

The Internet of Things: Sensor Data Management

Course website: http://site.unibo.it/iot

Prof. Luciano Bononi

luciano.bononi@unibo.it

Prof. Marco Di Felice

marco.difelice3@unibo.it

MASTER DEGREE IN COMPUTER SCIENCE DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, UNIVERSITY OF BOLOGNA, ITALY

The word **big-data** is currently used to identify: (*i*) **datasources** with specific characteristics, as well as (*ii*) **novel technologies** to manage the data.

CHARACTERISTICS OF BIG-DATA

Cannot be managed using conventional technologies of information systems

- $\Box \quad Volume \rightarrow order of Petabytes$
- $\Box \quad \text{Velocity} \rightarrow \text{data produced at high rate}$
- □ Variety \rightarrow heterogeneous data (text, image, video, etc)
- \Box Value \rightarrow valuable information can be extracted

♦ IoT & Big-data are two sides of the same coin!

- □ Large-scale IoT deployments can produce huge amounts of data
- IoT is about data, services, connectivity: data are gathered by objects, transfered, analyzed, and traslated into services

♦ IoT & Big-data are two sides of the same coin!

♦ IoT & Big-data are two sides of the same coin!

\diamond Time-series \rightarrow Sequence of timestamp plus values

♦ Time-series → Sequence of timestamp plus values

- Data are **immutable**.
- **Writing in append**.
- □ Reading **contiguous sequence** of samples data.
- □ Highly **compressible data**.
- **Deleting** usually across large time period
- □ **High precision** for short period of time.
- □ Single value is not **so important**

- Relational Database Management Systems (RDBMS)
 - Based on the relational model first proposed by Edgar F. Codd (1970)
 - Employ SQL language
 - □ Support ACID properties
 - **Scheme-based** (structured) database.
 - Components: Tables (relations), primary keys, foreign keys, NULL values.

\diamond Time-series implemented on RDMBS

PROBLEMS

- Scalability (i.e. need to store large amount of time-series data)
- Performance (e.g. support for rangebased operations)
- ♦ Aymmetric CRUD operations

NOSQL Database Management Systems

- Set of tools and logic models, alternative or complementary to RDBMS (noREL).
- □ Support **BASE** properties.
- Do not employ the SQL language.
- **Scheme-less** (un/semi-structured) database.
- Families: Key-values DB, Document-based DB, Column-based DB, Graph-based DB.

\diamond Time-series Database

RANK	DPMQ	SCORE			
APR. 2018	DDIVIS	APR. 2018	APR. 2016		
1	InfluxDB	10.76	+6.84		
2	Kdb+	3.08	+1.87		
3	RRDtool	2.75	+0.22		
4	Graphite	2.19	+0.63		
5	OpenTSDB	1.70	+0.29		
6	Druid	1.06	+0.83		
7	Prometheus	1.06	+0.91		
8	KairosDB	0.43	+0.24		
9	eXtremeDB	0.33	+0.13		
10	Riak TS	0.27	+0.25		
Source: DB-Engines		23 Systems in Ranking, April 2018			

IOT SENSOR DATA MANAGEMENT L. BONONI, M. DI FELICE, DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, UNIVERSITY OF BOLOGNA, ITALY

- ♦ Time-series Database → Dedicated DBMS optimized for managing large volumes of time-series data
 - Optimized data storage and sharding
 - **Operational support** (e.g. range-based queries)
 - **Time-granularity** management
 - Time-series analytics and mining

- Open-source time-series database (InfluxData)
- □ Written in **GO** language
- □ SQL-like query language (InfluxQL) (<1.8)
- □ JS-like query language (Flux) (>=1.8)
- GUI, Command Line Interface (CLI) and HTTP APIs
- Support for distributed deployments
- Integration with time-series tools for data acquisition, analytics and visualization (e.g. Telegraf, Grafana)

influxdb

IoT Sensor Data Management

- □ Time-Structured Merge Tree (TSM) → data structure used to contain sorted, compressed series data.
- □ Time Series Index (TSI) → address millions of unique time series, regardless of the amount of memory on the server hardware.
- □ Automatic downsampling and data rentention procedures.

- □ Timestamp → RFC3339 UTC format (yyyy-mm-ddThh:mm:ssZ)
- \Box Field keys \rightarrow string metadata, similar to column name
- \Box Field values \rightarrow actual measured data
- □ Tag-sets → optimal, extra-information about the measurements □ Tag keys → string meta-data, similar to field keys □ Tag values → string values
 - \Box Tag values \rightarrow string values
- □ Measurement → Container to hold the timestamps, fields and tags (similar to a table in a RDBMS)

- \Box Buckets \rightarrow collection of data-points, containing:
 - ♦ Measurement
 - \diamond Tag-sets
 - ♦ Retention policy → period that datapoints are being stored in InfluxDB, which is called DURATION but also the number of versions that should be kept on the cluster, as REPLICATION.

series	retention	measurement	tag set			
number	policy					
			· · · · · · · · · · · · · · · · · · ·			
series 1	default	census	location =	= 1, scientist	= smith	
series 2	default	census	location =	= 2, scientist	= smith	
series 3	default	census	location =	= 1, scientist	= jones	
series 4	default	census	location =	= 2, scientist	= jones	
		name: census				
		time	butterflies	honeybees	location	scientist
		2015-08-18T00:00:00Z	1	30	1	jones

InfluxDB (https://www.influxdata.com)

Command-Line Interface (CLI)

user@mypc:\$influx
Connected to http://localhost:8086 version 1.5.2
InfluxDB shell version: 1.5.2

HTTP-based API

curl -i -XPOST http://localhost:8086/query --data-urlencode "q=CREATE
DATABASE mydb"
curl -i -XPOST 'http://localhost:8086/write?db=mydb' --data-binary
'cpu_load_short,host=server01,region=us-west value=0.64 143405556200000000'

InfluxDB (https://www.influxdata.com)

Basic Commands (InfluxQL)

◇ CREATE DATABASE name ◇ USE DATABASE name ◇ SHOW DATABASES ◇ CLEAR DATABASE name ◇ CREATE RETENTION POLICY name ON measurement DURATION 1d REPLICATION 1 ◇ INSERT treasures, captain_id=pirate_king value=2

Source: https://docs.influxdata.com/influxdb/v1.5/query_language/data_exploration/

IoT Sensor Data Management

InfluxDB (https://www.influxdata.com)

□ InfluxQL language for data exploration

SELECT <field_key>[,<field_key>,<tag_key>] FROM <measurement_name>[,<measurement_name>]

SELECT * FROM "h2o_feet"

SELECT_clause **FROM**_clause **WHERE** <conditional_expression> [(AND|OR) <conditional_expression> [...]

SELECT * FROM "h2o_feet" WHERE "water_level" > 8

SELECT_clause FROM_clause [WHERE_clause] GROUP BY [* | <tag_key>[,<tag_key]]
SELECT MEAN("water_level") FROM "h2o_feet" GROUP BY "location"</pre>

- InfluxDB (https://www.influxdata.com)
 - □ FLUX language for data exploration (Influx 2.0)
 - Functional approach to data exploration and processing
 - ✓ Inspired by Javascript language
 - ✓ The pipe-forward operator (>) allow to chain multiple data operations
 - Each data operation manipulates a table and produces a new table as output

InfluxDB (https://www.influxdata.com)

□ FLUX language for data exploration (Influx 2.0)

Query sul bucket «example-bucket», seleziona tutte le timeseries create nell'ultima ora

- InfluxDB (https://www.influxdata.com)
 - □ FLUX language for data exploration (Influx 2.0)

```
from(bucket:"example-bucket")
```

```
> range(start:-1h)
```

```
> r._measurement == «temperature»
```

```
and r.room == «kitchen»
```

Query sul bucket «example-bucket», seleziona tutte le timeseries create nell'ultima ora, relative alla measurement «temperature» e dove il tag «room» è pari a «kitchen»

InfluxDB (https://www.influxdata.com)
FLUX language for data exploration (Influx 2.0)

from(bucket:"example-bucket")

- > range(start:-1h)
- > r._measurement == «temperature»

and r.room == «kitchen»

> aggregateWindow(every: 1m, fn: mean)

Query sul bucket «example-bucket», seleziona tutte le time-series create nell'ultima ora, relative alla measurement «temperature» e dove il tag «room» è pari a «kitchen». Aggrega i dati ogni minuto, calcolando la media

Grafana (https://grafana.com)

InfluxDB (https://www.influxdata.com) FLUX Query in Grafana

from(bucket: «XXX»)
|>range(start: -ZZZh)
|>filter(fn: (r) => r["_measurement"] == »YYY")