which describe relationships between
pairs of nodes4 (called the source and sink), are also
declared in a data base.

The essential 
uents and their intended interpreta-
tions are as follows:

1. Node(x; y; z; s) x is a node with con-
tent expression y and semantic type z

in situation s.

2. Link(u; v; w; x; y; z; s) u is a link from
source node v to sink node w with se-
mantic type x, operation type y, and
either display mode or procedure iden-
ti�er z in situation s.

3. Button(x; y; z; s) x is a button repre-
senting link y with context expression z
in situation s.

4. window(s) denotes that which is dis-
played in the main window in situation
s (a functional 
uent).

5. Current node(x; s) x is the current
node in situation s.

6. pop up window(s) denotes the dis-
play in the pop up window in situation
s (a functional 
uent).

Consider the following simple hyperdocument taken
from [1]. All of these declarations are facts declared
to be true at the initial situation S0.

action a made P (do(a; s)) true, then the action would have the

indirect e�ect of making Q(do(a; s)) true as well since the con-

straint speci�es that Q must have the same truth value as P in

every situation.
4The links are directional | pointing from the source node

to the sink node.
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Node(1,[`If the',`Soviet Union',`is to be com-
petitive', `we must hit inside curveball', ` ',
button(1)],quotation,S0)

Node(2,[`Quotation of the Day',
`The New York Times',`August 16, 1989'],
description,S0)

Link(1,1,2,more information,display,
full window,S0)

Button(1,1,'Aleksei L. Nilolov',S0)

Button(0,0,'Exit',S0)

Current node(1,S0)

This database declares nodes 1 and 2. Link 1 has node
1 as a source node and node 2 as a sink node. Button
1 is a button for link 1 and is displayed with node 1.
Node 1 is set to be initially the current node. Finally,
button 0 is there so that the user can signal to exit
and terminate the session.

The available commands are:

1. traverse sink(x; y) moves the current
node from x to y.

2. traverse source(x; y) moves the cur-
rent node from y to x.

3. display node attribute(x) displays
in a pop-up window the attribute of the
node x.

4. display link attribute(x) displays
in a pop-up window the attribute of the
link x.

5. make display text(x) displays in a
window the text encoded in content ex-
pression x.

6. create node(x; y; z) adds to
the database node x with content ex-
pression y and semantic type z.

7. delete node(x) deletes from the
database node x.

8. create link(u; v; w; x; y; z) adds to
the database link u from source node
v to sink node w with semantic type
x, operation type y, and either display
mode or procedure identi�er z.

9. delete link(u) deletes from the
database link u.
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The action make display text creates the dis-
play in the window. Here we do not give a full spec-
i�cation of what appears in the window. But it is
required that the action properly displays all buttons
in the content of the node and also button 0 is always
displayed. Also, we assume that there can only be one
main window and one pop up window displayed at a
time.

The following is the successor state axiom for the
predicate Current node.

Poss(a; s)! [Current node(x; do(a; s)) �
a = traverse sink(y; x) _
a = traverse source(x; y) _
(:(a = traverse sink(y; x) _

a = traverse source(y; x))
^ Current node(x; s))]

(4)

Sentence 4 speci�es that the current node in a partic-
ular situation that results from performing an action
is either the sink node on a link if the action was a
traverse sink action, or the source node on a link
if the action was a traverse source action or oth-
erwise the current node in the situation prior to the
action.

The axioms5 capturing the possibility condi-
tions for the two actions traverse sink and tra-

verse source are as follows:

Poss(traverse sink(y; x); s) �
current node(y; s)

^ 9u link(u; y; x; ; ; ; s)
(5)

Poss(traverse source(x; y); s) �
current node(y; s)^

9u link(u; x; y; ; ; ; s)
(6)

Sentence 5 speci�es that the traverse sink action
from y to x is possible in a particular situation s if
and only if y is the current node and there exists a
link from y to x. Sentence 6 speci�es that the tra-
verse source action from y to x is possible in a par-
ticular situation s if and only if y is the current node
and there exists a link from x to y.

The following is the successor state axiom forWin-

dow.

Poss(a; s)! [window(do(a; s)) = x �
a = make display text(x) _
(a 6= make display text(y)

^ window(s) = x)]

(7)

5We note that for the sake of notational perspicuity we

are using the underscore as in Prolog's anonymous variable.

No logical generality is lost by this, for an equivalent formula

can always be had by replacing each anonymous variable with

a unique variable and universally quantifying over the entire

formula.
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Some object x is displayed in the main window if either
the previous action was a make display text(x) ac-
tion or x was already in the window and the action was
something other than one that displayed text in the
window.

The following is the speci�cation of the possibility
condition for the action make display text.

Poss(make display text(x); s) �
9z current node(z; s) ^ node(z; x; ; s)

(8)
The displayed material must be the content expression
of the current node.

Sentence 9 is the successor-state axiom for what is
displayed in the pop up window.

Poss(a; s)! [pop up window(do(a; s)) = x �
(9y a = display link attr(y) ^

link(y; ; ; x; ; ; s)) _
(9ya = display node attr(y) ^

node(y; ; x; s)) _
(:(a = display link attr(y) _

a = display node attr(y))
^ Pop up window(s) = x))]

(9)

The following are the two axioms de�ning the pos-
sibility conditions for the actions display link attr

and display node attr.

Poss(display node attr(y); s) �
current node(y; s) ^ 9xbutton(x; y; ; s)

(10)
The command display node attr(y) is possible if
and only if y is the current node and is represented by
a button.

Poss(display link attr(y); s) �
9z current node(z; s) ^
(link(y; z; ; ; ; ; s) _ link(y; ; z; ; ; ; s))
^ 9xbutton(x; y; ; s)

(11)
The command display link attr(y) is possible if
and only if z is the current node, y is a link with z

as either the source or a the sink node, and there is a
button representing y.

We also need successor state axioms for the 
uents
Link and Node.

Poss(a; s)! [Node(x; y; z; do(a; s)) �
a = create node(x; y; z) _
(a 6= delete node(x) ^ Node(x; y; z; s))]

(12)
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Poss(a; s)! [Link(u; v; w; x; y; z; do(a; s)) �
a = create link(u; v; w; x; y; z) _
(a 6= delete link(u) ^

Link(u; v; w; x; y; z; s))]
(13)

The following6 are the four axioms de�ning the
possibility conditions for the actions create node,
delete node, create link, and delete link.

Poss(create node(x; y; z); s) �
:(9u; v; w Node(u; v; w; s) ^ u = x)

(14)

Poss(delete node(x); s) �
9u; y; z node(u; y; z; s) ^

:9 v; w link(v; w; u; ; ; ; s)^
u = x

(15)

Poss(create link(x; v; w; x; y; z); s) �
:(9u; n; o; p; q; rLink (u; n; o; p; q; r; s)

^u = x)
(16)

Poss(delete link(x); s) �
9u; n; o; p; q; rLink (u; n; o; p; q; r; s)

^u = x

(17)

One can not create a link or node that already ex-
ists. Furthermore one can not delete a node if there is
a link that points to it. This is requirement is designed
to prevent dangling links { see Section 6. Additionally,
one can only delete a link if it exists.

We have not axiomatized a session log { a history of
the commands executed since the current session was
initiated. This is necessary to model backtracking, a
common feature of hypertext systems. Note that the
name of each situation contains within it a history of
all of the commands executed since S0. Thus back-
tracking can easily be added utilizing the situation
itself as a session log.

4 GOLOG: Complex Actions
The actions discussed in the previous section are

primitive and determinate. They are like primitive
computer instructions (e.g. assignment). We need
complex actions to construct a program that performs
a series of complex actions, tests predicates for their
truth values, and then performs other actions depend-
ing on the results of the test. An example of such
a program is the run-time environment. This set of
complex action expressions forms a programming lan-
guage that is called GOLOG (alGOl in LOGic) [10].

Complex actions could be treated as �rst class en-
tities, but since the tests that appear in forms like if

6We are assuming some method for specifying an arbitrary

link or node as in the Dexter reference model [7].
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� then �1 else �2 involve formulas �, this means that
we must reify 
uents and formulas. Moreover, it is
necessary to axiomatize the correspondence between
these rei�ed formulas and the actual situation calcu-
lus formulas. This results in a much more complex
theory.

Instead complex action expressions are treated as
abbreviations for expressions in the situation calculus
logical language. They may be thought of as macros
that expand into the genuine logical expressions. A
particular execution sequence of a complex action ex-
pression will be a sequence of situation calculus prim-
itive actions.

This is done by de�ning a predicate Do as in
Do(�; s; s0) where � is a complex action expression.
Do(�; s; s0) is intended to mean that the agent's do-
ing action � in situation s leads to a (not necessarily
unique) situation s

0. The inductive de�nition of Do

includes the following cases:

� Do(a; s; s0)
def
= Poss(a; s)^ (s0 = do(a; s)) | sim-

ple actions

� Do(�?; s; s0)
def
= �[s] ^ (s = s

0) | tests

� Do([�1; �2]; s; s
0)

def
= 9s00(Do(�1; s; s

00) ^
Do(�2; s

00
; s

0)) | sequences

� Do([�1j�2]; s; s
0)

def
= Do(�1; s; s

0) _Do(�2; s; s
0) |

nondeterministic choice of actions

� Do((�x)�; s; s0)
def
= 9xDo(�; s; s0) | nondetermin-

istic choice of parameters

� Do(if � then �1 else �2; s; s
0)

def
=

(�[s]! Do(�1; s; s
0)) ^ (:�[s] ! Do(�2; s; s

0))

� Do(��; s; s0)
def
= | nondeterministic iteration

8P [(8s1 P (s1; s1)!
8s1; s2; s3[P (s1; s2) ^Do(�; s2; s3)

! P (s1; s3)]
! P (s; s0)]

� Do(while � do �; s; s
0)

def
=

8P (
(8s1 :�[s1]! P (s1; s1))^
(8s1; s2; s3 (�[s1] ^ Do(A; s1; s2)^

P (s2; s3))
! P (s1; s3))

)! P (s; s0)
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The notation �[s] means that a situation argument is
added to all 
uents in �, if one is missing. The def-
inition of while loops could be simpli�ed by utilizing
the de�nition of nondeterministic iteration. Note that
the de�nition of while loops and nondeterministic it-
eration have to appeal to second order logic.

Second order logic is also need to de�ne the proce-
dure construct:

� (Recursive) procedure P with formal parameters
x1; : : : ; xn and actual parame-
ters t1; : : : ; tn and body � is de�ned as follows:
Do([proc

P (x1; : : : ; xn) � end](t1; : : : ; tn); s1; s2)
def
=

(8P )f(8x1; : : : ; xn; s
0

1; s
0

2)
[P (x1; : : : ; xn; s

0

1; s
0

2) � Do(�; s01; s
0

2)]
! P (t1; : : : ; tn; s1; s2)g:

Executing procedure P on actual parameters t1; : : : ; tn
takes you from s1 to s2 i� (t1; : : : ; tn; s1; s2) is in the
smallest set of tuples (x1; : : : ; xn; s

0

1; s
0

2) such that ex-
ecuting � on x1; : : : ; xn takes you from s

0

1 to s
0

2.
In [10], a full discussion of these de�nitions as well

as a Prolog interpreter for GOLOG may be found.
Even though the correct de�nition of the complex ac-
tions does in certain cases use second-order logic, the
interpreter is very simple.

5 Run-time Layer
The complex action macros of GOLOG can now be

used to de�ne the run-time layer. But we �rst need
some additional actions. These are:

� rightclick(x)

� middleclick(x)

� leftclick(x)

The intended meaning of rightclick(x) is that the
user has clicked the button x with the right side of
the mouse indicating that the request is for a traverse
action (either traverse to source or traverse to sink).
The intended meaning of leftclick(x) is that the
user has clicked the button x with the left side of the
mouse indicating that the request is to display the
link attributes. A middleclick(x) action is an indi-
cation that the user wants to have the node (current
node) attributes displayed. These actions are really
exogenous actions in that they are not performed by
the program (agent), but rather by the outside world
(user of the program). The choice of which one occurs
is external and not part of the logic model.

Additionally, we need the following action:

� deactivate(x)
.00 (c) 1998 IEEE



After executing the action requested by the user, the
system will need to deactivate the button with this
action.

Also needed are three 
uents to indicate the status
of the button.

� ActiveButtonRight(x)

� ActiveButtonMiddle(x)

� ActiveButtonLeft(x)

The successor state axioms for these 
uents are rel-
atively simple:

Poss(a; s)! [ActiveButtonRight(x; do(a; s)) �
a = rightclick(x)_
(a 6= deactivate(x)^

ActiveButtonRight(x; s))]
(18)

Poss(a; s)! [ActiveButtonLeft(x; do(a; s)) �
a = rightclick(x)_
(a 6= deactivate(x)^

ActiveButtonLeft(x; s))]
(19)

Poss(a; s)! [ActiveButtonMiddle(x; do(a; s)) �
a = rightclick(x)_
(a 6= deactivate(x)^

ActiveButtonMiddle(x; s))]
(20)

These axioms specify that the button is active (in the
appropriate fashion | right, left, or middle) if the
previous action was a click (of the appropriate type
| right, left, or middle), or if the previous action was
not a deactivate action and the button was on (in the
appropriate fashion) in the previous situation.

The following complex actions de�ne the run-time
environment. The procedure FIND BUTTON deter-
mines what button is pressed and then calls the pro-
cedure PROCESS COMMAND with the button as an
argument and �nally deactivates the button.

proc FIND BUTTON(n)
(� n)[(ActivebuttonRight(n)_

ActiveButtonLeft(n)_
ActiveButtonMiddle(n))?;

PROCESS COMMAND(n);
de activate(n)]

end:

(21)

The procedure PROCESS COMMAND takes a
button as an argument. If the middle mouse key has
been clicked, then the attributes of the current node
are displayed. Otherwise, if the left mouse button has
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been clicked, the attributes of the link associated with
the button are displayed. Otherwise, the procedure
TRAVERSE is called with the link as an argument.

proc PROCESS COMMAND(n)
if ActiveButtonMiddle(n)

then (� u)[Current node(u)?;
display node attr(u)

else [if ActiveButtonLeft(n)
then (� y)Button(n; y; z)?;

display link attr(y)
else(� y)Button(n; y; z)?;

TRAVERSE(y)]]
end:

(22)

The procedure TRAVERSE takes as an argument
the link that is associated with the button that was ac-
tivated. If the current node is the source node of that
link, then a traverse to sink is performed. Otherwise
a traverse to source is performed.

proc TRAVERSE(x) (� y; z)[Link(x; y; z; ; ; )?;
if Currentnode(z)

then traverse source(x)
else traverse sink(x)]

end:

(23)
The procedure CONTROL is the top level rou-

tine. It �rst calls OPEN SESSION and then request.
Note that request is not really de�nable within the
logic model because it is basically a request for an
exogenous action. But it is easily implemented as a
prompt to the user to enter an action and then the
execution of that action. Then the procedure loops
as long as button 0 is not activated. This button is
taken to represent the command to exit the program.
Each time through the loop, �rst there is a call to
FIND BUTTON and then another request.

proc CONTROL
OPEN SESSION;
request;
[while :Active(0) do

SERVE BUTTON;
request ];

CLOSE SESSION

end:

(24)

The procedure CLOSE SESSION is quite simple.
It calls the commands (unde�ned in our model)
clearscreen and terminate.

proc CLOSE SESSION
clearscreen;
terminate

end:

(25)
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The procedure OPEN SESSION, �rst performs
clearscreen and then displays the current node.

proc OPEN SESSION
clearscreen;
(� n)[Current node(n)?;
make display text(n)]

end:

(26)

Note that an interpreter exists for GOLOG code such
as that presented here [10].

6 Induction
One may also want to reason about the global prop-

erties of a particular axiomatization. An example is
to prove that dangling links will never occur given a
particular axiomatization. A dangling link is a link
where no sink node exists, maybe because someone
has deleted it without updating the database. Dexter
strongly prohibits this, but real-life implementations
often ignore the issue.

The problem is, given a situation calculus axiom-
atization, to determine whether a particular sentence
is true in all possible situations. This demands rea-
soning by induction. The purpose of this section is to
utilize the foundational axioms for the situation cal-
culus [11, 16] so that properties such as the absence of
dangling links may be proven for a particular axiom-
atization.

Up to this point we have implicitly been using a
many-sorted language. The two domain independent
sorts are situation and action. The sort action is for
primitive actions. The unique situation constant sym-
bol, S0, is a member of the sort situation. Addi-
tional situations are generated by the binary function
do : action� situation! situation.

The initial situation, S0 is like the number 0 in
Peano arithmetic. Unlike Peano arithmetic which has
a unique successor function, we have a family of suc-
cessor functions modeled by the binary function do.
Lin and Reiter [11] have, on analogy with the Peano
axioms for number theory, developed a set of founda-
tional axioms for the situation calculus. The axioms
are as follows:

S0 6= do(a; s) (27)

do(a1; s1) = do(a2; s2)! a1 = a2 ^ s1 = s2 (28)

(8P ):fP (S0) ^ [(8a; s):[P (s)! P (do(a; s))]g

! (8s)P (s)] (29)

Axiom (29) is a second order way of limiting the sort
situation to the smallest set containing S0, and closed
under the application of the function do to an action
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and a situation. Any model of these axioms will have
its domain of situations isomorphic to the smallest set
S satisfying:

1. S0 2 S.

2. If S 2 S, and A 2 A, then do(A;S) 2 S, where
A is the domain of actions in the model.

These axioms say that the tree of situations is really
a tree. There are no cycles and there is no merging.

There are two additional axioms:

:s < S0 (30)

s < do(a; s0) � (Poss(a; s0) ^ s � s
0) (31)

where s � s
0 is shorthand for s < s

0 _ s = s
0. These

�ve axioms are domain independent. They provide the
basic properties of situations in any domain speci�c
axiomatization of particular 
uents and actions.

We want to reason about situations reachable by
an executable sequence of actions. Intuitively, s � s

0

holds if and only if there is a sequence of zero or more
executable actions which lead from situation s to s

0.
An action is executable if the action's preconditions
are true in the situation in which the action is to be
performed.

One of the consequences of the foundational axioms
is the following7

(8P )[P (S0) ^ (8a; s)(P (s) ^ S0 � s ^ Poss(a; s)
! P (do(a; s)))!

(8s):S0 � s! P (s)]:
(32)

This principle of induction enables us to prove prop-
erties that hold over all situations that are possible.

Sentence 33 expresses the property that there are
no dangling links.

8 s 9u; v; w; x; y; z Link(u; v; w; x; y; z; s) !
9x;m; n Node(x;m; n; s) ^ x = w

(33)

Using 32, one can prove that this sentence is an in-
ductive consequence of the axiomatization presented
in this paper.

7 Generalized Hypertext
We are attracted to the situation calculus primar-

ily as a way to model the dynamic aspects of hyper-
text systems. In particular we are interested in hy-
pertext support for information systems that dynam-
ically generate document (node) content. Bieber and
Kimbrough's model of generalized hypertext employs

7See [11, 16] for a full discussion.
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logical mapping rules called bridge laws which dynam-
ically (at run-time) map application components (ap-
plication commands and the results of executing com-
mands) to hypertext components (nodes, links and
buttons). They illustrate their approach with Maxi, a
generalized version of Max.

Following [1], we use predicates GhtNode(x; y; s)
to represent that x is a generalized node with content
description y and GhtLink(u; v; w; z; y; z; s) to repre-
sent that u is a generalized link. Sentence 34 adapts
a bridge law for nodes from [1] to the approach being
taken here.

Model(x:y; z) ^ Source(x;w) ^
Description(x; v)

! GhtNode(x; [[math-ex; z];
[source; w];
[descr; v];
[type;n-model];
[model-type; y]]);
S0)

(34)

In this example, the predicates Source, Model, and
Description all belong to the application domain of
Maxi.

Sentence 35 adapts a bridge law for links from [1]
to the approach being taken here.

Model(u; ; ) ^ Available Commands(u; z)
! GhtLink(u; v; w; [[l-type;model];

[owner;TEFA]]; ; z; S0)

(35)
Here again, the the predicates
Model and Available Commands both belong to
the application domain of Maxi.

Note that the bridge laws here only operate on sit-
uation S0. We are assuming that the application do-
main is static during the period that the hypertext sys-
tem is operating. Eliminating this assumption would
mean that we would want the S0 in the bridge laws to
be replaced by a universally quanti�ed s. This would
then be a state constraint and would in general vio-
late the requirement for Reiter's simple solution to the
frame problem. So, in this context, the frame problem
returns.

Our future research concerns �nding ways to fully
model the interaction between the hypertext systems
and the information systems application(s) it sup-
ports. This will involve handling the types of state
constraints that arise in our intended applications, uti-
lizing the work of of [11].

8 Conclusions and Future Work
We have developed a situation calculus model for

hypertext systems. This model captures the dynamic
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aspects of hypertext { the changes that occur in mov-
ing from one situation to another when commands are
executed. It has the advantage of being able to utilize
an existing interpreter for the language in which the
model is expressed.

Stand-alone hypertext systems and those providing
hypertext services to other applications have many
dynamic features, which most hypertext models do
not adequately represent. Using the situation calculus
could prove an e�ective tool for representing these as-
pects and may very well allow us to fully model such
systems and implement them. We hope to continue
this line of research and do this.

In particular, we can now add a new aspect to the
hypertext models that have been proposed: that of
the determination of hypertext features based on the
context of the current session. Being able to formally
specify the rules by which some links are to be acti-
vated or some content is to be included into a hyper-
text document is an important facility that can allow
author to create hypertext that automatically adapt
to the situation, the user's reactions, and the over-
all context of the navigation. External linkbases, dy-
namic computation-oriented information systems, and
interfaces to expert systems could pro�t by this abil-
ity.
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