
1

I/O Streams
• A stream is a sequence of bytes that flow from a

source to a destination

• In a program, we read information from an input
stream and write information to an output stream

• A program can manage multiple streams
simultaneously

I/O Streams
• The java.io package contains many classes that

allow us to define various streams with particular
characteristics

• Some classes assume that the data consists of
characters

• Others assume that the data consists of raw bytes
of binary information

• Streams can be further subdivided as follows:

data stream, which acts as either a source or destination

processing stream, which alters or manipulates the basic
data in the stream

2

I/O Streams

Character
Streams

Byte
Streams

Data
Streams

Processing
StreamsInput Streams

Output Streams

Character vs. Byte Streams
• A character stream manages 16-bit Unicode

characters

• A byte stream manages 8-bit bytes of raw binary
data

A program must determine how to interpret and use the
bytes in a byte stream

Typically they are used to read and write sounds and
images

• The InputStream and OutputStream classes
(and their descendants) represent byte streams

• The Reader and Writer classes (and their
descendants) represent character streams

3

Data vs. Processing Streams
• A data stream represents a particular source or

destination such as a string in memory or a file on
disk

• A processing stream (also called a filtering
stream) manipulates the data in the stream

It may convert the data from one format to another

It may buffer the stream

The IOException Class
• Operations performed by the I/O classes may

throw an IOException

A file intended for reading or writing might not exist

Even if the file exists, a program may not be able to find it

The file might not contain the kind of data we expect

• An IOException is a checked exception

4

Standard I/O
• There are three standard I/O streams:

standard input – defined by System.in
standard output – defined by System.out
standard error – defined by System.err

• System.in typically represents keyboard input

• System.out and System.err typically represent a
particular window on the monitor screen

• We use System.out when we execute println
statements

Standard I/O
• PrintStream objects automatically have print

and println methods defined for them

• The PrintWriter class is needed for advanced
internationalization and error checking

5

Text Files
• Information can be read from and written to text

files by declaring and using the correct I/O
streams

• The FileReader class represents an input file
containing character data

• The FileReader and BufferedReader classes
together create a convenient text file output
stream

Text Files
• The FileWriter class represents a text output

file, but with minimal support for manipulating
data

• Therefore, the PrintWriter class provides print
and println methods

• Output streams should be closed explicitly

6

Object Serialization
• Object serialization is the mechanism for saving an object,

and its current state, so that it can be used again in another
program

• The idea that an object can “live” beyond the program
execution that created it is called persistence

• Object serialization is accomplished using the Serializable
interface and the ObjectOutputStream and
ObjectInputStream classes

• The writeObject method is used to serialize an object

• The readObject method is used to deserialize an object

Object Serialization
• ObjectOutputStream and ObjectInputStream are

processing streams that must be wrapped around
an OutputStream or an InputStream

• Once serialized, the objects can be read again into
another program

7

Object Serialization
• Serialization takes into account any other objects

that are referenced by an object being serialized,
saving them too

• Each such object must also implement the
Serializable interface

• Many classes from the Java class library
implement Serializable, including the String class

• The ArrayList class also implements the
Serializable interface, permitting an entire list
of objects to be serialized in one operation

