Introduction to XML

* What is XML
* The structure of an XML document
* Parsing XML in Java

= SAX

= DOM

= JDom

What is XML?

* Extensible Markup Language
* A syntax for documents
* A Meta-Markup Language

* A Structural and Semantic language, not a
formatting language

"4 XML Applications

* A specific markup language that uses the XML
meta-syntax is called an XML application.

* Different XML applications have their own more

constricted syntaxes and vocabularies within the
broader XML syntax.

* Further syntax can be layered on top of this; e.qg.
data typing through schemas.

Some XML Applications

* Clinical Trial Data Model for drug trials

* National Library of Medicine (NLM) XML Data Formats for
MEDLINE data over FTP replacing ELHILL Unit Record
Format (EURF) on magnetic tape

* Health Level Seven XML Patient Record Architecture

* ASTM XML Document Type Definitions (DTDs) for Health
Care

* Molecular Dynamics Markup Language (MoDL)
* BlOpolymer Markup Language (BIOML)

* Gene Expression Markup Language (GEML)

* Chemical Markup Language

* Bioinformatic Sequence Markup Language

* Open Financial Exchange

* Human Resources Markup Language

* XML Court Interface

* and many more...

A simple example

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/css" href="song.css"?>
<!DOCTYPE SONG SYSTEM "song.dtd">
<SONG xmlns="http://www.cafeconleche.org/namespace/song"
xmlns:xlink="http://www.w3.0rg/1999/x1link">
<TITLE>Hot Cop</TITLE>
<PHOTO
xlink:type="simple" xlink:show="onLoad" xlink:href="hotcop.]jpg"
ALT="Victor Willis in Cop Outfit" WIDTH="100" HEIGHT="200"/>
<COMPOSER>Jacques Morali</COMPOSER>
<COMPOSER>Henri Belolo</COMPOSER>
<COMPOSER>Victor Willis</COMPOSER>
<PRODUCER>Jacques Morali</PRODUCER>
<!-- The publisher is actually Polygram but I needed
an example of a general entity reference. -->
<PUBLISHER xlink:type="simple" xlink:href="http://www.amrecords.com/">
A & M Records
</PUBLISHER>
<LENGTH>6:20</LENGTH>
<YEAR>1978</YEAR>
<ARTIST>Village People</ARTIST>
</SONG>
<!-- You can tell what album I was
listening to when I wrote this example -->

Markup and Character Data

* Markup includes:
= Tags
= Entity References
= Comments
" Processing Instructions
= Document Type Declarations
= XML Declaration
= CDATA Section Delimiters

* Character data includes everything else

Markup and Character Data Example

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/css" href="song.css"?>
<!DOCTYPE SONG SYSTEM "song.dtd">
<SONG xmlns="http://www.cafeconleche.org/namespace/song"
xmlns:xlink="http://www.w3.0rg/1999/x1link">
<TITLE>Hot Cop</TITLE>
<PHOTO
xlink:type="simple" xlink:show="onLoad" xlink:href="hotcop.jpg"
ALT="Victor Willis in Cop Outfit" WIDTH="100" HEIGHT="200"/>
<COMPOSER>Jacques Morali</COMPOSER>
<COMPOSER>Henri Belolo</COMPOSER>
<COMPOSER>Victor Willis</COMPOSER>
<PRODUCER>Jacques Morali</PRODUCER>
<!-- The publisher is actually Polygram but I needed
an example of a general entity reference. -->
<PUBLISHER xlink:type="simple" xlink:href="http://www.amrecords.com/">
A &gamp; M Records
</PUBLISHER>
<LENGTH>6:20</LENGTH>
<YEAR>1978</YEAR>
<ARTIST>Village People</ARTIST>
</SONG>
<!-- You can tell what album I was
listening to when I wrote this example -->

Elements and Tags

Elements are delimited by a start-tag like <LENGTH> and a matching end-tag
like </LENGTH>:

<LENGTH>6 : 20</LENGTH>
Elements contain content which can be text, child elements, or both:

<LENGTH>6: 20</LENGTH>
<PRODUCER>

<NAME>
<GIVEN>Jacques</GIVEN>
<FAMILY>Morali</FAMILY>
</NAME>
</PRODUCER>
<PARAGRAPH> The <ARTIST>Village People</ARTIST> were a
popular <GENRE>Disco</GENRE> band in the 1970's
</PARAGRAPH>

* The element is the tags plus the content.
* Empty-element tags both start and end an element:
<PHOTO/>
* This element has no content. It is equivalent to <PHOTO></PHOTO>
* Elements can have attributes:

<PHOTO xlink:type="simple" xlink:show="onLoad"
xlink:href="hotcop.jpg" ALT="Victor Willis in Cop
Outfit" WIDTH="100" HEIGHT="200"/>

Entities

* An XML document is made up of one or more physical
storage units called entities
* Entity references:
= Parsed internal general entity references like &
= Parsed external general entity references
= Unparsed external general entity references
* External parameter entity references
* Internal parameter entity references

* Reading an XML document is not the same thing as reading
an XML file

* The file contains entity references.
* The document contains the entities' replacement text.

= When you use a parser to read a document you'll get the text
including characters like <. You will not see the entity
references.

Parsed Character Data

* Character data left after entity references are
replaced with their text

 Given the element
<PUBLISHER>A & M Records</PUBLISHER>

* The parsed character data is
A & M Records

* Used to include large blocks of text with lots of normally
illegal literal characters like < and &, typically XML or HTML.

<p>You can use a default <code>xmlns</code>
attribute to avoid having to add the svg prefix
to all your elements:</p>

<! [CDATA[

<svg xmlns="http://www.w3.0rg/2000/svg"
width="12cm" height="10cm"> <ellipse rx="110"
ry="130" /> <rect x="4cm" y="lcm"
width="3cm" height="6cm" /> </svg>

11>
 CDATA is for human authors, not for programs!

Comments

* <'!'-- Before posting this page, | need to double

check the number of pelicans in Lousiana in 1970
-->

 Comments are for humans, not programs.

Processing Instructions

Divided into a target and data for the target
The target must be an XML name
The data can have an effectively arbitrary format
<?robots index="yes" follow="no"?>
<?xml-stylesheet href="pelicans.css" type="text/css"?>
<?php
mysql connect("database.unc.edu", "clerk",
"password") ;

Sresult = mysql ("CYNW", "SELECT LastName, FirstName
FROM Employees ORDER BY LastName, FirstName") ;
$i = 0;

while ($i < mysql numrows ($result)) {
$fields = mysql fetch row(Sresult);
echo "<person>$fields[1l] $fields[0]
</person>\r\n";
Si++;

}

mysql close(); ?>

These are for programs

The XML Declaration

* <?xml version="1.0" encoding="UTF-8"
standalone="no" ?>

* Looks like a processing instruction but isn't.
* wversion attribute

" required

= always has the value 1.0
* encoding attribute

= UTF-8

= |SO-8859-1

= SJIS

= etc.

* standalone attribute
" yes
" no

Document Type Declaration

* <IDOCTYPE SONG SYSTEM "song.dtd">

Document Type Definition (DTD)

<!ELEMENT SONG (TITLE, PHOTO?, COMPOSER+, PRODUCER¥,
PUBLISHER*, LENGTH?, YEAR?, ARTIST+)>

<!ELEMENT TITLE (#PCDATA) >

<!ELEMENT COMPOSER (#PCDATA)>

<!ELEMENT PRODUCER (#PCDATA)>

<!ELEMENT PUBLISHER (#PCDATA)>

<!ELEMENT LENGTH (#PCDATA) >

<!-- This should be a four digit year like "1999",

not a two-digit year like "99" -->

<!ELEMENT YEAR (#PCDATA) >

<!ELEMENT ARTIST (#PCDATA)>

<!ELEMENT PHOTO EMPTY>

<!ATTLIST PHOTO xlink:type (simple) #FIXED "simple"
xlink:show (onLoad) #FIXED "onLoad"
xlink:href CDATA #REQUIRED
ALT CDATA #REQUIRED
WIDTH NMTOKEN #REQUIRED
HEIGHT NMTOKEN #REQUIRED

>

<!ATTLIST PUBLISHER xlink:type (simple) #FIXED "simple"

xlink:href CDATA #REQUIRED

>
<!ATTLIST SONG xmlns CDATA #FIXED "http://www.cafeconleche.org/namespace/song"
xmlns:xlink CDATA #FIXED "http://www.w3.0rg/1999/xlink"

XML processing with Java

« SAX
 DOM
* JDom

The SAX2 Process

* Use the factory method
XMLReaderFactory.createXMLReader ()
to retrieve a parser-specific implementation of the
XMLReader interface

* Your code registers a ContentHandler with the
parser

* An InputSource feeds the document into the
parser

* As the document is read, the parser calls back to

the methods of the ContentHandler to tell it
what it's seeing in the document.

The ContentHandler interface

package org.xml.sax;

public interface ContentHandler ({
public void setDocumentlocator (Locator locator) ;

public void startDocument() throws SAXException;

public void endDocument () throws SAXException;

public void startPrefixMapping(String prefix, String uri) throws SAXException;
public void endPrefixMapping(String prefix) throws SAXException;

public void startElement (String namespaceURI, String localName,
String qualifiedName, Attributes atts) throws SAXException;

public void endElement (String namespaceURI, String localName,
String qualifiedName) throws SAXException;

public void characters(char[] text, int start, int length) throws SAXException;
public void ignorableWhitespace(char[] text, int start, int length) throws SAXException;
public void processingInstruction(String target, String data) throws SAXException;

public void skippedEntity (String name) throws SAXException;

Document Object Model

* Defines how XML and HTML documents are
represented as objects in programs

 W3C Standard

* Defined in IDL; thus language independent
* HTML as well as XML

* Writing as well as reading

* Covers everything except internal and external
DTD subsets

* DOM focuses more on the document; SAX focuses
more on the parser.

The DOM Process

* Create a parser (via JAXP
DocumentBuilderFactory)

* The parser parses the document and returns a
DOM org.w3c.dom.Document object.

* The entire document is stored in memory.

* DOM methods and interfaces are used to extract
data from this object

JDom

* A Pure Java API for reading and writing XML
Documents

* A Java-oriented API for reading and writing XML
Documents

* A tree-oriented API for reading and writing XML
Documents

* A parser independent API for reading and writing
XML Documents

Six packages

°* org.jdom

" the classes that represent an XML document and its parts
* org.jdom.input

* classes for reading a document into memory
°* org.jdom.output

= classes for writing a document onto a stream or other target
(e.g. SAX or DOM app)

* org.jdom.adapters
* classes for hooking up to DOM implementations
* org.jdom.filter
* classes to mask parts of tree while navigating
°* org.jdom. transform
= XSLT support via TrAX
* org.jdom.xpath
= XPath courtesy of Jaxen

	Introduction to XML
	What is XML?
	XML Applications
	Some XML Applications
	A simple example
	Markup and Character Data
	Markup and Character Data Example
	Elements and Tags
	Entities
	Parsed Character Data
	CDATA sections
	Comments
	Processing Instructions
	The XML Declaration
	Document Type Declaration
	Document Type Definition (DTD)
	XML processing with Java
	The SAX2 Process
	The ContentHandler interface
	Document Object Model
	The DOM Process
	JDom
	Six packages

