

The Internet of Things: Prototyping Boards & Languages

Course website: http://site.unibo.it/iot

Prof. Luciano Bononi

luciano.bononi@unibo.it

Prof. Marco Di Felice

marco.difelice3@unibo.it

Luca Sciullo luca.sciullo@unibo.it

MASTER DEGREE IN COMPUTER SCIENCE

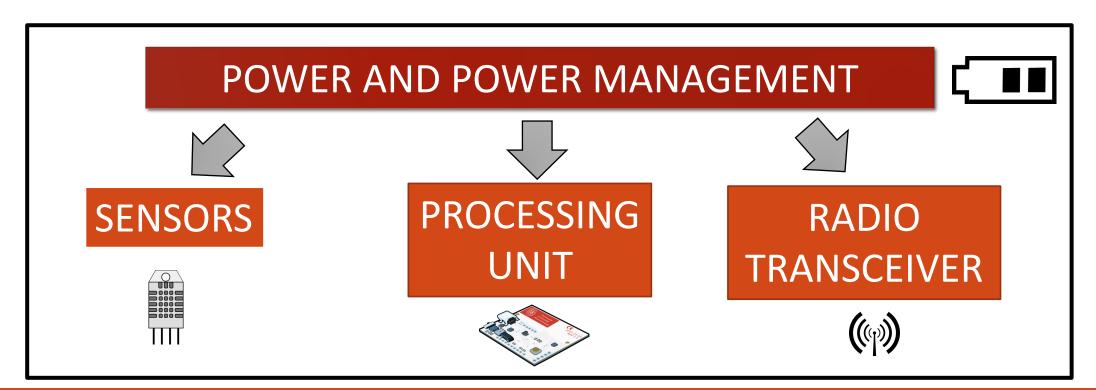
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, UNIVERSITY OF BOLOGNA, ITALY

Smart Things

□ IoT world is made by **smart things**

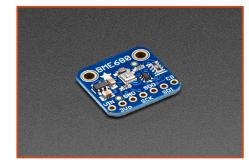
- A smart thing is a physical object digitally augmented with one or more of the following:
 - ♦ (smart) Sensors (temperature, light, motion, and so on)
 - ♦ (smart) Actuators (displays, sound, motors, and so on)
 - ♦ Computation (can run programs and logic)
 - ♦ Communication interfaces (wired or wireless)

Smart Things



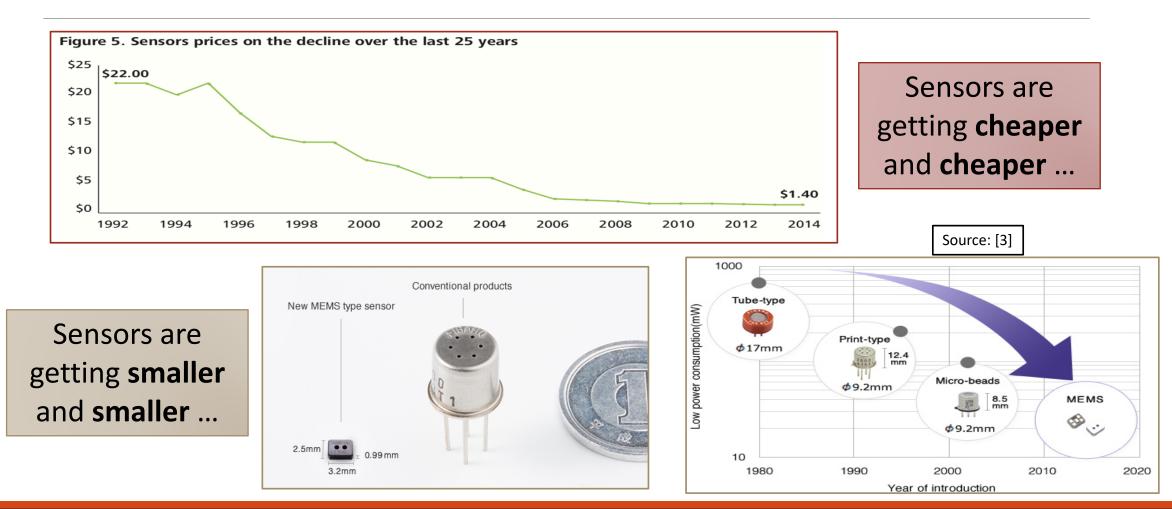
Smart Things

♦ Architecture of a Smart Object

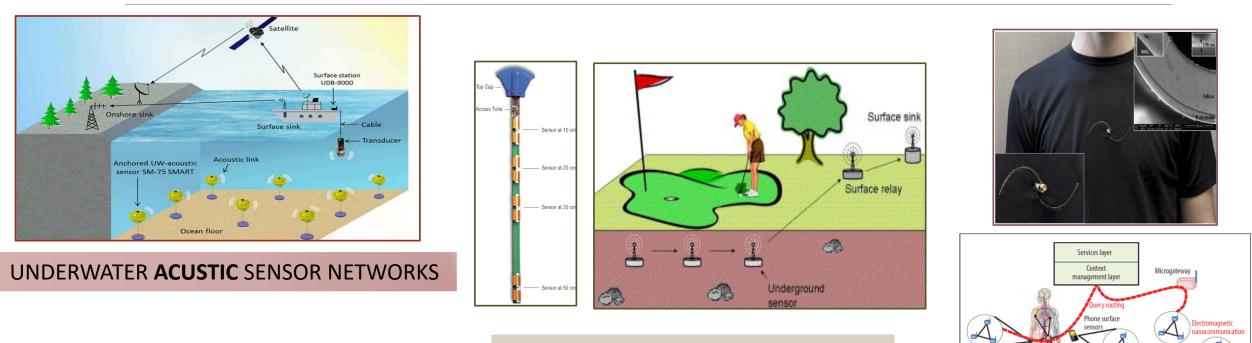

PROTOTYPING BOARDS AND LANGUAGES

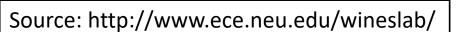
A sensor is a device that is able to detect events or changes in its physical environment.

A smart sensor is a device capable of measuring analog inputs from the physical environment and making them digital by using some built-in resources



https://www.adafruit.com/




PROTOTYPING BOARDS AND LANGUAGES L. BONONI, M. DI FELICE, L. SCIULLO, DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, UNIVERSITY OF BOLOGNA, ITALY

UNDERGROUND SENSOR NETWORKS

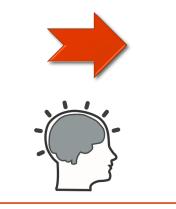
WEARABLE SENSORS + NANOSENSORS

Pathogens

PROTOTYPING BOARDS AND LANGUAGES

L. BONONI, M. DI FELICE, L. SCIULLO, DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, UNIVERSITY OF BOLOGNA, ITALY

Monitorin


♦Btw, current smartphones embed a multitude of sensors that provide context-aware information about users.

- \diamond Iris (motion) sensor
- \diamond Pressure sensor
- \diamond Accelerometer
- \diamond Barometer
- \diamond Gyroscope
- ♦ Geomagnetic sensor
- \diamond Hall sensor
- \diamond HR sensor

♦ ...

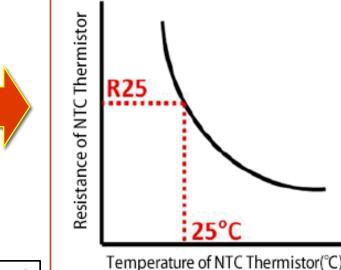
- \diamond Proximity sensor
- \diamond RGB Light sensor

MINING & LEARNING

TECHNIQUES

- \diamond 3D Indoor localization
- \diamond Transportation mode detection
- \diamond Human activity detection
- \diamond Human presence detection
- \diamond Health condition detection
- \diamond Gesture tracking
- ♦ ...

PROTOTYPING BOARDS AND LANGUAGES

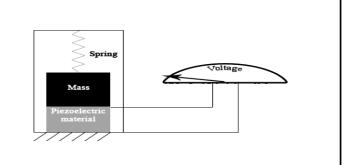


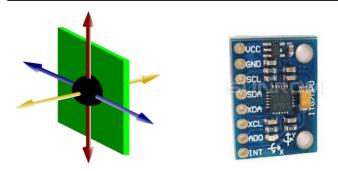
Sensors are mostly kinds of *transducers*, i.e. they convert one form of energy (electrical or not) into another (electrical or not).

EXAMPLE: TEMPERATURE SENSOR

Negative Temperature Coefficient \rightarrow Variable resistor that changes its resistance with change of the temperature: the resistance decreases with increase of the temperature.

Source: https://home.roboticlab.eu/





Sensors are mostly kinds of *transducers*, i.e. they convert one form of energy (electrical or not) into another (electrical or not).

EXAMPLE: ACCELEROMETER SENSOR

- ♦ Accelerometers are electromechanical devices that sense either static or dynamic forces of acceleration.
- Accelerometers can measure acceleration on 1,2 or 3 axes.
- Acceleration is derived by the displacement of an internal spring (Inertial Equation), often measured via capacitive plates.

Smart Actuators

An actuator is a device that converts energy into motion.

A smart actuator is a device capable of turning digital inputs into physical actions.

https://www.adafruit.com/

http://www.utteducation.com

PROTOTYPING BOARDS AND LANGUAGES

Embedded Systems

Integrated Microprocessor-based hardware system + software/firmware that is designed to perform a dedicated function/specific purpose.

Some examples:

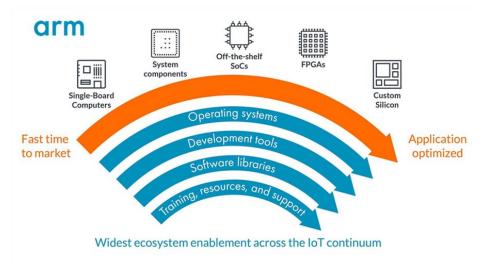
- Industrial systems
- Home appliances
- > Avionics

- Network devices (e.g. Routers, switches)
- Cache machines

Embedded Systems

- □ Embedded systems programming often poses some unique challenges (not so common in general-purpose programming):
 - Real-time vs non-real time systems
 - ✓ Hard-real time vs soft real-time vs firm real-time
 - Constrained resources (CPU, power battery, ...)
 - Limited memory for data loading and data operations
 - Limited memory for storing the program source code
 - Limited multitasking (i.e. thread/process support)

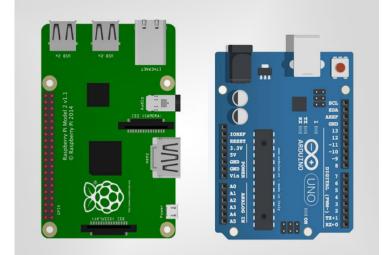
WE WILL PROVIDE EVIDENCES OF THESE CHALLENGES THROUGH A DEMO



IoT Prototyping Boards

Hardware platforms that are most commonly used to build **prototypes** of IoT projects and IoT embedded systems.

- □ Validate the feasibility of a product
- Build a proof-of-concept
- Do-It-yourself (DIY) projects
- Pre-production phase of a new product
 - ✓ Choose hardware components
 - ✓ Deploy and **test** the software



IoT Prototyping Boards

IoT Prototyping boards can be often be classified according to their hardware/software characteristics into **two main families**:

- Microcontroller-based boards
- Single-board computers

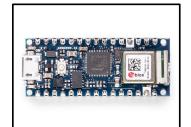
https://mybroadband.co.za

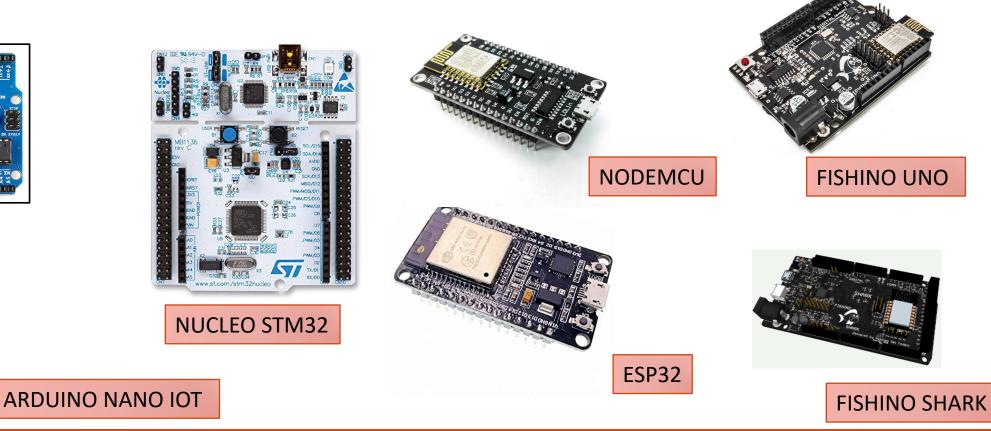
Microcontroller Boards

It is a system on a chip (SoC) that contains processing cores, RAM and EPROM for the storage of custom programs that are executed on the microcontroller. It is a PCB with added circuitry.

- Available on the market since 1975
- Often composed by a single CPU + RAM memory + ROM memory (EPROM, EEPROM, ...)
- □ Limited processing power (clock speed <100 MHz)
- □ 8-bit/16-bit/32-bit architectures
- □ Single program or limited multitasking
- No operating system

PROTOTYPING BOARDS AND LANGUAGES




Microcontroller Boards

Some examples (available in our lab):

PROTOTYPING BOARDS AND LANGUAGES

Microcontroller Boards

IoT Programming Languages for microcontroller-based boards

C/C++ and variants [C tutorial from W3C community <u>LINK</u>]

LUA [Tutorial: LINK]

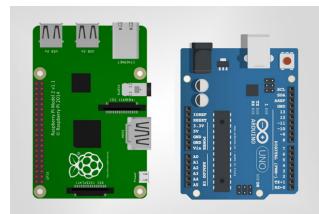
□ Wiring (Arduino, actually a dialect of C/C++) Tutorial: Sistemi Embedded Teoria e Pratica [LINK]

Micropython

Tutorial for different IoT boards [LINK]

□ Javascript libraries [e.g. <u>CYLON.JS</u>, <u>JOHNNY FIVE</u>]

....


PROTOTYPING BOARDS AND LANGUAGES

Single board Computers

- It is a complete computer on a single circuit board, including microprocessor(s), memory, input/output (I/O) and other features required by a functional computer.
- SBC computers typically provide a fan-less, lowpower computing solution and a low profile architecture.

https://mybroadband.co.za

Single board Computers

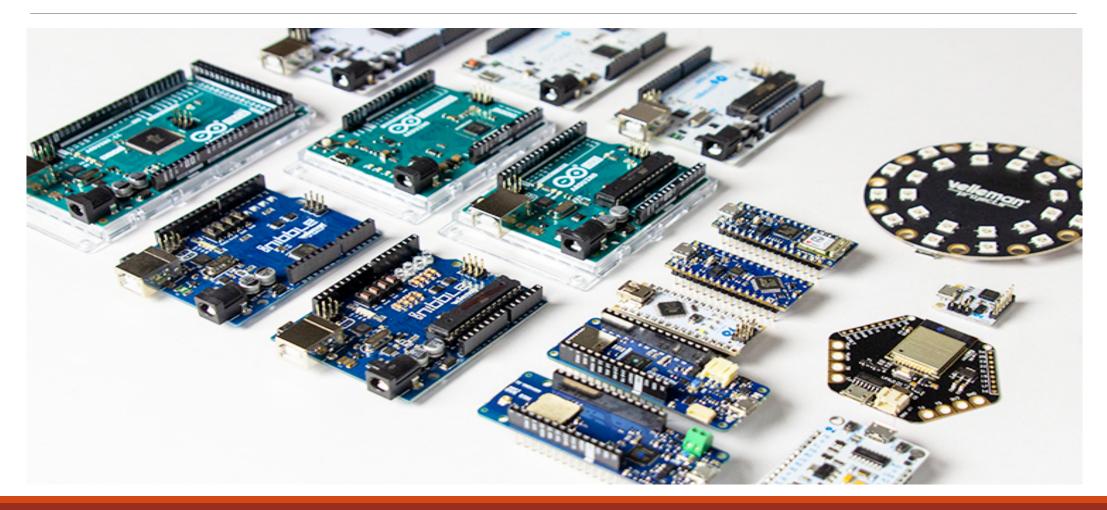
Some examples (available in our lab):

BEAGLEBONE

PROTOTYPING BOARDS AND LANGUAGES L. BONONI, M. DI FELICE, L. SCIULLO, DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, UNIVERSITY OF BOLOGNA, ITALY

EXAMPLE OF MICRO-CONTROLLER BOARD: ARDUINO UNO

PROTOTYPING BOARDS AND LANGUAGES

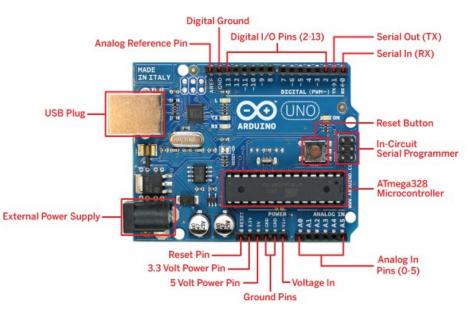

- Project started in 2003 as a program for students at the Interaction Design Institute (Ivrea, Italy).
- □ IDEA: Create simple, low cost instruments also for non-engineers, aimed to work on digital projects.
- Around 700.000 units shipped (in 2013).
- □ Partnership with **ARM Holdings** (2017).

www.arduino.cc

PROTOTYPING BOARDS AND LANGUAGES L. BONONI, M. DI FELICE, L. SCIULLO, DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, UNIVERSITY OF BOLOGNA, ITALY

										۹	SIGN IN
ARDUINO		НОМЕ	BUY	SOFTWARE	PRODUCTS	EDUCATION	RESOURCES	COMMUNITY	HELP		
	Arduino I	Forum									
	Using	J Arduino									
	+	Installation & For problems with Last post: Today at	n Arduino i	tself, NOT your pr				88,276 Posts	20,625 Topics		
	+	Introductory t Tutorials for new Last post: Jan 28, 20	people on		d Ti by larryd			174 Posts	19 Topics		
	+	Project Guidan Advice on general Last post: Today at	approach		. by artistinfla			447,172 Posts	60,817 Topics		
	+	Programming Understanding th Last post: Today at	e language	e, error messages,				613,840 Posts	75,257 Topics		

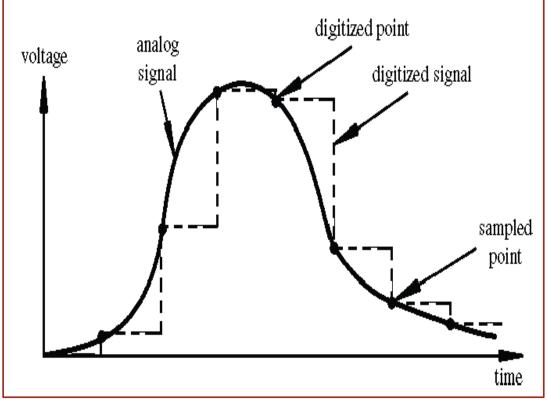
PROTOTYPING BOARDS AND LANGUAGES



□ Single-board microcontroller.

Sets of digital and analog input/output (I/O) pins that can be interfaced to various expansion boards (shields) and other circuits

http://arduinoarts.com/2011/08/the-arduino-uno-anatomy/



Arduino Analog Input

- Resolution: the number of different voltage levels (i.e., states) used to discretize an input signal.
- ♦ Resolution values range from 256 states (8 bits) to 4,294,967,296 states (32 bits).
- \diamond Arduino uses 1024 states (10 bits).
- ♦ Smallest measurable voltage change is 5V/1024 or 4.8 mV
- Aaximum sample rate is 10,000 times a second.

Pulse Width Modulation (PWM)

- Digital pins can only directly supply 3V or 5V, but they can also pulse the output on and off really fast to produce the same effect of a different voltage supply.
- The on-off pulsing is so fast that the connected output device "perceives" the result as a reduction in the voltage.

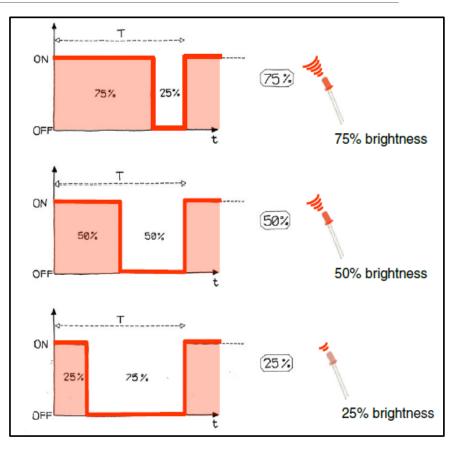
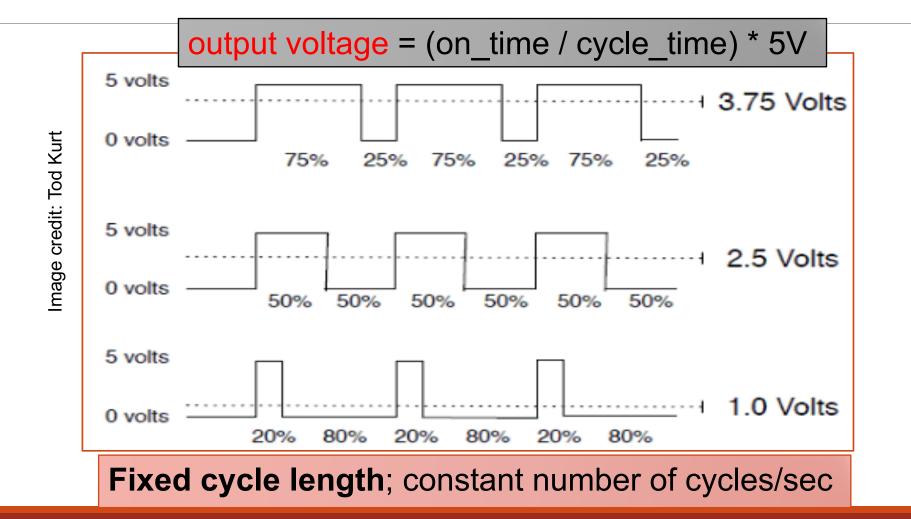
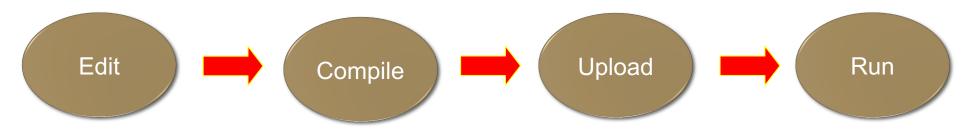



Image from Theory and Practice of Tangible User Interfaces at UC Berkley

	Arduino Uno	Arduino Mega 2560	Arduino Due	Arduino Mini	Lily Pad
Processor	ATmega328	ATmega2560	AT91SAM3X8E	ATmega328	ATmega168V ATmega328V
CPU speed[MHz]	16	16	84	16	8
Analog IN/OUT	6/0	16/0	12/2	8/0	6/0
Digital IO/PWM	14/6	54/15	54/12	14/6	14/6
SRAM [KB]	2	8	96	2	1
Flash [KB]	32	256	512	32	16
UART	1	4	4	-	-
Price	~20€	~22€	~50€	~15€	~45€

PROTOTYPING BOARDS AND LANGUAGES


□ Sketches:

 \diamond .ino files, .cpp and .h

 \diamond setup() \rightarrow initialization of the initial values (pins, variables, etc..)

 \Rightarrow loop() \rightarrow infinite repetition of the main code

Development cycle:

PROTOTYPING BOARDS AND LANGUAGES

Blink Arduino 1.8.3 Ele Modifica Sketch Strumenti Aiuto	
Blink Turns on an LED on for one second, then off for one second, repeatedly.	
Most Arduinos have an on-board LED you can control. On the UNO, MEGA and ZERO it is attached to digital pin 13, on MKR1000 on pin 6. LED_BUILTIN is set to the correct LED pin independent of which board is used. If you want to know what pin the on-board LED is connected to on your Arduino model, check the Technical Specs of your board at <u>https://www.arduino.cc/en/Main/Products</u>	
This example code is in the public domain.	
modified 8 May 2014 by Scott Fitzgerald	
modified 2 Sep 2016 by Arturo Guadalupi	
modified 8 Sep 2016 by Colby Newman */	
<pre>pinMode(LED_BUILTIN, OUTPUT); // the loop function runs over and over again forever /oid loop() { digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level) delay(1000); // wait for a second digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW delay(1000); // wait for a second</pre>	
Δ	RDUINO

PROTOTYPING BOARDS AND LANGUAGES


```
#define LED PIN 13
void setup() {
 // initialize digital pin LED.
  pinMode(LED PIN, OUTPUT);
}
void loop() {
 digitalWrite(LED_PIN, HIGH); // turn the LED on (HIGH voltage level)
 delay(1000);
 digitalWrite(LED PIN, LOW); // turn the LED off (voltage LOW)
  delay(1000);
```

CLASSICAL BLINK EXAMPLE

// wait for a second // wait for a second

PROTOTYPING BOARDS AND LANGUAGES

- ♦ boolean (8 bit) simple logical true/false.
- ♦ byte (8 bit) unsigned number from 0-255.
- \diamond **char** (8 bit) signed number from -128 to 127.
- \diamond **unsigned char** (8 bit) same as 'byte'; if this is what you're after you should use 'byte' instead.
- \diamond **word** (16 bit) unsigned number from 0-65535.
- ♦ unsigned int (16 bit) the same as 'word'. Use 'word' for clarity and brevity.
- \diamond **int** (16 bit)- signed number from -32768 to 32767.
- ♦ unsigned long (32 bit)- unsigned number from 0-4,294,967,295.
- ♦ long (32 bit) signed number from -2,147,483,648 to 2,147,483,647.
- float (32 bit) signed number from -3.4028235-E38 to 3.4028235-E38. Floating point is not native; the compiler has to jump through hoops to make it work. If you can avoid it, you should.

Digital I/O

- digitalRead()
- digitalWrite()
- pinMode()

Analog I/O

- analogRead()
- analogReference()
- analogWrite()

Communication

- Serial
- stream

Time

- delay()
- delayMicroseconds()
- micros()
- millis()

- Audio
- Cloud
- Communications
- Robotics
- Sensors
- □ Storage and memory
- Etc..

https://playground.arduino.cc/Main/LibraryList

PROTOTYPING BOARDS AND LANGUAGES

L. BONONI, M. DI FELICE, L. SCIULLO, DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, UNIVERSITY OF BOLOGNA, ITALY

EXAMPLE of AVAILABLE LIBRARIES

Firmata

- Protocol for communication between software on a host (computer, smartphone, etc..) and microcontrollers
- Firmata is based on the MIDI message format in that commands bytes are 8 bits and data bytes are 7 bits

Girmata libraries:

- Python
- Perl
- Javascript
- Java
- ruby

Firmata Message Type

type	command	MIDI channel	first byte	second byte
analog I/O message	0xE0	pin #	LSB(bits 0-6)	MSB(bits 7-13)
digital I/O message	0x90	port	LSB(bits 0-6)	MSB(bits 7-13)
report analog pin	0xC0	pin #	disable/enable(0/1)	- n/a -
report digital port	0xD0	port	disable/enable(0/1)	- n/a -
start sysex	0xF0			
set pin mode(I/O)	0xF4		pin # (0-127)	
set digital pin value	0xF5		pin # (0-127)	
sysex end	0xF7			
protocol version	0xF9		major version	minor version
system reset	OxFF			

PROTOTYPING BOARDS AND LANGUAGES

Firmata Message Type

□ Firmata library written in Javascript

Platform Support:

- > Arduino
- Raspberry Pi
- Intel platforms
- ≻ Etc...

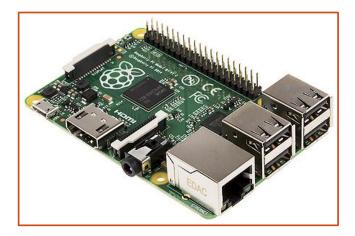
□ APIs for using the following sensors/actuators:

> Accelerometer, GPS, Joystick, Keypad, LCD, Led, Leds, Motor, Pin, Thermometer, etc..

EXAMPLE OF SINGLE-BOARD COMPUTER: RASPBERRY PI

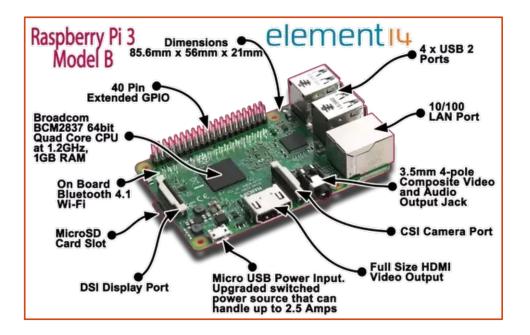
PROTOTYPING BOARDS AND LANGUAGES

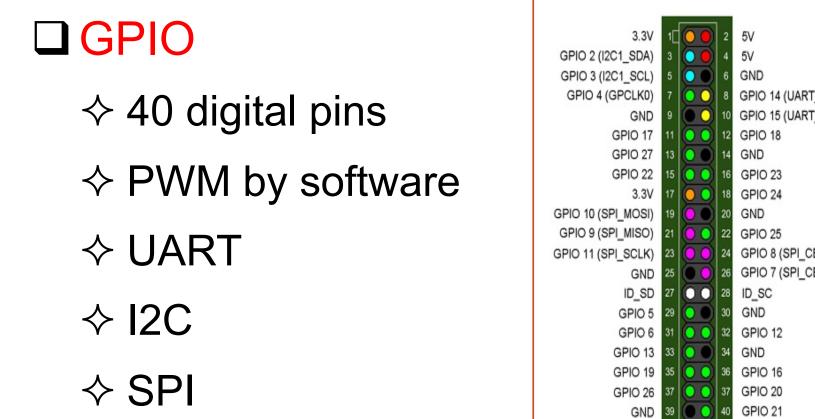
- Developed in the United Kingdom by the Raspberry Pi Foundation to promote the teaching of basic computer science in schools and in developing countries.
- "The Raspberry Pi Foundation is a UK-based charity that works to put the power of digital making into the hands of people all over the world, so they are capable of understanding an shaping our increasingly digital world, able to solve the problems that matter to them, and equipped for the jobs of the future."

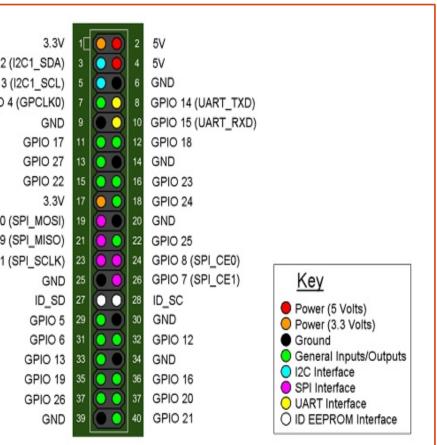


https://www.raspberrypi.org/about/

- Foundation trustee Eben Upton assembled a group of teachers, academics and computer enthusiasts to devise a computer to inspire children.
- The computer is inspired by Acorn's BBC Micro of 1981. The Model A, Model B and Model B+ names are references to the original models of the British educational BBC Micro computer, developed by Acorn Computers.




□ Single-board computer


with a Broadcom system on a chip (SoC) with an integrated ARM compatible central processing unit (CPU) and on-chip graphics processing unit (GPU).

PROTOTYPING BOARDS AND LANGUAGES

	PiA	PiB	Pi2B	Pi3B	PiZero
Release date	2014	2012	2015	2016	2015
CPU clock	700 MHz	700 MHz	900 MHz	1.2 GHz	1 GHz
Cores	1	1	4	4	1
Instruction set	ARMv6	ARMv6	ARMv7-A	ARMv8-A	ARMv6
SoC	Broadcom BCM2835	Broadcom BCM2835	Broadcom BCM2836	Broadcom BCM2837	Broadcom BCM2835
USB ports	1	2	4	4	1 Micro
Memory	256 MB	512 MB	1 GB	1 GB	512 MB
Storage	SDCard	SDCard	Micro SD card	Micro SD card	Micro SD card
Ethernet	None	100 Mbit/s	100 Mbit/s	100 Mbit/s	None
Wifi	None	None	None	802.11n	None
Bluetooth	None	None	None	4.1	None
GPIO	26 pins	26 pins	40 pins	40 pins	40 pins
Alimentation	5V/1 Amp	5V/1 Amp	5V/2 Amp	5V/2,5 Amp	5V/2 Amp
cost	20\$	35\$	35\$	35\$	5\$

PROTOTYPING BOARDS AND LANGUAGES L. BONONI, M. DI FELICE, L. SCIULLO, DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, UNIVERSITY OF BOLOGNA, ITALY

□ Software Distro

- ♦ Linux Distros:
 - Raspbian (Debian) and Ubuntu (at least ARMv7)
 - Archlinux, Fedora, Gentoo, etc..
 - Volumio, OpenElec
 - RISC OS
- ♦ Others:
 - Windows 10 IoT Core Edition (at least ARMv7)
 - Android

PROTOTYPING BOARDS AND LANGUAGES

Raspberry vs Arduino Boards

Advantages of **Arduino**:

Robustness (no OS on it)

Low Power Consumption

Price

Advantages of **Raspberry**:

Powerfulness (multitasking)

□ Networking on board

□ All the OS functionalities

PROTOTYPING BOARDS AND LANGUAGES

Raspberry vs Arduino Boards

Choose Arduino if:

- You want to learn basics of electronics
- You have a simple project to deploy
- Your projects does not involve so much software

Choose Raspberry if:

- You have a complex project, with a lot of software involved
- You need OS functionalities

Networking is involved

PROTOTYPING BOARDS AND LANGUAGES L. BONONI, M. DI FELICE, L. SCIULLO, DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, UNIVERSITY OF BOLOGNA, ITALY