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Abstract

We investigate program equivalence for linear higher-order (sequential) languages
endowed with primitives for computational effects. More specifically, we study operationally-
based notions of program equivalence for a linear λ-calculus with explicit copying and
algebraic effects à la Plotkin and Power. Such a calculus makes explicit the interaction
between copying and linearity, which are intensional aspects of computation, with ef-
fects, which are, instead, extensional. We review some of the notions of equivalences
for linear calculi proposed in the literature and show their limitations when applied
to effectful calculi where copying is a first-class citizen. We then introduce resource
transition systems, namely transition systems whose states are built over tuples of pro-
grams representing the available resources, as an operational semantics accounting for
both intensional and extensional interactive behaviors of programs. Our main result
is a sound and complete characterization of contextual equivalence as trace equivalence
defined on top of resource transition systems.

1 Introduction

This work aims to study operationally-based equivalences for higher-order sequential pro-
gramming languages enjoying three main features, which we are going to explain: algebraic
effects, linearity, and explicit copying.
Algebraic Effects Since the early days of programming language semantics, the study of
computational effects, i.e. those aspects of computations that go beyond the pure process of
computing, has been of paramount importance. Starting with the seminal work by Moggi
[49, 50], modelling and understanding computational effects in terms of monads [43] has
been a standard practice in the denotational semantics of higher-order sequential languages.
More recently, Plotkin and Power [60, 57, 58] have extended the analysis of computational
effects in terms of monads to operational semantics, introducing the theory of algebraic ef-
fects. Accordingly, computational effects are produced by effect-triggering operations whose
behaviour is, in essence, algebraic. Examples of such operations are nondeterministic and
probabilistic choices, primitives for I/O, primitives for reading and writing from a global
store, and many others. The operational analysis of computational effects in terms of al-
gebraic operations also gave new insights not only on the operational semantics of effectful
programming languages but also on their theories of equality, this way leading to the devel-
opment of, e.g., effectful logical relations [34, 11], effectful applicative and normal form/open
bisimulation [18, 37], and logic-based equivalences [68, 46].
Linearity and Copying The analysis of effectful computations in terms of monads and
algebraic effects is, in its very essence, extensional : ultimately, a program represents a
function from inputs to monadic outputs. However, when reasoning about computational
effects, also intensional aspects of programs may be relevant. In particular, linearity [31, 70]
(and its quantitative refinements [30, 29, 13, 4, 20]) has been recognised as a fundamental
tool to reason about computational effects [25, 48], as witnessed by a number of programming
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languages, such as Clean [55], Rust [47], Granule [52], and Linear Haskell [8], which explicitly
rely on linearity to structure and manage effects. Indeed, the interaction between linearity,
copying, and computational effects deeply influences program equivalence: there are effectful
programs that cannot be discriminated without allowing the environment to copy them, and
thus program transformations which are sound if linearity is guaranteed, but unsound in
presence of copying.

A simple, yet instructive example of such a transformation, which we will carefully
examine in the next section, is given by distributivity of λ-abstraction over probabilistic
choice operators: λx.(e⊕ f) ' (λx.e) ⊕ (λx.f). This transformation is well-known to be
unsound for ‘classical’ call-by-value probabilistic languages [15]. However, it is sound if the
programs involved cannot be copied [24, 23]. What, instead, we expect to be unsound is
the transformation !(e⊕ f) ' !e ⊕ !f , where the operator ! (bang) is the usual linear logic
exponential modality making terms under its scope copyable and erasable. It is thus natural
to ask if, and to what extent, the aforementioned notions of effectful program equivalence
can be extended to linear languages with explicit copying.
Our Contribution In this paper we introduce resource transition systems as an inten-
sional, resource-sensitive operational semantics for linear languages with algebraic operations
and explicit copying. Resource transition systems combine standard extensional properties
of effectful computations with linearity and copying, whose nature is, instead, intensional.
We model the former using monads—as one does for ordinary effectful semantics—and the
latter by shifting from program-based transition systems to tuple-based transition systems,
as one does in environmental bisimulation [63, 44]. Indeed, a resource transition system can
be thought of as an ordinary transition system whose states are built over tuples of copyable
programs and linear values representing the available resources produced by a program while
interacting with the external environment. Another possible way to look at resource tran-
sition systems is as an interactive semantics defined on top of the so-called storage model
[69]. We then define and study trace equivalence on resource transition systems. Our main
result states trace equivalence is sound and complete for contextual equivalence. To the best
of the authors’ knowledge, this is the first full abstraction result for a linear λ-calculus with
arbitrary algebraic effects and explicit copying.
Outline This paper is structured as follows. After an informal introduction to program
equivalence for effectful linear languages (Section 2), Section 3 recalls some background
notions on monads and algebraic operations. Section 5 introduces our vehicle calculus and its
operational semantics. Resource-sensitive resource transition systems and their associated
notions of equivalence are given in Section 6.

2 Effects, Linearity, and Program Equivalence

In this section, we give a gentle introduction to program equivalence in presence of linear-
ity, explicit copying, and effects. In this work, we are concerned with operationally-based
equivalences, example of those being contextual and CIU equivalence [51, 45], logical re-
lations [62, 56, 67] and, bisimulation-based equivalences [1, 38, 39, 63]. Moreover, among
operationally-based equivalences, we seek for lightweight ones, by which we mean equiv-
alences which are as easy to use as possible (otherwise, contextual equivalence would be
enough). Accordingly, we do not consider equivalences in the spirit of logical relations—
which usually require heavy techniques such as biorthogonality [54] and step-indexing [3]
when applied to calculi in which recursion is present, either at the level of types or at the level
of terms. Instead, we focus on first-order equivalences [44], viz. notions of trace equivalence
and bisimilarity.

Our running examples in this paper are the already mentioned distributivity of (lambda)
abstraction and bang over (fair) probabilistic choice in probabilistic call-by-value λ-calculi
[21, 17, 24]:

λx.(e⊕ f) ' (λx.e)⊕ (λx.f) (λ-dist) !(e⊕ f) ' !e⊕ !f (!-dist)
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It is well-known [15] that in call-by-value probabilistic languages, lambda abstraction
does not distribute over probabilistic choice. In a linear setting, however, we see that any
resource-sensitive notion of program equivalence ' should actually validate the equivalence
(λ-dist) but not (!-dist). Why? Let us look at the transition systems describing the (in-
teractive) behaviour (Figure 1) of the programs involved in (λ-dist). One way to under-

λx.(e⊕ f)

eval

��
λx.(e⊕ f)

@v

��

0.5 0.5

e[x := v] f [x := v]

(λx.e)⊕ (λx.f)

eval

��

0.5 0.5

λx.e

@v
��

λx.f

@v
��

e[x := v] f [x := v]

Figure 1: Interactive behaviour of λx.(e⊕ f) and (λx.e)⊕ (λx.f)

stand the failure of the equivalence (λ-dist) in classical (i.e. resource-agnostic) languages is
that several notions of probabilistic program equivalence (such as probabilistic contextual
equivalence [21], applicative bisimilarity [15, 21], and logical relations [12]) are sensitive to
branching. However, sensitivity to branching does not quite feel like the crux of the failure
of of distributivity of abstraction over choice in classical languages. In fact, what we see
is that λx.(e⊕ f) waits for an input, and then resolves the probabilistic choice. Dually,
(λx.e)⊕(λx.f) first resolves the choice, and then waits for an input. As a consequence, if we
evaluate these programs, λx.(e⊕ f) essentially does nothing, whereas (λx.e)⊕ (λx.f) prob-
abilistically chooses if continuing with either λx.e or λx.f . At this point, there is a crucial
difference between the programs obtained: λx.(e⊕ f) still has to resolve the probabilistic
choice. If we were allowed to pass it an argument, say v, twice— this way resolving the
choice twice—then we could observe a (probabilistic) behaviour different from both the one
of λx.e and of λx.f . Indeed, assuming f [x := v] to diverge and e[x := v] to converge (with
probability 1), then, we would converge (to e[x := v]) with probability 0.25, in the former
case, and with probability 0.5, in the latter case. To observe such a behaviour, however,
it is crucial to copy λx.(e⊕ f). Otherwise, we could only interact with it by passing it an
argument only once, this way validating (λ-dist).

Summing up, to invalidate (λ-dist) one has to be able to copy the results of the evalua-
tion of the programs involved. This observation suggests that the deep reason why (λ-dist)
fails relies on the copying capabilities of the calculus [64]. If the calculus at hand is lin-
ear (and thus offers no copying capability), we should then expect (λ-dist) to hold, while
!λx.(e⊕ f) ' !(λx.e)⊕!(λx.f) (and thus ultimately (!-dist)) to fail. This agrees with a recent
result by Deng and Zhang [24, 23], who observed that if a calculus does not have copying
capabilities, then contextual equivalence (which is a fortiori linear) validates (λ-dist). More
generally, Deng and Zhang showed that linear contextual equivalence, i.e. contextual equiv-
alence where contexts test their arguments linearly (viz. exactly once), coincides with linear
trace equivalence in probabilistic languages.

But what about (!-dist)? Unfortunately, linear trace equivalence has been designed for
linear languages without copying, only. Moreover, straightforward extensions of linear trace
equivalence to languages with copying would actually validate (!-dist), trace equivalence
being insensitive to branching. The situation does not change much if one looks at different
forms of equivalence, such as Bierman’s applicative bisimilarity [9]. Such equivalences usually
invalidates (!-dist), but they all invalidate (λ-dist) too. We interpret all of this as a symptom
of the lack of intensional structure in the aforementioned notions of equivalence. Ultimately,
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this can be traced back to the very operational semantics of the calculus, which is meant to
be an abstract description of the input-output behaviour of programs, but gives no insight
into their intensional structure, i.e. linearity and copying in our case [69].

We propose to overcome this deficiency by giving calculi a resource-sensitive operational
semantics on top of which notions of program equivalence accounting for both intensional
and extensional aspects of programs can be naturally defined. We do so by shifting from
program-based transition systems to transition systems whose states are tuples (Γ; ∆), where
Γ is a sequence of non-linear (hence copyable) programs and ∆ is a sequence of linear values,
as states. Accordingly, fixed a tuple (Γ; ∆) and a program e, we evaluate e, say obtaining
a value v, and add v to the linear environment ∆, this way describing the extensional
behaviour of the program. There are two intensional actions we can make on tuples. If ∆
contains a value of the form !e, then we can remove !e from ∆ and add e to Γ. Dually, once
we have a program e in Γ, we can decide to evaluate it—and thus to possibly produce a new
linear value—without removing it from Γ, this way reflecting its non-linear nature. Finally,
we can interact with a value λx.f by passing it an argument built using programs in Γ and
values in ∆. As the latter are linear, we will then remove them from ∆.

We conclude this section by remarking that although here we have focused on proba-
bilistic languages, a similar analysis can be made for languages exhibiting different kinds of
effects, such as input-output behaviours as well as combinations of effects (e.g. probabilistic
nondeterminism and global stores).

3 Preliminaries: Monads and Algebraic Effects

Starting with the seminal work by Moggi [49, 50], monads have become a standard formalism
to model and study computational effects in higher-order sequential languages. Instead of
working with monads, we opt for the equivalent notion of a Kleisli triple [43].

Definition 3.1 A Kleisli triple is triple (T, η, >>=) consisting of a map associating to any set
X a set T (X), a set-indexed family of functions ηX : X → T (X), and a map >>=, called bind,
associating to each function f : X → T (Y ) a function >>=f : T (X) → T (Y ). Additionally,
these data must obey the following laws, for f and g functions with appropriate (co)domains:

>>=η = id; >>=f ◦ η = f ; >>=g ◦ >>=f = >>=(>>=g ◦ f).

Following standard practice, we write m >>= f for >>=f(m).

The computational interpretation behind Kleisli triples is the following: if A is a set
(or type) of values, then T (A) represent the set of computations returning values in A.
Accordingly, for each set A there is a function ηA : A → T (A) that regards a value a ∈ A
as a trivial computation returning a (and producing no effect). The map η corresponds to
the programming constructor return. Similarly, µ >>= f is the sequential composition of a
computation µ ∈ T (A) with a function f : A → T (B), and corresponds to the sequencing
constructor let x = − in −. Following this interpretation, we can read the identities
in Definition 3.1 as stipulating that η indeed produces no effect, and that sequencing is
associative.

Monads alone are not enough to produce actual effectful computations, as they only
provide primitives to produce trivial effects (via the map η) and to (sequentially) compose
them (via binding). For this reason, we endow monads T with (finitary) operations, i.e.
with set-indexed families of functions opX : T (X)n → T (X), where n ∈ N is the arity of
the operation op.

Example 3.2 Here are examples of monads modeling some of the computational effects
discussed in Section 1. Further examples, such as global stores and exceptions can be found
in, e.g., [49, 71].
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1. We model possibly divergent computations using the maybe monadM(X) , X+{↑}. An
element in M(A) is either an element a ∈ A (meaning that we have a terminating com-
putation returning a), or the element ↑ (meaning that the computation diverges). Given
a ∈ A, the map ηA simply (left) injects a in M(A), whereas >>=f sends a terminating
computation returning a to f(a), and divergence to divergence:

inr (a) >>= f , f(a); inr (↑) >>= f , inr (↑).

As non-termination is an intrinsic feature of complete programming languages, we do
not consider explicit operations to produce divergence.

2. We model probabilistic computations using the (discrete) subdistribution monad D. Recall
that a discrete subdistribution over a countable set X is a function µ : X → [0, 1] such
that

∑
x µ(x) ≤ 1. An element element µ ∈ D(A) gives for any a ∈ A the probability µ(a)

of returning a. Notice that working with subdistribution we can easily model divergent
computations [22]. Given a ∈ A, ηA(a) is the Dirac distribution on a (mapping a to
1 and all other elements to 0), whereas for µ ∈ D(A) and f : A → D(B) we define
(µ >>= f)(b) ,

∑
a µ(a) · f(a)(b). Finally, we generate probabilistic computations using a

binary fair probabilistic choice operation ⊕ thus defined: (µ⊕ν)(x) , 0.5·µ(x)+0.5·ν(x).
3. We model computations with output using the output monad O(X) , O∞ × (X + {↑}),

where O∞ is the set of finite and infinite strings over a fixed output alphabet O and ↑ is
a special symbol denoting divergence. An element of O(A) is either a pair (o, inl a), with
a ∈ A, or a pair (o, inr ↑). The former case denotes convergence to a outputting o (in
which case o is a finite string), whereas the former denotes divergence outputting o (in
which case o can be either finite or infinite). Given a ∈ A, the pair (ε, inr a) represents
the trivial computation that returns a and outputs nothing (ε denotes the empty string).
Further, sequential composition of computations is defined using string concatenation as
follows, where f(a) = (o′, x):

(o, inr ↑) >>= f , (o, inr ↑); (o, inl a) >>= f , (oo′, ν).

Finally, we produce outputs using (a O-indexed family of) unary operations printc map-
ping (o, x) to (co, x).

4. We model computations with input using the input monad I(X) = µα.(X + {↑}) + αI ,
where I is an input alphabet (for simplicity, we take I = {true, false}). An element in
I(A) is a binary tree whose leaves are labeled either by elements in A or by the divergent
symbol ↑. The trivial computation returning a is the single leaf labeled by a, whereas
given a tree t ∈ I(A) and a map f : A → I(B), the tree t >>= f is defined by replacing
the leaves of t labeled by elements a ∈ A with f(a). Finally, we consider a binary input
operation whereby read(ttrue , tfalse) is the tree whose left child is ttrue and whose right
child is tfalse .

3.1 Algebraic Effects

Following Example 3.2, let us consider a probabilistic program e , E[e1 ⊕ e2], where E is
an evaluation context. The operational behavior of e is to fairly choose a ei ∈ {e1, e2}, and
then execute E[ei]. That is, E[e1⊕ e2] evaluates to E[e1] (resp. E[e2]) with probability 0.5.
But that is exactly the behavior of E[e1]⊕ E[e2], so that we have the program equivalence
E[e1⊕ e2] ≡ E[e1]⊕E[e2]. It does not take much to realize that a similar equivalence holds
for all operations in Example 3.2. Semantically, operations justifying these equivalences are
known as algebraic operations [58, 59].

Definition 3.3 An n-ary (set-indexed family of) operation(s) opX : T (X)n → T (X) is an
algebraic operation on T , if for all X,Y , f : X → T (Y ), and µ1, . . . , µn ∈ T (X), we have:

(opX(µ1, . . . , µn)) >>= f = opY (µ1 >>= f, . . . , µn >>= f).
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Using algebraic operations we can model a large class of effects, including those of Exam-
ple 3.2, pure nondeterminism (using the powerset monad and set-theoretic union as binary
nondeterminism choice), imperative computations (using the global states monad and oper-
ations for reading and updating stores), as well as combinations thereof [32].

3.2 Continuity

Another feature shared by all monads in Example 3.2 is that they all endow sets T (X) with
an ω-complete pointed partial order (ω-cppo, for short) structure making >>= strict, mono-
tone, and continuous in both arguments, and algebraic operations monotone and continuous
in all arguments. This property has been formalized in [18] as Σ-continuity.

Definition 3.4 Let T be a monad and Σ be a set of algebraic operations on T . We say that
T is Σ-continuous if for any set X, T (X) carries an ω-cppo structure such that >>= is strict,
monotone, and continuous in both arguments, and (algebraic) operations in Σ are monotone
and continuous in all arguments.

Example 3.5 1. The maybe monad is ∅-continuous, with M(X) endowed with the flat
order.

2. The subdistribution monad is {⊕}-continuous, with subdistributions ordered pointwise
(i.e. µ ≤ ν if and only if µ(x) ≤ ν(x), for any x ∈ X).

3. Let Σ , {printc | c ∈ O}. Then, the output monad is Σ-continuous, with O(A) endowed
with the order: (o, x) v (o′, x′) if and only either x = inr ↑ and o v o′ or x = inl a =
x′ and o = o′.

4. The input monad is {read}-continuous with respect to the standard tree ordering.

4 Generic Effects

Representing effectful computations as monadic objects has the major advantage of providing
semantical information on the effects performed. However, it also has the drawback of lacking
a clear distinction between the effects produced by a computation and the possible results
returned. Nonetheless, since effects can only be produced by (algebraic) operations, we can
always decouple the effects produced during a computation from its possible results. This
is done relying on the notion of a generic effect [60], which we introduce by means of an
example.

Example 4.1 Recall that we model probabilistic computations using the subdistribution
monad D. When working with (discrete) subdistribution, it is oftentimes convenient to
employ syntactic representations of such (sub)distributions, known as formal sums. A for-
mal sum (over a set X) is an expression of the form

∑
i∈I pi;xi, where I is a countable set,

pi ∈ [0, 1], xi ∈ X, and
∑
i pi ≤ 1. The notation

∑
i∈I pi;xi is meant to recall the semantic

counterpart of formal sums, namely subdistributions. However, we should keep in mind that
formal sums are purely syntactical expressions. For instance, 1

2 ;x + 1
2 ;x and 1;x are two

distinct formal sums, although they both denote the Dirac distribution on x. More generally,
there is an interpretation function I mapping each formal sum

∑
i∈I pi;xi to a subdistri-

bution µ on X defined as µ(x) ,
∑
xi=x

pi. Examining a bit more carefully a formal sum∑
i∈I pi;xi, we see that the latter consists of an I-indexed sequence p = 〈pi〉i∈I of elements

in [0, 1] together with an I-indexed sequence x = 〈xi〉i∈I of elements in X. Therefore, a
formal sum is just a pair of sequences (p,x) ∈ [0, 1]I × XI such that

∑
i pi ≤ 1. But the

latter requirement means precisely that p is actually a subdistribution on I (the one mapping
i to pi). Therefore, we see that formal sums are just elements in D(I)×XI . Putting these
observations together, we see that for any µ ∈ D(X), there exists a countable set I and an
element φ ∈ D(I)×XI such that I(φ) = µ. As a consequence, stipulating two formal sums
φ1, φ2 ∈ D(I)×XI to be equal (notation φ1 =I φ2) if I(φ1) = I(φ2), then we see that D(X)
is isomorphic to the quotient set (

⋃
I D(I)×XI)/ =I , where I ranges over countable sets.
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Can we generalize Example 4.1 to arbitrary Σ-continuous monads? If monads are count-
able, [61, 42, 33] (as they are all the monads considered in this work), the answer to this
question is in the affirmative. First, let us observe that since the set I in Example 4.1 is
countable, we can replace it with an enumeration of its elements. That is, we replace I with
sets n, where n ∈ N∞ , N ∪ {ω} and n , {1, . . . , n} if n 6= ω, and n , N≥1, if n = ω.

Theorem 4.1 ([61, 42, 33]) Let T be countable monad. Then, for any countable set X,
all elements in T (X) can be (non-uniquely) presented as elements in⋃

n∈N∞
T (n)×Xn

Moreover, the map I :
⋃
n∈N∞ T (n) × Xn → T (X) mapping (γ,x) to x†(γ) is surjection

whose kernel =I gives an isomorphism T (X) ∼=
⋃
n∈N∞ T (n)/=I .

Given a pair (γ,x) ∈
⋃
n∈N∞ T (n)/=I , we think about γ as the effect produced during

a computation, and about x as the possible values returned. Elements in T (n) are called
generic effects [60], whereas we refer to the set {xi}i∈n associated to x as the support of ξ.

By Theorem 4.1, we can represent any monadic element as an equivalence class of a
pair (γ,x). Working with such pairs1 allows us to simplify proofs. Moreover, elements
in T (n) form an operand [40, ?]. In particular, they come with a notion of composition
that mapping all generic effects γ ∈ T (n), α1 ∈ T (m1), . . . , α1 ∈ T (m1), to a generic
effect γ ◦ (α1, . . . , αn) ∈ T (l), where l ,

∑
i∈nmi. Additionally, operands comes with a

diagrammatic syntax whereby we write

γ
n

i xi

for the pair (γ, 〈xi〉i∈n) ∈ T (n) × Xn. In a diagram γ
n

i xi, the letter i ranges over

elements in n and to each i it is associated the corresponding element xi. That is, the
horizontal bar with subscript i and target xi stands for the function i 7→ xi.

Example 4.2 1. Consider the maybe monad M. We present an object µ ∈ M(X) as a
pair in M(n) × Xn, for some n ∈ N∞. Since M(n) × Xn = (n + {↑}) × Xn, µ is
(presented as) either a pair (k, 〈xi〉i∈n) or a pair (↑, 〈xi〉i∈n). The former corresponds to
the case of convergence to xk, whereas the latter to divergence. In particular, if ξ is the
result of evaluating a λ-term, then we will actually have n = 1 (if the term converges)
or n = 0 (if the term diverges). If n = 1, we obtain pairs of the form (1, 〈x〉)), which

we write as ↓ x. If n = 0, then we can only have the pair (⊥, 〈〉), where 〈〉 is the

empty sequence. We write such a pair as ↑ .

2. Consider the output monad O. We present an object µ ∈ O(X) as a pair in O(n) ×
Xn = O∞ × (n + {↑}) × Xn, for some n ∈ N∞. Therefore, µ is presented as either
a triple (o, ↑, 〈xi〉i∈n), or as a triple (o, k, 〈xi〉i∈n). The former case means that we
have divergence, and that the string o is outputted, whereas the latter case means that
we converge to xk, and that the string o is outputted. As before, if µ is the result of
evaluating a (λ-)term, we will have either n = 1 (if the term converges) or n = 0 (if
the term diverges). If n = 1, we have triples of the form (o, 1, x)) which we write as

o x. If n = 0, the we can only have triples of the form (o,⊥, 〈〉), which we write

as (o, ↑) .

3. The case for the subdistribution monad goes exactly as in Example 4.1. We can present

a formal sum (〈pi〉i∈n, 〈xi〉i∈n) as 〈pi〉i∈n
n

i xi.

1For simplicity, we work with pairs (γ,x) rather than with their equivalence classes: it is a straightforward
exercise to check that all definitions we give relying on such pairs do not actually depend on the specific
choice of the pair, so that they extend to elements in

⋃
n∈N∞ T (n)/=I .
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Using the diagrammatic syntax, we present the composition of pairs (γ,x), (α1,y1), . . . , (αnyn)
(with x of length n and each yi of length mi) as:

γ
n

i αi
mi

j yj

Notice that associativity of composition is built-in the diagrammatic notation and that the
latter also manages index dependencies. In fact, in the above diagram we see that i ∈ n
and j ∈mi. Moreover, by reading from the right to the left we recover index dependencies:
since j ∈mi, it depends on i ∈ n. There is a trivial generic effect η ∈ T (1) corresponding
to the unit of T which behaves as a neutral element for composition:

η ξ = ξ; γ
n

i η xi = γ
n

i xi.

Moreover, given a function f : X → T (Y ) and µ ∈ T (X), we see that if µ is presented as

γ
n

i xi, then µ >>= f is presented as γ
n

i f(xi). Finally, we recall a well-known result

by Plotkin and Power stating that algebraic operations and generic effects are equivalent
notions.

Proposition 4.2 ([60]) There is a one-to-one correspondence between generic effects in
T (n) and n-ary algebraic operations on T .

In light of Proposition 4.2, if we present objects µi ∈ T (X) as ξi, then we write

op
n

i ξi for the presentation of op(µ1, . . . , µn). Notice that if µi is presented as ξi, then

both op(µ1, . . . , µn) >>= f and op(µ1 >>= f, . . . , µn >>= f) are presented as op
n

i f(ξi).

That is, the defining identity of algebraic operations (Definition 3.3) is built-in the notation.

Order-Theoretic Properties Since we deal with Σ-continuous monads, we can transfer
order-theoretic properties of T to the diagrammatic notation by stipulating that a diagram
ξ is below a digram ϕ (notation ξ v ϕ) if so are the elements presented by those diagrams.

In particular, there is a bottom effect ⊥ ∈ T (0) corresponding to the bottom element

of T satisfying the law ⊥ v ξ, for any diagram ξ. Additionally,we have the following
monotonicity laws, where f : X → T (Z) :

(∀i ∈ n. ξi v ϕi) =⇒ γ
n

i ξi v γ
n

i ϕi

γ
n

i xi v α
m

j yj =⇒ γ
n

i f(xi) v α
m

j f(yj)

5 A Linear Calculus with Algebraic Effects

In this section, we introduce a core linear call-by-value calculus with algebraic operations and
explicit copying and its resource-agnostic operational semantics. The syntax of the calculus
is parametric with respect to a signature Σ of operation symbols (notation op ∈ Σ), whereas
its dynamics relies on a Σ-continuous monad T , which we assume to be fixed.

5.1 Syntax

Our vehicle calculus is a linear refinement of fine-grain call-by-value [41], which we call Λ!.
The syntax of Λ! is given by two syntactic classes, values (notation v, w, . . .) and computa-
tions (notation e, f, . . .), which are thus defined:

v ::= x | λx.e | !e

e ::= a | val v | vv | let x = e in e | op(e, . . . , e) | let !a = v in e.

8



The letter x denotes a linear variable, and thus acts as a placeholder for a value which has
to be used exactly once. Dually, the letter a denotes a non-linear variable, and thus acts as
a placeholder for a computation which can be used ad libitum.

Following the fine-grain discipline, we require computations to be explicitly sequenced
by means of the let x = − in − constructor. The latter comes in two flavors: in the first
case, we deal with expressions of the form let x = e in f , where x is a linear variable in
f (and thus used once). The intuitive semantics of such an expression is to evaluate e, and
then bind the result of the evaluation to x in f . As x is linear in f , the result of e cannot be
copied. In the second case, we deal with expressions of the form let !a = v in f , where a is
a non-linear variable in f (and thus it can be used as will). As we are going to see, for such
an expression to be meaningful, we need v to be a banged computation !e. The intuitive
semantics of such an expression is thus to ‘unbang’ !e, and then bind e to a in f , this way
enabling f to copy e as will.

When the distinction between values and computations is not relevant, we generically
refer to terms, and denote them as t, s, . . .. We adopt standard syntactic conventions as in
[5]. In particular, we work with terms modulo renaming of bound variables, and denote by
t[x := v] (resp. t[a := e]) the result of capture-avoiding substitution of the value v (resp.
computation e) for the variable x (resp. a) in t.

5.2 Statics

The syntax of Λ! allows one to write undesired programs, such as programs having runtime
errors (e.g. (!e)v) and programs that should be forbidden by any reasonable type system
(such as (val !e)⊕ (val λx.f)). To overcome this problem, we follow [17] and endow Λ! with
a simply-typed system with recursive types, using the system in, e.g., [6]. Types are defined
by the following grammar:

σ ::= x | !σ | σ( σ | µx.σ( σ | µx.!σ
where x is a type variable. Types are are defined up to equality, as defined in Figure 2,
where σ[τ/x] denotes the substitution of τ for all the (free) occurrences of x in σ.

µx.σ( τ = σ[µx.σ( τ/x]( τ [µx.σ( τ/x] µx.!σ =!σ[µx.!σ/x]
σ = ρ[σ/x] τ = ρ[τ/x]

σ = τ

Figure 2: Type equality

In order to define the collection of well-typed expressions, we consider sequents Σ | Ω `v
v : σ and Σ | Ω `Λ e : σ, where Ω is a linear environment, i.e. a set without repetitions of the
form x1 : σ1, . . . , xn : σn, and Σ is a non-linear environment, i.e. a set without repetitions
of the form a1 : τ1, . . . , an : τn. Rules for derivable sequents are given in Figure 3. We write
Vσ and Λσ for the collection of closed values and computations of type σ, respectively. We
write V and Λ when types are not relevant.

Remark 5.1 (Notational Convention) In order to facilitate the communication of the
main ideas behind this work and to lighten the (quite heavy) notation we will employ in
the next sections, we avoid to mention types (and ignore them in the notation) whenever
possible. Nonetheless, the reader should keep in mind that from now on we work with typable
terms only. We refer to such an assumption as the type assumption.

5.3 Dynamics

The dynamic semantics of Λ! associates to any closed computation e of type σ a monadic
element in T (Vσ). Such a dynamics is defined relying on Felleisen’s evaluation semantics

9



Σ | x : σ `v x : σ a : σ,Σ | ∅ `Λ a : σ

Σ | x : σ,Ω `Λ e : τ

Σ | Ω `v λx.e : σ( τ

Σ | Ω `v v : σ

Σ | Ω `Λ val v : σ

Σ | Ω `v v : σ( τ Σ | Ω′ `v w : σ

Σ | Ω,Ω′ `Λ vw : τ

Σ | ∅ `Λ e : σ

Σ | ∅ `v !e : !σ

Σ | Ω `v v : !σ Σ, a : σ | Ω′ `Λ e : τ

Σ | Ω,Ω′ `Λ let !a = v in e : τ

Σ | Ω `Λ e : σ Σ | Ω′, x : σ `Λ f : τ

Σ | Ω,Ω′ `Λ let x = e in f : τ

Σ | Ω `Λ e1 : σ . . . Σ | Ω `Λ en : σ

Σ | Ω `Λ op(e1, . . . , en) : σ

Figure 3: Statics of Λ!

[26]. Accordingly, we define evaluation contexts and redexes by the following grammars

E ::= [−] | let x = E in e

r ::= (λx.e)v | let x = (val v) in e | let !a = !e in f | op(e1, . . . , en)

where [−] acts as a placeholder for a computation. The pure reduction relation 7→ is thus
defined:

(λx.e)v 7→ e[x := v] let x = (val v) in e 7→ e[x := v] let !a = !e in f 7→ f [a := e]

Notice that 7→ is deterministic and that no (side) effect is produced when performing ac-
cording 7→-reductions. We denote by r′ the unique term such that r 7→ r′. The dynamics of
Λ! is defined in Figure 4 by means of an N-indexed family of evaluation functions mapping
a closed computation e ∈ Λσ to an element JeKΛ

k ∈ T (Vσ), where we stipulate JeKΛ
0 , ⊥.

Since (JeKΛ

k)k≥0 forms an ω-chain in T (V), we define JeKΛ ,
⊔
k≥0JeK

Λ

k. Notice that thanks
to the type assumption, we ignore programs causing runtime errors. Finally, we lift J−KΛ to
monadic computations, i.e. to elements ξ ∈ T (Λ) by setting JξKΛ∗ , ξ >>= (e → JeKΛ) (and
similarity for J−KΛ

k).

Jval vKΛ

k+1 , η(v)

J(λx.e)vKΛ

k+1 , Je[x := v]KΛ

k

Jlet x = e in fKΛ

k+1 , JeKΛ

k >>= (v → Jf [x := v]KΛ

k)

Jlet !a = !e in fKΛ

k+1 , Jf [a := e]KΛ

k

Jop(e1, . . . , en)KΛ

k+1 , JopK(Je1KΛ

k, . . . , JenK
Λ

k)

Figure 4: Operational Semantics of Λ!

5.4 Observational Equivalence

In order to compare Λ!-terms, we introduce the notion of contextual equivalence [51]. To do
so, we follow [?, 68] and postulate that once an observer executes a program, she can only
observe the effects produced by the evaluation of the program. For instance, in a pure (resp.
probabilistic) calculus one observes pure (resp. the probability of) convergence. Following
this postulate, we define an observation function obsΛ∗ : T (Λ) → T (1) as T (!V), where
1 = {∗} is the one-element set and !V : V → 1 is the terminal arrow. As a consequence, we
see that obsΛ∗ is strict and continuous, so that we have, e.g., obsΛ∗(

⊔
k ξk) =

⊔
k obs

Λ∗(ξk).
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Example 5.2 Notice that T (1) indeed describes the observations one usually work with in
concrete calculi. For instance, D(1) ∼= [0, 1], so that obsΛ∗(JeK) gives the probability of
convergence of e, and M(1) ∼= {⊥,>}, so that obsΛ∗(JeK) = > if and only if e converges.

In order to define contextual equivalence, we need to introduce the notion of a Λ!-context.
The latter is simply a Λ!-term with a single linear hole [−] acting as a placeholder for a
computation (we regard a value v as the computation val v). We do not give an explicit
definition of contexts, the latter being standard.

Definition 5.3 Define contextual equivalence ≡ctx as follows:

e ≡ctx f ⇐⇒ ∀C. obsΛ∗ JC[e]K = obsΛ∗ JC[f ]K
v ≡ctx w ⇐⇒ val v ≡ctx val w.

As usual, we can easily show ≡ctx to be a congruence relation.

Remark 5.4 Thinking to a context C as an experiment, we see that C being forced to use
its hole [−] linearly, we are allowed to experiment with a program e more than once only if
e ∈ Λ!σ.

Contextual equivalence is a powerful notion to discriminate between programs, but are
not well-suited to establish equivalences between them. We overcome this deficiency by char-
acterising contextual equivalence as a notion of effectful environmental trace equivalence.

6 Resource-sensitive Semantics and Program Equiva-
lence

The operational semantics of Section 5.3 is resource-agnostic, meaning that linearity de facto
plays no role in the definition of the dynamics of a program. To overcome this deficiency, we
endow Λ! with a resource-sensitive operational semantics: we give the latter by means of a
suitable transition systems, which we dub resource transition systems. Resource transition
systems (RTSs, for short) provide an operational semantics for Λ!-programs accounting for
both their intensional and extensional behaviour. Those are defined as first-order transition
systems in the spirit of [44], and generalise the Markov chains of [17].

6.1 Auxiliary Notions

In order to properly handle resources, it is useful to introduce some notation on sequences.
Let S, S′ be sequences over objects s1, s2, . . .. Unless ambiguous, we denote the concatena-
tion of S and S′ as S, S′. Moreover, for S = s1, . . . , sk we denote by |S| = k the length of
S, and write S[s]i, with i ∈ {1, . . . , k + 1}, for the sequence obtained by inserting s in S
at position i, i.e. the sequence s1, . . . , si−1, s, si, . . . , sk of length k + 1. Given a sequence
S = s1, . . . , sk, we will form new sequences out of it by taking elements in S at given posi-
tions. If c̄ = c1, . . . , cn is a sequence with elements in {1, . . . , k} without repetitions, then
we write Sc̄ for the sequence sc1 , . . . , scn , and S 	 c̄ for the sequence obtained from S by
removing elements in positions c1, . . . , cn. In order to preserve the order of S, we often
consider sequences c̄ = (c1 < · · · < cn) with ci ∈ {1, . . . , k}. We call such sequences valid
for S (although we should say valid for |S| ).

Concatenation and insertion Unless ambiguous, we will denote the concatenation of Σ
and Σ′ as Σ,Σ′. Moreover, for Σ = S1, . . . , Sk we denote by |Σ| = k the length of Σ,
and write Σ[S]p, with p ∈ {1, . . . , k + 1}, for the sequence obtained by inserting S in
Σ at position p, i.e. the sequence S1, . . . , Sp−1, S, Sp, . . . , Sk of length k + 1. Notice
that Σ[S]1 = S,Σ and Σ[S]k+1 = Σ, S.
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Subsequences and subtraction Oftentimes, given a sequence Σ = S1, . . . , Sk, we will
form new sequences out of it by taking elements in Σ at given positions. If p̄ =
(p1, . . . , pl) is a sequence with elements in {1, . . . , k} without repetitions, then we
write Σp̄ for the sequence Sp1 , . . . , Spl , and Σ	 p̄ for the sequence obtained from Σ by
removing elements in position p1, . . . , pl. Observe that if ϕ : {1, . . . , l} → {1, . . . , l} is a
permutation, then Σ	p̄ = Σ	ϕ(p̄) (meaning that the operation 	 has actually a set—
rather than a sequence—as left operand), and that we have the identity Σ[S]p	p = Σ.

Ordered subsequences When building the sequence Σ 	 p̄, for Σ and p as above, we
preserve the order of Σ. This is not the case for Σp̄. To avoid such behaviours, we can
consider sequences p̄ = (p1 < · · · < pk) with pi ∈ {1, . . . , n}. We call such sequences
valid for Σ (although we should say valid for |Σ|: indeed, if p̄ is valid for Σ, then it is
also valid for any Σ′ such that |Σ′| = |Σ|).

System K The resource-sensitive operational semantics of Λ! is given by the RTS K.
Following [44], K-states are defined as configurations (Γ; Θ), i.e. pairs of sequences of terms,
where Γ is a (finite) sequence of (closed) computations and Θ is a (finite) sequence of (closed)
terms in which only the last one need not be a value. In order to facilitate our analysis,
we introduce the following notation. If Θ ends with a closed computation e, then we write
(Γ; ∆; e) with ∆ finite sequence of closed values (and Θ = ∆, e). Otherwise, we write (Γ; ∆),
with ∆ as above. To facilitate our analysis, we write (Γ; ∆; e) if Θ = ∆, e, with ∆ finite
sequence of closed values and e ∈ Λ. Otherwise, we write (Γ; ∆), with ∆ as above.

In a configuration (Γ; ∆; e) (and similarity in (Γ; ∆)), Γ represents the non-linear re-
sources available, which are (closed) computations: the environment can freely duplicate
and evaluate them, as well as use them ad libitum to build arguments to pass as input to
other programs. Once a resource in Γ has been used, it remains in Γ, this way reflecting
its non-linear nature. Dually, ∆ represents the linear resources available, which are closed
values. Values in ∆ being closed, they are either abstractions or banged computations. In
the latter case, the environment can take a value !e, unbanged it, and put e in Γ. In the
former case, the environment can pass to a value λx.f an input argument made out of a
context C (provided by the very environment) using values and computations in Γ,∆. Since
resources in ∆ are linear, once they are used by C, they must be removed from ∆. Finally,
the program e is the tested program. The environment can only evaluate it, possibly pro-
ducing effects and values (linear resources). Once a linear resource v has been produced, it
is put in ∆.

The calculus Λ! being typed, it is convenient to extend the notion of a type to configura-
tions by defining a configuration type (notation α, β, . . .) as a pair of sequences (σ1, . . . , σn; τ1, . . . , τm)
of ordinary types. We say that a configurationK = (Γ; Θ) has type α = (σ1, . . . , σn; τ1, . . . , τm)
(and write ` K : α) if each computation ei at position i in Γ has type σi, and each term ti
at position i in Θ has type τi.

Notice that configuration types almost completely describe the structure of configura-
tions. However, they do not allow one to see whether the last argument in the second
component Θ of a configuration (Γ; Θ) is a value (so that the type will be inhabitated by
configurations of the form (Γ; ∆)) or a computation (so that the type will be inhabitated
by configurations of the form (Γ; ∆; e)). To avoid this issue, we add a special label to the
last type τm of the second component of a configuration type, this way specifying whether
τm refers to a value or to a computation. Mimicking previous notational conventions, we
write (σ1, . . . , σn; τ1, . . . , τm) if all τis refer to values, and (σ1, . . . , σn; τ1, . . . , τm; ρ) if all τis
refers to values and ρ to a computation.

Formally:
`Λ e1, . . . , en : σ1, . . . , σn `v v1, . . . , vm : τ1, . . . , τm
` (e1, . . . , en; v1, . . . , vm) : (σ1, . . . , σn; τ1, . . . , τm)

`Λ e1, . . . , en : σ1, . . . , σn `v v1, . . . , vm : τ1, . . . , τm `Λ e : ρ

` (e1, . . . , en; v1, . . . , vm; e) : (σ1, . . . , σn; τ1, . . . , τm; ρ)
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We denote by Cα the collection of configurations of type α. Notice that if K,L ∈ Cα,
then they have the same structure. In particular, terms in K and L at the same position
have the same type and belong to the same syntactic class. As usual, following the type
assumption, we will omit configuration types whenever possible.

States of K are thus (typable) configurations, whereas its dynamics is based on three kind
of actions: evaluation, duplication, and resource-based application, which are extensional,
intensional, and mixed extensional-intensional actions, respectively. Formally, we consider
transitions from (typable) configurations, i.e. elements in

⋃
α Cα to monadic configurations

in
⋃
α T (Cα), i.e. monadic configurations κ such that all configurations in the support of

κ have the same type. This ensures that all configurations in supp(κ) can make the same
actions. As usual, such a property follows by typing, hence by the type assumption. We
now spell out the main ideas behind the dynamics of K.
• Given a configuration (Γ; ∆; e), the environment simply evaluates e. That is, we have

the transition:
(Γ; ∆; e)

eval−−→ JeK >>= (v → η(Γ; ∆, v)).

• Given a configuration of the form (Γ; ∆[!e]l), the environment adds e to the non-linear
environment, and removes !e from the linear one. We thus have the transition:

(Γ; ∆[!e]l)
?l−−→ η(Γ, e; ∆).

• In a configuration of the form (Γ[e]l; ∆), the environment has the non-linear resource e
at its disposal, which can be duplicated (and eventually evaluated via an eval action).
We model such a behaviour as the following transition (notice that e is not removed from
Γ[e]l):

(Γ[e]l; ∆)
!l−−→ η(Γ[e]l; ∆; e).

• For the last action, namely resource-based application, we consider open terms as playing
the role of contexts. An open term is simply a term Σ | Ω ` t. We refer to an open
term a1, . . . , an | x1, . . . , xm ` t as a (n,m)-(value/computation) context, depending on
whether t is a value or a computation. Given sequences Γ = e1, . . . , en, ∆ = v1, . . . , vm,
we write t[Γ,∆] for the substitution of variables in t with the corresponding elements in
Γ,∆. As usual, following the type-assumption we assume types of variables to match
types of the substituted terms. Given sequences ı̄, ̄ of length n, m valid for Γ, ∆,
respectively, we can build a new (closed) term out of Γ,∆ and a (n,m)-context t as
t[Γı̄,∆̄]. Since resources in ∆ are linear, the construction of t[Γı̄,∆̄] affects ∆, this way
leaving only resources ∆	 ̄ available. We formalise this behaviour as the transition:

t (n,m)-value context |̄ı| = n, |̄| = m ı̄, ̄ valid for Γ,∆

(Γ; ∆[λx.f ]l)
(ı̄,̄,l,t)−−−−→ η(Γ; ∆	 ̄; f [x := t[Γı̄,∆̄]])

Definition 6.1 System K is the (resource) transition system having typable configurations
as states, actions

{eval , ?l, !l, , (̄ı, ̄, l, t), α | l ∈ N, t (n,m)-value context, |̄ı| = n, |̄| = m}

where α ranges over configuration types, and dynamics defined by the transition rules in
Figure 5, where we employ the notation of previous discussion.

Remark 6.2 Notice that given K ∈ Cα, K can always make a α-transition, this way making
its type visible. Additionally, we see that the transition structure of K is type-driven. That
is, given a configuration K ∈ Cα and a K-action `, α and ` alone determine whether K
can make an `-transition. Moreover, if that is the case, then there is a unique κ such that

K
`−−→ κ. Besides, κ ∈ T (Cβ) for some configuration type β which is uniquely determined
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(Γ; ∆; e)
eval−−→ JeK >>= v → η(Γ; ∆, v) (Γ; ∆[!e]l)

?l−−→ η(Γ, e; ∆).

(Γ[e]l; ∆)
!l−−→ η(Γ[e]l; ∆; e) (Γ; ∆[λx.f ]l)

(ı̄,̄,l,t)−−−−→ η(Γ; ∆	 ̄; f [x := t[Γı̄,∆̄]])

Figure 5: Transition rules for K

by ` and α. That is, there is a partial function b from configuration types and actions such

that if b(α, `) is defined and K ∈ Cα, then K
`−−→ κ with κ ∈ T (Cb(α,`)). As a consequence,

in order to know whether a configuration K of type α can make a `-transition, it is sufficient
to check if b(α, `) is defined. From now on, we write b(α, `) = β to mean that b(α, `) is
defined and equal β. As a consequence, we have the rule:

K ∈ Cα ∧ b(α, `) = β =⇒ ∃!κ ∈ T (Cβ). K
`−−→ κ.

Having defined system K, there are at least two natural ways to compare its states.
The first one is by means of bisimilarity, which can be defined in a standard way [18].
Unfortunately, bisimilarity being sensitive to branching, it is bound not to work well for our
purposes, as already extensively discussed. The second natural way to compare K-states is
by means of trace equivalence which, contrary to bisimilarity, is not sensitive to branching,
and thus qualifies as a suitable candidate program equivalence for our purposes.

Definition 6.3 A K-trace (just trace) is a finite sequence of K-actions. That is, a trace t
is either the empty sequence (denoted by ε), or a sequence of the form ` · u, where ` is a
K-action and u a trace.

We are interested in observing the behaviour of K-states on those traces that are coherent
with their type. Therefore, given a K-state K, we define the set Tr(K) of its traces by

stipulating that ε ∈ Tr(K), for any K, and that ` · u ∈ Tr(K) whenever K
`−−→ κ, for

some monadic configuration κ, and u ∈ Tr(L), for any L ∈ supp(κ). Notice that the latter
clause is meaningful, since Tr(K) is actually determined by the type of K (rather than by

K itself), and if K
`−−→ κ, then all configurations in the support of κ have the same type.

Now, given a K-state K, and a trace t ∈ Tr(K), the observable behaviour of K on t is
the element in T (1) computed using the map st thus defined:

st(K, ε) , η(∗); st(K, ` · u) , κ >>= (L→ st(L, u)) where K
`−−→ κ.

Example 6.4 It is a straightforward exercise to prove that on the powerset monad st gives
the usual notion of ‘passing a trace’. Let us consider the (sub)distribution monad D, and
let K be a configuration. Recall that D(1) ∼= [0, 1], and notice that st(K, ε) = 1. Suppose

now K
eval−−→

∑
i∈n pi · Li. Then, we see that st(K, eval · u) =

∑
i∈n pi · st(Li, u) ∈ [0, 1],

meaning that st(K, t) gives the probability that K passes the trace t.

Definition 6.5 The relation 'K
Tr

on K-states is thus defined:

K 'K
Tr
L ⇐⇒ Tr(K) = Tr(L) ∧ ∀t ∈ Tr(K). st(K, t) = st(L, t)

We extend the action of 'K
Tr

to Λ!-terms by regarding a computation e as the configuration
(∅; ∅; e), and a value v as the computation val v. We denote the resulting notion 'Λ

Tr
.

Having added 'K
Tr

to our arsenal of operational techniques, it is time to investigate its
structural properties and its relationship with contextual equivalence. Before doing so,
however, we take a fresh look at our running example.
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Example 6.6 Let us use the machinery developed so far to review our introductory exam-
ples. First, we show

val λx.(e⊕ f) 'Λ

Tr
(val λx.e)⊕ (val λx.f).

Let us call g the former program, and h the latter. To see that g 'Λ
Tr
h, we simply observe

that Tr(∅; ∅; g) = Tr(∅; ∅;h) and that for any t ∈ Tr(g), the probability that (∅; ∅; g) passes
t coincides with the one of (∅; ∅;h). All of this can be easily observed by inspecting the
following transition systems.

(∅; ∅; val λx.(e⊕ f))

eval

��
(∅;λx.(e⊕ f))

1,v

��
(∅; ∅; e[x := v]⊕ f [x := v])

eval

��

0.5 0.5

(∅; ∅; Je[x := v]K) (∅; ∅; Jf [x := v]K)

(∅; ∅; (val λx.e)⊕ (val λx.f))

eval

��

0.5 0.5

(∅;λx.e)

1,v

��

(∅;λx.f)

1,v

��
(∅; ∅; e[x := v])

eval

��

(∅; ∅; f [x := v])

eval

��
(∅; ∅; Je[x := v]K) (∅; ∅; Jf [x := v]K)

In light of Theorem 7.8, we can then conclude g ≡ctx h. Next, we prove that such an
equivalence is only linear: val !(e⊕ f) 6≡ctx (val !e) ⊕ (val !f). For that, it is sufficient to
instantiate e and f as the identity program val (λx.val x) and the purely divergent program
Ω, respectively, and to take the context C defined as let x = [−] in let !a = x in (a; a; val v),
where v is closed value, and e; f denotes trivial sequencing. Indeed, what C does is to evaluate
its input and then test the result thus obtained twice.

7 Trace Equivalence: Soundness and Completeness

In this section, we prove the main result of this work, namely full abstraction of trace equiv-
alence for contextual equivalence: 'Λ

Tr
= ≡ctx. That ≡ctx is included in 'Λ

Tr
(completeness)

does not come with much of a surprise. In fact, it is easy to realise that all K-actions (and
thus traces) can be implemented by suitable contexts [17]. Proving that 'Λ

Tr
is included in

≡ctx (i.e. soundness) is, however, more challenging. Our proof builds upon the technique
given by Deng and Zhang [24] and Crubillé and Dal Lago [17] to prove similar full abstrac-
tion results for trace equivalences and metrics, respectively. Due to the large amount of
technicalities, before entering into the technical details of the proof of soundness of trace
equivalence, it is instructive to outline the main points of such a proof.

Soundness of trace equivalence means that the inclusion 'Λ
Tr
⊆ ≡ctx holds. To prove that,

we have to show that if e 'Λ
Tr
f , then we have obsΛ∗JC[e]KΛ = obsΛ∗JC[e]KΛ, for any context

C. Our proof proceeds by progressively building systems with increasingly more complex
state spaces, but with finer dynamics. We summarise our strategy in the following diagram.

Λ
C[−] //� _

��

Λ∗
obsΛ∗

// T1

K �
� // K∗

C[−] // F �
� // F∗

push

OO

obsF
∗

99

Since 'Λ
Tr

is defined in terms of 'K
Tr

, we consider configurations—K-states—and contexts for
them, where a context for a K-state K is just a standard multiple-holes context whose holes
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have to be filled with with terms in K. The first step of our strategy is the determinization
of K. This is achieved by lifting the state space of K from configurations to monadic
configurations. The dynamics of K is then lifted relying on the (strong) monad structure
of T in a standard way [19]. We call the resulting system K∗. The advantage of working
with K∗ is that K∗-bisimilarity and K∗-trace equivalence coincide, K∗ being deterministic.
In general, most of the transition systems we rely on can be ultimately described as systems
S = (X, δ) made of a state space X and a dynamics δ : X → T (X)A, for some set A of
actions. The determinization of S, which we usually denote by S∗, has T (X) as state space
and dynamics δ∗ : T (X) → T (X)A defined as the strong Kleisli extension of δ (modulo
(un)currying).

Having determinized K, we reach a situation where we have to study the computational
behaviour of a monadic configuration κ — i.e. a K∗-state — and a context C for the
configurations in the support of κ. To do so, we build a further system, called F , whose
states are pairs C : κ made of a monadic configuration κ and a context C for it. The
dynamics of F is given by an evaluation function which, when applied to a F-state C :
κ, gives the same result of evaluating the monadic computation C[κ] ∈ T (Λ), where for

κ = γ
n

i Ki, we define C[κ] pointwise as γ
n

i C[Ki]. Such a dynamics explicitly

separates the computational steps acting on C only from those making C and κ interact.
This feature is crucial, as it shows that any interaction between C and κ corresponds to a
K∗-action, so that equivalent K∗-states will have the same F-dynamics when paired with
the same context. That gives us a finer analysis of the computational behaviour of the
compound monadic computation C[κ], and ultimately of a compound computation C[e].
As we did for K, it is actually convenient to determinise F . We call the resulting system
F∗. Finally, from F∗ we can come back to T (Λ) using the map push : F∗ → T (Λ) defined

by push
(
γ

n

i C : κ
)

= γ
n

i C[κ]. We summarize the systems introduce in the

following table.

System K K∗ F F∗
States Configurations K Monadic configurations κ Pairs C : κ Monadic pairs

Dynamics Definition 6.1 Kleisli lifting of K JC[κ]K∗ Kleisli lifting of F

What remains to be clarified is how relations between computations can be transformed
into relations on the aforementioned systems. The answer to this question is given by the
following lax 2 commutative diagram:

Λ �
� //

'Λ
Tr
_
��

K �
� //

'KTr
_
��

K∗
C[−] //

'K
∗

Tr
_
��

F �
� //

C('K
∗

Tr )
_
��

F∗ obsF
∗
//

BC('K
∗

Tr )
_
��

T1

=_
��

Λ �
� // K �

� // K∗
C[−]

// F �
� // F∗

obsF
∗
// T1

Here, C(R) denotes the contextual closure of R, whereas B(R) is the Barr extension of R
[7, 36]. Finally, the map obsF

∗
is obtained postcomposing the observation map obs with

push.

7.1 Determinisation: From K to K∗

The first step of our strategy is the determinisation of K. We do so by taking advantage of
Remark 6.2 and working with a transition system whose states are monadic configurations
in
⋃
α T (Cα). Without much of a surprise, we extend the notion of a type to monadic

configurations by stipulating κ has type α if and only if κ ∈ T (Cα).

2Each square gives a set-theoretic inclusion. For instance, the leftmost square states that 'Λ
Tr ⊆ 'KTr.
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Definition 7.1 System K∗ has elements in
⋃
α T (Cα) as states, K-actions as actions, and

transition structure thus defined, where γ
n

i Ki ∈ T (Cα):

b(α, `) defined ∀i ∈ n. Ki
`−−→ κi

γ
n

i Ki
`

==⇒ γ
n

i κi

Notice that K∗ is indeed a deterministic system and that, by Remark 6.2, the transition

structure of K∗ is well-defined. For suppose κ = γ
n

i Ki is a K∗-state, and thus an

element in T (Cα) for some configuration type α, and let ` be an action such that b(α, `) = β.

Then, for any i ∈ n, we have Ki
`−−→ κi, for some κi ∈ T (Cβ). As a consequence, we see that

γ
n

i κi ∈ T (Cβ). Notice also that for ⊥α ∈ T (Cα), we have ⊥α
a

==⇒ ⊥β , for any β

and action a such that b(α, a) = β.
We define a notion of trace equivalence for K∗ pretty much as we did for K. The action

sets of K and K∗ being the same, the set of traces of K and K∗ are the same as well.
Moreover, given a K∗-state κ, the set Tr(κ) is defined in the obvious way. Finally, we rely
on the structure (T{∗}, obsK∗) for observations, where obsK

∗
maps a K∗-state to an element

in T{∗} as usual: obsK
∗
(
γ

n

i Ki

)
, γ

n

i ∗.

Definition 7.2 Let κ ∈ T (Cα) and t ∈ Tr(κ). Define the element st∗(κ, t) ∈ T1 as follows:

st∗(κ, ε) , obsK
∗
(κ); st∗(κ, a · u) , st∗(ρ, u) where κ

a
==⇒ ρ

Trace equivalence 'K∗
Tr

is the relation on K∗-states thus defined:

κ 'K∗
Tr
ρ ⇐⇒ Tr(κ) = Tr(ρ) ∧ ∀t ∈ Tr(κ). st∗(κ, t) = st∗(ρ, t).

Lemma 7.1 Given a K∗-state ξ = γ
n

i Ki and a trace t ∈ Tr(ξ), we have:

st∗
(
γ

n

i Ki, t
)

= γ
n

i st(Ki, t)

Proof. First of all observe that if t ∈ Tr(ξ), then t ∈ Tr(Ki), for any i. In fact, say
ξ ∈ T (Cα), so that Ki ∈ Cα for any i. Since whether t ∈ Tr(Ki) is determined by the
type of Ki, we indeed have t ∈ Tr(Ki), for any i ∈ n. We now prove the thesis by
induction on t. The case for t = ε is trivial. Suppose t = a · u. Since t ∈ Tr(ξ), we have

γ
n

i Ki
a

==⇒ γ
n

i αi
mi

j Lj , with Ki
a−−→ αi

mi

j Lj . We can thus compute:

st∗
(
γ

n

i Ki, a · u
)

= st∗
(
γ

n

i αi
mi

j Lj , u
)

IH
= γ

n

i αi
mi

j st(Lj , u)

= γ
n

i st(Ki, a · u)

�

Corollary 7.2 Given two K-states K,L, we have K ≤K
Tr
L if and only if η K ≤K∗

Tr

η L.

Finally, we take advantage of the deterministic nature of K∗ and characterise trace
equivalence coinductively as K∗-bisimilarity.

Definition 7.3 Define K∗-bisimilarity 'K∗ as the largest relation R on K∗-states such that:
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• ξ R ϕ and ξ
a

==⇒ ξ′ implies ϕ
a

==⇒ ϕ′ and ξ′ R ϕ′

• ξ R ϕ implies obsK
∗
(ξ) v obsK

∗
(ϕ).

As usual, since obsK
∗

is monotone we can define .K
∗

coinductively as the greatest fixed
point of a suitable monotone function. Moreover, K∗ being deterministic, we can recover
K∗-bisimilarity as the intersection of .K

∗
and its dual.

Proposition 7.3 .K
∗

= ≤K∗
Tr

.

Proof. Obviously .K
∗

is contained in ≤K∗
Tr

. For the converse, observe that ≤K∗
Tr

is a simu-
lation. �

Finally, we recover standard inductive reasoning on finite approximations of program
semantics by means of finite-step simulation.

Lemma 7.4 Let k ≥ 0. Define system Kk by replacing JeKΛ with JeKΛ

k in Definition ??, and
system K∗k by replacing K with Kk in Definition 7.1 Let .K

∗
k be similarity on K∗k and define

finite-step similarity .K
∗

fin as
⋂
k .

K∗
k . Then .K

∗
fin = .K

∗
.

Proof. [Proof sketch] The hard part is proving .K
∗

fin ⊆ .K
∗
. For that we show that the

K∗-relation R , {(
⊔
n κn, ρ) | κn .K

∗
fin ρ} is a K∗-simulation. To do so we rely on the ω-cppo-

enrichment of T and use diagonalisation of double chains (given a sequence (xn,m)n,m in a
domain, if n ≤ n′ and m ≤ m′ imply xn,m v xn′,m′ , then

⊔
n

⊔
m xn,m =

⊔
m

⊔
n xn,m =⊔

k xk,k). �

7.2 From K∗ to F∗

The next step of our construction is to equip K∗-states with contexts. To do so, we first define
the notion of a context for a configuration. Without much of a surprise, the latter is modelled
as an open term t whose free variables can be instantiated with terms in configurations.
However, in order to properly account for configurations of the form (Γ; ∆; e), we have to
consider open terms having a free variable (one is enough for our purposes) acting as a
placeholder for a linearly-used computations.

Definition 7.4 Let (Γ; ∆) be a configuration with |Γ| = n and |∆| = m. A context for
(Γ; ∆) is simply a (n,m)-context, i.e. an open term a1, . . . , an | x1, . . . , xm ` t. A context
for a configuration (Γ; ∆; e) is an open term a1, . . . , an | x1, . . . , xm | z ` t, where z is a
linear placeholder for a computation.

Due to space constraints, we do not given an explicit system for sequents of the form
Σ | Ω | z ` t, as such a system is standard.

Given a monadic configurations κ, we say that t is a context for κ if t is a context for
all configurations in supp(κ) (notice that if t is a context for a configuration in the support
of κ, then it is a context for all such configurations). If that is the case, then we can pair

t and κ together, obtaining a monadic term t[κ] ∈ T (Λ) ∪ T (V), where for κ = γ
n

i Ki

we define t[κ] as γ
n

i t[Ki].

In order to study the computational behaviour of a K∗-state paired with a context for
it, we define a new system, called F , whose states are figures of the form t : κ, with t
context for κ. If t[κ] ∈ T (V), then we say that t : κ is a F-value state (similarity, we have
F-computation states when t[κ] ∈ T (Λ): by type assumption, these are the only possible
cases). The dynamics of F is given by an evaluation function J−KF mapping F-computation
states to monadic F-value states.

In order to facilitate the definition of J−KF , it is convenient to first extend the action of
J−KΛ to open terms. We do so following [39].
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Definition 7.5 An evaluation context E is an expression generated by the following gram-
mar:

E ::= [−] | let x = E in e.

A stuck expression is an expression of the form E[s], where s is an expression having the
shape of a redex but whose evaluation is stuck, due to the presence of a variable. Formally,
stuck expressions are thus defined:

s ::= a | z | xv | let !a = x in e

We are now ready to define the dynamics J−KF of system F . As usual, we define J−KF as⊔
k≥0J−KFk , where Jt : κKF0 , ⊥ . In order to define Jt : κKFk , where t : κ is a F-computation

state, we proceed by cases on t.

Case 1. Suppose t is neither a value nor a stuck term. Then Jt : ξKFk+1 simply evaluates t.

Jval t : ξKFk+1 , η t : ξ

JE[let x = (val t) in s] : ξKFk+1 , JE[s[x := t]] : ξKFk
JE[(λx.s)t] : ξKFk+1 , JE[s[x := t]] : ξKFk

JE[let !a = !t in s] : ξKFk+1 , JE[s[a := t]] : ξKFk

JE[op(t1, . . . , tn)]KFk+1 , JopK n

i JE[ti]KFk

Case 2. Suppose t is of the form E[z]. We do a further analysis on the shape of E. In
the following, we write JKKKk , where K is a configuration of the form (Γ; ∆; e), for

γ
n

i (Γ; ∆, vi), where JeKΛ

k = γ
n

i vi. We extend J−KK to a map J−KK∗ acting

on K∗-states as usual.

Case 2.1. Consider the case for z : ξ. Since z is a context for ξ, ξ must have the form

γ
n

i (∅; ∅; ei), so that JξKK∗k have the form α
m

j (∅; vj). Define:

Jz : ξKFk+1 , η x1 : JξKK∗k .

Case 2.2. Consider the case for E[let x = z in s] : ξ. As before, we must have that
any configuration K in the support of ξ must have the form (Γ; ∆; e). Therefore,
any configuration in the support of JKKK∗k must have the form (Γ; ∆, v). Let
|∆| = n. Define:

JE[let x = z in s] : ξKFk+1 , JE[s[x := xn+1]] : JξKK∗k KFk

Case 3. We have to consider those cases E[s] where the stuck expression s comes from a
variable acting as a placeholder for a resource in a configuration of the form (Γ; ∆). In
those cases we just mimic transitions in K∗ and update E[s] accordingly. Notice that
this is exactly what we have done in case 2, where we have mimicked eval actions.

• Consider the case for E[ai]. Since the latter is a context for ξ, any configuration
K in the support of ξ must have the form (Γ[e]i; ∆). As a consequence, we have

the K-transition K
!i−−→ η (Γ[e]i; ∆; e), and thus a K∗-transition from ξ,

say to ϕ. Define:
JE[ai] : ξKFk+1 , JE[z] : ϕKFk

19



• Consider the case for E[let !a = xi in t]. Since the latter is a context for ξ,
any configuration K in the support of ξ must have the form (Γ; ∆[!e]i). As a

consequence, we have the K-transition K
?i−−→ η (Γ, e; ∆), and thus a

K∗-transition from ξ, say to ϕ. Let |Γ| = n. Define:

JE[let !a = xi in t] : ξKFk+1 , JE[let !a = !an+1 in t] : ϕKFk .

• Finally, consider the case for E[xit]. Since the latter is a valid context for ξ, (i)
any configuration K in the support of ξ must have the form (Γ; ∆[λx.f ]i), (ii)
there must exist sequences i 6∈ s̄, p̄ such that s̄, p̄ are valid for Γ,∆ respectively,
and (iii) t is a (|s̄|, |p̄|)-value context (and thus t open value). As a consequence,
we have the K-transition

(Γ; ∆[λx.f ]i)
(s̄,p̄,i,t)−−−−−−→ η (Γ; ∆	 p̄; (λx.f)t[Γs̄,∆p̄])

and thus ξ
(s̄,p̄,i,t)

======⇒ ϕ, for a suitable K∗-state ϕ. Let |∆	 p̄| = n. Define:

JE[xit] : ξKFk+1 , JE?[z] : ϕKFk

where E? is the re-indexing of free variables of E according to ∆ 	 p̄. That is,
recall that a context for (Γ; ∆) with |Γ| = n, |∆| = m, is a term a1, . . . , an |
x1, . . . , xm ` t with the intended meaning that, e.g., variable xi is a placeholder
for the i-th value in ∆. Say the latter is v. When passing from ∆ to ∆ 	 p̄ we
change the position of values in ∆, so that the i-th value in ∆ (i.e. v) (to which
we associate the variable xi in t) may not be at position i in ∆	 p̄. Therefore, we
have to change the index i in xi to an index j in such a way that xj is associated
to v in ∆ 	 p̄. Such a re-indexing can be easily done observing that if v has
position i in ∆, then it has position i− |{p ∈ p̄ | p < i}| in ∆	 p̄.

We summarise the defining rules of Jt : κKFk+1 in Figure 6, where we employ the notation
used in the above discussion.

Jval t : κKFk+1 , η t : κ

JE[r] : κKFk+1 , JE[r′] : κKFk

JE[op(t1, . . . , tn)] : κKFk+1 , JopK n

i JE[ti] : κKFk

Jz : κKFk+1 , η x1 : JκKK∗ .

JE[let x = z in s] : κKFk+1 , JE[s[x := xn+1]] : JκKK∗KFk
JE[ai] : κKFk+1 , JE[z] : ρKFk .

JE[let !a = xi in s] : κKFk+1 , JE[let !a = !an+1 in s] : ρKFk .

JE[xit] : κKFk+1 , JE?[z] : ρKFk

Figure 6: Definition of J−KFk+1

Finally, we determinise F building a new system, which we call F∗.

Definition 7.6 System F∗ has monadic (well-typed) F-states as states, where, as usual,
all F-states in the support of a F∗-state ζ have the same type. Given a F∗-state ζ, if
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all F-states in its support are F-value states, then we say that ζ is a F∗-value state (and
similarity for computation-states). The dynamics of F∗ is given by the map J−KF∗ mapping

F∗-computation states to F∗-value states:
r
γ

n

i ti : κi

zF∗
, γ

n

i Jti : κiKF . The

map J−KF∗k is defined as usual.

We can extract an element in T (V) out of a F∗-value state (and an element in T (Λ) out

of a F∗-computation state) using the function push mapping a K∗-state γ
n

i ti : κi to

γ
n

i ti[κi]. As expected, push connects J−KF∗ and J−KΛ∗ .

Lemma 7.5 For any F∗-computation state ζ, we have push JζKF∗ = Jpush ζKΛ∗ .

Proof. [Proof sketch] This essentially follows from the way we have defined J−KF . In fact,
it is sufficient to prove that for any k ≥ 0, and F-state t : κ we have:

push Jt : κKFk v Jt[κ]KΛ∗

Jt[κ]KΛ∗

k v push Jt : κKF

The proof proceeds by induction on k. �

We have thus came up with a way to relate system F∗ with monadic terms. We sum-
marise such a relationship in the following commutative diagram, where obsF

∗
abbreviates

obsΛ∗ ◦push, and we write F∗Λ for the restriction of F∗ to F∗-computation states (similarity,
we use the subscript V for F∗-value states).

TΛ
J−KΛ∗

// TV obsΛ∗
// T1

F∗Λ
J−KF

∗

//

push

OO

F∗V
obsF

∗

88

push

OO

Notice that the ω-cppo-enrichment of T implies continuity of push, and thus of obsF
∗
,

since obsΛ∗ is continuous.
We are now ready to prove soundness of 'Λ

Tr
for ≡ctx. Concretely, what we have to prove

is that e 'Λ
Tr
f implies obsΛ∗JC[e]KΛ = obsΛ∗JC[f ]KΛ, for any context C. To prove such a

statement we need to study the computational behaviour of C[e] and C[f ]. The right setting
to do so, is, obviously, system F∗. Hence, we need to move from programs to F∗-states. We

do so by mapping C[e] to ζe , η C : η (∅; ∅; e) (ans similarity we map C[f ] to

a F∗-state ζf ). By Lemma 7.5, we recover JC[e]KΛ as push JζeKF
∗
, and thus obsΛ∗JC[e]KΛ as

obsF
∗JζeKF

∗
. We thus find ourselves in a situation of the form:

η
(
C : η (∅; ∅; e)

)
��

F(≤Λ
Tr

) η
(
C : η (∅; ∅; f)

)
��r

η
(
C : η (∅; ∅; e)

)zF∗
?

r
η

(
C : η (∅; ∅; f)

)zF∗
Here, F(≤Λ

Tr
) is a lifting of ≤Λ

Tr
to F∗-states, and the question mark ? stands for a relation

on F∗-states such that:

1. Whenever Z F(≤Λ
Tr

) U , we have JZKF∗ ? JUKF∗

2. Z ? U implies obsF
∗
(Z) v obsF

∗
(U).
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Obviously, if we are able to find such a relation ? (as well as a suitable lifting F), we can
conclude the wished thesis.

Let us examine how the definition of the definition of J−KF∗ proceeds. First, we evaluate
the context C, this way obtaining the diagram:

η
(
C : η (∅; ∅; e)

)
��

F(≤Λ
Tr

) η
(
C : η (∅; ∅; f)

)
��

γ
n

i

(
si : η (∅; ∅; e)

)
? γ

n

i

(
si : η (∅; ∅; f)

)
Next, we have the interaction between e (resp. f) and the new contexts sis:

η
(
C : η (∅; ∅; e)

)
��

F(≤Λ
Tr

) η
(
C : η (∅; ∅; f)

)
��

γ
n

i

(
si : η (∅; ∅; e)

)
��

? γ
n

i

(
si : η (∅; ∅; f)

)
��

α
m

j

(
s′j : γ1

n1

i Ki

)
? α

m

j

(
s′j : γ2

n2

i Li

)
where γ1

n1

i Ki ≤K
∗

Tr
γ2

n2

i Li, and thus γ1
n1

i Ki .K
∗
γ2

n2

i Li. At this point

the invariant should be clear. All F∗-states in the diagram have the same ‘outermost effect’,
argumentwise equal contexts, and K∗-similar inner (K∗-)states. This directly leads us to the
following definition.

We thus have two F∗-states, ζe and ζf , which are related by the obvious lifting of 'Λ
Tr

to F∗-states. Such a lifting, however, is not preserved by the dynamics of F∗. In order to
conclude the wished thesis, we need a stronger relation. In fact, it is sufficient to find a
relation R on F∗-states such that

(i) ζe R ζf ,

(ii) R is closed under the dynamics of F∗ (meaning that ζ R θ implies JζKF∗ R JθKF∗), and

(iii) R respects obsF
∗
, meaning that ζ R θ implies obsF

∗
(ζ) = obsF

∗
(θ).

Actually, since obsF
∗

is continuous, we can replace implication (ii) with

(ii’) ζ R θ implies ∀k ≥ 0. JζKF∗k R JθKF∗k .

Indeed, if that is the case, then by (iii) we have obsF
∗ JζKF∗k = obsF

∗ JθKF∗k , for any k ≥ 0
We conclude:

obsF
∗ JζKF∗ = obsF

∗ ⊔
k

JζKF∗k =
⊔
k

obsF
∗ JζKF∗k =

⊔
k

obsF
∗ JθKF∗k = obsF

∗ JθKF∗

Coming back to the task of finding the desired R, we see that the latter is essentially
given by the following diagram, which is obtained by very definition of J−KF∗ .
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η C : η (∅; ∅; e)

��

R η C : η (∅; ∅; f)

��

γ
n

i ti : η (∅; ∅; e)

��

R γ
n

i ti : η (∅; ∅; f)

��

α
m

j sj : Ξj
lj

a Ka R α
m

j sj : Υj
hj

b Lb

Suppose we begin by evaluating the context C in isolation, i.e. without interacting
with e (resp. f) This is nothing but the application of the first five rules in Figure 6, and
corresponds to moving from the first to second raw in the above diagram. Notice that now
states consist of equal outermost (generic) effects and argumentwise equal open terms.

Next, we have the interaction between e (resp. f) and the new contexts ti. By inspection
of the rules in Figure 6, we see that e and f , as well as the monadic configurations coming
from their evaluation, do not affect the outermost generic effects, which, instead, are modified
by the terms ti only, thus remaining equals. Additionally, the open terms ti can be modified
by e and f (and their monadic configurations coming from their evaluation) only by renaming
variables and by replacing stuck terms with variables. Such modifications correspond to K∗-
actions only, and e and f having the same traces, they can make the same modifications. We
thus see that what we have reached are F∗-states with the same outermost generic effect,
argumentwise equal open terms, and, thanks to Proposition 7.3, 'K∗

Tr
-related inner K-states

(meaning that Ξj
lj

a Ka 'K
∗

Tr
Υj

hj

b
Lb in the diagram above). This is our invariant.

By inspecting rules in Figure 6, we see that the desired relation is thus defined as follows:

Definition 7.7 Let R be a K∗-relation. Define the F∗-relation BC(R), called the Barr and
contextual closure of R, as:

BC(R) ,
{(

γ
n

i ti;κi, γ
n

i ti; ρi
)
| γ ∈ T (n) ∧ ∀i. κi R ρi

}
.

Lemma 7.6 (Main Lemma) For all F∗-states ζ, θ:

ζ BC('K∗
Tr

) θ =⇒ ∀k ≥ 0. JζKF∗k BC('K∗
Tr

) JθKF∗k .

The proof of Lemma 7.6 follows the informal intuition given in the above discussion, and
proceeds by induction on k taking advantage of the equality 'K∗

Tr
= 'K∗ .

Finally, since e 'Λ
Tr
f obviously implies ζe BC(R) ζf , we obtain soundness of 'Λ

Tr
for

contextual equivalence.

Theorem 7.7 'Λ
Tr
⊆ ≡ctx.

As already anticipated, 'Λ
Tr

is also complete for ≡ctx. This is proved by showing that
≡ctx ⊆ 'Λ

Tr
, which is itself proved by noticing that any K-action can be encoded as a context.

Theorem 7.8 ≡ctx = 'Λ
Tr

.

We omit the proof of this result, as the encoding of K-actions as contexts is essentially
the same one of [17].
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8 Conclusion and Future Work

In this paper, we have introduced resource transition systems as an operational account
of both intensional and extensional behaviours of linear effectful programs with explicit
copying. On top of resource transition systems, we have defined trace equivalence and
showed that the latter is fully abstract for contextual equivalence.

Although the present paper focuses on linearity (and effects), the authors’ believe that
resource transition systems can be extended to deal with finer notions of context dependence
such as structural coeffects [53, 27, 13, 52]. To do so, one should modify resource transition
systems by considering sequences of terms indexed by elements of a resource algebra (the
latter being a preordered semiring), and let transitions update resources. Thus, for instance,
from a sequence (Γ, 〈e〉r+1,∆), meaning that e is available according to the resource r + 1,
we have a transition to (Γ, 〈e〉r,∆; e).

The authors also believe that resource transition systems can be used to generalise Cru-
billé and Dal Lago probabilistic program metric to arbitrary algebraic effects. To do so, one
would simply replace ordinary relations with relations taking values over quantales [28].

Finally, as a long term future work, the authors would like to whether the ideas presented
in this paper can be adapted to deal with quantum languages [65, 66], where the interaction
between linearity and effects plays a central role. In fact, although we have not discussed
tensor product types (which play a crucial role in a quantum setting), it is not hard to see
that resource transition systems can be extended to deal with such types [16].

8.1 Related Work

This is not the first work on operationally-based notions of program equivalence for linear
calculi. In particular, notions of equivalences have been defined by means of logical relations
by Bierman, Pitts, and Russo [10], of applicative bisimilarity by Bierman [9] and Crole3

[14], of trace equivalence by Deng and Zhang [24, 23], as well as of a number of possible
worlds-indexed equivalences (e.g. [2, 35]). As already remarked, one of the advantages of
resource transition systems (and their associated trace equivalence) compared, e.g., with
logical relations, is that they they provide a first-order account of program equality.

Among first-order notion of program equivalence, Bierman’s applicative bisimilarity plays
a prominent role. The latter is a lightweight extensional equivalence extending Abramsky’s
applicative bisimilarity [1] to a pure linear λ-calculus with explicit copying Bierman’s ap-
plicative bisimilarity can be readily extended to calculi with algebraic effects along the lines
of [18], this way obtaining a notion of equivalence invalidating (!-dist). However, such a
notion of bisimilarity stipulates that two programs !e and !f are bisimilar if and only if e
and f are, this way making bisimilarity insensitive to linearity, and thus invalidating (λ-dist)
as well4.

Deng and Zhang’s linear trace equivalence has been designed to study the interaction of
linearity and (both pure and probabilistic) nondeterminism. The latter equivalence, in fact,
validates (λ-dist). However, linear trace equivalence does not deal with (explicit) copying:
even worst, natural extensions of such notions to languages with copying result in equiv-
alences validating (!-dist). Crubillé and Dal Lago [17] solved that problem by introducing
a tuple-based applicative bisimilarity for a calculus with probabilistic nondeterminism and
explicit copying. Our notion of a resource transition system can be seen as a generalisation
of the Markov chain underlying tuple based applicative bisimilarity to arbitrary algebraic
effects.

3Crole’s applicative bisimilarity, however, does not deal with copying.
4Besides, notice that bisimilarity being sensitive to branching, it naturally invalidates (λ-dist).
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