
Calendars, Time Granularities, and Automata

Ugo Dal Lago and Angelo Montanari

Dipartimento di Matematica e Informatica, Università di Udine
Via Delle Scienze 206, 33100 Udine, Italy

dallago@sci.uniud.it, montana@dimi.uniud.it

Abstract. The notion of time granularity comes into play in a variety
of problems involving time representation and management in database
applications, including temporal database design, temporal data conver-
sion, temporal database inter-operability, temporal constraint reasoning,
data mining, and time management in workflow systems. According to
a commonly accepted view, any time granularity can be viewed as the
partitioning of a temporal domain in groups of elements, where each
group is perceived as an indivisible unit (a granule). Most granularities
of practical interest are modeled as infinite sequences of time granules,
that present a repeating pattern and, possibly, temporal gaps within and
between granules. Even though conceptually clean, this definition does
not address the problem of providing infinite granularities with a finite
representation to make it possible to deal with them in an effective way.
In this paper, we present an automata-theoretic solution to such a prob-
lem that revises and extends the string-based model recently proposed
by Wijsen [13]. We illustrate the basic features of our formalism and
discuss its application to the fundamental problems of equivalence and
classification of time granularities.

1 Introduction

The notion of time granularity comes into play in a variety of problems involv-
ing time representation and management in database applications, including
temporal database design, temporal data conversion, temporal database inter-
operability, temporal constraint reasoning, data mining, and time management
in workflow systems [6]. As an example, in a federated database system differ-
ent databases may use different time granularities to store temporal informa-
tion. When query processing involves pieces of information belonging to distinct
databases, the system needs to integrate these different time granularities in a
principled way. Such an integration presupposes the formalization of the math-
ematical relations between time granularities, a problem which is closely related
to the classical problem of supporting calendars. Roughly speaking, a calendar
is a human abstraction of time. Defining calendars corresponds to explicit time
entities and relations which are relevant to specific problems to be solved. Cal-
endars have intrinsic and extrinsic characteristics [11]. Intrinsic characteristics,
such as the duration of time units and their relationships, define the semantics
of a calendar, while extrinsic characteristics, such as the language in which time

C.S. Jensen et al. (Eds.): SSTD 2001, LNCS 2121, pp. 279–298, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

280 U. Dal Lago and A. Montanari

values are expressed and the format of time constants, vary depending on the
orientation of the user. In this paper, we focus on representation methods that al-
low one to model intrinsic characteristics of calendars. Time granularity emerged
as a formal tool to systematically deal with (intrinsic characteristics of) calen-
dars in databases. According to a commonly accepted perspective [3], any time
granularity can be viewed as the partitioning of a temporal domain in groups
of elements, where each group is perceived as an indivisible unit (a granule).
Most granularities of practical interest are modeled as infinite sequences of time
granules, that present a repeating pattern and, possibly, temporal gaps within
and between granules. Even though conceptually clean, this definition overlooks
the problems involved in the implementation of time granularities in an actual
computing system. In order to represent and deal with time granularity in an
effective way, any formalism must/should satisfy the following requirements:

1. Suitable to algorithmic manipulation. The formalism must provide infi-
nite granularities with a finite representation. Furthermore, data structures,
which are used to actually store information, should ease access to and ma-
nipulation of time granularities.

2. Powerful. The set of all possible time granularities is not countable. Con-
sequently, every representation formalism is bound to be incomplete. The
class of granularities captured by the formalism should be large enough to
be of practical interest.

3. Compact. The formalism should exploit regularities exhibited by the con-
sidered granularity to make their representation as compact as possible.

A number of representation formalisms for dealing with time granularities in
databases and knowledge-based systems have been proposed in the literature (a
comprehensive and an up-to-date survey can be found in [6]). The most signifi-
cant ones are the formalism of collection expressions [7], that of slice expressions
[8], and the Calendar Algebra [9]. All these formalisms make it possible to ex-
press granularities of practical interest, including infinite periodic granularities.
They are based on the same idea: one can represent time granularities by means
of symbolic terms built up from a finite set of basic granularities using a finite
set of operators. The different sets of granularity operators provided by the three
formal systems and their relationships are investigated in [2], where it is proved
that Calendar Algebra actually subsumes the other two formalisms. A common
limitation of all these approaches is that they focus on expressiveness issues,
and almost completely ignore the problem of establishing whether or not the
proposed formal systems are suitable for direct algorithmic manipulation.

A new approach to the representation and manipulation of infinite time gran-
ularities has been recently proposed by Wijsen [13]. According to such an ap-
proach, infinite granularities are modeled as infinite strings over a suitable finite
alphabet. Furthermore, whenever the granularity is (ultimately) periodic, it can
be finitely represented as an ordered pair, whose first element is a finite prefix,
called offset, and the second element is the finite repeating pattern (obviously,
this solution produces lengthy descriptions whenever the periodic granularity to
be represented has a long period and/or prefix). The resulting string-based model

Calendars, Time Granularities, and Automata 281

is then used to formally state and solve the problems of granularity equivalence
and minimality.

In this paper, we present an automata-theoretic solution to the problem of
representing and manipulating time granularities that revises and extends Wi-
jsen’s one. We define a new class of automata, called single-string automata, and
we explain how they can be used to model time granularities. In particular, we
show how regularities of the modeled granularity can be exploited to make de-
scriptions more compact. Then, we show how to extend single-string automata to
deal with granularities which have a quasi-periodic structure. Finally, we concen-
trate on the problems of equivalence and classification of time granularities. The
equivalence problem is the problem of deciding whether two different represen-
tations define the same time granularity. Studying decidability and complexity
of this problem is quite important in several respects. As an example, the decid-
ability of the equivalence problem directly implies the possibility of effectively
testing the semantic equivalence of two different time granularity representa-
tions, making it possible to use smaller, and more tractable, representations in
place of bigger ones. The classification problem is the problem of relating the
granules of a given granularity to those of another one. It can be viewed as the
counterpart of the granularity conversion problem as defined in [6]; however,
since single-string automata allow us to keep track of the internal structure of
granules, we will be able to establish finer connections between granules belong-
ing to different granularities. We give two algorithms that respectively solve the
equivalence and classification problems, and we analyze their performance.

The rest of the paper is organized as follows. In Section 2 we briefly summa-
rize the main features of the string-based model for infinite time granularities.
We introduce single-string automata in Section 3 and refine them in Section 4.
The application of the proposed formalism to deal with granularities of practical
interest is discussed in Section 5. Finally, in Section 6, we present the equivalence
and classification algorithms. Conclusions provide an assessment of the work and
outline future research directions.

2 A String-Based Model for Infinite Time Granularities

In this section, we first introduce a simple formalization of the notion of time
granularity and then present the basic characteristics of the string-based model
for infinite time granularities proposed by Wijsen [13].

We assume the temporal domain to be (isomorphic to) the set of natural
numbers N, with the usual ordering relation <. Some of the granularity systems
proposed in the literature assume Z, instead of N, as the temporal domain. This
choice makes it possible to avoid the introduction of a first granule and to move
backward and forward with respect to the reference granule. Most time granu-
larity applications, however, restrict themselves to the case of natural numbers,
e.g., this is the case of satisfiability checking algorithms for quantitative tempo-
ral constraints with multiple granularities described in [4]. Furthermore, it is not
difficult to show that the automata-theoretic formalization of time granularity

282 U. Dal Lago and A. Montanari

can be generalized to integer numbers by exploiting well-known results in the
field [10]. According to Wijsen, we further assume that any given granularity
groups into another one. In fact, we view a granularity as a formal tool defining
how two temporal domains, both isomorphic to N, group one into the other. This
approach can be easily characterized in terms of granularity systems as defined
in [6].

Given the temporal domain 〈N, <〉, a time granularity (or simply a granu-
larity) is an equivalence relation ∼ on N ⊆ N such that, for every pair C1, C2
of ∼-classes, either it holds that, for all i ∈ C1 and j ∈ C2, i < j or it holds
that, for all i ∈ C1 and j ∈ C2, j < i [13]. N is called the (set of) support of
the time granularity ∼. It is immediate to see that < naturally induces a linear
order on the set of ∼-classes. Unlike other formalizations of time granularity [6],
this definition does not introduce any notion of index set; however, such a notion
can be easily derived from it, as shown in [13].

In order to deal with time granularities in an effective way, one needs to
provide them with a finite representation which is as compact as possible and
captures a reasonably large class of granularities. Furthermore, a suitable rep-
resentation formalism must guarantee that the complexity of the algorithms for
granularity manipulation remains under control. We restrict ourselves to the case
in which the support N is infinite. If N is finite, indeed, the solution to the rep-
resentation problem is trivial. In [13], Wijsen proposes a string-based model for
infinite time granularities that allows one to represent in a compact way a broad
class of granularities, which includes almost all granularities of practical inter-
est. In the following, we briefly describe the main features of such a string-based
model.

We assume the reader to be familiar with the basic terminology on finite and
infinite strings (if this is not the case, a good reference is [12]). Let v be an infinite
string. We will often write v as v(1)v(2)v(3) . . . , where v(i) is the i-th element of
the string. In order to model time granularities, Wijsen introduces an alphabet
of three symbols Σ = {�,�, o}. The symbols �, �, and o are respectively called
filler, gap, and separator. Furthermore, we alternatively refer to both � and � as
placeholders. Let Σ∗ (resp. Σω) be the set of all finite (resp. infinite) strings over
Σ. Furthermore, let Σ+ = Σ∗ − {ε}, where ε is the empty string. Given t ∈ Σω,
we denote by �(t, k) the number of occurrences of placeholders in the first k
positions of t. Any infinite string t ∈ Σω, with an infinite number of placeholders,
naturally induces a time granularity, that we denote by gran(t). The granularity
gran(t) can be formally defined as follows: for all i, j ∈ N, (i, j) ∈ gran(t) if
and only if there exist two integers k and l such that (i) t(k) = t(l) = �; (ii)
k − �(t, k) = l − �(t, l); (iii) �(t, k) = i and �(t, l) = j. Condition (i) states
that a filler occurs at positions k and l; condition (ii) imposes that there are not
separators between t(k) and t(l); condition (iii) associates string positions with
the corresponding time points by neglecting all the occurrences of the separator.
As an example, the string v = � � o � � � o � � � o . . . represents the
granularity gran(v) = {{1, 2}, {4, 5}, {7, 8}, . . . }.

Calendars, Time Granularities, and Automata 283

In order to finitely model granularities, Wijsen introduces the notion of
granspec: a granspec is a pair (u,w), with u ∈ Σ∗ and w ∈ Σ+. The strings
u and v are respectively called the offset and the pattern of (u,w). Furthermore,
we say that uwω is the trace produced by (u,w); sometimes, we will indicate uwω

as (u,w)∞. Two granspecs (u1, w1) and (u2, w2) are said to be trace-equivalent,
denoted by (u1, w1) ≡T (u2, w2), if and only if u1w

ω
1 = u2w

ω
2 . It is easy to check

that (u1, w1) ≡T (u2, w2) implies gran(u1w
ω
1) = gran(u2w

ω
2), but not vice versa.

A time granularity is said to be regular if it is of the form gran((u,w)∞),
where (u,w) is a granspec, that is, regular time granularities are represented
by ultimately periodic infinite strings, which can be expressed by means of
pairs of finite strings. It is not difficult to show that for every ultimately pe-
riodic string t ∈ Σω, there exist infinitely many granspecs (u,w) such that
t = (u,w)∞, and hence, from (u1, w1) ≡T (u2, w2), it does not follow that
(u1, w1) = (u2, w2). This allows us to conclude that, while the equality of two
granspecs obviously implies the equality of the corresponding regular granular-
ities, the vice versa does not hold, that is, (u1, w1) = (u2, w2) implies that
gran((u1, w1)∞) = gran((u2, w2)∞), but gran((u1, w1)∞) = gran((u2, w2)∞)
does not imply that (u1, w1) = (u2, w2).

Finally, two granspecs (u1, w1) and (u2, w2) are said to be G-equivalent,
denoted by (u1, w1) ≡G (u2, w2), if and only if gran(u1w

ω
1) = gran(u2w

ω
2). From

the above arguments, we have that the G-equivalence of two granspecs (u1, w1)
and (u2, w2) cannot be reduced to the equality (u1, w1) and (u2, w2). In [13],
Wijsen proposes an algorithm to determine whether or not two given granspecs
are G-equivalent, which is based on a suitable canonical form for granspecs. This
canonical form is obtained in two steps: in the first step, we select the subset
of granspecs, called aligned granspecs, such that, in the produced trace, every
separator is directly preceded by a filler; in the second step, canonical granspecs
are defined as a proper subclass of aligned ones.

A granspec (u,w) is said to be aligned if and only if it satisfies the fol-
lowing conditions: (i) for every i ∈ N, if (u,w)∞(i) = o, then there exists
j > i (u,w)∞(j) = �; (ii) (u,w)∞(1) 6= o; (iii) for every i ∈ N, with i > 1,
if (u,w)∞(i) = o, then (u,w)∞(i− 1) = �. A precise characterization of aligned
granspecs is provided by the following proposition:

Proposition 1. A granspec (u,w) is aligned if and only if the following five
statements hold:

1. u(1) 6= o;
2. for every i such that 1 < i ≤ |u|, if u(i) = o, then u(i− 1) = �;
3. if w(1) = o, then u 6= ε and the last symbol of u and w is �;
4. for every i such that 1 < i ≤ |w|, if w(i) = o, then w(i− 1) = �;
5. if w = �i for some i > 0, then u 6= u′ o �j for every u′ and j ≥ 0.

The following theorem guarantees that any granspec can be turned into a gran-
spec that satisfies the alignment conditions.

Theorem 1. For every granspec (u1, w1), there exists an aligned granspec
(u2, w2) such that (u1, w1) ≡G (u2, w2).

284 U. Dal Lago and A. Montanari

The next theorem states the equivalence of ≡T and ≡G for aligned granspecs.

Theorem 2. Let (u1, w1) and (u2, w2) be two aligned granspecs. If (u1, w1) ≡G

(u2, w2), then (u1, w1) ≡T (u2, w2).

Since two aligned granspecs can be distinct even if they are G-equivalent, a
further normalization step is needed. A granspec (u,w) is said to be canonical
if and only if it satisfies the following conditions: (i) it is aligned; (ii) if w = vk

for a finite string v, then w = v and k = 1; (iii) if u 6= ε, then the last symbol of
u is distinct from the last symbol of w. The following theorem guarantees that
a canonical form can always be achieved.

Theorem 3. For every granspec (u1, w1), there is a canonical granspec (u2, w2)
such that (u1, w1) ≡G (u2, w2).

The last theorem states the desired equivalence of = and ≡G for canonical
granspecs.

Theorem 4. Let (u1, w1) and (u2, w2) be two canonical granspecs. If (u1, w1) ≡G

(u2, w2), then (u1, w1) = (u2, w2).

In the next section, we introduce an alternative automata-based model for
(ultimately) periodic time granularities and we prove that it is as expressive as
the string-based one, often producing more compact representations.

3 Single-String Automata

A (deterministic) single-string automaton is a quadruple (S,Σ, δ, q0), where S is
a finite set whose elements are called states, Σ is a finite alphabet, δ is a (total)
transition function from S to Σ × S, and q0 ∈ S is said to be the initial state.
Given a single-string automaton M = (S,Σ, δ, q0), we say that (s, t) ∈ Sω ×Σω

is a run of M if and only if s(1) = q0 and ∀i ≥ 1 δ(s(i)) = (t(i), s(i+1)). The run
of M is uniquely identified among the set of pairs in Sω ×Σω; this immediately
follows from the fact that δ is a single-valued function. Given a single-string
automaton M and its run (s, t), we say that t is the string generated by M
and we write t = M∞. Unlike usual classes of automata, single-string automata
generate only one string and this does not cause any gain in expressivity, as
stated by the following result, whose easy proof is left to the reader.

Proposition 2. Let M be a single-string automaton and let v ∈ Σω be the
string generated by M . Then there is a Büchi automaton M ′ that generates {v}.
The structure of strings generated by single-string automata is very simple, as
stated by the following theorem.

Theorem 5. Let Σ be an alphabet and let v ∈ Σω. Then v is ultimately periodic
if and only if v is the string generated by a single-string automaton.

Calendars, Time Granularities, and Automata 285

Proof. Let v ∈ Σω be an ultimately periodic string. Then we can write v as
uwω, for some u ∈ Σ∗ and v ∈ Σ+. Suppose u = a1a2 . . . an and w = b1b2 . . . bm.
We can build a single-string automaton M = (S,Σ, δ, q0) that generates exactly
v as follows:

– S = {(1, i)|i ∈ [1, n]} ∪ {(2, i)|i ∈ [1,m]}
– δ : S → Σ × S is defined letting

δ((k, i)) =




(ai, (1, i+ 1)) se i ≤ n− 1 e k = 1
(an, (2, 1)) se i = n e k = 1
(bi, (2, i+ 1)) se i ≤ m− 1 e k = 2
(bn, (2, 1)) se i = m e k = 2

– q0 = (1, 1), if u 6= ε, and q0 = (2, 1), otherwise.
We can easily verify that the string generated by M is v.

Conversely, let M = (S,Σ, δ, q0) be a single-string automaton, with S =
{q0, q1, . . . , qm} and Σ = {d1, d2, . . . , dn}, and let (s, t) be the run of M . First,
we can observe that s is an infinite string made up from a finite alphabet. Then,
let {in}n∈N be a sequence such that s = qi1qi2qi3 . . . and let qij be a state that
appears in s more than once, that is, s = qi1 . . . qij . . . qik−1qijqik+1 From
the definition of δ, it follows that s = qi1 . . . qij−1(qij

. . . qik−1)
ω. Let {ln}n∈N

be a sequence such that t = dl1dl2dl3 It is immediate to verify that t =
dl1 . . . dlj−1(dlj . . . dlk−1)

ω, which is exactly the thesis. 2

3.1 Equivalence and Minimality of Single-String Automata

We say that two single-string automata are equivalent if and only if they generate
the same string. We now outline an algorithm (Algorithm 3.1) to decide whether
two given single-string automata are equivalent or not. The proof of Theorem 5
suggests us an effective procedure to build up two strings u and v such that uwω

is the string generated by a given single-string automaton M . The equivalence of
two single-string automata can thus be reduced to the equality of two ultimately
periodic strings. The correctness of Algorithm 3.1 rests on the following pair of
propositions (the trivial proof of Proposition 3 is left to the reader).

Proposition 3. Let v1 = u1w
ω
1 be an ultimately periodic string, where w1 =

b1 . . . bn. Furthermore, let u2 = u1b1, w2 = b2 . . . bnb1, and v2 = u2w
ω
2 . It holds

that v1 = v2.

Proposition 4. Let v1 = u1w
ω
1 and v2 = u2w

ω
2 be two ultimately periodic

strings such that |u1| = |u2|. Then v1 = v2 if and only if

u1 = u2 w
n

|w1|
1 = w

n
|w2|
2 ,

where n is the least common multiple of |w1| and |w2|.
Proof. Let us assume that v1 = u1w

ω
1 , v2 = u2w

ω
2 , |u1| = |u2|, and v1 = v2.

The way in which v1 and v2 are defined and the hypothesis |u1| = |u2| together

286 U. Dal Lago and A. Montanari

imply that u1 = u2. Furthermore, from the definition of n, we can conclude that

|w
n

|w1|
1 | = |w

n
|w2|
2 |. From w

n
|w1|
1 6= w

n
|w2|
2 , indeed, it would follow that u1w

n
|w1|
1 6=

u2w
n

|w2|
2 , that is, v1 and v2 would differ in their prefix of length |u1| + n, and

thus v1 6= v2 (contradiction).

Conversely, let us assume that v1 = u1w
ω
1 , v2 = u2w

ω
2 , u1 = u2, and w

n
|w1|
1 =

w
n

|w2|
2 . It immediately follows that

v1 = u1w
ω
1 = u2w

ω
1 = u2

(
w

n
|w1|
1

)ω

= u2

(
w

n
|w2|
2

)ω

= u2w
ω
2 = v2,

which is the thesis. 2

Proposition 4 can be reformulated in a different way, taking into account the
internal structure of strings to be tested for equality.

Proposition 5. Let v1 = u1w
ω
1 and v2 = u2w

ω
2 be two ultimately periodic

strings such that |u1| = |u2|. Then v1 = v2 if and only if

u1 = u2 w1 = s
|w1|

n w2 = s
|w2|

n ,

where n is the greater common divisor of |w1| and |w2| and s is a string.

Proof. If v1 = u1w
ω
1 , v2 = u2w

ω
2 , u1 = u2, v1 = s

|w1|
n and v2 = s

|w2|
n , then

v1 = u1s
ω = u2s

ω = v2. Conversely, let us assume that v1 = v2; from |u1| = |u2|
it follows that u1 = u2. We can obviously write w1 = s1s2 . . . s |w1|

n

and w2 =

t1t2 . . . t |w2|
n

, where |ti| = |si| = n for each common index i. The integers |w1|
n

and |w2|
n are relative prime and thus, using well-known results about finite fields,

we have that{
0, . . . , |w1|

n − 1
}

=
{(

|w2|
n m

)
mod |w1|

n | 0 ≤ m < |w1|
n

}
;{

0, . . . , |w2|
n − 1

}
=

{(
|w1|

n m
)

mod |w2|
n | 0 ≤ m < |w2|

n

}
.

This concludes the proof, because these relations, together with the fact that

w
|w2|

n
1 = w

|w1|
n

2 , imply that si = tj , for any pair i, j, and thus w1 = s
|w1|

n and
w2 = s

|w2|
n . 2

As for minimality, it can be reduced to the minimality of the representation of
the generated string as well. An algorithm for determining such a minimal repre-
sentation can be easily obtained by exploiting the following pair of propositions
(code omitted).

Proposition 6. Let v1 = u1w
ω
1 be an ultimately periodic string, where |u1| ≥

1, u1 = b1, . . . , bn, w1 = a1 . . . am, and bn = am. Furthermore, let u2 =
b1, . . . , bn−1, w2 = bn, a1, . . . am−1, and v2 = u2w

ω
2 . It holds that v1 = v2.

Proposition 7. Let v = uwω
1 , with u = b1, . . . , bn and w1 = a1 . . . am, be an

ultimately periodic string such that (if |u| > 0) bn 6= am. Then, there exists a
(unique) prefix w2 of w1 such that w1 = wk

2 , with k ≥ 1, and there exists no
proper prefix w3 of w2 such that w1 = wh

3 , with h > k.

Calendars, Time Granularities, and Automata 287

Algorithm 3.1 Determine if two ultimately periodic strings are equal on the
basis of their finite representations (U1,W1) and (U2,W2).
1: if |U1| ≥ |U2| then
2: for i← 1 to |U1| − |U2| do
3: U2 ← U2W2[1]
4: W2 ←W2[2, . . . , |W2|]W2[1]
5: else
6: for i← to |U2| − |U1| do
7: U1 ← U1W1[1]
8: W1 ←W1[2, . . . , |W1|]W1[1]
9: if U1 6= U2 then

10: print (“Input strings are not equal.”)
11: else
12: for i← 1 to LCM(|W1|, |W2|) do
13: if W1[mod|W1|(i− 1) + 1] 6= W2[mod|W2|(i− 1) + 1] then
14: print (“Input strings are not equal.”)
15: print (“Input strings are equal.”)

3.2 Granularities and Single-String Automata

In this section, we show how single-string automata can be used to model (ul-
timately periodic) time granularities. Let Σ = {�,J,�}. Any infinite string
t ∈ Σω naturally induces a time granularity, that we denote by gran ′(t), such
that for all i, j ∈ N, (i, j) ∈ gran ′(t) if and only if the following pair of condi-
tions holds: (i) t(i), t(j) ∈ {�,J}; (ii) t(k) 6=J for any k ∈ [m,M − 1], where
m = min{i, j} and M = max{i, j}. As an example, the string v = � J � � J
� � J . . . represents the granularity gran ′(v) = {{1, 2}, {4, 5}, {7, 8}, . . . }. This
formalism turns out to be simpler than the one described in Section 2, as shown
by the following proposition.

Proposition 8. Let Σ = {�,J,�} and v1, v2 ∈ Σω. If both v1 and v2 cannot
be written as u�ω, with u ∈ Σ∗, it holds that gran ′(v1) = gran ′(v2) if and only
if v1 = v2.

Proof. Let us assume that neither v1 nor v2 is equal to u�ω, with u ∈ Σ∗, and
that gran ′(v1) = gran ′(v2). Further, we assume that v1 6= v2 and that j is the
least integer such that v1(j) 6= v2(j). We distinguish three relevant cases:

– If either v1(j) or v2(j) is �, then we have a contradiction: it suffices to notice
that if we replace � by � or J in any string v ∈ Σω, gran ′(v) changes.

– If v1(j) and v2(j) are � and J, respectively, then we can proceed as follows:
let j′ be the least integer greater than j such that at least one symbol between
v1(j′) and v2(j′) is different from �. Checking every possible value for v1(j′)
and v2(j′), we immediately obtain a contradiction.

– If v1(j) and v2(j) are J and �, respectively, then we can proceed as in the
previous case.

Conversely, if v1, v2 ∈ Σω and v1 = v2, then it trivially holds that gran ′(v1) =
gran ′(v2). 2

288 U. Dal Lago and A. Montanari

The string M∞ generated by a single-string automaton M on the alphabet
Σ = {�,J,�} naturally induces a granularity. A granularity R such that R =
gran ′(M ∞), where M is a single-string automaton, is said to be auto-regular.
Notice that the hypothesis of Proposition 8 that neither v1 nor v2 is equal to
u�ω is not restrictive, because we assume the set of support of granularities to
be infinite.

The following theorem relates auto-regular granularities to regular ones (cf.
Section 2).

Theorem 6. The class of regular granularities and the class of auto-regular
granularities coincide.

Proof. Let gran((u1, w1)∞), with u1 ∈ {�,�, o}∗ and w1 ∈ {�,�, o}+, be a
regular granularity. The corresponding pair of strings u2 ∈ {�,J,�}∗ and w2 ∈
{�,J,�}∗ can be obtained as follows.

– We obtain u2 from u1 and w1 by executing the following two steps:
1. For each occurrence of � in u1, we scan the subsequent positions in u1w1

until we reach an occurrence of either � or o (if any); then:
– if we stop on the symbol �, both occurrences of � are left unchanged;
– if we stop on the symbol o, we substitute J for �;
– if neither an occurrence of � nor an occurrence of o can be found

after the given occurrence of �, then we substitute J for �;
2. We erase every occurrence of o in u1.

– We obtain w2 from w1 by executing the same sequence of steps. In this
case, however, we consider the string w1w1 instead of the string u1w1 when
searching for symbols following any given occurrence of �.

It is easy to see that such a transformation preserves the generated granularity,
that is, gran((u1, w1)∞) = gran ′((u2, w2)∞). From Theorem 5, it follows that
there exists a single-string automaton M such that M∞ = (u2, w2)∞, and thus
gran((u1, w1)∞) = gran ′(M∞).

Conversely, suppose that gran ′(M∞) is an auto-regular granularity. From
Theorem 5, it follows thatM∞ is an ultimately periodic string on {�,J,�}). Let
(u1, w1)∞ be such a string. We obtain the corresponding strings u2 ∈ {�,�, o}∗

and w2 ∈ {�,�, o}+ by substituting the string �o for every occurrence of J in
u1 e w1. It is not difficult to show that gran ′(M∞) = gran((u2, w2)∞). 2

4 Single-String Automata Can Be Improved

Single-string automata can be naturally represented as graphs. As an example,
the single-string automaton ({q0, . . . , q4}, {a, b}, {(q0, (a, q1)), (q1, (b, q2)), (q2, (a,
q3)), (q3, (b, q4)), (q4, (a, q1))}, q0) can be represented as depicted in Fig. 1. As
another example, let Σ = {a, b}. A single-string automaton that generates the
infinite string (b(ab)5)ω is the automaton modeled by the graph depicted in
Fig. 2. The number of states of the graph is really too large with respect to the
inherently simple structure of the generated string. In order to reduce the size
of the automaton/graph, one can think of adding “priority” transitions that are

Calendars, Time Granularities, and Automata 289

Fig. 1. A sample single-string automaton.

Fig. 2. A single-string automaton generating (b(ab)5)ω.

Fig. 3. A compact automaton for (b(ab)5)ω.

taken only when particular conditions hold. The structure of the resulting au-
tomaton is depicted in Fig. 3, where the priority transition is the bold one. In the
following, we will extend the notion of single-string automata by systematically
exploring such an idea.

4.1 Extended Single-String Automata

Let A and B be two sets, f : A → A× B, and ∼ be an equivalence relation on
A. We say that ∼ respects f if and only if, for all a1, a2 ∈ A, if f(a1) = (c1, b1),
f(a2) = (c2, b2), and a1 ∼ a2, then c1 ∼ c2 and b1 = b2.

Furthermore, let I be a finite set of variables. We denote by LI any logical
language satisfying the following two conditions: (i) free variables of every for-
mula in LI belong to I, and (ii) functional and relational symbols in LI have a
natural interpretation in N. Models of LI formulas can be thought of as elements
of N

n, with n = |I|.
An extended single-string automaton is a 7-tuple (S, I,Σ, γ, δ, q0, n0), where

S is a finite set of states; I is a finite set of variables (N|I| will be denoted as C);

290 U. Dal Lago and A. Montanari

Σ is an alphabet; γ : S ⇀ LI × CC ×Σ × S is the (partial) primary transition
function; δ : S → CC ×Σ×S is the (total) secondary transition function; q0 ∈ S
is the initial state; n0 ∈ C. The run of an extended single-string automaton is
unique, as for single-string automata, but its definition turns out to be more
complex. Given an extended single-string automaton M = (S, I,Σ, γ, δ, q0, n0),
we say that (s, c, t) ∈ Sω × Cω ×Σω is a run of M if and only if
– s(1) = q0;
– c(1) = n0;
– for all i ≥ 1

– if γ(s(i)) = (φ, ψ, h, k) and c(i) |= φ, then the primary transition is taken
and the following three conditions hold:

c(i+ 1) = ψ(c(i)), s(i+ 1) = k, t(i) = h;

– otherwise, the secondary transition δ(s(i)) = (ψ, h, k) is taken and the
following three conditions hold:

c(i+ 1) = ψ(c(i)), s(i+ 1) = k, t(i) = h.

Given an extended single-string automaton M and its run (s, c, t), we say that
t is the string generated by M , and we write t = M∞.

As an example, the extended single-string automaton that generates the in-
finite string (b(ab)5)ω is depicted in Fig. 4, where bold arrows represent the
primary transition function and thin arrows represent the secondary transition
function. Moreover, n0 is (0).

Fig. 4. An extended single-string automaton generating (b(ab)5)ω.

Extended single-string automata do not satisfy all the properties that single-
string automata satisfy, even though they can be viewed as a natural extension
to single-string automata. In particular, the equivalence of two extended single-
string automata is not decidable, that is, it is impossible to give an algorithm that
states whether or not two extended single-string automata generate the same
string. Moreover, it is not clear which is the class of strings which is captured by
extended single-string automata. These problems are caused by our definition of
extended single-string automata, which is very general and not restrictive at all.
Extended single-string automata, however, allow us to solve the representation
problem which has been discussed at the beginning of this section, provided that
we find a finitary representation for an expressive enough subset of CC . This is
what we will do in the next section.

Calendars, Time Granularities, and Automata 291

4.2 Reducible Extended Single-String Automata

In this section, we impose some restrictions on the definition of extended single-
string automata in order to obtain a number of important decidability and char-
acterization results. First, notice that every extended single-string automaton
M = (S, I,Σ, γ, δ, q0, n0) is endowed with a finite number of states. However, it
is clear that we implicitly ask the automaton to keep track of values of variables
in I. More precisely, given an extended single-string automaton M and its run
(s, c, t), we can define a function µ : S × C → S × C × Σ such that, for every
i ≥ 0, the following condition holds:

µ(s(i), c(i)) = (s(i+ 1), c(i+ 1), t(i)).

We say that an extended single-string automaton M is reducible if we can define
an equivalence relation ∼ of finite index on S × C that respects µ. The follow-
ing theorem characterizes the expressiveness of reducible extended single-string
automata.

Theorem 7. If v is the string generated by a reducible extended single-string au-
tomata M , then there exists a single-string automaton M ′ that generates exactly
v.

Proof. Let M = (S, I,Σ, δ, γ, q0, n0) be a reducible extended single-string au-
tomata, let C = N

|I|, and let µ : S ×C → S ×C ×Σ be the function associated
with M . By definition, there exists an equivalence relation ∼ of finite index
on S × C that respects µ. We can build an equivalent single-string automaton
M ′ = (S′, Σ, δ′, q′

0) as follows:
– S′ = (S × C)/ ∼. Since the index of ∼ is finite, S′ is finite.
– If µ(x, y) = (x′, y′, h), then δ′([(x, y)]∼) = ([(x′, y′)]∼, h). The transition
function δ′ is well defined, because ∼ respects µ.

– q′
0 = [(q0, n0)]∼.

Let us show that M and M ′ generate the same infinite string. Let us suppose
that this is not the case, that is, let v and v′ be the strings generated by M e
M ′, respectively, and let i be the least natural number such that v(i) 6= v′(i). If
i = 1, we easily obtain a contradiction from the definitions of µ and q′

0. Otherwise
(i > 1), we have a contradiction noting that v(i− 1) = v′(i− 1) and ∼ respects
µ. Hence, we can conclude that v = v′, which is the thesis. 2

Theorem 7 provides a precise characterization of the expressiveness of reducible
extended single-string automata by showing that they are as powerful as single-
string automata.

Let us denote by ξ a function that, given a reducible extended single-string
automaton, returns an equivalent single-string automata. Obviously, ξ is not a
computable function and, as a consequence, we cannot reduce the equivalence of
two reducible extended single-string automata to the equivalence of two single-
string automata. To make ξ computable, we have to impose further restrictions.
This argument is summarized by the following theorem.

Theorem 8. Let C be a set of reducible extended single-string automata such
that ξ|C is computable. Then, the equivalence of two automata in C is decidable.

292 U. Dal Lago and A. Montanari

5 A Practical Formalism for Time Granularity

In this section, we define a class D of reducible extended single-string automata
and we show that it satisfies the conditions of Theorem 8. We then show that D
allows us to represent time granularities related to actual calendars in a compact
way. In the next section, we will provide equivalence and classification algorithms
on D and analyze their performance.

The class D is obtained by imposing the following restrictions on the defini-
tion of extended single-string automata1:
– the language LI , that we use to define γ, consists of formulas of the following

form:
f1 ∧ f2 ∧ . . . ∧ fn,

where, for every i, fi is t1 = t2 or t1 6= t2, with t1, t2 integer constants or
expressions of the form modc(v) (where c is a constant and v ∈ I);

– the functions that we use to define γ and δ must be of the following form:

(g1, g2, . . . , g|I|),

where, for every i, gi : N → N is a constant function or is obtained by
composing a constant number of instances of the successor function.

Given an automaton M = (S, I,Σ, δ, γ, q0, n0), with I = {v1, . . . , v|I|}, belong-
ing to D, we first determine, for every vi ∈ I, the least common multiple lcm(vi)
of all constants c that appear in terms of the form modc(vi) which are used
to define γ. Then, we define an equivalence relation ∼M on S × C by letting
(s1, (i1, . . . , i|I|)) ∼M (s2, (j1, . . . , j|I|)) if and only if the following two relations
hold:

s1 = s2 and ik ≡lcm(vk) jk for k ∈ [1, |I|].
It is not difficult to show that the following propositions hold.

Proposition 9. ∼M is an equivalence of finite index.

Proposition 10. ∼M respects the function µ associated with M .

From the definition of the equivalence relation ∼M , it easily follows that the
function ξ|D is computable and hence, by Theorem 8, that the equivalence of
two automata in D is decidable.

We conclude the section by providing an automaton M ∈ D that gener-
ates the string in {�,J,�}ω representing the granularity which corresponds to
the days-to-months relation of the Gregorian Calendar. Such a granularity is
represented in Calendar Algebra by the following expression:

pseudomonth = Alter12
11,−1(day,Alter12

9,−1(day,Alter12
6,−1(day,

Alter12
4,−1(day,Alter12

2,−3(day,Group31 (day))))))

month = Alter12∗400
2+12∗399,1(day,Alter12∗100

2+12∗99,−1(day,

Alter12∗4
2+12∗3,1(day, pseudomonth))),

1 It is worth noting that these restrictions closely resemble those proposed by Alur
and Henzinger in [1] to obtain decidable real-time logics.

Calendars, Time Granularities, and Automata 293

Fig. 5. A D-automaton capturing the Gregorian Calendar.

while the D-automaton M that captures such a granularity is the one depicted in
Fig. 5. For the sake of readability, we have not reported the complete specification
of M in the figure. The complete specification is obtained by adding I = {i, j, k},
n0 = (1, 1, 0) and the two transition functions δ and γ which are defined as
reported in Tables 1 and 2.

6 Equivalence and Classification Algorithms

In this section, we evaluate the formalism that we introduced in the previous
section by analyzing how the resulting representations influence the complexity
of the algorithms for equivalence checking and classification.

294 U. Dal Lago and A. Montanari

Table 1. Function γ

S S N
N LI

q0 q1 − mod27(i) = 0
q1 q2 − mod12(j) = 2
q2 q4 − mod4(k) = 0

∧mod400(k) 6= 100
∧mod400(k) 6= 200
∧mod400(k) 6= 300

q4 q7 − mod12(j) 6= 4
∧mod12(j) 6= 6
∧mod12(j) 6= 9
∧mod12(j) 6= 11

q8 q0 j ← 1 mod12(j) = 0
k ← k + 1

i← 1

Table 2. Function δ

S S N
N

q0 q0 i← i + 1
q1 q2 −
q2 q4 −
q3 q0 i← 1; j ← j + 1
q4 q6 −
q5 q0 i← 1; j ← j + 1
q6 q0 i← 1; j ← j + 1
q7 q8 −
q8 q0 i← 1; j ← j + 1

6.1 Equivalence

The first problem we face when we introduce a new representation method is the
equivalence problem: given two instances of a formalism, we want to establish
whether the two instances denote the same object or not. In our case, we know
that the equivalence problem is decidable in D, but we do not know how the
algorithm we gave behaves in terms of time and space complexities. The dia-
gram depicted in Fig. 6 shows the high-level behaviour of our algorithm. From a

Fig. 6. High-level behaviour of our equivalence algorithm.

complexity point of view, the critical step is the computation of ξ(A) and ξ(B).
The informal procedure we gave in the last section is not efficient, because it
does not avoid the creation of useless states. Algorithm 6.1 solves this problem,
provided that S′ is implemented in an efficient way. As an example, if we imple-
ment S′ as an hash table, we can obtain an average running time of O(|I|) for
insertion and lookup on S′ (line 5, 9 and 10). δ′ is never looked up during the
computation, so we can implement it by simpler data structures. Subroutines
nextstate, nextconfig and nextchar have an obvious meaning and we can assume

Calendars, Time Granularities, and Automata 295

Algorithm 6.1 Given M = (S, I,Σ, δ, γ, q0, n0) ∈ D, build an equivalent M ′ =
(S′, Σ, δ′, q′

0) in an efficient way.
1: for j ← 1 to |I| do
2: Compute the lcm N [j] of all c such that modc(I[j]) is used to define γ
3: q′

v ← (q0,modN (n0))
4: S′ ← {q′

v}
5: q′

0 ← q′
v

6: q′
n ← (nextstate(q′

v),modN (nextconfig(q′
v))

7: δ′ ← {q′
v → (q′

n,nextchar(q′
v)}

8: while q′
n /∈ S do

9: S′ ← S′ ∪ {q′
n}

10: q′
v ← q′

n

11: q′
n ← (nextstate(q′

v),modN (nextconfig(q′
v))

12: δ′ ← {q′
v → (q′

n,nextchar(q′
v)}

that they take O(|I|) time. The overall complexity of Algorithm 6.1 is therefore
O(|S′| · |I|).

In designing a reducible extended single-string automaton M that represents
a granularity R, one must guarantee that the number of useful states in ξ(M)
is comparable to the number of states of the minimum single-string automaton
that represents R. In such a case, the equivalence problem has a complexity
which is comparable to the one of Wijsen’s formalism.

6.2 Classification

Let R be a time granularity. We say that a granule C ∈ R has ordinal number
i if C is the i–th element of R in terms of the linear order induced on R by the
linear order on natural numbers.

With reference to the graph representation of single-string automata, we
interpret each single-string automaton M = (S,Σ, δ, q0) as a graph, whose nodes
correspond to the states of M . An interesting property of such a graph is that
there exists at most one node q ∈ S such that q is reachable from q0 and
there exist exactly two states q′, q′′ ∈ S that are reachable from q0 and whose
only outgoing edge enters q. We call q the loop state (if such a node q does
not exist, the loop state is q0). The loop state of a single-string automaton
M = (S,Σ, δ, q0) turns out to be very useful in many situations; hence, although
it can be computed in a natural way from S and δ, we often assume that it is
part of the definition of M .

A problem that frequently arises in practical situations is the classification
problem: given a granularity R and a natural number n, decide whether there
exists a granule C ∈ R such that n ∈ C and, if this is the case, compute C and
its ordinal number2.

2 Notice that such a formulation of the classification problem makes sense only if there
exists an infinite number of granules. In the case in which we have only finitely many

296 U. Dal Lago and A. Montanari

If we represent granularities as single-string automata, we can easily solve the
classification problem on M = (S,Σ, δ, q0) and n ∈ N by executing the following
steps:
1. determine the loop state (if it has not been included in the definition of the

automaton);
2. starting from the initial state, make exactly n transitions keeping track of the

state following the last occurrence of J and of the current ordinal number
(the ordinal number of the current granule);

3. if the last symbol is not � (if it is �, then n does not belong to any granule),
come back to the state following the last occurrence of J and proceed until
the next J is reached; for any occurrence of �, write the corresponding
natural number.

Algorithm 6.2 implements such a procedure using a number of suitable heuristics.
In particular, notice that lines 1–16 can be “factorized” over different instances
of the algorithm involving the same automaton, but different natural numbers.

The above classification algorithm can be easily extended to automata in D,
by adapting the notions of loop state, state equality, and transition; alternatively,
we can preprocess the input automaton M with Algorithm 6.1 and work with
its single-string equivalent M ′. In any case, the running time is proportional to
|M ′|, where |M ′| is the size of the graph corresponding to M ′.

7 Conclusions and Further Work

In this paper, we proposed a new automata-theoretic approach to the represen-
tation and manipulation of time granularities. We proved that it is expressive
enough to capture a relevant class of practical granularities, and that it generates
compact representations which are suitable to be manipulated by algorithms. We
explicitly defined two algorithms that respectively solve the equivalence checking
and classification problems. It is possible to show that many practical problems
about time granularities can be reduced to these two problems or to minor vari-
ants of them. The formalism of (extended) single-string automata is not, how-
ever, a high-level formalism, and the descriptions it produces are not as readable
as, for instance, Calendar Algebra expressions. For this reason, we believe it use-
ful to think of translations from high-level formalisms, such as Calendar Algebra,
to our formalism.

The main contribution of this paper lies in the automata-theoretic account
of time granularity that it provides. We believe it possible to further exploit
the expressive power of automata over infinite strings to improve our ability
of dealing with time granularities. As an example, moving from deterministic
automata to nondeterministic ones will allow us to manage situations in which a
given repeating pattern can start at a finite number of different time points (finite
union of single-string automata) or situation in which the repeating pattern can
start at an arbitrary time point (infinite union of single-string automata).

granules, the last one necessarily includes infinite natural numbers and thus cannot
be computed.

Calendars, Time Granularities, and Automata 297

Algorithm 6.2 Solve the classification problem on M = (S,Σ, δ, q0) and n ∈ N

assuming ql is the loop state of M .
1: if ← 0; jf ← 0; q ← q0

2: while q 6= ql do
3: (q, c)← δ(q)
4: if c =J then
5: jf ← jf + 1
6: if ← if + 1
7: is ← 0; js ← 0
8: repeat
9: (q, c)← δ(q)

10: if c =J then
11: js ← js + 1
12: is ← is + 1
13: until q = ql

14: if n ≤ if + is then
15: q, qp ← q0; jp ← 1; hp ← 1
16: for h← 1 to n− 1 do
17: (q, c)← δ(q)
18: if c =J then
19: qp ← q; hp ← h + 1; jp ← jp + 1
20: else
21: d← div is(n− if); r ← mod is(n− if); q ← ql; jp ← jf + (d− 1) ∗ js + 1
22: for h← if + (d− 1) ∗ is + 1 to n− 1 do
23: (q, c)← δ(q)
24: if c =J then
25: qp ← q; hp ← h + 1; jp ← jp + 1
26: (q, c)← δ(q)
27: if c 6= � then
28: print (“C ∈ R with ordinal number”, jp)
29: (q, c)← δ(qp); h← hp

30: if c 6= � then
31: print (h)
32: while c 6=J do
33: h← h + 1; (q, c)← q
34: if c 6= � then
35: print (h)
36: else
37: print (“There is not C ∈ R such that n ∈ C.”)

References

1. R. Alur and T. Henzinger. Real-time logics: Complexity and expressiveness. In-
formation and Computation, (104):35–77, 1993.

2. C. Bettini and R. De Sibi. Symbolic Representation of User-Defined Time Granu-
larities. Annals of Mathematics and Artificial Intelligence, 30(1-4), 2001.

298 U. Dal Lago and A. Montanari

3. C. Bettini, C. E. Dyreson, W. S. Evans, R. T. Snodgrass, and X. S. Wang, A glos-
sary of time granularity concepts. In: Temporal Databases: Research and Practice,
O. Etzion, S. Jajodia, and S. Sripada (Eds.), LNCS 1399, pages 406–413, Springer,
1998.

4. C. Bettini, X. S. Wang, and S. Jajodia. Satisfiability of quantitative temporal
constraints with multiple granularities. In: Proceedings of the International Con-
ference on Principles and Practice of Constraint Programming, LNCS 1330, pages
435–449, Springer, 1997.

5. C. Bettini, X. S. Wang, and S. Jajodia. A general framework for time granularity
and its application to temporal reasoning. Annals of Mathematics and Artificial
Intelligence, 22(1-2):29–58, 1998.

6. C. Bettini, X. S. Wang, and S. Jajodia. Time Granularities in Databases, Data
Mining, and Temporal Reasoning. Springer, 2000.

7. B. Leban, D. McDonald, and D. Foster. A representation for collections of tempo-
ral intervals. In: Proceedings of the National Conference on Artificial Intelligence
(AAAI), pages 367–371, AAAI Press, 1986.

8. M. Niezette and J. Stevenne. An efficient symbolic representation of periodic time.
In: Proceedings of the International Conference on Information and Knowledge
Management, pages 161–168, ACM Press, 1992.

9. P. Ning, X. S. Wang, and S. Jajodia. An algebraic representation of calendars.
In: Proceedings of the AAAI Workshop on Spatial and Temporal Granularity, C.
Bettini and A. Montanari (Eds.), pages 1–8, AAAI Press, 2000.

10. D. Perrin and P.E. Schupp. Automata on the integers, recurrence distinguishability,
and the equivalence and decidability of monadic theories. In: Proceedings of the
IEEE Symposium on Logic in Computer Science (LICS), pages 301–304, IEEE,
1986.

11. M. Soo and R. Snodgrass. Mixed Calendar Query Language Support for Temporal
Constants. The MultiCal Project, Release 1.1, Department of Computer Science,
The University of Arizona, Tucson, AZ, September 1995.

12. W. Thomas. Languages, Automata, and Logic. In: Handbook of formal languages,
Vol. 3 , G. Rozemberg and A. Salomaa (Eds.), pages 389–455, Springer, 1997.

13. J. Wijsen. A string-based model for infinite granularities. In: Proceedings of the
AAAI Workshop on Spatial and Temporal Granularity, C. Bettini and A. Monta-
nari (Eds.), pages 9–16, AAAI Press, 2000.

	1 Introduction
	2 A String-Based Model for In nite Time Granularities
	3 Single-String Automata
	3.1 Equivalence and Minimality of Single-String Automata
	3.2 Granularities and Single-String Automata

	4 Single-String Automata Can Be Improved
	4.1 Extended Single-String Automata
	4.2 Reducible Extended Single-String Automata

	5 A Practical Formalism for Time Granularity
	6 Equivalence and Classi cation Algorithms
	6.1 Equivalence
	6.2 Classi cation

	7 Conclusions and Further Work

