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Abstract. Constraint Handling Rules (CHR) is a general purpose, committed-
choice declarative language which, differently from other similar languages, uses
multi-headed (guarded) rules.
In this paper we prove that multiple heads augment the expressive power of the
language. In fact, we first show that restricting to single head rules affects the Tur-
ing completeness of CHR, provided that the underlying signature (for the constra-
int theory) does not contain function symbols. Next we show that, also when con-
sidering generic constraint theories, under some rather reasonable assumptions it
is not possible to encode CHR (with multi-headed rules) into a single-headed
CHR language while preserving the semantics of programs. As a corollary we
obtain that, under these assumptions, CHR can be encoded neither in (constraint)
logic programming nor in pure Prolog.

1 Introduction

Constraint Handling Rules (CHR) [7,9] is a committed-choice declarative language
which has been originally designed for writing constraint solvers and which is nowa-
days a general purpose language. A CHR program consists of a set of multi-headed
guarded (simplification and propagation) rules which allow one to rewrite constraints
into simpler ones until a solved form is reached. The language is parametric w.r.t. an
underlying constraint theory CT which defines the meaning of basic built-in constraints.

The presence of multiple heads is a crucial feature which differentiates CHR from
other existing committed choice (logic) languages. Many examples in the vast literature
on CHR provide empirical evidence for the claim that such a feature is needed in order
to obtain reasonably expressive constraint solvers in a reasonably simple way (see the
discussion in [9]). However this claim was not supported by any formal result, so far.

In this paper we prove that multiple heads do indeed augment the expressive power
of CHR. Since we know that CHR is Turing powerful [16] we first show that CHR
with single heads, called CHR-s in what follows, is also Turing powerful, provided that
the underlying constraint theory allows the equality predicate (interpreted as pattern
matching) and that the signature contains at least one function symbol (of arity greater
than zero). This result is certainly not surprising; however it is worth noting that, as we
prove later, when considering an underlying (constraint theory defined over a) signature
containing finitely many constant symbols and no function symbol CHR (with multiple
heads) is still Turing complete, while this is not the case for CHR-s.

This provide a first separation result which is however rather weak, since usual cons-
traint theories used in CHR do allow function symbols. Moreover computability theory



is not always the right framework for comparing the expressive power of concurrent
languages, since often one has to compare languages which are Turing powerful (see
[4] for one of the first discussions on the subject). Hence in the second part of the paper
we compare the expressive power of CHR and CHR-s by using the notion of language
encoding, first formalized in [4,15,17]3. Intuitively, a language L is more expressive
than a language L′ or, equivalently, L′ can be encoded in L, if each program written in
L′ can be translated into an L program in such a way that: 1) the intended observable
behaviour of the original program is preserved (under some suitable decoding); 2) the
translation process satisfies some additional restrictions which indicate how easy this
process is and how reasonable the decoding of the observables is. For example, typ-
ically one requires that the translation is compositional w.r.t. (some of) the syntactic
operators of the language [4].

We prove that CHR cannot be encoded into CHR-s under the following three as-
sumptions. First we assume that the observable properties to be preserved are the con-
straints computed by a program for a goal, more precisely we consider data sufficient
answers and qualified answers. Since these are the two typical CHR observables for
most CHR reference semantics, assuming their preservation is rather natural. Secondly
we require that both the source CHR language and the target CHR-s share the same
constraint theory defining built-in constraints. This is also a natural assumption, as
CHR programs are usually written to define a new (user-defined) predicate in terms
of the existing built-in constraints. Finally we assume that the translation of a goal is
compositional w.r.t. conjunction of goals, that is, we assume that JA,BKg = JAKg , JBKg

for any conjunctive goal A,B, where J Kg denotes the translation of a goal. We believe
this notion of compositionality to be reasonable as well, since essentially it means that
the translated program is not specifically designed for a single goal. It is worth noticing
that we do not impose any restriction on the translation of the program rules.

From this main separation result follows that CHR cannot be encoded in (constraint)
logic programs nor in pure Prolog. This does not conflict with the fact that there exist
many CHR to Prolog compilers: it simply means that these compilers do not satisfy our
assumptions (typically, they do not translate goals in a compositional way).

The remainder of the paper is organized as follows. Section 2 introduces the lan-
guages under consideration. We then provide the encoding of Minsky machines in
CHR-s and discuss the Turing completeness of this language in Section 3. Section 4
contains the main separation results while Section 5 concludes by discussing some re-
lated works.

2 Preliminaries

In this section we give an overview of CHR syntax and operational semantics following
[9]. We first need to distinguish the constraints handled by an existing solver, called
built-in (or predefined) constraints, from those defined by the CHR program, called
user-defined (or CHR) constraints. Therefore we assume that the signature contains
two disjoint sets of predicate symbols for built-in and CHR constraints. A built-in cons-
traint c is defined by: c ::= a | c∧ c | ∃xc where a is an atomic built-in constraint (an

3 The original terminology of these papers was “language embedding”.



atomic constraint is a first-order atomic formula). For built-in constraints we assume
given a (first order) theory CT which describes their meaning. A user-defined constra-
int is a conjunction of atomic user-defined constraints. We use c, d to denote built-in
constraints, h, k to denote CHR constraints and a, b, f, g to denote both built-in and
user-defined constraints (we will call these generally constraints). The capital versions
of these notations will be used to denote multisets of constraints. We also denote by
false any inconsistent conjunction of constraints and with true the empty multiset
of built-in constraints. We will use “,” rather than ∧ to denote conjunction and we will
often consider a conjunction of atomic constraints as a multiset of atomic constraints4.
In particular, we will use this notation based on multisets in the syntax of CHR. The
notation ∃V φ, where V is a set of variables, denotes the existential closure of a formula
φ w.r.t. the variables in V , while the notation ∃−V φ denotes the existential closure of a
formula φ with the exception of the variables in V which remain unquantified. Fv(φ)
denotes the free variables appearing in φ. Moreover, if t̄ = t1, . . . tm and t̄′ = t′1, . . . t

′
m

are sequences of terms then the notation p(t̄) = p′(t̄′) represents the set of equalities
t1 = t′1, . . . , tm = t′m if p = p′, and it is undefined otherwise. This notation is extended
in the obvious way to sequences of constraints.

A CHR program is defined as a sequence of two kinds of rules: simplification and
propagation5. Intuitively, simplification rewrites constraints into simpler ones, while
propagation adds new constraints which are logically redundant but may trigger further
simplifications.

Definition 1. A CHR simplification rule has the form: r @ H ⇔ C | B
while a CHR propagation rule has the form: r @ H ⇒ C | B,
where r is a unique identifier of a rule, H (the head) is a (non-empty) multiset of user-
defined constraints, C (the guard) is a possibly empty multiset of built-in constraints
and B is a possibly empty multiset of (built-in and user-defined) constraints.

A CHR program is a finite set of CHR simplification and propagation rules.

In the following when the guard is true we omit true | . Also the names of rules
are omitted when not needed. A CHR goal is a multiset of (both user-defined and built-
in) constraints. An example of CHR Program is shown in Figure 3.

We describe now the operational semantics of CHR by slightly modifying the tran-
sition system defined in [9]. We use a transition system T = (Conf ,−→) where con-
figurations in Conf are triples of the form 〈G,K, d〉, where G are the constraints that
remain to be solved, K are the user-defined constraints that have been accumulated and
d are the built-in constraints that have been simplified.

An initial configuration has the form 〈G, ∅, ∅〉 while a final configuration has either
the form 〈G,K, false〉 when it is failed, or the form 〈∅,K, d〉 when it is successfully
terminated because there are no applicable rules. Given a program P , the transition rela-
tion−→⊆ Conf ×Conf is the least relation satisfying the rules in Table 1 (for the sake
of simplicity, we omit indexing the relation with the name of the program). The Solve

4 We prefer to use multisets rather than sequences (as in the original CHR papers) because our
results do not depend on the order of atoms in the rules.

5 Some papers consider also simpagation rules. Since these are abbreviations for propagation
and simplification rules we do not need to introduce them.



Solve CT |= c ∧ d↔ d′ and c is a built-in constraint
〈(c, G), K, d〉 −→ 〈G, K, d′〉

Introduce h is a user-defined constraint
〈(h, G), K, d〉 −→ 〈G, (h, K), d〉

Simplify H ⇔ C | B ∈ P x = Fv(H) CT |= d→ ∃x((H = H ′) ∧ C)
〈G, H ′ ∧K, d〉 −→ 〈B ∧G, K, H = H ′ ∧ d〉

Propagate H ⇒ C | B ∈ P x = Fv(H) CT |= d→ ∃x((H = H ′) ∧ C)
〈G, H ′ ∧K, d〉 −→ 〈B ∧G, H ′ ∧K, H = H ′ ∧ d〉

Table 1. The standard transition system for CHR

transition allows to update the constraint store by taking into account a built-in cons-
traint contained in the goal. The Introduce transition is used to move a user-defined
constraint from the goal to the CHR constraint store, where it can be handled by apply-
ing CHR rules. The transitions Simplify and Propagate allow to rewrite user-defined
constraints (which are in the CHR constraint store) by using rules from the program.
As usual, in order to avoid variable name clashes, both these transitions assume that all
variables appearing in a program clause are fresh ones. Both the Simplify and Propa-
gate transitions are applicable when the current store (d) is strong enough to entail the
guard of the rule (C), once the parameter passing has been performed (this is expressed
by the equation H = H ′). Note that, due to the existential quantification over the vari-
ables x appearing in H , in such a parameter passing the information flow is from the
actual parameters (in H ′) to the formal parameters (in H), that is, it is required that the
constraints H ′ which have to be rewritten are an instance of the head H6. The differ-
ence between Simplify and Propagate lies in the fact that while the former transition
removes the constraints H ′ which have been rewritten from the CHR constraint store,
this is not the case for the latter.

Given a goal G, the operational semantics that we consider observes the final stores
of computations terminating with an empty goal and an empty user-defined constraint.
Following the terminology of [9], we call such observables data sufficient answers.

Definition 2. [Data sufficient answers [9]] Let P be a program and let G be a goal.
The set SAP (G) of data sufficient answers for the query G in the program P is defined
as: SAP (G) = {∃−Fv(G)d | 〈G, ∅, ∅〉 −→∗ 〈∅, ∅, d〉 6−→}.

We also consider the following different notion of answer, obtained by computations
terminating with a user-defined constraint which does not need to be empty.

Definition 3. [Qualified answers [9]] Let P be a program and let G be a goal. The
set QAP (G) of qualified answers for the query G in the program P is defined as:
QAP (G) = {∃−Fv(G)(K ∧ d) | 〈G, ∅, ∅〉 −→∗ 〈∅,K, d〉 6−→}.

Both previous notions of observables characterize an input/output behavior, since
the input constraint is implicitly considered in the goal. Clearly in general SAP (G) ⊆

6 This means that the equations H = H ′ express pattern matching rather than unification.



QAP (G) holds, since data sufficient answers can be obtained by setting K = ∅ in
Definition 3.

Note that in presence of propagation rules, the abstract (naive) operational semantics
that we consider here introduces redundant infinite computations (because propagation
rules do not remove user defined constraints). It is possible to define different opera-
tional semantics (see [1] and [6]) which avoids these infinite computations by allowing
to apply at most once a propagation rule to the same constraints. The results presented
in this paper hold also in case these more refined semantics are considered, essentially
because the number of applications of propagations rules does not matter. We refer here
to the naive operational semantics because it is much simpler than those in [1] and [6].

3 Turing completeness of CHR-s

In this section we discuss the Turing completeness of CHR-s by taking into account
also the underlying constraint theory.

In order to show the Turing completeness of a language we encode Minsky ma-
chines [12] into it, hence we recall some basic notions on this Turing equivalent for-
malism. A Minsky machine M(v0, v1) is a two-counter machine which consists of two
registers r1 and r2 holding arbitrary large natural numbers and initialized with the val-
ues v0 and v1, and a program, i.e. a finite sequence of numbered instructions which
modify the two registers. There are three types of instructions:

– Succ(Ri): adds 1 to the content of register Ri and goes to the next instruction;
– DecJump(Ri, l): if the content of the register Ri is not zero, then decreases it by

1 and goes to the next instruction, otherwise jumps to instruction l;
– Halt: stops computation and returns the value in register R1.

An internal state of the machine is given by a tuple (pi, r1, r2) where the program
counter pi indicates the next instruction and r1, r2 are the current contents of the two
registers. Given a program its computation proceeds by executing the instructions as in-
dicated by the program counter. The execution stops when the program counter reaches
the Halt instruction.

We first show that CHR-s is Turing powerful, provided that the constraint theory
allows the built-in = (interpreted as pattern matching) and that the underlying signature
contains at least a function symbol (of arity one) and a constant symbol. This result is
obtained by providing an encoding J K : Machines → CHR of a Minsky machine
M(v0, v1) in CHR as shown in Figure 1: Every rule takes as input the program counter
and the two registers and updates the state according to the instruction in the obvious
way. The variable X is used for outputting the result at the end. Note that, due to the
pattern matching mechanism, a generic goal i(pi, s, t,X) can fire at most one of the
two rules encoding the DecJump instruction (in fact, if s is a free variable no rule in
the encoding of DecJump(r1, pl) is fired). Without loss of generality we can assume
that the counters are initialized with 0, hence the encoding of a machine M with n
instructions has the form: JM(0, 0)K := {JInstruction1K, . . . , JInstructionnK} (note
that the initial values of the register are not considered in the encoding of the machine:
they will be used in the initial goal, as shown below). The following theorem states the
correctness of the encoding. The proof is immediate.



Jpi : HaltK := i(pi, R1, R2, X)⇔ X = R1

Jpi : Succ(r1)K := i(pi, R1, R2, X)⇔ i(pi+1, succ(R1), R2, X)

Jpi : Succ(r2)K := i(pi, R1, R2, X)⇔ i(pi+1, R1, succ(R2), X)

Jpi : DecJump(r1, pl)K := i(pi, 0, R2, X)⇔ i(pl, 0, R2, X)

i(pi, succ(R1), R2, X)⇔ i(pi+1, R1, R2, X)

Jpi : DecJump(r2, pl)K := i(pi, R1, 0, X)⇔ i(pl, R1, 0, X)

i(pi, R1, succ(R2), X)⇔ i(pi+1, R1, R2, X)

Fig. 1. Minsky machine encoding in CHR-s

Theorem 1. A Minsky machine M(0, 0) halts with output k if and only if the goal
i(1, 0, 0, X) in the program JM(0, 0)K has a data sufficient answer X = k.

It is worth noting that the presence of a function symbol (succ() in our case) is cru-
cial in order to encode natural numbers and therefore to obtain the above result. Indeed,
as we prove below, when considering a signature containing only a finite number of
constant symbols the language CHR-s, differently from the case of CHR, is not Tur-
ing powerful. To be more precise, assume that CT defines only the = symbol (to be
interpreted as pattern matching, as in the previous case) and assume that such a theory
is defined over a signature containing finitely many constant symbols and no function
symbol (of arity > 0). Let us call CT∅ the resulting theory.

When considering CT∅, CHR-s is computationally equivalent w.r.t. termination to
place/transition nets [14], a formalism where termination is known to be decidable.
Hence we have the following result.

Theorem 2. CHR-s on CT∅ is not Turing complete.

On the other hand, CHR (with multiple heads) is still Turing powerful also when
considering the theory CT∅. Indeed, as we show in Figure 2, we can encode Min-
sky machines into CHR (defined on CT∅)7. The basic idea here is that to encode the
values of the registers we use chains (conjunctions) of atomic formulas of the form
s(R1, SuccR1), s(SuccR1, SuccR

′
1) . . . (recall that R1, SuccR1, SuccR′1 are vari-

ables and we have countably many variables; moreover recall that the CHR computa-
tion mechanism avoid variables capture by using fresh names for variables each time a
rule is used). It is also worth noting that for the correctness of the encoding it is essential
that pattern matching rather than unification is used when applying rules (this ensures
that in the case of the decrement only one of the two instructions can match the goal
and therefore can be used). The correctness of the encoding is stated by the following
theorem whose proof is immediate.

Theorem 3. A Minsky machine M(0, 0) halts with output k > 0 (or k = 0) if and
only if the goal zero(R1) ∧ zero(R2) ∧ i(1, R1, R2, X) in the program JM(0, 0)K2
produces a qualified answer ∃−X,R1(X = R1 ∧ s(R1, SuccR

1
1)

∧
i=1...k−1(SuccRi

1,

SuccRi+1
1 )) (or ∃−X,R1(x = R1 ∧ zero(R1))).

7 We thank an anonymous reviewer for having suggested this encoding.



Jpi : HaltK2 := i(pi, R1, R2, X)⇔ X = R1

Jpi : Succ(r1)K2 := i(pi, R1, R2, X)⇔ s(R1, SuccR1), i(pi+1, SuccR1, R2, X)

Jpi : Succ(r2)K2 := i(pi, R1, R2, X)⇔ s(R2, SuccR2), i(pi+1, R1, SuccR2, X)

Jpi : DecJump(r1, pl)K2 := i(pi, R1, R2, X), s(PreR1, R1)⇔ i(pi+1, P reR1, R2, X)

zero(R1), i(pi, R1, R2, X)⇔ i(pl, R1, R2, X), zero(R1)

Jpi : DecJump(r2, pl)K2 := i(pi, R1, R2, X), s(PreR2, R2)⇔ i(pi+1, R1, P reR2, X)

zero(R2), i(pi, R1, R2, X)⇔ i(pl, R1, R2, X), zero(R2)

Fig. 2. Minsky machine encoding in CHR on CT∅

Previous theorems state a separation result between CHR and CHR-s, however this
is rather weak since the real implementations of CHR usually consider a non-trivial
constraint theory which includes function symbols. Therefore we are interested in prov-
ing finer separation results which hold for Turing powerful languages. This is the con-
tent of the following section.

4 Separating CHR and CHR-s

In this section we consider a generic non-trivial constraint theory CT. We have seen that
in this case both CHR and CHR-s are Turing powerful, which means that in principle
one can always encode CHR into CHR-s. The question is how difficult and how accept-
able such an encoding is and this question can have important practical consequences:
for example, a distributed algorithm can be implemented in one language in a reason-
ably simple way and cannot be implemented in another (Turing powerful) language,
unless one introduces rather complicated data structures or loses some compositional-
ity properties (see [18]).

We prove now that, when considering acceptable encodings and generic goals whose
components can share variables, CHR cannot be embedded into CHR-s while preserv-
ing data sufficient answers. As a corollary we obtain that also qualified answers cannot
be preserved.

First we have to formally define what an acceptable encoding is. We define a pro-
gram encoding as any function J K : PCHR → PCHR−s which translates a CHR
program into a (finite) CHR-s program (PCHR and PCHR−s denote the set of CHR
and CHR-s programs, respectively). To simplify the treatment we assume that both the
source language CHR and the target language CHR-s use the same built-in constraints
semantically described by a theory CT (actually this assumption could be relaxed). Note
that we do not impose any other restriction on the program translation (which, in par-
ticular, could also be non compositional). Next we have to define how the initial goal
of the source program has to be translated into the target language. Here we require
that the translation is compositional w.r.t. the conjunction of atoms, as mentioned in the
introduction. Moreover since both CHR and CHR-s share the same CT we assume that
the built-ins present in the goal are left unchanged. These assumptions essentially mean
that our encoding respects the structure of the original goal and does not introduce new
relations among the variables which appear in the goal. Finally, as mentioned before,



we are interested in preserving data sufficient and qualified answers. Hence we have
the following definition where we denote by GCHR and GCHR−s the class of CHR and
CHR-s goals, respectively (we differentiate these two classes because, for example, a
CHR-s goal could use some user defined predicates which are not allowed in the goals
of the original program8). Note that the following definition is parametric w.r.t. a class
G of goals: clearly considering different classes of goals could affect our encodability
results. Such a parameter will be instantiated when the notion of acceptable encoding
will be used.

Definition 4 (Acceptable encoding). Let G be a class of CHR goals. An accepta-
ble encoding (of CHR into CHR-s, for the class of goals G) is a pair of mappings
J K : PCHR → PCHR−s and J Kg : GCHR → GCHR−s which satisfy the following
conditions:

– PCHR and PCHR−s share the same CT;
– for any goal (A,B) ∈ GCHR, JA,BKg = JAKg , JBKg holds. We also assume that

the built-ins present in the goal are left unchanged;
– Data sufficient (qualified) answers are preserved for the class of goals G, that is,

for all G ∈ G ⊆ GCHR, SAP (G) = SAJP K(JGKg) (QAP (G) = QAJP K(JGKg))
holds.

Note that, since we consider goals as multisets, with the second condition here we
are not requiring that the order of atoms in the goals is preserved by the translation:
We are only requiring that the translation of A,B is the conjunction of the translation
of A and of B. Weakening this condition by requiring that the translation of A,B is
some form of composition of the translation of A and of B does not seem reasonable,
as conjunction is the only form for goal composition available in these languages.

In order to prove our separation result we need the following lemma which states
a key property of CHR-s computations. Essentially it says that if the conjunctive G,H
with input constraint c produces a data sufficient answer d, then when considering one
component, sayG, with the input constraint dwe obtain the same data sufficient answer.
Moreover the same answer can be obtained, either for G or for H , also starting with an
input constraint c′ weaker than d.

Lemma 1. Let P be a CHR-s program and let (c,G,H) be a goal, where c is a built-in
constraint, G and H are multisets of CHR constraints and V = Fv(c,G,H). Assume
that (c,G,H) in P has the data sufficient answer d. Then the following holds:

– Both the goals (d,G) and (d,H) have the same data sufficient answer d.
– If CT |= c 6→ d then there exists a built-in constraint c′ such that Fv(c′) ⊆ V ,
CT |= c′ 6→ d and either (c′, G) or (c′, H) has the data sufficient answer d.

Proof. The proof of the first statement is straightforward (since we consider single
headed programs). In fact, since the goal (c,G,H) has the data sufficient answer d
in P , the goal (d,G) can either answer d or can produce a configuration where the user

8 This means that in principle the signatures of (language of) the original and the translated
program are different.



defined constraints are waiting for some guards to be satisfied in order to apply a rule
r, but since the goal contains all the built-in constraints in the answer all the guards are
satisfied letting the program to answer d.

We prove the second statement. Let δ = 〈(c,G,H), ∅, ∅〉 −→∗ 〈∅, ∅, d′〉 6−→ be the
derivation producing the data sufficient answer d = ∃−V d

′ for the goal (c,G,H).
By definition of derivation and since by hypothesis CT |= c 6→ d, δ must be

of the form 〈(c,G,H), ∅, ∅〉 −→∗ 〈(c1, G1), S1, d1〉 −→ 〈(c2, G2), S2, d2〉 −→∗
〈∅, ∅, d′〉 9, where for i ∈ [1, 2], ci and di are built-in constraints such that CT |=
c1 ∧ d1 6→ d and CT |= c2 ∧ d2 → d. We choose c′ = ∃−V (c1 ∧ d1). By definition
of derivation and since P is a CHR-s program, the transition 〈(c1, G1), S1, d1〉 −→
〈(c2, G2), S2, d2〉 must be a rule application of a single headed rule r, which must
match with a constraint k that was derived (in the obvious sense) by either G or H .
Without loss of generality, we can assume that k was derived from G. By construction
c′ suffices to satisfy the guards needed to reproduce k, which can then fire the rule r,
after which all the rules needed to let the constraints of G disappear can fire. Therefore
we have that 〈(c′, G), ∅, ∅〉 −→∗ 〈∅, ∅, d′′〉 9, where CT |= ∃−V d

′′ ↔ ∃−V d
′(↔ d)

and then the thesis. ut

Note that Lemma 1 is not true anymore if we consider (multiple headed) CHR
programs. Indeed if we consider the program P consisting of the single rule rule@H,
H ⇔ true | c then goal (H,H) has the data sufficient answer c in P , but for each
constraint c′ the goal (H, c′) has no data sufficient answer in P . With the help of the
previous lemma we can now prove our main separation result. The idea of the proof is
that any possible encoding of the rule r @ H,G ⇔ true | c into CHR-s would either
produce more answers for the goalH (orG), or would not be able to provide the answer
c for the goal H,G.

Theorem 4. Let G be a class of goals such that if H is an head of a rule then H ∈
G. When considering data sufficient or qualified answers, there exists no acceptable
encoding of CHR in CHR-s for the class G.

Proof. We first consider data sufficient answers. The proof is by contradiction. Consider
the program P consisting of the single rule

r @ H,G⇔ true | c

and assume that JP K is the translation of P in CHR-s. Assume also that c (restricted to
the variables in H,G) is not the weakest constraint, i.e. assume that there exist d such
that CT |= d 6→ ∃−V c where V = Fv(H,G). Note that this assumption does not
imply any loss of generality, as we consider non trivial constraint systems containing at
least two different constraints.

Since the goal (H,G) has the data sufficient answer ∃−V c in the program P and
since the encoding preserves data sufficient answers the goal J(H,G)Kg has the data
sufficient answer ∃−V c also in the program JP K. From the compositionality of the
translation of goals and the previous Lemma 1 it follows that there exists a constra-
int c′ such that Fv(c′) ⊆ V , CT |= c′ 6→ ∃−V c and either the goal J(c′, H)Kg, or the
goal J(c′, G)Kg has the data sufficient answer c in the encoded program JP K. However



reflexivity @ Lessequal(X, Y )⇔ X = Y | true
antisymmetry @ Lessequal(X, Y ), Lessequal(Y, X)⇔ X = Y

transitivity @ Lessequal(X, Y ), Lessequal(Y, Z)⇒ Lessequal(X, Z)

Fig. 3. A program for defining ≤ in CHR

neither (c′, H) nor (c′, G) has any data sufficient answer in the original program P .
This contradicts the fact that JP K is an acceptable encoding for P , thus concluding the
proof for data sufficient answers. The thesis for qualified answers follows immediately
from the previous part, as qualified answers contain the set of data sufficient answers.

ut

The hypothesis made on the class of goals G is rather weak, as typically heads
of rules have to be used as goals. As an example of the application of the previous
theorem consider the program (from [9]) contained in Figure 3 which allows one to
define the user-defined constraint Lessequal (to be interpreted as ≤) in terms of the
only built-in constraint = (to be interpreted as syntactic equality). For example, given
the goal {Lessequal(A,B), Lessequal(B,C), Lessequal(C,A)} after a few compu-
tational steps the program will answer A = B,B = C,C = A. Now for obtaining this
behaviour it is essential to use multiple heads, as already claimed in [9] and formally
proved by previous theorem. In fact, following the lines of the proof of Theorem 4, one
can show that if a single headed program P ′ is any translation of the program in Figure
3 which produces the correct answer for the goals above, then there exists a subgoal
which has an answer in P ′ but not in the original program.

4.1 A note on logic programs and Prolog

(Constraint) Logic programming and Prolog are programming languages quite different
from CHR, mainly because they are sequential ones, without any guard mechanism and
commit operator. Nevertheless, since many CHR implementations are built on top of
a Prolog system, by using a compiler which translates CHR programs to Prolog, it is
meaningful to compare these sequential languages with CHR.

Note that here, following the general terminology (see for example [2]), a (constra-
int) logic program is a set of (definite) clauses, to be interpreted operationally in terms
of SLD-resolution, thus using a non deterministic computational model. Real logic pro-
gramming systems eliminate such a non determinism by choosing a specific selection
rule (for selecting the atom in the goals to be evaluated) and a specific rule for searching
the SLD-tree. Following [2] we call pure Prolog a logic programming language which
uses the leftmost selection rule and the depth-first search (this corresponds to consider
clauses top-down, according to the textual ordering in the program). Implemented Pro-
log systems are extensions of pure Prolog obtained by considering specific built-ins
for arithmetic, control etc. Some of these built-ins have a non logical nature, which
complicates their semantics.

All our technical lemmata about CHR-s can be stated also for (constraint) logic
programming and pure Prolog (the proofs are similar, modulo some minor adjustments).



Hence our separation results hold also when considering these languages rather than
CHR-s. These can be summarized as follows.

Corollary 1. Let G be a class of goals such that if H is an head of a rule then H ∈ G.
When considering data sufficient answers or qualified answers there exists no accept-
able encoding of CHR in constraint logic programming nor in pure Prolog for the class
G.

As mentioned in the introduction, previous result does not conflict with the fact that
there exist many CHR to Prolog compilers: it simply means that, when considering pure
Prolog, these compilers do not satisfy our assumptions (typically, they do not translate
goals in a compositional way). Moreover real Prolog systems use several non logical
built-in’s, which are out of the scope of previous results.

5 Conclusions and Related works

In this paper we have studied the expressiveness of CHR. We have proved that multiple
heads augment the expressive power of the language, indeed we have shown that CHR
cannot be encoded in CHR with single heads under quite reasonable assumptions. These
results are then shown to hold also for (constraint) logic programming and pure Prolog.

There exists a very large literature on the expressiveness of concurrent languages,
however there are only few papers which consider the expressive power of CHR: A
recent study is [16], where the authors show that it is possible to implement any algo-
rithm in CHR in an efficient way, i.e. with the best known time and space complexity.
This result is obtained by introducing a new model of computation, called the CHR
machine, and comparing it with the well-known Turing machine and RAM machine
models. Earlier works by Frühwirth [8,10] studied the time complexity of simplifica-
tion rules for naive implementations of CHR. In this approach an upper bound on the
derivation length, combined with a worst-case estimate of (the number and cost of) rule
application attempts, allows to obtain an upper bound of the time complexity. The aim
of all these works is clearly completely different from ours, even though it would be
interesting to compare CHR and CHR-s in terms of complexity.

When moving to other languages, somehow related to our paper is the work by Za-
vattaro [19] where the coordination languages Gamma [3] and Linda [11] are compared
in terms of expressive power. Since Gamma allows multiset rewriting it reminds CHR
multiple head rules, however the results of [19] are rather different from ours, since a
process algebraic view of Gamma and Linda is considered where the actions of proc-
esses are atomic and do not contain variables. On the other hand, our results depend
directly on the presence of logic variables in the CHR model of computation. Relevant
for our approach is also [4] which introduces the original approach to language com-
parison based on encoding, even though in this paper rather different languages with
different properties are considered.

We are extending this work along several lines. First in [5] we have considered
weaker notion of acceptable encoding obtaining results similar to those of theorem
4. Moreover, in the same paper we have considered the different expressive power of



CHRn, the language with at most n atoms in the heads, and CHRn+1. Preliminary re-
sults show that CHRn+1 is strictly more expressive than CHRn. We intend to extend
these results by using the techniques described in [13,18] for showing that (under some
reasonable hypothesis) some typical distributed problems can be solved in CHRn+1

and not in CHRn. We also plan to investigate what happens when considering transla-
tion of CHR into real Prolog systems (with non logical built-ins). Some of the properties
that we used in our technical lemma in this case do not hold anymore, however we be-
lieve that also in this case we can establish separation results similar to those shown in
section 4.1.
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