Quantitative models and Implicit Complexity

Ugo Dal Lago Martin Hofmann
Dipartimento di Scienze dell'Informazione Institut fur Informatik
Universita di Bologna Ludwig-Maximilians-Universitat, Minchen
dal | ago@s. uni bo. it mhof mann@ nf or mat i k. uni - nruenchen. de
Abstract

We give new proofs of soundness (all representable furecbarbase types lies in certain complexity classes) for Light
Affine Logic, Elementary Affine Logld-PL and Soft Affine Logic. The proofs are based on a common serabfirimework
which is merely instantiated in four different ways. Therfeavork consists of an innovative modification of realizgbivhich
allows us to use resource-bounded computations as real&eopposed to including all Turing computable functionsas
usually the case in realizability constructions. For exdell realisers in the model fotFPL are polynomially bounded
computations whence soundness holds by construction ahtltkel. The work then lies in being able to interpret all the
required constructs in the model. While being the first ehtisemantical proof of polytime soundness for light logozs
proof also provides a notable simplification of the origimdéteady semantical proof of polytime soundnesdfePL. A new
result made possible by the semantic framework is the aahditi polymorphism and a modality kd-PL.

1 Introduction

In recent years, a large number of characterizations of &mxitp classes based on logics and lambda calculi have ap-
peared. At least three different principles have been égupnamely linear types [3, 7], restricted modalitieshia tontext
of linear logic [5, 1, 9] and non-size-increasing computa{6]. Although related one to the other, these systems baga
studied with different, often unrelated methodologies Bavdresults are known about relative intentional exprespower.
We believe that this area of implicit computational comfilexeeds unifying frameworks for the analysis of quanitiat
properties of computation. This would help to improve theenstanding on existing systems. More importantly, uniyi
frameworks can be usdddemselveas a foundation for controlling the use of resources insidgamming languages.

In this paper, we give new proofs of soundness (all reprabémfunctions on base types lies in certain complexityseaks
for Light Affine Logic (LAL, [1]), Elementary Affine Logic EAL, [4]), LFPL [6] and Soft Affine Logic SAL, [2]). The
proofs are based on a common semantical framework which iglyniastantiated in four different ways. The framework
consists of an innovative modification of realizability whiallows us to use resource-bounded computations asewrsalis
as opposed to including all Turing computable functionssassually the case in realizability constructions. For eglam
all realisers in the model fdtFPL are polynomially bounded computations whence soundndds bg construction of the
model. The work then lies in being able to interpret all thguieed constructs in the model. While being the first entirel
semantical proof of polytime soundness for light logics, poof also provides a notable simplification of the origimeeady
semantical proof of polytime soundness E&PL. A new result made possible by the semantic framework is dldéian of
polymorphism and a modality toFPL.

The rest of the paper is organized as follows. In section 2egeribe an abstract computational model that will be used in
the rest of the paper. In section 3 we introduce length spau@show they can be used to interpret multiplicative linegic
with free weakening. Sections 4, 5 and 6 are devoted to présstances of the framework together with soundness esult
for elementary, soft and light affine logics. Section 7 présa further specialization of length spaces and a new smssd
theorem folLFPL based on it.

2 An Abstract Computational Model

In this paper, we rely on an abstract computational framkwather than a concrete one like Turing Machines. This, in
particular, will simplify proofs.

Let L = {0,1}* be the set of finite binary sequences. We assume a pairingidarie -) : L x L — L so that pairing
and projections are computable in linear time or similartffermore, we assume a length functjorj : L — N such that
[{(z,y)| = |z| + |y| + O(1) and|z| < length(xz). We assume a partial applicati¢n}(z) € L for e,x € L and an abstract
time measurdime({e}(x)) € N such thatTime({e}(z)) is defined whenevefe} (x) is and, moreover, there exists a fixed
polynomialp such that

{e}(z) can be evaluated on a Turing machine in time bounded Byme({e}(z))).
L can be embedded into iself by a mép L — L such that botl® and®~! can be computed in polynomial time.

e For each Turing machin®/ there ise € L so that{e}(®(z)) equalsP(y), wherey is the result of running/ on input
x. Furthermore Time({e}(®(x))) bounds the number of steps neededyon inputz.

e Foranye,d € Lthere existsloe € L suchthatdoe| = |d|+ |e|+ O(1) and{doe}(z) = {d}(y) wherey = {e}(z)
and moreoveflime({d o e}(x)) = Time({e}(x)) + Time({d}(y)) + O(|z| + |y|).

e Thereise;q such that{e,;}(z) = « for everyz and Time({e;q } (x)) = O(|x]).

o There iSesuqp such thaesyap }((z,y)) = (y,) and Time({eswap } (2)) < O(|2]).

e There iseqyq such tha{eq,q}({d, c)) = {d}(c) and Time({eevar } ({d, c))) = Time({d}(c)) + O(|d| + |¢|)-

e Foreache € Lthereise* € L with |e*| = |e|[+O(1) suchthafe*}((m,n)) = ({e}(m),n) andTime({e*}((m,n))) =
Time({e}(m)) + O(|m| + |n| + [e] + [{e}(m)]).

e Thereise,ss such thafe,ss }((x, (y, 2))) = ((z,y), z) and Time({eqss1} (z)) = O(|x]).

e There ise ontr SUCh that{e onsr }(x) = (z, x) and Time({econtr } (z)) = O(|z]).

o There ise .,y such that, for each, d = {e.r } () exists and satisfigg| = |e| + O(1) and Time({ecurry } (€)) =
O(le]); moreover, for every, ¢, = {d}(x) exists and satisfigs,| = |e| + || + O(1) and Time({d}(x)) = O(|z|);
finally, for everyy, {c.}(y) = {e}({z,y)) and Time({c; }(y)) = Time({e}((z,y))) + O] + |y|)-

There are a number of ways to instantiate this framework,rgnleem SECD machines, Turing machines with an adapted
definition of length and time and call-by-value lambda chlcu

Now, we will sketch a possible instance of this abstract cataional framework, namely a call-by-value lambda-chisu
with constants. We assume an enumeration of Turing Machipesrings inL. [e](z) is the result of running the Turing
Machine corresponding toon inputz and Time([e](xz)) denotes the number of steps needed by the Turing Machine-corr
sponding tce when feeded by:.

Terms are defined by the following productions:

M=z | MM | \x.M | simul | appzero | appone | epsilon

Every strings € L corresponds to a terd(s) in the following way:

O(e) = epsilon
®(0s) = appzerod(s)
®(1ls) = apponed(s)

Values are defined by the following productions:
Viu=a | Ax.M | simul | appzero | appone | epsilon | ®(s)

wheres ranges oveL. We define the sizg\/| of a termM as follows:

|x| = |simul| = |appzero| = |appone| = |epsilon| = 1
IMN| = |M|+|N|+1
Mz.M| = |M|+1

The numberFO(x, M) of free occurrences of inside M can be defined in the usual way. We are now ready to define a
ternary reduction relatiodd ~,, N whereM, N are terms and is a natural number. First of all, defire,, by the following
two rules:
Az M)V —=yiro@my M{V/x}
simulate®(e)®(r) — pime((e)(x)) P(le](z))

M ~,, N is defined as follows:

M —, N M ~, N M ~, N M~y N N ~s,, L
M~, N ML~, NL LM ~, LN M ~>pym L

Let M, N be terms. Consider the following terms:

(M,N) = Xz.xMN
NoM = le.NMz)
M,y = Mv.x
Mowap = Izz(Ay w.Az.zwy)
Mo = Azv.x(Ay waw(Az. g Ar.r(As.syz)q))
Mepar = Axx(AyIw.yw)
Meontr = Az A\y.yze
Mewrry = Az Ay dw.z(Az.zyw)
M* = dzax(Ay w.(AzAz.zzw)(My))

If U andV are closed values arfddV has a normal forni, then we will denotéV by {U }(V'). Moreover,Time({U}(V))
is the largest integet such thatUV ~»,, W. Now, let M, N, L, V, W, U be closed values such thgt/}(V) = W and
{N}(W) = U. One can verify that

Time({(No M)V}U)) = |V|+ Time({M}(V))+ Time({N}(W))
Time({Mia}(V)) = [|V|
Time({Mswap }((M,N))) = 2|M|+2|N|+12
Time({Massi}((M, (N, L)))) = 3[M[+3|N|+3|L|+41
Time({Mepai }((M,N))) = 2|M|+2|N|+9+ Time({M}(N
sze({Mcontr}(M)) = 2|M|
Time({M*}((V,N))) = 2|V|+2|N|+|M|+ |W]|+ 16 + Time({M}(V))

Now, let M, V, W, U be closed values such th@gt/ }((V,W)) = U. Then

NV o~y dwMAz2Vw) =L
LW~y M(Az.2VW)

As a consequence

Time({N}(V)) = |V
Time({L}(W)) = [W]+ Time({M}({V,W)))

This proves this lambda-calculus to satisfies all the axidmthe following, c¢p will be a fixed constant such thgt:,)| <
|2 + [y| + cp.

3 Length Spaces

In this section, we introduce the category of length spacdstudy its properties. Lengths will not necessarily be bers
but rather elements of a commutative monoid.
A resource monoids a quadruplél = (|M|,+, <ar, Das) where

1. (JM],+) is a commutative monoid,;
2. <y is a pre-order ofM | which is compatible witht;
3. Dur: {(e, B) | @ <ar B} — Nis afunction such that for every, 3, v

DM(aa ﬁ) + D]\/I(ﬁa’y) S DM(OK,')/)
Dy(a,8) < Dyla+v,8+7)

and, moreover, for eveny € N there isa such thatD,, (0, o) > n.
Given a resource monoitf = (|M|, +, <us, Dar), the functionFy, : |M| — Nis defined by puttingFa; () = D (0,).
Lemma 1 If M is a resource monoid, theR,, is antitone on its first argument and monotone on its secogdraent.

Proof. If a <,; 3, then

D]\/I (Oé, ’Y)
Dy (v,)

IN IV

A length spacen a resource monoit = (|M|, +, <as, Dys) is a paird = (JA|,IF4), where|A] is a set and
IFC |M| x L x |A|

is a relation satisfying the following conditions:

If (a,e,a) €lF 4, thenFa () > lel;

For everya € |A|, there arey, e such tha{a, e, a) €lk4;
If (a,e,a) €lF4 anda <j; B, then(S, e, a) €l 4;

If (o, e,a) €lF4 and(a, e, b) €l 4, thena = b.

The last requirement implies that each elemenit4ifis uniquely determined by the (nonempty) set of it realiserd in
particular limits the cardinality of any length space to thember of partial equivalence relations bn

We will usually writea, e I-4 a meaning(a, e, a) €lk 4.

A morphismfrom length spaced = (] A4|,IF4) to length spaceB = (| B|,IFz) (on the same resource monald =
(IM],+, <a, Dar)) is afunctionf : |A| — |B] such that there existe {0,1}*, ¢ € | M| with Fas () > |e] and whenever
a,d I 4 a, there must bég, ¢ such that

1. B,clkp f(a);

2. 0<mp+a

3. {e}(d) =¢;

4. Time({e}(d)) < Fulp + a)Du (B, ¢ +)

We calle a realizer off andy a majorizer off.
If fis a morphism fromd to B realized bye and majorized by, then we will writef : A <% Bory,els_op f.

Given two length spaced = (|A|,IF4) andB = (|B|,I-5) on the same resource mondid, we can buildA ® B =
(|A] x |B|,IFagr) (on M) wheree, « IFag 5 (a, b) iff there aref, g, 8, v with

f,BlFaa
g,7IFp b
e=(f.9)
a>y B+
Fula) > Fu(B) + Fu(y) + cp

A ® B is a well-defined length space due to the axiomg.Hn

Given A and B as above, we can build — B = (|A| = |B|,IFa—p) Wheree,a IF4_.p f iff fis a morphism fromd
to B realized bye and majorized byv.

Morphisms can be composed:

Lemma 2 (Composition) If f : A — B andg : B — C are morphisms, thegio f : A — C'is a morphism, too.

Proof. Let f : A “% Bandg: B “% C. We know thatTime({d o ¢}(k)) is bounded byTime ({e}(k)) + Time({d}())
(wherel = {e}(k)) plus some overhead proportionalltd and|!|, sayp|k| + ¢|l| + r. Now, let us now choosg such that

Fu(p) > |doe|+p+q+r. We will prove thatgo f : A doegtyti o, Obviously,Fa(p+ v+) > |doel. If a,n k4 a,
then there must bg, m such that3, m I f(a) and the other conditions prescribed by the definition of aphism hold.
Moreover, there must be, s such thaty, s IF¢ ¢g(f(a)) and, again, the other conditions are satisfied. Putting tiogether,
we get:

Y<uBt+yY<matotv<pyatep+i+p

and

Time({d o e}(n)) Time({e}(n)) + Time({d}(m)) + plk| + q|I| +

Fula+ @)Dy (B, a+ @) + Fu(B+)Du(y, B+ 1)

+pFum(a) + qFu(B) +rFu(p)

Fula+ o+) Du(B+v,a+ o +¢) + Fula+ ¢ +9)Du(y, B+)
+p+q+r)(Fula+o+1v+p)
Fula+o+¢+p)Du(v,a+@+¢) + Fula+o+¢+ p)Fu(p)
Fula+e+v+p)Du(y, e+ @+ +p)

IAINA

IN

IA A

This concludes the proof. O

Basic morphisms can be built independently on the undegly@source monoid. Noticeably, they correspond to axiom of
multiplicative linear logic:

Lemma 3 (Basic Maps) Given length spaced, B, C, there are morphisms:
id @ A—A
swap : ARB —>B®A
assl : AQ(B®C)— (A®B)®C
eval : A®(A—B)— B
curry @ (A®B)—o(C)— A— (B—C()

where
id(a) = a
swap(a,b) = (b,a)
assl(a, (b,c)) = ((a,b),¢)
eval(a, f) = f(a)
curry(f) = Aa.Ab.f(a,b)

Proof. We know that{e;; }(d) take time linear ind|, say at mosp|d| + ¢q. Then, lety,; € M be such thatFy;(p;q
p + q + |eiq| (this can always be done). Now, letd IF4 a. We have thaty, d I-4 id(a), o <y o+ @id, {€ia}(d) =
Moreover

2
d.

Time({eia }(d)) pld|+q < (p+q)(|d|+p+q) < Fru(pia)(Fum(a) + Fr(pia))
(Fm(pia) + Dum (o,) (Fu (pia) + Fu(e))

Dar(a, a + 9iq) Far(pia + <)

ININCIA

This provesid to be a morphism.

We know that{e,qp }((d, c)) takes time linear ind| + |c|, say at mosp|d| + g|c| + r. Then, letyg,q, € |M| be such
thatFas(wia) > p+ g+ 7 + |eswap|- NOw, leta, e IFagp (a,b). This means that = (d, ¢) anda, (¢, d) IFpga (b,a). We
can then apply the same argument asifborin particular:

Time({eswap }(€)) pldl +dlef+r<@+q+r)(d+lcd+p+q+r)
(p+ q + T)(|€| +p+ q + T) S TM(Wswap)(fk[(a) + fM(‘Pswap))
(fﬂf((pswap) + DM(CY, a))(]:]\/f ((Pswap) + -7:]\/1 (Oé))

DJ\/I (CY, a+ (pswap)]:]\/l((pswap + a)

VAN VAN VANVAN

This provesswap to be a morphism. We can verifiss! to be a morphism exactly in the same way.

We know that{e.,q; } ({d, c)) = {d}(c) and{ecvai } ({d, c)) takes overload time linear id|+ |c|, say at mosp|d|+q|c|+7.
Pevar IS Chosen as to satistfas (Yevar) > P+ ¢+ 1 + [€cvar]- LEtNOWA, € IF4g(a—op) (a, f). This means that = (d, c)
and there ar@ and~ such that

B,dlFaa
v,clkaop f
a > B+
Fu(a) > Fu(B) + Fu(y) + cp

From~, clF4_.p f it follows that, by the definition of a morphism, there mustba such that

1. 6,hlFg f(a)

2.0 <m B+~

3. {c}(d)=h

4. Time({c}(d)) < Fu(B+v)Dum(6,8+7)

Fromé <,; B8+ v andS + v < q, it follows thatd <;; a <p; a + p. Moreover:

Time({ecvar}((d, c))) pld| + gle[+r + Time({c}(d))

(p+q+r)(|d + || +p+ q+7r) + Time({c}(d))
Frr(Pevat) Far (o + pevar) + Far(B+7)Dur (6,8 +)
Fru(a+ @eva) Par (0, @evar) + Far(a + @evar) Dar (6, @)

Far(a+ ©evat) D (6, & + Vevat)

(VAN VAN VAN VAN VAN

Now, let us prove thaturry is a morphism. First of all, we know there must be constanis. ., pg such that, for each
e, x,y, there arel andc, with

Time({ecurry }(€)) < pile[+p2
d = {ecurry}(e)
ldf < lel+ps
Time({d}(z)) < palz|+ps
e = {d}(x)
lca] < el + |z| + ps
Time({ce}(y)) < Time({e}((z,y))) + prlz| + pslyl + po

Letu,d,&,0 € |M|be such thaFy, (1) > cp, Far(0) > ps + pr + ps + po, Far(€) > p3 + pa + ps andFar (o) > p1 + po.
Finally, putycurmy = p+60+&+0. Letnowe, z k4 a, B,y IFp bandy, e lFags—c f. By definition of a morphism, there
must bed, ¢ such thatx + 3, ¢ I-¢ f(a,). Using the usual techiques, we can show thaty + p+ 0, ¢ IF ¢ Ab.f(a,),
which in turn yieldsy + p + 6 + &, ¢ IFp_oc Aa.Ab. f(a, b). Finally, this means thaturry is a morphism justified by .,
and majorized by, + 6 + £ + 0 = @cyrry. This concludes the proof. 0.

Length spaces can justify the usual rule for tensor as a roapefr:

Lemma 4 (Tensor) If f : A — B is a morphism and’ is a length space, thefix id : A® C — B ® C'is a morphism,
too.

Proof. Let f : A =% B. We know that andlime({e*}((m, n))) is at mostTime({e}(m)) + p|{e}(m)| + q|n| + r|m| +
sle| +u wherep, g, r, s, u are constants. Then, takee M such thatF; (1)) > p+q+r+s+u+|e*], putc = +o+pu,
whereFy; (i) > cp. Supposém, n), a lFage (a, c). By definition, there ar@, v such that

m,BH—Aa
n,v ke e
a>m B+

By hypothesis, there argt such that

t,0 kg f(a)
d<mep+p
{e}(m) =t
Time({e}(m)) < Fu(e + B)Dum (6, ¢ +)

Then,y + 6§ + p, (t,n) Fagp (f(a),c). Moreover,

YHOtu<uyte+tftp<matotp<mato

Finally:
Time({e*}((m,n))) < Time({e}(m)) +p{e}(m)|+ qln| +rim| + s
< Fule+B)Du(,o+8) +
pFn(0) + qFar () + rFu(B) + sFar(d) + uFu (¥)
< Fulo+a) Dy, o+ p6)+p+qg+r+s+u)
< Fula+o0) Dy +y+uo+B+v+p) +p+q+r+s+u)
< Fula+0) Dy +v+p,a+o0)
This concludes the proof. O
Thus:

Lemma 5 Length spaces and their morphisms form a symmetric mondiotsgd category with tensor and linear implication
given as above.

Alength spacd is defined by 7| = {0} anda, e IF4 0 whenFy,;(a) > |e|. For each length spacéthere are isomorphisms
A® I ~ A and aunique morphistA — I. The latter serves to justify full weakening.

For every resource monoit!, there is a length spadey; = (|La|,IFr,,) Where|Ly,| = L anda,t IFr,, t whenever
Fum(a) > t. The functions, (respectively,s;) from {0,1}* to itself which append§ (respectively,l) to the left of its
argument can be computed in linear time on a Turing Machide @aha consequence, is a morphism frbgp to itself.

Identity, Cut and Weakening.

, kA AAEB Ik A
AFA T,AFB T,BF A

w

Multiplicative Logical Rules.

I''A,B-C 'A A+B

T.AoBrC TAFA®B 1®

'-A A,BFC’L I'ArB R
INAJA—BFC 77 'FA—oB "

Second Order Logical Rules

FTAC/a]FB . THA ag FV(D)
T VaArB L T'FVa.A

RV

Figure 1. Intuitionistic Multiplicative Affine Logic

3.1 Interpreting Multiplicative Affine Logic

We can now formally show that second order multiplicatifanaflogic (i.e. multiplicative linear logic plus full weakeng)
can be interpreted inside the category of length spaces ymanoid M. Doing this will simplify the analysis of richer
systems presented in following sections. Formulae of fiotistic) multiplicative affine logic are generated btfollowing
productions:

Ai=al|A—oA|A® A|Va.A

wherea ranges over a countable set of atoms. Rules are reportedine fig Arealizability environmenis a partial function
assigning length spaces (on the same resource monoid) s atRealizability semantic@A]]ff of a formulaA on the
realizability environmeny is defined by induction onl:

[[a]]“:;? = n(a)

[A BlY = [Alf ®[B]}

[A— Bl = [Al7 — [BIY

Mo.Al? = (Ve AR, o age)

where
e ALY = [T 1ALl
Ceu

e,all—[[va.A]]?a — VC.e,all—gAﬂ?[aﬂcla

Here? stands for the class of all length spaces. A little care isladavhen defining the product since strictly speaking it
does not exist for size reasons. The standard way out is thdgiroduct range over those length spaces whose underlying
set equals the set of equivalence classes of a partial deguoearelation orl.. As already mentioned every length space is
isomorphic to one such. When working with the product onetbassert these isomorphisms in appropriate places which,
however, we elide to increase readability.

If n > 0andA,,..., A, are formulas, the expressifd; ®. . .®An]]ff standsfotl|if n =0and[4; ®.. .®An,1]]ff®
[[Aﬂf if n>1.

4 Elementary Length Spaces

In this section, we define a resource mongiguch that elementary affine logic can be interpreted in thegoay of
resource monoids ofi. We then (re)prove that functions representableAi are elementary time computable.
A list is eitherempty or cons(n,l) wheren € N and! is itself a list. The suni + h of two lists! andh is defined as
follows, by induction on:
empty +h=h+empty = h
cons(n,l) + cons(m,h) = cons(n+m,l+ h)

For everye € N, binary relations<, on lists can be defined as follows

o empty <. [,
e cons(n,l) <. cons(m, h) iff there isd € N such that

1. n<2%(m+e)—d,
2. 1< h.

For everye and for every listd andh with [<. h, we define the natural numb#x, (I, k) as follows:

D.(empty, empty) = 0;
D, (empty, cons(n,l)) = 2°(n+ e)+ Dae(nie)(empty,1);
De(cons(n,l), cons(m,h)) = 2°(m+e)—n+ Dacimie)—n(l,h);

Given a list, !l stands for the listons(0,1). The depthiepth(l) of a list! is defined by induction oft depth(empty) = 0
while depth(cons(n,l)) = depth(l) + 1. |I| stands for the maximum integer appearing indidee. |empty| = 0 and
|cons(n,l)] = max{|l|,n}. For every natural number, [n]. stands forcons(n, empty).

We can now verify that all the necessary conditions requinethe definition of a resource monoid are satisfied. To do
this, we need a number of preliminary results, which canalbtoved by simple inductions and case-analysis:

Lemma 6 (Compatibility) empty <. [for everyl. Moreovey, ifl, h, j are lists and <. h, thenl + j <. h + j.

Proof. The first claim is trivial. To prove the second, we proceediynauction onj. If j = empty,thenl+j=1<.,h =
h+ j. Now, supposg = cons(n, g). If h = empty, thenl = empty and, clearlyi + j = j <. j = h +j. If | = empty, we
have to prove that <. h + j. Leth = cons(m, f); then

n < n+m<2%n+m+e)—0
g <o g+ f

which meang <. h + j. Finally, supposé = cons(m, f), h = cons(p,r). Then we know that

IN

m

f

2°(p+e)—d

d T

IN

But then, by inductive hypothesis,

m+n < 2°(p+e)+n—d<2%(p+n+e)—d
f+g <a 7+yg

which yieldsl + j <. h + j. O

Lemma 7 (Transitivity) If [, h, j arelists and <. h, h <4 j, thenl <4, j.

Proof. We can suppose all the involved lists to be different frempty, since all the other cases are triviak= cons(n, g),
h = cons(m, f) andj = cons(p, r). From the hypothesis, we have

n < 2°(m+e)—c
m < 2p+4+d)—b
9 <c f
F <v r

But then, by inductive hypothesis, we get
n < 2%m4e)—c<2°2%p+d)—bte)—c<22%ptdte)—b—c=2p+d+e)—(b+c)

g Sc—i—b T

This means <;i. j. O
Lemma 8 if [, h,j are lists and <. h, thenD.(I,h) < D.(l+ j,h +j)
Proof. We proceed by an induction gn If j = empty, thenl + j =l andh + j = h. Now, suppose = cons(n,g). If
h = empty, thenl = empty and, clearlyl + j = j = h + j. If | = empty, leth = cons(m, f); then
D.(l,h) D.(empty, h) = 2°(m + €) + Dae (sm4e)(empty, f)
2°(m +e) +2°n — 2°n + Dae (mte)+2en—20n(9, 9 + f)
2°m+n+e)—n+Doiminte)—n(g,9+ f)
De(j,h+ j) = De(l + j, h +)
Finally, supposé = cons(m, f), h = cons(p,r). Then we know that
De(l,h) 2°(m +e) — p + Daeme)—p(f57)

2°(m +¢€) = p+ Dac(mie)—p(f + 9,7+ 9)
2°(m +e) +2°n — (n + p) + Dae(mte)+2en—n—p(f + 9,7+ 9)

= 2°m+n+e)—(n+p)+ Daetminte)—(nip) (f + 9,7+ 9)

= D(+jh+7)
Lemma 9 If [, h,j arelists and <. h, h <, j, thenD.(l,h) + Dg(h,j) < Deta(l, 7).

IA A

IA A

Proof. If either h = empty or j = empty, then the thesis is trivial. So suppose= cons(n,g) andj = cons(m, f). If
[= empty, then

De(la h) +Dd(haj)

26(” + e) + DQe(nJre)(emptyag) + 2d(m + d) —n+ DQe(erd)fn(ga f)

S 26(” + 6) + 2d(m + d) -—n+ DQE(n+e)+2d(m+d)—n(emptya f)
< (2°=Dn+2% +24(m + d) + Dioe _ 1)t 42c et 20 (mray(€mpty, f)
< (2°=1)2%(m + d) + 2% + 2%(m + d) + D(ae _1)24(m+d) + 2¢¢ 24 (m+a) (€MDY, [)

297¢(m + d + €) + Doare(myare) (empty, f)
= Deer(laj)
If I = cons(p,r), then
De(la h) + Dd(hvj) = 26(” + 6) —p+ D2e(n+e)fp(ra g) + 2d(m + d) —n+ D2d(m+d)—n(ga f)

S 2¢ (TL + 6) —p + 2d(m + d) —-n+ DQE (n+e)—p+2¢(m+d)—n (7’, f)
S (26 — 1)n + 2e€ + Qd(m + d) —p + D(Qe,1)n+2ee+2d(m+d),p(r, f)
< (2° = 1)2%(m 4 d) + 2%+ 2%(m + d) — P+ D(ge_1)24 (m+d)+20+24 (m+d)—p(Ts f)

27 (m 4+ d + €) — p + Doatempdie)—p(T f)
Deer(laj)

10

This concludes the proof. O

|£] will denote the set of all lists, while -, D will denote<, andD,, respectively.

Lemma 10 £ = (|£|,+, <., D,) is a resource monoid.

Proof. (L,+) is certainly a monoid. Compatibility of » follows from lemmas 6 and 7. The two required propertyldn
come directly from lemmas 8 and 9./ife N, observe thaf - (cons(n, empty)) = n. This concludes the proof. O

An elementary length spads a length space on the resource mondd+, <., D.). Given an elementary length space
A = (|A],IF4), we can build the length spaté& = (|A|,IF14), wheree, [IF14 aiff e, h IF14 a @andl >.!h. The construction

! on elementary length spaces serves to capture the expalnaotiality of elementary affine logic. Indeed, the follogiin
two results prove the existence of morphisms and morphfemmsing rules precisely corresponding to axioms and ruies(f
EAL.

Lemma 11 (Basic Maps) Given elementary length spacds B, there are morphisms:

contr : 1A —=1ARQ!IA
distr @ 1A®!B —!(A® B)

wherecontr(a) = (a,a) anddistr(a,b) = (a,b)

Proof. We know {e oni}(d) takes time linear irjd|, say at mosp|d| + ¢. Then, letl,h € L be such thatF.(I) >
P+ q+ |econtr|s Fo(h) > cp. Definel ony to bel + h + [1]z. Clearly, Fr(lcontr) > |€contr| NOW, letj, d IFi4 a. This
means thaj > !k wherek, d I-4 a. Then:

h+lk+lk >, k+lk
Fre(h+lk+1k) > Fe(h) + Fe(k) + Fe(lk)
> Cp+f£(!k)+f£(!k)

This means thai+k+!k, e b agia (a,a). Moreoverh+k+1k <p h-+k + [1]z <z h+!j + leontr. Finally,

Time({econtr } (d)) pldf+a<(p+a)(d +p+q)
]:E(lcontr)(}-ﬁ(j) +-7:L',(lcont7'))
(fﬁ(lconw) + Dﬁ(j,j))(fﬁ(lcontr) + fﬁ(]))

Dﬁ (.7’] + lcontr)}-ﬁ(lcontr +,7)

VAN VAN VAN VAN

This provescontr to be a morphism.

Letegistr = €iqa. We know{e;4 } (d) takes time linear ind|, say at mosp|d| + ¢. Then, letl, h € £ be such thaf,(l) >
P+ q+ |edistrls Fo(h) > ep. lastr 1S then defined as+!h. Now, letj, (d, ¢) IFiagis (a,b). This means thaf >!k+!4,
wherek, d IF4 a andi, ¢ IFg b. This in turn means that + i + h, (d, ¢) lFagp (a,b) and!(k + i+ h), (d, ¢) FiagB (a,b).
Moreover

k+i+h) =k+li+h <g j 4 laistr

Finally:
Time({eaistr}((d,c))) < pl{d; o) +a < (p+a)({d,) +p+ @) < Frllaistr)(Fe () + Frllaistr)
< (Fellaistr) + DG, 5)(Fe(laiser) + Fe(l))
< Dﬁ(]a] + ldistr>f£(ldistr + .])
This provesdistr to be a morphism. O

Lemma 12 (Functoriality) If f : A <% B, then there arel, < such thatf !4 ~“1B

11

Exponential Rules and Contraction

re4 T,IA,IAF B
T 1A T,)AF B

Figure 2. Intuitionistic Elementary Affine Logic

Proof. Now, letd be!y and supposé€,! -4 a. Thenl >!h, whered, h IF4 a. Observe that there must hec such that
c,jlFp f(a),j <c h+ pandTime({e}(d)) < Fz(h+ ¢)De(j, h + o). Butthenc,!j Ikp f(a) and, moreover

i <z Wh+ @) =lh+lp < lh+0

Time({e}(d)) < fﬁ(h + @)D (j, b+ @)
< Fel(h+9)De(, 1 (h+)
< c('h+' D (1, h+p))
< Fe(l+60)De(l,1+0)
This means thaf :!A “%1B. d

Elementary bounds can be given®#n(!) depending ofi| anddepth(1):

Proposition 1 For everyn < N there is an elementary functign, : N — N such that? (1) < paepen) (|1])-

Proof. We prove a stronger statement by inductionrorfor everyn € N there is an elementary functigp : N> — N
such that for every, e, D.(empty,l) < qaepn((|l], €). First of all, we know thaD, (empty, empty) = 0, S0qq is just the
function which always return. ¢, is defined fromy, as follows: g, +1(x,y) = 2¥(x + y) + ¢ (x, 2Y(z + y)). Indeed:

D.(empty, cons(n,l)) = 2°(n+e)+ Daec(nye)(empty,l)
2°(|cons(n,1)| + €) + qacpen() (|cons(n, 1)[, 2°| cons(n,)| + e)

Qdepth(cons(n,l)) (| COTLS(TL, l)|7 6)

IN

At this point we just pup,, (z) = g (z,0).

O

4.1 Interpreting Elementary Affine Logic

EAL can be obtained by endowing multiplicative affine logic wéthiestricted modality. The grammar of formulae is
enriched with a new productios ::=!A while modal rules are reported in figure 2. Realizability setics is extended by
[[!A]]ff :![[A]]ff.

Theorem 1 Elementary length spaces form a modeEa{..

Now, consider the formula
ListeaL = Va.!(a —o a)) —o!(a —o a) —ol(a —o «)

Binary lists can be represented as cut-free proofs with logion Listgay . Suppose you have a proof :!jListea —o

I*¥ ListeaL. From the denotatiofir]” we can build a morphism froffilListea % to Ly, by internal application te, sq, s1.
This map then induces a functigh: . — L as follows: given a listv € L first compute a realizer for the closed proof
corresponding to it, then apppyto the result.

Corollary 1 (Soundness) Letr be anEAL proof with conclusiomVV Listga —o!* Listga, and letf : L — L be the function
induced by[r]#. Thenf is computable in elementary time.

The function f in the previous result equals the functionated by the proofr in the sense of [8]. This intuitively obvious
fact can be proved straightforwardly but somewhat tediousing a logical relation or similar, see also [8].

12

Exponential Rules and Contraction

THA I'A,...,A+B

rra Ll riars ©

Figure 3. Intuitionistic Soft Affine Logic

5 Soft Length Spaces

The grammar of formulae f@AL is the same as the one of Elementary Affine Logic. Rules amrteqin figure 3. We
here use a resource monoid whose underlying carrier §8tis |£| x N. The sum(l, n) + (h, m) of two elements inZ]| is
defined ag!/ + h, max{n, m}). For everye € N, binary relations<. on|Z| can be defined as follows

o (empty,n) <o (empty, m)iff n < m;
o (empty,n) <. (cons(m,l),p) iff there isd € N such that

l.e<m+pd
2. (empty,n) <q (I,p)
e (cons(n,l),m) <. (cons(p, h), q) iff there isd € N such that

1. e+n<p+qd,
2. (lvm) <d (haq)

If « = (I,n) € |Z|, thenla will be the couplecons(0,1),n) € |Z]. If there ise such thatx <. 3, then we will simply write
a <z (. For everya andg with o <7 3, we define the natural numb®¥% («,) as follows:

Dz ((empty,n), (empty,m)) = 0
Dz((empty,n), (cons(m,1),p)) = m+ pDz((empty,n),(l,p))
Dz((cons(n,l),m),(cons(p, h)vQ)) = n—p—i—qu((l,m),(h,q))

Analogously, we can defin®z(a, 3) simply as the maximum integersuch thate <. 3. |«| is the maximum integer
appearing inside, i.e. |(I,n)| = max{|l|, m}. The depthdepth(a) of a = (I, n) is depth(l).

Lemma 13 (Compatibility) (empty,0) <o « for everya. Moreover, ifa, 5,7 € |Z] anda <. 3, thena + v <. 8+ 7.

Proof. The first claim is trivial. To prove the second, we proceed byraluction on the structure of the first component
of v. We just consider the case where the first components, 8fy are all different fromempty. So, supposex =
(cons(n,l),m), B = (cons(p,h),q),y = (cons(r,), s). By hypothesis, we get
n < p+dg—e
(l7 m) Sd (ha Q)

Then,n+r < p+r+dg—e < p+r+dmax{q, s} —e and, by induction hypothesid+j, max{m, s}) <4 (h+j, max{q, s}).
This means that + v <. 5+ 7. O

Lemma 14 (Transitivity) If a, 5, € |Z| are lists andx <. 8, 8 <4 7, thena <44, 7.

Proof. We go by induction on the structure of the first component ahd we suppose the first components.p8, v to be
different fromempty. So, leta = (cons(n,l),m), 8 = (cons(p,h),q) and~y = (cons(r,j), s). From the hypothesis, we
have

n < pH+cg—e

p < r+bs—d
(l,m) <c (h,q)
(h7Q> Sb (.]a S)

13

But then, by inductive hypothesis, we get

n < r+bs—d+cg—e<r+(c+bd)s+(e+d)
(lam) <c+b (375)

which yieldsa <44, 7. O
Lemma 15 if o, 5,y € T anda <. 3, thenDz(a, 8) < Dz(a+ 7,8+ 7)

Proof. This is trivial in view of 13 and the fact thd?z(«,) is justmax{e € N | a <. 3}. O
Lemma 16 If o, 8,7 € Tanda <, B, 8 <4 7, thenD.(a, 8) + Da(B,7) < Deyala,7).

Proof. This is trivial in view of 14 and the fact th@z(«, 9) is justmax{e € N | a <, 5}. O
Lemma 17 (Z,+, <z, Dz) is a resource monoid.

Proof. (|Z],+) is certainly a commutative monoid. Compatibility f; follows from lemmas 13 and 14. The two required
property oriDz come directly from lemmas 15 and 16nlfe N, observe thafz ((cons(n, empty),0)) = n. This concludes
the proof. O

A soft length spaces a length space on the resource mor(@ich-, <z, D).
Given a soft length spacé = (|AJ,IF4), we can build the length spaté = (|A]|,IF4), wheree, a lk14 aiff e, 8114 a
anda >7!3.

Lemma 18 (Basic Maps) Given soft length space$, B and a natural numben, there are morphisms:

n times
—_——~
contr : 1A—-AQ...0A
distr : 1A®!B —!(A® B)

wherecontr(a) = (a,...,a) anddistr(a,b) = (a,b)

Lemma 19 (Functoriality) If f: A <% B, then there arel, « such thatf ;14 “%1B
Proposition 2 For everyn < N there is a polynomiap,, : N — N such thatFz(a) < paepin(a) (o)

Proof. We go by induction om. First of all, we know thaDz((empty, 0), (empty, m)) = 0, SOpy is just the function
which always return8. p,,+1 is defined fronp,, as follows:p,,+1(z) = « + zp,(z). Indeed:

Dz((empty,0), (cons(n,l),m)) = n+mDz((empty,0), (I, m))
|(cons(n, 1), m)| + |(cons(n, 1), m)|paeptn(a,m)) (| (cons(n, 1), m)])

Pdepth((cons(n,l),m)) ((CO’N,S (n7 l)7 m))

IN

This concludes the proof. O
Theorem 2 Soft length spaces form a modelAL.
Binary lists can be representedSM\L as cut-free proofs with conclusion

ListsaL = Val(a —o a) —o (@ —o a) —o (o —o «a)

Corollary 2 (Soundness) Letr be anSAL proof with conclusiotir!? List, a. —o!¥ List s, and letf : L — L be the function
induced by[r]#. Thenf is computable in polynomial time.

14

6 Light Length Spaces

A treeis eitherempty or a triplenode(n, t,T) wheren € N, ¢ is itself a tree and’ is a finite nonempty set of trees. We
write [n]7 for the tree defined bjn]r = node(n, empty, {empty}). The sum + s of two treest ands is defined as follows,
by induction onn:

empty +t = t+4 empty =t;
node(n,t,T) + node(n,u,U) = mnode(n+m,t+u, TUU);

Here, more sophisticated techniques are needed. For gyery N, binary relations<? on trees can be defined as follows

t<%u
o empty <"1 ¢;
node(m,t,T) <"1 empty iff there isd € N such that

1. m<e—d;
2.t <l empty;
3. Foreverys € T', s <Ij empty.

node(m,t,T) <"+ node(l,u, U) iff there isd € N such that

1. m<l+e—d,
2. Thereis afunctiorf : {1,...,d} — U such that <!, u + fo(z‘);
3. Foreverys € T thereisz € U with s <Jj z.

For everye, n and for every treesandu with ¢ <” v, we define the natural numb®? (¢, «) as follows:

DY(t,u) = 0
D (empty, empty) = e+ DI (empty, empty)
D (empty, node(m,t,T)) = m+e+ mjzciX{DFere)z (empty,t + Wie f@)}
i=1
D" (node(m,t,T), empty) = e—m+ Die—m)2 (t, empty)
D" (node(m,t,T), node(l,u,U)) = I+e—m+ m?X{DZ+€7m)2(t, u+ l+€z‘_:mf(i))}

i=1

If tis a tree, therl| is the greatest integer appearingme. |empty| = 0 and|node(n,t, T)| = max{n, |t|, maxy,cr |u|}.
The depthdepth(t) of a treet is defined as followsdepth(empty) = 0 and

depth(node(n,t,T)) = 1 + max{depth(t), max depth(u)}.
ue

Given a treet € 7, we definelt as the treenode (0, empty, { empty,t}) and§t as the treenode (0, t, {empty}). In this
context, a notion of isomorphism between trees is neededay¢hat trees andu areismorphicand we writet = v iff for
everye,n € N and for every tree the following hold:

v<lt & v<lu

t<lv & u<lvw
D7 (v, t) D (v, u)
DI (t,v) DI (t,u)

Lemma 20 empty = [0]7. Moreover, for every tree, ¢ + empty =t + [0]7.

15

Proof. We go by induction om, considering the case whemne> 1, since the base case is trivial. First of all, observe that
bothempty <"*! t and[0]7 <"*! ¢ for everyt. Moreover,empty <"*! empty and[0]7 <"*1 empty. Suppose now that
node(m,t,T) <"1 empty. This means that there issuch that
1. m<e—d,
2. t <0, empty;
3. Foralls € T', s <1} empty.
If we put f (i) = empty for everyi, we gett <7, empty + Zle f(i), which yieldsnode(m,t,T) <21 [0]7. In the same
way, we can prove that ifode(m, ¢, T) <"+ [0]7, thennode(m,t,T) <"1 empty.
We have:
DI (empty, empty) = e+ D% (empty, empty)
Dy (empty, [0] 1)
DI (0], empty)

e + D (empty, empty)

e + D (empty, empty)

m-+te
D" (empty, node(m,t,T)) = m+e+ m;iX{DFere)z(empty, t+ Z f(@)}
i=1
= DF([0)7, node(m, t,T))
D" (node(m,t,T), empty) = e—m+ Dify_ 2 (t, empty)
= D' (node(m,t,T),[0]7)
Moreover, observe that
empty + empty = empty = [0]7 = [0]7 + empty
node(m,t,T) + empty = node(m,t,T)+ [0]7
This concludes the proof. O

Proposition 3 (Compatibility) For everyn,e € N, empty < t for everyt and, moreover, it <2 wthent +v <I' v 4+ v
for everyt, u, v.

Proof. empty <I tis trivial. The second statement can be proved by induction d he base case is trivial. In the inductive
case, we can suppose all the involved trees to be differemt éimpty. Suppose thatode(m, t,T) <"1 node(l,u,U). We
should provenode(m + k,t + v, T U V) <"1 node(l + k,u +v,U U V). However,

m+k < (I+e)—d+k=>1+k+e)—d

d d
t+v <l u+Zf(i)+v:u+v+Zf(i)
i=1

1=1
Moreover, for every: € T'U V there certanily exists» € U U V such that: <7} w. O

Proposition 4 (Transitivity) If ¢ <P u <} v, thent <} v.

Proof. We go by induction om. We can directly go to the inductive case, sincexif= 0, then the thesis is trivial.
We can assume all the involved trees to be different feampty. Let us supposeode(m,t,T) <2+ node(l,u,U) and
node(l,u,U) gg“ node(k,v, V') Firstof all, we haven < [+e—candl < k+d—b, whichyieldsm < k+d—b+e—c=
k+ (d+e) — (b+ ¢). Moreover, by hypothesis, there are functighs{1,...,d} — U andg : {1,...,e} — V such that

to<hou+ Y f(i)
=1
b

u <pov+ Y g(i)
=1

16

Therefore, by inductive hypothesis and by proposition 3:
c b
to<ge vt Y)+ ()
=1 1=1

c b
SARE DO

whereh : {1,...,d} — V. We can then find a functioh: {1,...,d + e} — V such that

c+b
t <Py v+ Y KG).

1=1
Finally, if z € T then we findw € U such that <{' w. We then findr € V such thaty <p z and soz <! ; . O
Proposition 5 For everyn, e and for evenyt, u, v, D7 (t,u) < D2(t + v,u + v)

Proof. We can proceed by induction erand, again, the case= 0 is trivial. In the inductive case, as usual, we can suppose
all the involved trees to be different froemmpty. We have

D (node(m, t, T), node(l,u,U))
l+e—m

= l+e—m+ m?X{D8+e_m)2(t, u+ ; FiN}
l+e—m

= ldte—m+ D eltut > f@)

i=1

wheref and realizes the max. By induction hypothesis,

D" (node(m,t,T), node(l,u,U))
(I+k)+e—(m+k)
< (4k) +e—(m+k)+DluyryremiryE+v,u+v+ > F()
=1
< D" (node(m,t,T) + node(k,v,V), node(l,u,U) + node(k,v,V))
This concludes the proof. O
Proposition 6 D¢ (t,u) + Dy (u,v) < DY 4(t,v)

Proof. We can proceed by induction erand, again, the case= 0 is trivial. In the inductive case, as usual, we can suppose

17

all the involved trees to be different fromnpty. Now

DI (node(m, t,T), node(l,u,U)) + D+ (node(l,u, U), node(k, v, V))

l+e—m
= l+e—m+ mlex{D8+e_m)2(t, u+ ; Ny
k+d—I
+k +d — 1+ max{D}’ U+ /
mgax{ (n+d—l)2(u v ; 9(i))}
l+e—m
= kt(etd) —m+Dl, ptut Y f(i)
=1
k+d—1
+D{era—1y2 (u, v + Z 9(4))
=1
l+e—m
= kt(etd) —m+Dh, ptut Y f(i)
=1
I+e—m k+d—1 l4+-e—m
+ADya et Y, f@v+ Y 9@+ Y f@)
=1 =1 =1
k+d—1 l+e—m
< kAt (etd) = m+ Dl g grane o+ D g+ Y f(D)
=1 =1
Afunctionh : {1,...,1+e—m} — Vsuchthal T (i) <P\, o) raars) 2oiss | h(i) can be easily defined, once

we remember thatode(l, u, U) <7 node(k,v, V'). This yields

D (node(m, t,T), node(l,u,U)) + D5+ (node(l,u, U), node(k, v, V))

k+d—1 l+e—m
< kt(e+d) =m+Diye pmppgran:Go+ Y g@)+ Y f(i)
i=1 i=1
k+d—1 l+e—m k+d—1 l+e—m
+D s e—m) (hta—1)(V + Z g(@) + Z f(i),v+ Z 9(i) + Z h(i))
i=1 i=1 i=1 i=1
k+d—1 l+e—m
< k+(etd) —m+Dhyeraympeto+ D gli)+ D h(i)
i=1 i=1
l+(d+e)—m
< k+(e+d) —m+Di i crag)—mpt:v+ Z p(2))
i=1

wherep : {1,...,l4+ (d+e)—m} — V,p(i) = f(i)if i <I+e—mandp(i) = g(¢ — (I + e — m)) otherwise. But, then
DI (node(m, t,T), node(l,u,U)) + D5+ (node(l,u, U), node(k, v, V))
< D7, (node(m,t,T), node(k,v,V))
This concludes the proof. O
max{depth(t),depth(u)}

Lemma 21 For everyt,u,e, if t < u, then for everyn > max{depth(t), depth(u)}, t <” w and
Dn(t ’LL) _ D;nax{depth(t),depth(u)}(t u)

Proof. A straightforward induction omax{depth(t), depth(u)}. O
7 is the set of all trees. The binary relatish on 7 is defined by putting <7 u wheneverdepth(t) < depth(u) and
t <derh() . Dy is defined by lettindr (t, u) = DEP" ™ (¢, u).

18

Lemma 22 (7, +, <7, D7) is a resource monoid.

Proof. (7 ,+) is certainly a commutative monoid. For eveéry <t t, as can be proved by induction énempty <9 empty
by definition and, moreovet,= node(m,u,U) < depth(t) t because, by inductive hypothesms<depth(“) u which yields,
by lemma 21y <depth(t) ! u. In the same way, we can prove that, for every U, v <depth(t) v. Now, supposeé <1 u

andu <7 v. This means that <¢P™") 4, o <) 4, depth(t) < depth(u) anddepth(u) < depth(v). We can then
depth(v) depth(v)

conclude thatlepth(t) < depth(v), thatt <; u (by lemma 21) and <, v (by proposition 6). Thisin turn yields
t <7 v. Let us now prove compatibility: SuppoSegT u and letv be a tree. Thedepth(t) < depth(u) andt <de”th(“) u.
If depth(v) < depth(u), thendepth(u + v) = depth(u) and we can proceed by gettigr v <" 4 4 v (by

proposition 3), which means+ v <7 u + v. If, on the other handiepth(v) > depth(u), then we can first apply lemma 21

obtainingt <depth(“+” u and thent + v <de”th(“+”) u + v (by proposition 3). By way of lemma 21 and propositions 6
and 5 we get
Dr(t,u) + Dr(u,v) = Do (t,u) + Dy (u,0)
_ depth (v) (t, U) depth(v) (U, ’U)
< D" (t,v) = Dr(t,v)
Dr(t,u) = Dg“"pth@ (t,u) < DEPPET) (1)

S D(()iepth(quv)(+’U,U+U) :DT(t+U,U+U)

This concludes the proof. O

A light length spacés a length space on the resource mond@id+, <7, Dr). Given a light length spacd = (|A4|,IF4),
we can define:

e The lightlength spackd = (|A|,IF14) wheree, t k14 aiff e, u k4 a andt >7u.

o The light length spacgA = (|A|,IFs4) wheree, ¢ IFg4 aiff e,u lF4 a andt > §u.

The following results states the existence of certain misrph and will be useful when interpreting light affine logic.

Lemma 23 (Basic Maps) Given light length spaced, B, there are morphismsecontr 1A —-1AQ!A, distr : §A ® §B —
8(A ® B) andderelict :'!A — §A wherecontr(a) = (a,a) anddistr(a,b) = (a,b) and derelict(a) = a.

Proof. We know that{e ..} (d) takes time linear ind|, say at mosp|d| + ¢q. Then, lett,u € 7 be such thatFr(¢) >
P+ q+ lecontr|, Fr(u) > cp. Definet ont to bet + v + [1]7. Clearly, Fr(tcontr) = |€contr| NOW, letv, d IF14 a. This
means that >7!w wherew, d IF 4 a. Then:

utlwtlw >z lwtlw
Fruthotlw) > Fr(u) + Fr(w) + Fr(lw)
> cp+ Fr(lw) + Fr(lw)

This means that+!w+!w, e IF1ag1a (a,a). Moreoveru+!w+w = u+!lw + [1)7 <7 ut!w + teons-. Finally,

Time({econtr }(d)) pldl+q¢<(p+q)(dl+p+aq)
fT(tcontr)(]:T('U) + fT(tcontT))
(fT(tcontr) + DT(Ua U))(]:T(tcontr) + -7:7'(“))

DT(U, v+ tcontr)fT(tcontr + U)

IANIA NN

This provescontr to be a morphism.
Let egistr = €40. We know that{e;;}(d) takes time linear ind|, say at mosp|d| + ¢. Then, lett,u € 7 be such
that 77 (t) > p + ¢ + ledistr|, Fr(u) > cp. taiser is then defined as + §u. Now, letv, (d,c) IFsagsr (a,b). This

19

means that > §w + §z, wherew,d -4 a andx,c IFg b. This in turn means that + = + w, {(d, ¢) IFagp (a,b) and
S(w+ x4+ u),(d,c) IFagn (a,b). Moreover

S(wHx+u) =8w+ 8§z + §u < v+ taiser
Finally:

Time({eaisir } ({d; ¢))) pi(d;)l +q < (p+ Q) (d) +p+q) < Fr(taiser)(Fr(v) + Fas (Laistr)

(fT(tdistr) + DM(Uv v))(fT(tdistr) + fT(U))
D1 (v, v + taistr) F1(tdistr +v)

VAN VANRVAN

This distr to be a morphism.

Let egeretict = €iq. We know that{ e gereric: }(d) takes time linear ind|, say at mosp|d| + ¢. Then, lett 4,5+, € 7 be such
that Fr (taistr) > p + q + |edertict]- Now, letv, d Ik 4 a. This means that >!w, wherew, d I-4 a. This in turn means that
Sw,d IFg4 a. Moreover

§U} S'w S'w + tderelict-

Finally:
Time({ediStT}(d)) S p|d| + q S (p + q)(|d| +p + Q) S fT(tderelict)(‘FT(v) + fT(tderelict)
< (fT(tderelict) + DT(U, v))(fT(tderelict) + fT(U))
S DT(U; v+ tderelict)fT(tderelict + 'U)
This provesderelict to be a morphism. O

Lemma 24 For everyt € 7, there isu such that, for every, (v + t) <7!v + w.

Proof. First of all we will prove the following statement by induati ont¢: for everyt, there is an integefr such that for
everyu, u + t g;“ax{depth(“)’depth(t)} u. If t = empty, we can choose to be just0, sinceu <@ u for everyu. If
t = node(m,v,V), then we putt = m +7 + Y ., w. Letu be an arbitrary tree and let us assume, without losing

generality, that, = node(l,w, W). Letd =v +) ., w. We get

I+m < l+m+ @+ Y W) — T+ Y W)
weV weV
= l+t—d
v+ w Sglax{depth(v),depth(w)} w
d
SIonax{depth(v),depth(w)} w+ Z empty
i=1
Ve eV S;epth(m) empty
Ve € W Sgepth(z) T
Using known results, we can rewrite these inequalities beie
l+m < l+t—d
d
v+ w inax{depth(t),depth(u)}fl w+ Z empty
=1
i=1
Vo € Vo inax{depth(t),depth(u)}fl empty

—t
Vo € W <£nax{depth(t),depth(u)}fl

=7 z

This yle|d5u+t S%nax{depth(u),depth(t)} ‘.

20

Let us now go back to the lemma we are proving. We will now pritwa for everyt, every termu = node(t, u, U) such
thatdepth(u) > depth(t) + 1 satisfies the thesis. Indeed, if we plit= £ andn = depth(lv + u) — 1, we get:

0 < t—d

empty <l u
v+t <J w

This, in turn implied (v + ¢) <¢™'1v + u, which yields!(v + ¢) <7'v + w. O

Lemma 25 (Functoriality) If f : A =% B, then there are), ¢ such thatf :!4 = B andf:§A b, §B.

Proof. Let ¢ be the tree obtained frog by lemma 24 and put = £ + ¢. Suppose thad, ¢ IFi4 a. Thent >!u, where
d,u 4 a. Observe that there must bec suchthat, v Ik f(a), v <7 u+pandTime({e}(d)) < Fr(u+p)Dr (v, u+p).
But thenc, v Ik f(a) and moreover

u+¢) <tlu+€&<rt+
fT(u +¢)Dr(v,u+ @)
Fr(H(u+¢))Dr (v, (u+)
T('U +&)Dr (v, lu+§)
Fr(t+¢)Dr(lv,t +)

lv
Time({e}(d))

AN
IACIN NN g

This means thaf :!A Y. Now, letd be§yp and supposé, ¢ I-54 a. Thent > §u, whered, u I-4 a. Observe that there
must bev, ¢ such thae, v IFg f(a), v <7 u+ ¢ and Time({e}(d)) < Fr(u+ ¢)D7(v,u + ¢). Butthenc, §v IFsp f(a)
and, moreover

v <7 §lutp)=8u+fp<7t+0
Time({e}(d)) < fT(u +¢)Dr(v,u+ @)
< Fr(§(u+¢)Dr(§v,§(u+)
< T(§U + 8¢) D7 (§v, §u + §¢))
< Fr(t+0)Dr(8v,t+0)
This means thaf : §A =8, 8B. (|

Now, we can prove a polynomial bound & (t):

Proposition 7 For everyn < N there is a polynomiap,, : N — N such thatFr (t) < paepin e ([t])-

Proof. We prove a stronger statement by inductionorfor everyn € N there is a polynomiat,, : N> — N such that for
everyt, e, D" (empty,t) < q.(|t|,e). First of all, we know thaD? (empty,t) = 0, S0qq is just the function which always
returns0. q,,+1 is defined fromy,, as follows:q,+1(2,y) = 2 +y + gn(x(x + y + 1), (z + y)?). Indeed:

e + D2 (empty, empty)
e+ qn(0,€) < e+ |empty|
+an(lempty|(lempty| + e + 1), (|empty| + €)?)

m-+te

m+e+ maX{D(m+e)2 (empty,t + Z f(@)
=1

m+ e+ gu((m + e+ 1)(|node(m, t, T)|), (m + e)?)
[node(m,t,T)| +e
+qn((|node(m, t,T)| + e + 1)(|node(m, t, T)|), (|node(m,t,T)| + €)?)

DI (empty, empty)

IN

D (empty, node(m, t,T))

IA A

At this point, however, it suffices to put, (z) = ¢, (x, 0). O

21

Exponential Rules and Contraction

T,AF A AFB . FA , TJAIAFB

rArsAa s ars D A TTArB

Figure 4. Intuitionistic Light Affine Logic

6.1 Interpreting Light Affine Logic

The grammar of formulae is the one from Elementary Affine koghriched with a new productiofi ::= §A. Rules are
reported in figure 4. As for themodality, [§ A];” = §[A].

Theorem 3 Light length spaces form a modelloAL.

Binary lists can be representedlAL as cut-free proofs with conclusion
ListiaL = Va!l(a — a) —ol(a — a) —o §(a —)

Corollary 3 (Soundness) Let 7 be anLAL proof with conclusior- {!, §}7 List_a. —o {!,§}* List_aL and letf : L — L be
the function induced br]#. Thenf is computable in polynomial time.

7 LFPL

In [6] one of us had introduced another languddeRL, with the property that all definable functions on naturahibers
are polynomial time computable. The key difference betwddnL and other systems is that a function defined by iteration
or recursion is not marked as such using modalities or siraital can therefore be used as a step function of subsequent
recursive definitions.

In this section we will describe a resource mongiti for that language as well which will provide a proof of poige
soundness for that system which is essentially the samegsadbf from loc. cit., but more structured and, hopefulgsier
to understand.

The new approach also yields some new results, namely ttifigation of second-order quantification, a !-modalitydan
a new type of binary trees based on cartesian product whHimlvahlternative but not simultaneous access to subtrees.

7.1 Overview of LFPL

LFPL is intuitionistic, affine linear logic, i.e., a linear fumghal language withg, —, 4+, x. Unlike in the original
presentation we also add polymorphic quantification heneaddition,LFPL has basic types for inductive datatypes, for
example unary and binary natural numbers, lists, and tideee is one more basic type, namélythe resource type.

The recursive constructors for the inductive datatypeh éalce an additional argument of tygewhich prevents one to
invoke more constructor functions than one. Dually to thestaictors one has iteration principles which make(ttresource
available in the branches of a recursive definition. For glanthe typel’(X) of X-labelled binary trees has constructors
leaf : T(X) andnode : § —0 X — T'(X) — T(X) — T(X). The iteration principle allows one to define a function
T(X) — Afromclosedtermstand) —o X —o A — A — A.

In this paper we “internalise” the assumption of closedmsasg al-modality.

Using this iteration principle one can encode recursivenitefns by ML-style pattern matching provided recursivésa
are made on structurally smaller arguments only.

Here is a fragment of abFPL program for “treesort” written in functional notation: tlaelditional arguments of typg
are supplied using @. Note that the insert function takescam argument of type.

let insert xt d = match t with
Leaf -> Node(x, Leaf, Leaf) @
| Node(y,I,r)y@’ ->
if x<=y then Node(y,insert x | d,r)@l’

22

el se Node(y,!,insert x r d)@’

let extract t = match t with
Leaf -> nil
| Node(x,|,r)@ ->
append (extract |) (cons(x,extract r) @)

7.2 A resource monoid forLFPL

The underlying set ofM is the set of pairs wherkee N is a natural number andis a monotone polynomial in a single
variablez. The addition is defined b1, p1) + (I2,p2) = (I1 + l2, p1 + p2), accordingly, the neutral elementis= (0, 0).
We have a submonoit, = {(I,p) € M | I = 0}.

To define the ordering we s, p1) < (l2, p2) iff I < Iy and(p2 — p1)(x) is monotone and nonnegative for all> I,.

For example, we have, 42z) < (42, 2?), but(1,42x) £ (41, 2%). The distance function is defined by

Dm((l,p1), (2, p2)) = (p2 — p1)(l2)
We can pad elements ¢#1 by adding a constant to the polynomial. The following is ndwious.
Lemma 26 Both M and M, are resource monoids.

A simple inspection of the proofs in Section 3.1 shows that#alisers for all maps can be chosen fidfg. This is actually
the case for an arbitrary submonoid of a resource monoid. déethat realisers of elements may nevertheless be drawn fro
all of M. We are thus led to the following definition.

Definition 1 An LFPL-space is a length space over the resource mondidA morphism fromLFPL length spaced to B
is a morphism between length spaces which admits a majdra@rM,.

Proposition 8 LFPL length spaces with their maps form a symmetric monoidakcl@stegory.
7.3 A !-modality for LFPL

We abbreviate + - - - + o (n times) as.o.

Lemma 27 There is an elemert € M with the following “anti-archimedean” property. For each € M, there exists
o* € Mgy such that for alln € N
n(oc+96)<o*+n.d

Proof. Choose) = (I, q) wherel > 1 andq arbitrary, e.g.g = 1. Giveno = (0,p) € M, definec* = (0,zp). Now,
n.(c +96) > (nl,np + ng) ando* + n.d = (nl,zp + ng). But, zp — np is monotone and nonnegative when> n so
(nl,xzp + nq) > (nl,np + nq) as required. O

Definition 2 Let A be anLFPL space anch € N. TheLFPL spaceA™ is defined byA™| = |A| ande, a Ik 4» a iff &« > n.5
for somegd such that, g I+ 4 «a.

So,A"™ corresponds to the subset 4t - - - ® A consisting of those tuples with allcomponents equal to each other.

Let I be an index set and;, B; be I-indexed families oL FPL spaces. A uniform map froify;); to (B;); consists of a
family of mapsf; : A; — B; such that there exist « with the property that, « I f; for all i. Recall that, in particular, the
denotations of proofs with free type variables are uniforapm

It is clear that we have uniform isomorphism& " — A™ @ A™ and similar ones.

Proposition 9 There is anLFPL space) and for eachLFPL spaceA there is anLFPL space! A with the following proper-
ties:

o |I1A] =|A|.
o If f: A— Bthenf 1A —!B.

23

e (A® B) ~AR!B
e The obvious mapsA ® ¢ — A™ ® O™ are a uniform morphism.

The last property means intuitively that with'diamonds” we can extract. copies from an element of tyhé and get then
“diamonds” back for later use.

Proof. Let d be as in the proof of Lemma 27. Pick adye L so that|/d| < Fs. Define|0| = {0} and putd, « Ik, O if
a > 9.

If A is anLFPL-space form the length spaté by |!A| = |A| andt, « IF14 «a if there existsa’ = (0,p) € M, with
t,a' IF4 aanda > (0, (x + 1)p).

We have(0 + 1)p(0) = p(0) > |t|. Compatibility with® is obvious.

For functoriality assume that ¢ I+ f where¢ = (0, q) € M. We claim that, (0, (x + 1)q) IF f quamorphism from
!Ato!B. Suppose that a IF14 a wherea > (0, (x + 1)p) andt, (0, p) IF4. Sincef is a morphism, we obtain, 3 such that
v, B kg f(a) andg < ¢ + (0,p). This implies thaf? € M, as well, says = (0,r) wherer < p + ¢q. We also know that
7(0) > |v| by the definition of length spaces. Naw(0, (z + 1)r -5 f(b). On the other han@t: + 1)r < (z + 1)(p + q).
The resource bounds are obvious.

Finally, consider the required morphidm ® ¢ — A™ ® ™. Clearly, it may be realised by the identity; we claim that
can serve as a majoriser. Indeed, a majoriséuof) € |!A @ ¢©"| is of the form(n, (z 4+ 1)p) where(0, p) majorisesz in
A. Now, (n,np) is a majoriser ofa, d) in A™ ® ¢". But (z + 1) — np is monotone and nonnegative abaxe O

Remark We remark at this point that we obtain an alternative resmuanonoid M s for SAL whose underlying set and
ordering are as in\, but whose addition is given by addition &s,p1) + (l2,p2) = (max(l1,l2),p1 + p2). Length
spaces oveM g with maps majorised byM s (not M) then also form a sound model &AL. This points to a close
relationship betweehFPL andSAL and also shows a certain tradeoff between the two systenesslifiintly more complex
model is needed foLFPL since inLFPL the C-rule of SAL is so to say internalised in the form of the uniform map
IA® O™ — A™ ® O™. Notice thatSAL's map!A — A™ cannot be uniform. This uniformity dfFPL allows for an internal
implementation of datatypes and recursion as we now show.

7.4 Dependent typing

Definition 3 LetT; be a family ofLFPL spaces such thaf;| = 7' independent of. TheLFPL spaced:.T; is defined by
|3i.T;| = |T| ande, a k3, 1, tif e, IFp, ¢ fOr somei.

Note that if we have a uniform family of mafgs — U whereU does not depend onthen we obtain a magi.7; — U
(existential elimination).

Conversely, if we have a uniform family of maps — V; ;) then we get a uniform family of magg — 3;.V; (existential
introduction). We will use an informal “internal language’denote uniform maps which when formalised would amount to
an extension o FPL with indexed type dependency in the style of Dependent MIL[10

7.5 Inductive datatypes

In order to interpret unary natural numbers, we defihe- 9n.N,, where
N, =0"Q@VA(A—oA)" -A—oA

We can internally define a successor ma® N,, — N, as follows: starting fromd : O,d : O™ and f : V(A —o
A" — A — A we obtain a member op"*! (from d andd) and we definef’ : V(4 — A"t — A — A as
MuA=A, GA=A") Xz u(f i z). From this, we obtain amap® N — N by existential introduction and elimination.
Of course, we also have a constant zére: N, yielding a mapl — N by existential introduction.
Finally, we can define an iteration map

(O®A—oA)—oN, oA—A

24

as follows: Givert :!(¢ ® A — A) and(d, f) € N,, we unpack using Proposition 9 to yield € ((0 ® A) — A)" as well
asd € O". Feeding these “diamonds” one by one to the componeritsié obtaint” € (A — A)®™. Butthenf t” yields
the required element of — A.

Existential elimination now yields a single map

(O®A—o0A)—oN-—oA—A
Similarly, we can interpret binary(-labelled trees using a type family
T,=0"@V(X A —-oA—-oA)" oA oA

and defining trees proper as.7,,. We get mapseaf : 7; andnode : 0 ® X ® T},, ® T,,, — T}, +n,+1 @and an analogous
iteration construct.

Finally, and this goes beyond what was already known, we efinel“lazy trees” using cartesian product (also known as
additive conjunction).

First, we recall from ordinary affine linear logic that an d@iye conjunction can be defined as

AXxB=VC.(C —-A)®(C—-B)aC

The first projection mapd x B — A is given internally by\(f¢—4, g¢—8 ¢).f c¢. Analogously, we have a second
projection. Given mapg : C — A andg : C — B we obtain a magf, g) : C — A x B internally as\c®.(f, g, ¢).
Now, following the pattern of the binary treés, ,, above, we define another family

T =0¢@VA(X - (Ax A) oA oA oA

andT™ = 3d.T,; . We get mapseaf : ¢ — T andnode : O @ X @ (T4, X Ta,) — T14max(ds,do) @S Well as an analogous
iteration construct.

We describe in detail the construction of the “node” map \wh&cnot entirely straightforward. First, we note that foyan
length spacesl, B andm,n the obvious magd™ @ A) x (¢" ® B) — ¢™ax(mn) & (A x B) is a morphism. This is
because a majoriser of an elementof* ® A) x (0" ® B) must be of the fornik, p) wherek > max(m, n) in view of the
existence of the projection maps.

Now suppose we are given (internally). O,z : X, Ir : T x TdXQ. Using the just described morphism we decompose

Irintod : Qmax(did2) and i’ : Wy, x Wa, whereW; = (X —o (A x A) — A) — A — A. We have stripped off the
universal quantifier.

Now d andd together yield an element @f' tmax(d1.d2) |t remains to construct a member 0f; 4 max(dy,do)- TO this
end, we assume : X — (A x A) — Aandf : (X —o (A x A) — A)™2x(d1,42) and define the required element.bfas
wa (Ir'.1 fa,lr'.2 f a). Here.1 and.2 denote the projections from the cartesian product. Therghaf the variables,

a, Ir’ is legal in the two components of a cartesian pairing, butld/oficourse not be acceptable inzapairing. We have
elided the obvious coercions frofn)™max(d1:d2) to (_)%:,

We remark that these cartesian trees are governed by thain dether than their number of nodes. We also note that
if X = I we can form the functiond®.A\t” " mode d () (t,r) : O — T* — T*. Iterating this map yields a function
N — T computing full binary trees of a given depth. Of course, anldvel of the realisers, such a tree is not laid out in
full as this would require exponential space, but compudedyl as subtrees are being accessed. Exploring the intiplsa
of this for programming is left to future work.

8 Conclusion and Related Work

We have given a unified semantic framework with which to dithlsoundness of various systems for capturing complex-
ity classes by logic and programming. Most notably, our feamrk has all of second-order multiplicative linear logiglb
in, so that only the connectives and modalities going beybischeed to be verified explicitly.

While resulting in a considerable simplification of prevs@moundness proofs, in particular fdfPL andLAL, our method
has also lead to new results, in particular polymorphism‘dnfdr LFPL.

The method proceeds by assiging both abstract resourcedbanirthe form of elements from a resource monoid and
resource-bounded computations to proofs, resp. programthis way, our method can be seen as a combination of tra-
ditional Kleene-style realisability (which only assignengputations) and polynomial and quasi interpretation kménom

25

term rewriting (which only assigns resource bounds). Aagither new aspect is the introduction of more general nstio
of resource bounds than just numbers or polynomials as i@®&dsin the concept of resource monoid. We thus believe that
our methods can also be used to generalise polynomial netatppns to (linear) higher-order.

References

[1] Andrea Asperti and Luca Roversi. Intuitionistic lightfine logic. ACM Transactions on Computational Logic
3(1):137-175, 2002.

[2] Patrick Baillot and Virgile Mogbil. Soft lambda-calaus: a language for polynomial time computationPiioceedings
of the 7th International Conference on Foundations of Sav&cience and Computational Structyr2804.

[3] Stephen Bellantoni, Karl Heinz Niggl, and Helmut Schiatienberg. Higher type recursion, ramification and polyradmi
time. Annals of Pure and Applied Logi¢04:17-30, 2000.

[4] Paolo Coppola and Simone Martini. Typing lambda termslementary logic with linear constraints. Rroceedings
of the 6th International Conference on Typed Lambda-Cakahd Applicationspages 76—90, 2001.

[5] Jean-Yves Girard. Light linear logiénformation and Computatiqri43(2):175-204, 1998.

[6] Martin Hofmann. Linear types and non-size-increasinotypomial time computation. IRroceedings of the 14th IEEE
Syposium on Logic in Computer Scienpages 464—-473, 1999.

[7] Martin Hofmann. Safe recursion with higher types and B&lgebra.Annals of Pure and Applied Logit04:113-166,
2000.

[8] Martin Hofmann and Philip Scott. Realizability modets BLL-like languagesTheoretical Computer Scienc&l8(1-
2):121-137, 2004.

[9] Yves Lafont. Soft linear logic and polynomial tim&heoretical Computer Sciencgl8:163-180, 2004.

[10] Hongwei Xiand Frank Pfenning. Dependenttypes in pcatprogramming. IfProceedings of the 26th ACM SIGPLAN
Symposium on Principles of Programming Languagesgies 214227, 1999.

26

