
Quantitative models and Implicit Complexity

Ugo Dal Lago
Dipartimento di Scienze dell’Informazione

Università di Bologna
dallago@cs.unibo.it

Martin Hofmann
Institut für Informatik

Ludwig-Maximilians-Universität, München
mhofmann@informatik.uni-muenchen.de

Abstract

We give new proofs of soundness (all representable functions on base types lies in certain complexity classes) for Light
Affine Logic, Elementary Affine Logic,LFPL and Soft Affine Logic. The proofs are based on a common semantical framework
which is merely instantiated in four different ways. The framework consists of an innovative modification of realizability which
allows us to use resource-bounded computations as realisers as opposed to including all Turing computable functions asis
usually the case in realizability constructions. For example, all realisers in the model forLFPL are polynomially bounded
computations whence soundness holds by construction of themodel. The work then lies in being able to interpret all the
required constructs in the model. While being the first entirely semantical proof of polytime soundness for light logics, our
proof also provides a notable simplification of the originalalready semantical proof of polytime soundness forLFPL. A new
result made possible by the semantic framework is the addition of polymorphism and a modality toLFPL.

1 Introduction

In recent years, a large number of characterizations of complexity classes based on logics and lambda calculi have ap-
peared. At least three different principles have been exploited, namely linear types [3, 7], restricted modalities in the context
of linear logic [5, 1, 9] and non-size-increasing computation [6]. Although related one to the other, these systems havebeen
studied with different, often unrelated methodologies andfew results are known about relative intentional expressive power.
We believe that this area of implicit computational complexity needs unifying frameworks for the analysis of quantitative
properties of computation. This would help to improve the understanding on existing systems. More importantly, unifying
frameworks can be usedthemselvesas a foundation for controlling the use of resources inside programming languages.

In this paper, we give new proofs of soundness (all representable functions on base types lies in certain complexity classes)
for Light Affine Logic (LAL, [1]), Elementary Affine Logic (EAL, [4]), LFPL [6] and Soft Affine Logic (SAL, [2]). The
proofs are based on a common semantical framework which is merely instantiated in four different ways. The framework
consists of an innovative modification of realizability which allows us to use resource-bounded computations as realisers
as opposed to including all Turing computable functions as is usually the case in realizability constructions. For example,
all realisers in the model forLFPL are polynomially bounded computations whence soundness holds by construction of the
model. The work then lies in being able to interpret all the required constructs in the model. While being the first entirely
semantical proof of polytime soundness for light logics, our proof also provides a notable simplification of the original already
semantical proof of polytime soundness forLFPL. A new result made possible by the semantic framework is the addition of
polymorphism and a modality toLFPL.

The rest of the paper is organized as follows. In section 2 we describe an abstract computational model that will be used in
the rest of the paper. In section 3 we introduce length spacesand show they can be used to interpret multiplicative linearlogic
with free weakening. Sections 4, 5 and 6 are devoted to present instances of the framework together with soundness results
for elementary, soft and light affine logics. Section 7 presents a further specialization of length spaces and a new soundness
theorem forLFPL based on it.

1

2 An Abstract Computational Model

In this paper, we rely on an abstract computational framework rather than a concrete one like Turing Machines. This, in
particular, will simplify proofs.

Let L = {0, 1}∗ be the set of finite binary sequences. We assume a pairing function 〈·, ·〉 : L × L → L so that pairing
and projections are computable in linear time or similar. Furthermore, we assume a length function| · | : L → N such that
|〈x, y〉| = |x| + |y| + O(1) and|x| ≤ length(x). We assume a partial application{e}(x) ∈ L for e, x ∈ L and an abstract
time measureTime({e}(x)) ∈ N such thatTime({e}(x)) is defined whenever{e}(x) is and, moreover, there exists a fixed
polynomialp such that

• {e}(x) can be evaluated on a Turing machine in time bounded byp(Time({e}(x))).

• L can be embedded into iself by a mapΦ : L→ L such that bothΦ andΦ−1 can be computed in polynomial time.

• For each Turing machineM there ise ∈ L so that{e}(Φ(x)) equalsΦ(y), wherey is the result of runningM on input
x. Furthermore,Time({e}(Φ(x))) bounds the number of steps needed byM on inputx.

• For anye, d ∈ L there existsd ◦ e ∈ L such that|d ◦ e| = |d|+ |e|+O(1) and{d ◦ e}(x) = {d}(y) wherey = {e}(x)
and moreoverTime({d ◦ e}(x)) = Time({e}(x)) + Time({d}(y)) +O(|x| + |y|).

• There iseid such that{eid}(x) = x for everyx andTime({eid}(x)) = O(|x|).

• There iseswap such that{eswap}(〈x, y〉) = 〈y, x〉 andTime({eswap}(z)) ≤ O(|z|).

• There iseeval such that{eeval}(〈d, c〉) = {d}(c) andTime({eeval}(〈d, c〉)) = Time({d}(c)) +O(|d| + |c|).

• For eache ∈ L there ise∗ ∈ Lwith |e∗| = |e|+O(1) such that{e∗}(〈m,n〉) = 〈{e}(m), n〉 andTime({e∗}(〈m,n〉)) =
Time({e}(m)) +O(|m| + |n| + |e| + |{e}(m)|).

• There iseassl such that{eassl}(〈x, 〈y, z〉〉) = 〈〈x, y〉, z〉 andTime({eassl}(x)) = O(|x|).

• There isecontr such that{econtr}(x) = 〈x, x〉 andTime({econtr}(x)) = O(|x|).

• There isecurry such that, for eache, d = {ecurry}(e) exists and satisfies|d| = |e| +O(1) andTime({ecurry}(e)) =
O(|e|); moreover, for everyx, cx = {d}(x) exists and satisfies|cx| = |e| + |x| +O(1) andTime({d}(x)) = O(|x|);
finally, for everyy, {cx}(y) = {e}(〈x, y〉) andTime({cx}(y)) = Time({e}(〈x, y〉)) +O(|x| + |y|).

There are a number of ways to instantiate this framework, among them SECD machines, Turing machines with an adapted
definition of length and time and call-by-value lambda calculi.

Now, we will sketch a possible instance of this abstract computational framework, namely a call-by-value lambda-calculus
with constants. We assume an enumeration of Turing Machinesby strings inL. [e](x) is the result of running the Turing
Machine corresponding toe on inputx andTime([e](x)) denotes the number of steps needed by the Turing Machine corre-
sponding toe when feeded byx.

Terms are defined by the following productions:

M ::= x |MM | λx.M | simul | appzero | appone | epsilon

Every strings ∈ L corresponds to a termΦ(s) in the following way:

Φ(ε) = epsilon

Φ(0s) = appzeroΦ(s)

Φ(1s) = apponeΦ(s)

Values are defined by the following productions:

V ::= x | λx.M | simul | appzero | appone | epsilon | Φ(s)

wheres ranges overL. We define the size|M | of a termM as follows:

|x| = |simul | = |appzero| = |appone | = |epsilon | = 1

|MN | = |M | + |N | + 1

|λx.M | = |M | + 1

2

The numberFO(x,M) of free occurrences ofx insideM can be defined in the usual way. We are now ready to define a
ternary reduction relationM n N whereM,N are terms andn is a natural number. First of all, define→n by the following
two rules:

(λx.M)V →|V |FO(x,M) M{V/x}

simulateΦ(e)Φ(x) →Time([e](x)) Φ([e](x))

M n N is defined as follows:

M →n N

M n N

M n N

ML n NL

M n N

LM n LN

M n N N m L

M n+m L

LetM,N be terms. Consider the following terms:

〈M,N〉 ≡ λx.xMN

N ◦M ≡ λx.N(Mx)

Mid ≡ λx.x

Mswap ≡ λx.x(λy.λw.λz.zwy)

Massl ≡ λx.x(λy.λw.w(λz.λq.λr.r(λs.syz)q))

Meval ≡ λx.x(λy.λw.yw)

Mcontr ≡ λx.λy.yxx

Mcurry ≡ λx.λy.λw.x(λz.zyw)

M∗ ≡ λx.x(λy.λw.(λx.λz.zxw)(My))

If U andV are closed values andUV has a normal formW , then we will denoteW by {U}(V). Moreover,Time({U}(V))
is the largest integern such thatUV n W . Now, letM,N,L, V,W,U be closed values such that{M}(V) = W and
{N}(W) = U . One can verify that

Time({(N ◦M)V }(U)) = |V | + Time({M}(V)) + Time({N}(W))

Time({Mid}(V)) = |V |

Time({Mswap}(〈M,N〉)) = 2|M |+ 2|N | + 12

Time({Massl}(〈M, 〈N,L〉〉)) = 3|M |+ 3|N | + 3|L| + 41

Time({Meval}(〈M,N〉)) = 2|M |+ 2|N | + 9 + Time({M}(N))

Time({Mcontr}(M)) = 2|M |

Time({M∗}(〈V,N〉)) = 2|V | + 2|N | + |M | + |W | + 16 + Time({M}(V))

Now, letM,V,W,U be closed values such that{M}(〈V,W 〉) = U . Then

McurryM |M| λy.λw.M(λw.wyw) ≡ N

NV |V | λw.M(λz.zV w) ≡ L

LW |W | M(λz.zVW)

As a consequence

Time({Mcurry}(M)) = |M |

Time({N}(V)) = |V |

Time({L}(W)) = |W | + Time({M}(〈V,W 〉))

This proves this lambda-calculus to satisfies all the axioms. In the following,cp will be a fixed constant such that|〈x, y〉| ≤
|x| + |y| + cp.

3

3 Length Spaces

In this section, we introduce the category of length spaces and study its properties. Lengths will not necessarily be numbers
but rather elements of a commutative monoid.

A resource monoidis a quadrupleM = (|M |,+,≤M ,DM) where

1. (|M |,+) is a commutative monoid;

2. ≤M is a pre-order on|M | which is compatible with+;

3. DM : {(α, β) | α ≤M β} → N is a function such that for everyα, β, γ

DM (α, β) + DM (β, γ) ≤ DM (α, γ)

DM (α, β) ≤ DM (α+ γ, β + γ)

and, moreover, for everyn ∈ N there isα such thatDM (0, α) ≥ n.

Given a resource monoidM = (|M |,+,≤M ,DM), the functionFM : |M | → N is defined by puttingFM (α) = DM (0, α).

Lemma 1 If M is a resource monoid, thenDM is antitone on its first argument and monotone on its second argument.

Proof. If α ≤M β, then

DM (α, γ) ≥ DM (α, β) + DM (β, γ) ≥ DM (β, γ)

DM (γ, α) ≤ DM (γ, α) + DM (α, β) ≥ DM (γ, β)

�

A length spaceon a resource monoidM = (|M |,+,≤M ,DM) is a pairA = (|A|,A), where|A| is a set and

⊆ |M | × L× |A|

is a relation satisfying the following conditions:

• If (α, e, a) ∈A, thenFM (α) ≥ |e|;

• For everya ∈ |A|, there areα, e such that(α, e, a) ∈A;

• If (α, e, a) ∈A andα ≤M β, then(β, e, a) ∈A;

• If (α, e, a) ∈A and(α, e, b) ∈A, thena = b.

The last requirement implies that each element of|A| is uniquely determined by the (nonempty) set of it realisersand in
particular limits the cardinality of any length space to thenumber of partial equivalence relations onL.

We will usually writeα, e A a meaning(α, e, a) ∈A.
A morphismfrom length spaceA = (|A|,A) to length spaceB = (|B|,B) (on the same resource monoidM =

(|M |,+,≤M ,DM)) is a functionf : |A| → |B| such that there existe ∈ {0, 1}∗, ϕ ∈ |M | with FM (ϕ) ≥ |e| and whenever
α, d A a, there must beβ, c such that

1. β, c B f(a);

2. β ≤M ϕ+ α;

3. {e}(d) = c;

4. Time({e}(d)) ≤ FM (ϕ+ α)DM (β, ϕ+ α)

We calle a realizer off andϕ a majorizer off .
If f is a morphism fromA toB realized bye and majorized byϕ, then we will writef : A

e,ϕ
−→ B orϕ, e A(B f .

4

Given two length spacesA = (|A|,A) andB = (|B|,B) on the same resource monoidM , we can buildA ⊗ B =
(|A| × |B|,A⊗B) (onM) wheree, α A⊗B (a, b) iff there aref, g, β, γ with

f, β A a
g, γ B b
e = 〈f, g〉
α ≥M β + γ

FM (α) ≥ FM (β) + FM (γ) + cp

A⊗B is a well-defined length space due to the axioms onM .
GivenA andB as above, we can buildA(B = (|A| ⇒ |B|,A(B) wheree, α A(B f iff f is a morphism fromA

toB realized bye and majorized byα.
Morphisms can be composed:

Lemma 2 (Composition) If f : A→ B andg : B → C are morphisms, theng ◦ f : A→ C is a morphism, too.

Proof. Let f : A
e,ϕ
−→ B andg : B

d,ψ
−→ C. We know thatTime({d ◦ e}(k)) is bounded byTime({e}(k)) + Time({d}(l))

(wherel = {e}(k)) plus some overhead proportional to|k| and|l|, sayp|k| + q|l| + r. Now, let us now chooseµ such that

FM (µ) ≥ |d ◦ e|+ p+ q+ r. We will prove thatg ◦ f : A
d◦e,ϕ+ψ+µ

−→ C. Obviously,FM (ϕ+ψ+µ) ≥ |d ◦ e|. If α, n A a,
then there must beβ,m such thatβ,m B f(a) and the other conditions prescribed by the definition of a morphism hold.
Moreover, there must beγ, s such thatγ, s C g(f(a)) and, again, the other conditions are satisfied. Putting themtogether,
we get:

γ ≤M β + ψ ≤M α+ ϕ+ ψ ≤M α+ ϕ+ ψ + µ

and

Time({d ◦ e}(n)) ≤ Time({e}(n)) + Time({d}(m)) + p|k| + q|l| + r

≤ FM (α + ϕ)DM (β, α+ ϕ) + FM (β + ψ)DM (γ, β + ψ)

+pFM (α) + qFM (β) + rFM (µ)

≤ FM (α + ϕ+ ψ)DM (β + ψ, α+ ϕ+ ψ) + FM (α+ ϕ+ ψ)DM (γ, β + ψ)

+(p+ q + r)(FM (α+ ϕ+ ψ + µ))

≤ FM (α + ϕ+ ψ + µ)DM (γ, α+ ϕ+ ψ) + FM (α+ ϕ+ ψ + µ)FM (µ)

≤ FM (α + ϕ+ ψ + µ)DM (γ, α+ ϕ+ ψ + µ)

This concludes the proof. �

Basic morphisms can be built independently on the underlying resource monoid. Noticeably, they correspond to axiom of
multiplicative linear logic:

Lemma 3 (Basic Maps) Given length spacesA,B,C, there are morphisms:

id : A→ A

swap : A⊗B → B ⊗A

assl : A⊗ (B ⊗ C) → (A⊗B) ⊗ C

eval : A⊗ (A(B) → B

curry : (A⊗B)(C) → A((B(C)

where

id(a) = a

swap(a, b) = (b, a)

assl(a, (b, c)) = ((a, b), c)

eval (a, f) = f(a)

curry(f) = λa.λb.f(a, b)

5

Proof. We know that{eid}(d) take time linear in|d|, say at mostp|d| + q. Then, letϕid ∈ M be such thatFM (ϕid) ≥
p + q + |eid | (this can always be done). Now, letα, d A a. We have thatα, d A id(a), α ≤M α + ϕid , {eid}(d) = d.
Moreover

Time({eid}(d)) ≤ p|d| + q ≤ (p+ q)(|d| + p+ q) ≤ FM (ϕid)(FM (α) + FM (ϕid))

≤ (FM (ϕid) + DM (α, α))(FM (ϕid) + FM (α))

≤ DM (α, α+ ϕid)FM (ϕid + α)

This provesid to be a morphism.
We know that{eswap}(〈d, c〉) takes time linear in|d| + |c|, say at mostp|d| + q|c| + r. Then, letϕswap ∈ |M | be such

thatFM (ϕid) ≥ p+ q + r + |eswap |. Now, letα, e A⊗B (a, b). This means thate = 〈d, c〉 andα, 〈c, d〉 B⊗A (b, a). We
can then apply the same argument as forid . In particular:

Time({eswap}(e)) ≤ p|d| + q|c| + r ≤ (p+ q + r)(|d| + |c| + p+ q + r)

≤ (p+ q + r)(|e| + p+ q + r) ≤ FM (ϕswap)(FM (α) + FM (ϕswap))

≤ (FM (ϕswap) + DM (α, α))(FM (ϕswap) + FM (α))

≤ DM (α, α + ϕswap)FM (ϕswap + α)

This provesswap to be a morphism. We can verifyassl to be a morphism exactly in the same way.
We know that{eeval}(〈d, c〉) = {d}(c) and{eeval}(〈d, c〉) takes overload time linear in|d|+|c|, say at mostp|d|+q|c|+r.

ϕeval is chosen as to satisfyFM (ϕeval) ≥ p+ q + r + |eeval |. Let nowα, e A⊗(A(B) (a, f). This means thate = 〈d, c〉
and there areβ andγ such that

β, d A a
γ, c A(B f
α ≥M β + γ

FM (α) ≥ FM (β) + FM (γ) + cp

Fromγ, c A(B f it follows that, by the definition of a morphism, there must beδ, h such that

1. δ, h B f(a)

2. δ ≤M β + γ

3. {c}(d) = h

4. Time({c}(d)) ≤ FM (β + γ)DM (δ, β + γ)

Fromδ ≤M β + γ andβ + γ ≤M α, it follows thatδ ≤M α ≤M α+ µ. Moreover:

Time({eeval}(〈d, c〉)) ≤ p|d| + q|c| + r + Time({c}(d))

≤ (p+ q + r)(|d| + |c| + p+ q + r) + Time({c}(d))

≤ FM (ϕeval)FM (α+ ϕeval) + FM (β + γ)DM (δ, β + γ)

≤ FM (α+ ϕeval)DM (0, ϕeval) + FM (α+ ϕeval)DM (δ, α)

≤ FM (α+ ϕeval)DM (δ, α+ ϕeval)

Now, let us prove thatcurry is a morphism. First of all, we know there must be constantsp1, . . . , p9 such that, for each
e, x, y, there ared andcx with

Time({ecurry}(e)) ≤ p1|e| + p2

d = {ecurry}(e)

|d| ≤ |e| + p3

Time({d}(x)) ≤ p4|x| + p5

cx = {d}(x)

|cx| ≤ |e| + |x| + p6

Time({cx}(y)) ≤ Time({e}(〈x, y〉)) + p7|x| + p8|y| + p9

6

Letµ, θ, ξ, σ ∈ |M | be such thatFM (µ) ≥ cp, FM (θ) ≥ p6 + p7 + p8 + p9, FM (ξ) ≥ p3 + p4 + p5 andFM (σ) ≥ p1 + p2.
Finally, putϕcurry = µ+θ+ ξ+σ. Let nowα, x A a, β, y B b andγ, e A⊗B(C f . By definition of a morphism, there
must beδ, c such thatα+ β, c C f(a, b). Using the usual techiques, we can show thatα+ γ + µ+ θ, c B(C λb.f(a, b),
which in turn yieldsγ + µ+ θ + ξ, c B(C λa.λb.f(a, b). Finally, this means thatcurry is a morphism justified byecurry
and majorized byµ+ θ + ξ + σ = ϕcurry . This concludes the proof. �.

Length spaces can justify the usual rule for tensor as a map-former:

Lemma 4 (Tensor) If f : A → B is a morphism andC is a length space, thenf × id : A ⊗ C → B ⊗ C is a morphism,
too.

Proof. Let f : A
e,ϕ
−→ B. We know that andTime({e∗}(〈m,n〉)) is at mostTime({e}(m)) + p|{e}(m)| + q|n| + r|m| +

s|e|+u wherep, q, r, s, u are constants. Then, takeψ ∈M such thatFM (ψ) ≥ p+ q+ r+ s+u+ |e∗|, putσ = ψ+ϕ+µ,
whereFM (µ) ≥ cp. Suppose〈m,n〉, α A⊗C (a, c). By definition, there areβ, γ such that

m,β A a
n, γ C c
α ≥M β + γ

By hypothesis, there areδ, t such that

t, δ B f(a)
δ ≤M ϕ+ β
{e}(m) = t

Time({e}(m)) ≤ FM (ϕ+ β)DM (δ, ϕ+ β)

Then,γ + δ + µ, 〈t, n〉 A⊗B (f(a), c). Moreover,

γ + δ + µ ≤M γ + ϕ+ β + µ ≤M α+ ϕ+ µ ≤M α+ σ

Finally:

Time({e∗}(〈m,n〉)) ≤ Time({e}(m)) + p|{e}(m)|+ q|n| + r|m| + s

≤ FM (ϕ+ β)DM (δ, ϕ+ β) +

pFM (δ) + qFM (γ) + rFM (β) + sFM (φ) + uFM (ψ)

≤ FM (σ + α)(DM (δ, ϕ+ β) + p+ q + r + s+ u)

≤ FM (α+ σ)(DM (δ + γ + µ, ϕ+ β + γ + µ) + p+ q + r + s+ u)

≤ FM (α+ σ)DM (δ + γ + µ, α+ σ)

This concludes the proof. �

Thus:

Lemma 5 Length spaces and their morphisms form a symmetric monoidalclosed category with tensor and linear implication
given as above.

A length spaceI is defined by|I| = {0} andα, e A 0 whenFM (α) ≥ |e|. For each length spaceA there are isomorphisms
A⊗ I ' A and a unique morphismA→ I. The latter serves to justify full weakening.

For every resource monoidM , there is a length spaceLM = (|LM |,LM
) where|LM | = L andα, t LM

t whenever
FM (α) ≥ t. The functions0 (respectively,s1) from {0, 1}∗ to itself which appends0 (respectively,1) to the left of its
argument can be computed in linear time on a Turing Machine and, as a consequence, is a morphism fromLM to itself.

7

Identity, Cut and Weakening.

A ` A
I

Γ ` A ∆, A ` B

Γ,∆ ` B
U

Γ ` A
Γ, B ` A

W

Multiplicative Logical Rules .

Γ, A,B ` C

Γ, A⊗B ` C
L⊗

Γ ` A ∆ ` B
Γ,∆ ` A⊗B

R⊗

Γ ` A ∆, B ` C

Γ,∆, A(B ` C
L(

Γ, A ` B

Γ ` A(B
R(

Second Order Logical Rules.

` Γ, A[C/α] ` B

Γ, ∀α.A ` B L∀
Γ ` A α /∈ FV (Γ)

Γ ` ∀α.A R∀

Figure 1. Intuitionistic Multiplicative Affine Logic

3.1 Interpreting Multiplicative Affine Logic

We can now formally show that second order multiplicative affine logic (i.e. multiplicative linear logic plus full weakening)
can be interpreted inside the category of length spaces on any monoidM . Doing this will simplify the analysis of richer
systems presented in following sections. Formulae of (intuitionistic) multiplicative affine logic are generated by the following
productions:

A ::= α | A(A | A⊗A | ∀α.A

whereα ranges over a countable set of atoms. Rules are reported in figure 1. Arealizability environmentis a partial function
assigning length spaces (on the same resource monoid) to atoms. Realizability semanticsJAKR

η of a formulaA on the
realizability environmentη is defined by induction onA:

JαKR

η = η(α)

JA⊗BKR

η = JAKR

η ⊗ JBKR

η

JA(BKR

η = JAKR

η (JBKR

η

J∀α.AKR

η = (|J∀α.AKR

η |,J∀α.AKR
η

)

where

|J∀α.AKR

η | =
∏

C∈U

|JAKR

η[α→C]|

e, α J∀α.AKR
η
a ⇐⇒ ∀C.e, α JAKR

η[α→C]
a

HereU stands for the class of all length spaces. A little care is needed when defining the product since strictly speaking it
does not exist for size reasons. The standard way out is to letthe product range over those length spaces whose underlying
set equals the set of equivalence classes of a partial equivalence relation onL. As already mentioned every length space is
isomorphic to one such. When working with the product one hasto insert these isomorphisms in appropriate places which,
however, we elide to increase readability.

If n ≥ 0 andA1, . . . , An are formulas, the expressionJA1⊗ . . .⊗AnK
R
η stands for|I| if n = 0 andJA1⊗ . . .⊗An−1K

R
η ⊗

JAKR
η if n ≥ 1.

8

4 Elementary Length Spaces

In this section, we define a resource monoidL such that elementary affine logic can be interpreted in the category of
resource monoids onL. We then (re)prove that functions representable inEAL are elementary time computable.

A list is eitherempty or cons(n, l) wheren ∈ N andl is itself a list. The suml + h of two lists l andh is defined as
follows, by induction onl:

empty + h = h+ empty = h

cons(n, l) + cons(m,h) = cons(n+m, l+ h)

For everye ∈ N, binary relations≤e on lists can be defined as follows

• empty ≤e l;

• cons(n, l) ≤e cons(m,h) iff there isd ∈ N such that

1. n ≤ 2e(m+ e) − d;

2. l ≤d h.

For everye and for every listsl andh with l ≤e h, we define the natural numberDe(l, h) as follows:

De(empty , empty) = 0;

De(empty , cons(n, l)) = 2e(n+ e) + D2e(n+e)(empty , l);

De(cons(n, l), cons(m,h)) = 2e(m+ e) − n+ D2e(m+e)−n(l, h);

Given a listl, !l stands for the listcons(0, l). The depthdepth(l) of a list l is defined by induction onl: depth(empty) = 0
while depth(cons(n, l)) = depth(l) + 1. |l| stands for the maximum integer appearing insidel, i.e. |empty| = 0 and
|cons(n, l)| = max{|l|, n}. For every natural numbern, [n]L stands forcons(n, empty).

We can now verify that all the necessary conditions requiredby the definition of a resource monoid are satisfied. To do
this, we need a number of preliminary results, which can all be proved by simple inductions and case-analysis:

Lemma 6 (Compatibility) empty ≤e l for everyl. Moreover, ifl, h, j are lists andl ≤e h, thenl+ j ≤e h+ j.

Proof. The first claim is trivial. To prove the second, we proceed by an induction onj. If j = empty , thenl+ j = l ≤e h =
h+ j. Now, supposej = cons(n, g). If h = empty , thenl = empty and, clearlyl+ j = j ≤e j = h+ j. If l = empty , we
have to prove thatj ≤e h+ j. Leth = cons(m, f); then

n ≤ n+m ≤ 2e(n+m+ e) − 0

g ≤0 g + f

which meansj ≤e h+ j. Finally, supposel = cons(m, f), h = cons(p, r). Then we know that

m ≤ 2e(p+ e) − d

f ≤d r

But then, by inductive hypothesis,

m+ n ≤ 2e(p+ e) + n− d ≤ 2e(p+ n+ e) − d

f + g ≤d r + g

which yieldsl + j ≤e h+ j. �

Lemma 7 (Transitivity) If l, h, j are lists andl ≤e h, h ≤d j, thenl ≤d+e j.

9

Proof. We can suppose all the involved lists to be different fromempty, since all the other cases are trivial.l = cons(n, g),
h = cons(m, f) andj = cons(p, r). From the hypothesis, we have

n ≤ 2e(m+ e) − c

m ≤ 2d(p+ d) − b

g ≤c f

f ≤b r

But then, by inductive hypothesis, we get

n ≤ 2e(m+ e) − c ≤ 2e(2d(p+ d) − b+ e) − c ≤ 2e2d(p+ d+ e) − b− c = 2e+d(p+ d+ e) − (b + c)

g ≤c+b r

This meansl ≤d+e j. �

Lemma 8 if l, h, j are lists andl ≤e h, thenDe(l, h) ≤ De(l + j, h+ j)

Proof. We proceed by an induction onj. If j = empty , thenl + j = l andh + j = h. Now, supposej = cons(n, g). If
h = empty , thenl = empty and, clearlyl + j = j = h+ j. If l = empty , leth = cons(m, f); then

De(l, h) = De(empty , h) = 2e(m+ e) + D2e(m+e)(empty , f)

≤ 2e(m+ e) + 2en− 2en+ D2e(m+e)+2en−2en(g, g + f)

≤ 2e(m+ n+ e) − n+ D2e(m+n+e)−n(g, g + f)

= De(j, h+ j) = De(l + j, h+ j)

Finally, supposel = cons(m, f), h = cons(p, r). Then we know that

De(l, h) = 2e(m+ e) − p+ D2e(m+e)−p(f, r)

≤ 2e(m+ e) − p+ D2e(m+e)−p(f + g, r + g)

≤ 2e(m+ e) + 2en− (n+ p) + D2e(m+e)+2en−n−p(f + g, r + g)

= 2e(m+ n+ e) − (n+ p) + D2e(m+n+e)−(n+p)(f + g, r + g)

= De(l + j, h+ j)

Lemma 9 If l, h, j are lists andl ≤e h, h ≤d j, thenDe(l, h) + Dd(h, j) ≤ De+d(l, j).

Proof. If either h = empty or j = empty , then the thesis is trivial. So supposeh = cons(n, g) andj = cons(m, f). If
l = empty, then

De(l, h) + Dd(h, j) = 2e(n+ e) + D2e(n+e)(empty , g) + 2d(m+ d) − n+ D2e(m+d)−n(g, f)

≤ 2e(n+ e) + 2d(m+ d) − n+ D2e(n+e)+2d(m+d)−n(empty , f)

≤ (2e − 1)n+ 2ee+ 2d(m+ d) + D(2e−1)n++2ee+2d(m+d)(empty , f)

≤ (2e − 1)2d(m+ d) + 2ee+ 2d(m+ d) + D(2e−1)2d(m+d)+2ee+2d(m+d)(empty , f)

= 2d+e(m+ d+ e) + D2d+e(m+d+e)(empty , f)

= De+d(l, j)

If l = cons(p, r), then

De(l, h) + Dd(h, j) = 2e(n+ e) − p+ D2e(n+e)−p(r, g) + 2d(m+ d) − n+ D2d(m+d)−n(g, f)

≤ 2e(n+ e) − p+ 2d(m+ d) − n+ D2e(n+e)−p+2d(m+d)−n(r, f)

≤ (2e − 1)n+ 2ee+ 2d(m+ d) − p+ D(2e−1)n+2ee+2d(m+d)−p(r, f)

≤ (2e − 1)2d(m+ d) + 2ee+ 2d(m+ d) − p+ D(2e−1)2d(m+d)+2ee+2d(m+d)−p(r, f)

= 2d+e(m+ d+ e) − p+ D2d+e(m+d+e)−p(r, f)

= De+d(l, j)

10

This concludes the proof. �

|L| will denote the set of all lists, while≤L,DL will denote≤0 andD0, respectively.

Lemma 10 L = (|L|,+,≤L,DL) is a resource monoid.

Proof. (L,+) is certainly a monoid. Compatibility of≤L follows from lemmas 6 and 7. The two required property onDL

come directly from lemmas 8 and 9. Ifn ∈ N, observe thatFL(cons(n, empty)) = n. This concludes the proof. �

An elementary length spaceis a length space on the resource monoid(L,+,≤L,DL). Given an elementary length space
A = (|A|,A), we can build the length space!A = (|A|,!A), wheree, l !A a iff e, h !A a andl ≥L!h. The construction
! on elementary length spaces serves to capture the exponential modality of elementary affine logic. Indeed, the following
two results prove the existence of morphisms and morphisms-forming rules precisely corresponding to axioms and rules from
EAL.

Lemma 11 (Basic Maps)Given elementary length spacesA,B, there are morphisms:

contr : !A→!A⊗!A

distr : !A⊗!B →!(A⊗B)

wherecontr(a) = (a, a) anddistr (a, b) = (a, b)

Proof. We know{econtr}(d) takes time linear in|d|, say at mostp|d| + q. Then, letl, h ∈ L be such thatFL(l) ≥
p + q + |econtr |, FL(h) ≥ cp. Definelcontr to bel + h + [1]L. Clearly,FL(lcontr) ≥ |econtr | Now, let j, d !A a. This
means thatj ≥L!k wherek, d A a. Then:

h+!k+!k ≥L !k+!k

FL(h+!k+!k) ≥ FL(h) + FL(!k) + FL(!k)

≥ cp + FL(!k) + FL(!k)

This means thath+!k+!k, e !A⊗!A (a, a). Moreover,h+!k+!k ≤L h+!k + [1]L ≤L h+!j + lcontr . Finally,

Time({econtr}(d)) ≤ p|d| + q ≤ (p+ q)(|d| + p+ q)

≤ FL(lcontr)(FL(j) + FL(lcontr))

≤ (FL(lcontr) + DL(j, j))(FL(lcontr) + FL(j))

≤ DL(j, j + lcontr)FL(lcontr + j)

This provescontr to be a morphism.
Let edistr = eid . We know{eid}(d) takes time linear in|d|, say at mostp|d|+ q. Then, letl, h ∈ L be such thatFL(l) ≥

p + q + |edistr |, FL(h) ≥ cp. ldistr is then defined asl+!h. Now, let j, 〈d, c〉 !A⊗!B (a, b). This means thatj ≥!k+!i,
wherek, d A a andi, c B b. This in turn means thatk + i+ h, 〈d, c〉 A⊗B (a, b) and!(k + i+ h), 〈d, c〉 !A⊗!B (a, b).
Moreover

!(k + i+ h) =!k+!i+!h ≤L j + ldistr

Finally:

Time({edistr}(〈d, c〉)) ≤ p|〈d, c〉| + q ≤ (p+ q)(|〈d, c〉| + p+ q) ≤ FL(ldistr)(FL(j) + FL(ldistr)

≤ (FL(ldistr) + DL(j, j))(FL(ldistr) + FL(l))

≤ DL(j, j + ldistr)FL(ldistr + j)

This provesdistr to be a morphism. �

Lemma 12 (Functoriality) If f : A
e,ϕ
−→ B, then there ared, ψ such thatf :!A

e,ψ
−→!B

11

Exponential Rules and Contraction.

Γ ` A
!Γ `!A

P
Γ, !A, !A ` B

Γ, !A ` B
C

Figure 2. Intuitionistic Elementary Affine Logic

Proof. Now, let θ be !ϕ and supposed, l !A a. Thenl ≥!h, whered, h A a. Observe that there must bej, c such that
c, j B f(a), j ≤L h+ ϕ andTime({e}(d)) ≤ FL(h+ ϕ)DL(j, h+ ϕ). But thenc, !j !B f(a) and, moreover

!j ≤L !(h+ ϕ) =!h+!ϕ ≤L!h+ θ

Time({e}(d)) ≤ FL(h+ ϕ)DL(j, h+ ϕ)

≤ FL(!(h+ ϕ))DL(!j, !(h+ ϕ))

≤ FL(!h+!ϕ)DL(!j, !h+!ϕ))

≤ FL(l + θ)DL(!j, l + θ)

This means thatf :!A
e,θ
−→!B. �

Elementary bounds can be given onFL(l) depending on|l| anddepth(l):

Proposition 1 For everyn ∈ N there is an elementary functionpn : N → N such thatFL(l) ≤ pdepth(l)(|l|).

Proof. We prove a stronger statement by induction onn: for everyn ∈ N there is an elementary functionqn : N
2 → N

such that for everyl, e, De(empty , l) ≤ qdepth(l)(|l|, e). First of all, we know thatDe(empty , empty) = 0, soq0 is just the
function which always returns0. qn+1 is defined fromqn as follows:qn+1(x, y) = 2y(x+ y) + qn(x, 2

y(x+ y)). Indeed:

De(empty , cons(n, l)) = 2e(n+ e) + D2e(n+e)(empty , l)

≤ 2e(|cons(n, l)| + e) + qdepth(l)(|cons(n, l)|, 2e|cons(n, l)| + e)

= qdepth(cons(n,l))(|cons(n, l)|, e)

At this point we just putpn(x) = qn(x, 0). �

4.1 Interpreting Elementary Affine Logic

EAL can be obtained by endowing multiplicative affine logic witha restricted modality. The grammar of formulae is
enriched with a new productionA ::=!A while modal rules are reported in figure 2. Realizability semantics is extended by
J!AKR

η =!JAKR
η .

Theorem 1 Elementary length spaces form a model ofEAL.

Now, consider the formula
ListEAL ≡ ∀α.!(α(α)(!(α(α)(!(α(α)

Binary lists can be represented as cut-free proofs with conclusion ListEAL. Suppose you have a proofπ :!jListEAL (

!kListEAL. From the denotationJπKR we can build a morphism fromJListEALK
R to LM by internal application toε, s0, s1.

This map then induces a functionf : L → L as follows: given a listw ∈ L first compute a realizer for the closed proof
corresponding to it, then applyp to the result.

Corollary 1 (Soundness)Letπ be anEAL proof with conclusioǹ !jListEAL (!kListEAL and letf : L→ L be the function
induced byJπKR . Thenf is computable in elementary time.

The function f in the previous result equals the function denoted by the proofπ in the sense of [8]. This intuitively obvious
fact can be proved straightforwardly but somewhat tediously using a logical relation or similar, see also [8].

12

Exponential Rules and Contraction.

Γ ` A
!Γ `!A

P
Γ, A, . . . , A ` B

Γ, !A ` B
C

Figure 3. Intuitionistic Soft Affine Logic

5 Soft Length Spaces

The grammar of formulae forSAL is the same as the one of Elementary Affine Logic. Rules are reported in figure 3. We
here use a resource monoid whose underlying carrier set is|I| = |L| × N. The sum(l, n) + (h,m) of two elements in|I| is
defined as(l + h,max{n,m}). For everye ∈ N, binary relations≤e on |I| can be defined as follows

• (empty , n) ≤0 (empty ,m) iff n ≤ m;

• (empty , n) ≤e (cons(m, l), p) iff there isd ∈ N such that

1. e ≤ m+ pd

2. (empty , n) ≤d (l, p)

• (cons(n, l),m) ≤e (cons(p, h), q) iff there isd ∈ N such that

1. e+ n ≤ p+ qd;
2. (l,m) ≤d (h, q).

If α = (l, n) ∈ |I|, then!α will be the couple(cons(0, l), n) ∈ |I|. If there ise such thatα ≤e β, then we will simply write
α ≤I β. For everyα andβ with α ≤I β, we define the natural numberDI(α, β) as follows:

DI((empty , n), (empty ,m)) = 0

DI((empty , n), (cons(m, l), p)) = m+ pDI((empty , n), (l, p))

DI((cons(n, l),m), (cons(p, h), q)) = n− p+ qDI((l,m), (h, q))

Analogously, we can defineDI(α, β) simply as the maximum integere such thatα ≤e β. |α| is the maximum integer
appearing insideα, i.e. |(l, n)| = max{|l|,m}. The depthdepth(α) of α = (l, n) is depth(l).

Lemma 13 (Compatibility) (empty , 0) ≤0 α for everyα. Moreover, ifα, β, γ ∈ |I| andα ≤e β, thenα+ γ ≤e β + γ.

Proof. The first claim is trivial. To prove the second, we proceed by an induction on the structure of the first component
of γ. We just consider the case where the first components ofα, β, γ are all different fromempty. So, supposeα =
(cons(n, l),m), β = (cons(p, h), q), γ = (cons(r, j), s). By hypothesis, we get

n ≤ p+ dq − e

(l,m) ≤d (h, q)

Then,n+r ≤ p+r+dq−e ≤ p+r+dmax{q, s}−e and, by induction hypothesis,(l+j,max{m, s}) ≤d (h+j,max{q, s}).
This means thatα+ γ ≤e β + γ. �

Lemma 14 (Transitivity) If α, β, γ ∈ |I| are lists andα ≤e β, β ≤d γ, thenα ≤d+e γ.

Proof. We go by induction on the structure of the first component ofγ and we suppose the first components ofα, β, γ to be
different fromempty . So, letα = (cons(n, l),m), β = (cons(p, h), q) andγ = (cons(r, j), s). From the hypothesis, we
have

n ≤ p+ cq − e

p ≤ r + bs− d

(l,m) ≤c (h, q)

(h, q) ≤b (j, s)

13

But then, by inductive hypothesis, we get

n ≤ r + bs− d+ cq − e ≤ r + (c+ b)s+ (e+ d)

(l,m) ≤c+b (j, s)

which yieldsα ≤d+e γ. �

Lemma 15 if α, β, γ ∈ I andα ≤e β, thenDI(α, β) ≤ DI(α+ γ, β + γ)

Proof. This is trivial in view of 13 and the fact thatDI(α, β) is justmax{e ∈ N | α ≤e β}. �

Lemma 16 If α, β, γ ∈ I andα ≤e β, β ≤d γ, thenDe(α, β) + Dd(β, γ) ≤ De+d(α, γ).

Proof. This is trivial in view of 14 and the fact thatDI(α, β) is justmax{e ∈ N | α ≤e β}. �

Lemma 17 (I,+,≤I ,DI) is a resource monoid.

Proof. (|I|,+) is certainly a commutative monoid. Compatibility of≤I follows from lemmas 13 and 14. The two required
property onDI come directly from lemmas 15 and 16. Ifn ∈ N, observe thatFI((cons(n, empty), 0)) = n. This concludes
the proof. �

A soft length spaceis a length space on the resource monoid(I,+,≤I ,DI).
Given a soft length spaceA = (|A|,A), we can build the length space!A = (|A|,!A), wheree, α !A a iff e, β !A a

andα ≥I !β.

Lemma 18 (Basic Maps)Given soft length spacesA,B and a natural numbern, there are morphisms:

contr : !A→

n times
︷ ︸︸ ︷

A⊗ . . .⊗A

distr : !A⊗!B →!(A⊗B)

wherecontr(a) = (a, . . . , a) anddistr(a, b) = (a, b)

Lemma 19 (Functoriality) If f : A
e,ϕ
−→ B, then there ared, ψ such thatf :!A

d,ψ
−→!B

Proposition 2 For everyn ∈ N there is a polynomialpn : N → N such thatFI(α) ≤ pdepth(α)(|α|).

Proof. We go by induction onn. First of all, we know thatDI((empty , 0), (empty ,m)) = 0, sop0 is just the function
which always returns0. pn+1 is defined frompn as follows:pn+1(x) = x+ xpn(x). Indeed:

DI((empty , 0), (cons(n, l),m)) = n+mDI((empty , 0), (l,m))

≤ |(cons(n, l),m)| + |(cons(n, l),m)|pdepth((l,m))(|(cons(n, l),m)|)

= pdepth((cons(n,l),m))((cons(n, l),m)).

This concludes the proof. �

Theorem 2 Soft length spaces form a model ofSAL.

Binary lists can be represented inSAL as cut-free proofs with conclusion

ListSAL ≡ ∀α.!(α(α)((α(α)((α(α)

Corollary 2 (Soundness)Letπ be anSAL proof with conclusioǹ !jListLAL (!kListLAL and letf : L→ L be the function
induced byJπKR . Thenf is computable in polynomial time.

14

6 Light Length Spaces

A tree is eitherempty or a triplenode(n, t, T) wheren ∈ N, t is itself a tree andT is a finite nonempty set of trees. We
write [n]T for the tree defined by[n]T = node(n, empty , {empty}). The sumt+s of two treest ands is defined as follows,
by induction onn:

empty + t = t+ empty = t;

node(n, t, T) + node(n, u, U) = node(n+m, t+ u, T ∪ U);

Here, more sophisticated techniques are needed. For everyn, e ∈ N, binary relations≤ne on trees can be defined as follows

• t ≤0
e u

• empty ≤n+1
e t;

• node(m, t, T) ≤n+1
e empty iff there isd ∈ N such that

1. m ≤ e− d;

2. t ≤nd2 empty;

3. For everys ∈ T , s ≤nd empty .

• node(m, t, T) ≤n+1
e node(l, u, U) iff there isd ∈ N such that

1. m ≤ l + e− d;

2. There is a functionf : {1, . . . , d} → U such thatt ≤nd2 u+
∑d

1 f(i);

3. For everys ∈ T there isz ∈ U with s ≤nd z.

For everye, n and for every treest andu with t ≤ne u, we define the natural numberDn
e (t, u) as follows:

D0
e(t, u) = 0

Dn+1
e (empty , empty) = e+ Dn

e (empty , empty)

Dn+1
e (empty ,node(m, t, T)) = m+ e+ max

f
{Dn

(m+e)2(empty , t+

m+e∑

i=1

f(i))}

Dn+1
e (node(m, t, T), empty) = e−m+ Dn

(e−m)2(t, empty)

Dn+1
e (node(m, t, T),node(l, u, U)) = l + e−m+ max

f
{Dn

(l+e−m)2(t, u +

l+e−m∑

i=1

f(i))}

If t is a tree, then|t| is the greatest integer appearing int, i.e. |empty | = 0 and|node(n, t, T)| = max{n, |t|,maxu∈T |u|}.
The depthdepth(t) of a treet is defined as follows:depth(empty) = 0 and

depth(node(n, t, T)) = 1 + max{depth(t),max
u∈T

depth(u)}.

Given a treet ∈ T , we define!t as the treenode(0, empty , {empty, t}) and§t as the treenode(0, t, {empty}). In this
context, a notion of isomorphism between trees is needed: wesay that treest andu areismorphicand we writet ∼= u iff for
everye, n ∈ N and for every treev the following hold:

v ≤ne t ⇔ v ≤ne u

t ≤ne v ⇔ u ≤ne v

Dn
e (v, t) = Dn

e (v, u)

Dn
e (t, v) = Dn

e (t, u)

Lemma 20 empty ∼= [0]T . Moreover, for every treet, t+ empty ∼= t+ [0]T .

15

Proof. We go by induction onn, considering the case wheren ≥ 1, since the base case is trivial. First of all, observe that
bothempty ≤n+1

e t and[0]T ≤n+1
e t for everyt. Moreover,empty ≤n+1

e empty and[0]T ≤n+1
e empty. Suppose now that

node(m, t, T) ≤n+1
e empty. This means that there isd such that

1. m ≤ e− d,

2. t ≤nd2 empty ;

3. Foralls ∈ T , s ≤nd empty .

If we putf(i) = empty for everyi, we gett ≤nd2 empty +
∑d

i=1 f(i), which yieldsnode(m, t, T) ≤n+1
e [0]T . In the same

way, we can prove that ifnode(m, t, T) ≤n+1
e [0]T , thennode(m, t, T) ≤n+1

e empty.
We have:

Dn+1
e (empty , empty) = e+ Dn

e2(empty , empty)

Dn+1
e (empty , [0]T) = e+ Dn

e2(empty , empty)

Dn+1
e ([0]T , empty) = e+ Dn

e2(empty , empty)

Dn+1
e (empty ,node(m, t, T)) = m+ e+ max

f
{Dn

(m+e)2(empty , t+

m+e∑

i=1

f(i))}

= Dn+1
e ([0]T ,node(m, t, T))

Dn+1
e (node(m, t, T), empty) = e−m+ Dn

(e−m)2(t, empty)

= Dn+1
e (node(m, t, T), [0]T)

Moreover, observe that

empty + empty = empty ∼= [0]T = [0]T + empty

node(m, t, T) + empty = node(m, t, T) + [0]T

This concludes the proof. �

Proposition 3 (Compatibility) For everyn, e ∈ N, empty ≤ne t for everyt and, moreover, ift ≤ne u thent + v ≤ne u + v
for everyt, u, v.

Proof. empty ≤ne t is trivial. The second statement can be proved by induction onn. The base case is trivial. In the inductive
case, we can suppose all the involved trees to be different fromempty . Suppose thatnode(m, t, T) ≤n+1

e node(l, u, U). We
should provenode(m+ k, t+ v, T ∪ V) ≤n+1

e node(l + k, u+ v, U ∪ V). However,

m+ k ≤ (l + e) − d+ k = (l + k + e) − d

t+ v ≤nd2 u+

d∑

i=1

f(i) + v = u+ v +

d∑

i=1

f(i)

Moreover, for everyz ∈ T ∪ V there certanily existsw ∈ U ∪ V such thatz ≤nd w. �

Proposition 4 (Transitivity) If t ≤ne u ≤nd v, thent ≤nd+e v.

Proof. We go by induction onn. We can directly go to the inductive case, since ifn = 0, then the thesis is trivial.
We can assume all the involved trees to be different fromempty . Let us supposenode(m, t, T) ≤n+1

e node(l, u, U) and
node(l, u, U) ≤n+1

d node(k, v, V) First of all, we havem ≤ l+e−c andl ≤ k+d−b, which yieldsm ≤ k+d−b+e−c=
k + (d+ e) − (b + c). Moreover, by hypothesis, there are functionsf : {1, . . . , d} → U andg : {1, . . . , e} → V such that

t ≤nc2 u+
c∑

i=1

f(i)

u ≤nb2 v +

b∑

i=1

g(i)

16

Therefore, by inductive hypothesis and by proposition 3:

t ≤nc2+b2 v +

c∑

i=1

f(i) +

b∑

i=1

g(i)

≤nbc v +

c∑

i=1

f(i) +

b∑

i=1

h(i)

whereh : {1, . . . , d} → V . We can then find a functionk : {1, . . . , d+ e} → V such that

t ≤n(c+b)2 v +

c+b∑

i=1

k(i).

Finally, if z ∈ T then we findw ∈ U such thatz ≤nc w. We then findx ∈ V such thatw ≤nb x and soz ≤nc+b x. �

Proposition 5 For everyn, e and for everyt, u, v, Dn
e (t, u) ≤ Dn

e (t+ v, u+ v)

Proof. We can proceed by induction onn and, again, the casen = 0 is trivial. In the inductive case, as usual, we can suppose
all the involved trees to be different fromempty . We have

Dn+1
e (node(m, t, T),node(l, u, U))

= l + e−m+ max
f

{Dn
(l+e−m)2(t, u+

l+e−m∑

i=1

f(i))}

= l + e−m+ Dn
(l+e−m)2 (t, u+

l+e−m∑

i=1

f(i))

wheref and realizes the max. By induction hypothesis,

Dn+1
e (node(m, t, T),node(l, u, U))

≤ (l + k) + e− (m+ k) + Dn
((l+k)+e−(m+k))2 (t+ v, u+ v +

(l+k)+e−(m+k)
∑

i=1

f(i))

≤ Dn+1
e (node(m, t, T) + node(k, v, V),node(l, u, U) + node(k, v, V))

This concludes the proof. �

Proposition 6 Dn
e (t, u) + Dn

d (u, v) ≤ Dn
e+d(t, v)

Proof. We can proceed by induction onn and, again, the casen = 0 is trivial. In the inductive case, as usual, we can suppose

17

all the involved trees to be different fromempty . Now

Dn+1
e (node(m, t, T),node(l, u, U)) + Dn+1

d (node(l, u, U),node(k, v, V))

= l + e−m+ max
f

{Dn
(l+e−m)2(t, u+

l+e−m∑

i=1

f(i))}

+k + d− l + max
g

{Dn
(n+d−l)2(u, v +

k+d−l∑

i=1

g(i))}

= k + (e+ d) −m+ Dn
(l+e−m)2(t, u +

l+e−m∑

i=1

f(i))

+Dn
(k+d−l)2(u, v +

k+d−l∑

i=1

g(i))

= k + (e+ d) −m+ Dn
(l+e−m)2(t, u +

l+e−m∑

i=1

f(i))

+Dn
(k+d−l)2(u+

l+e−m∑

i=1

f(i), v +

k+d−l∑

i=1

g(i) +

l+e−m∑

i=1

f(i))

≤ k + (e+ d) −m+ Dn
(l+e−m)2+(k+d−l)2(t, v +

k+d−l∑

i=1

g(i) +

l+e−m∑

i=1

f(i))

A functionh : {1, . . . , l+ e−m} → V such that
∑l+e−m
i=1 f(i) ≤n(l+e−m)(k+d+l)

∑l+e−m
i=1 h(i) can be easily defined, once

we remember thatnode(l, u, U) ≤nd node(k, v, V). This yields

Dn+1
e (node(m, t, T),node(l, u, U)) + Dn+1

d (node(l, u, U),node(k, v, V))

≤ k + (e+ d) −m+ Dn
(l+e−m)2+(k+d−l)2(t, v +

k+d−l∑

i=1

g(i) +

l+e−m∑

i=1

f(i))

+Dn
(l+e−m)(k+d−l)(v +

k+d−l∑

i=1

g(i) +

l+e−m∑

i=1

f(i), v +

k+d−l∑

i=1

g(i) +

l+e−m∑

i=1

h(i))

≤ k + (e+ d) −m+ Dn
(k+(e+d)−m)2(t, v +

k+d−l∑

i=1

g(i) +

l+e−m∑

i=1

h(i))

≤ k + (e+ d) −m+ Dn
(k+(e+d)−m)2(t, v +

l+(d+e)−m
∑

i=1

p(i))

wherep : {1, . . . , l+ (d+ e) −m} → V , p(i) = f(i) if i ≤ l + e−m andp(i) = g(i− (l + e−m)) otherwise. But, then

Dn+1
e (node(m, t, T),node(l, u, U)) + Dn+1

d (node(l, u, U),node(k, v, V))

≤ Dn
e+d(node(m, t, T),node(k, v, V))

This concludes the proof. �

Lemma 21 For everyt, u, e, if t ≤
max{depth(t),depth(u)}
e u, then for everyn > max{depth(t), depth(u)}, t ≤ne u and

Dn
e (t, u) = D

max{depth(t),depth(u)}
e (t, u).

Proof. A straightforward induction onmax{depth(t), depth(u)}. �

T is the set of all trees. The binary relation≤T on T is defined by puttingt ≤T u wheneverdepth(t) ≤ depth(u) and

t ≤
depth(u)
0 u. DT is defined by lettingDT (t, u) = D

depth(u)
0 (t, u).

18

Lemma 22 (T ,+,≤T ,DT) is a resource monoid.

Proof. (T ,+) is certainly a commutative monoid. For everyt, t ≤T t, as can be proved by induction ont: empty ≤0
0 empty

by definition and, moreover,t = node(m,u, U) ≤
depth(t)
0 t because, by inductive hypothesis,u ≤

depth(u)
0 u which yields,

by lemma 21,u ≤
depth(t)−1
0 u. In the same way, we can prove that, for everyv ∈ U , v ≤

depth(t)−1
0 v. Now, supposet ≤T u

andu ≤T v. This means thatt ≤depth(u)
0 u, u ≤

depth(v)
0 v, depth(t) ≤ depth(u) anddepth(u) ≤ depth(v). We can then

conclude thatdepth(t) ≤ depth(v), thatt ≤depth(v)
0 u (by lemma 21) andt ≤depth(v)

0 v (by proposition 6). This in turn yields

t ≤T v. Let us now prove compatibility: Supposet ≤T u and letv be a tree. Thendepth(t) ≤ depth(u) andt ≤depth(u)
0 u.

If depth(v) ≤ depth(u), thendepth(u + v) = depth(u) and we can proceed by gettingt + v ≤
depth(u+v)
0 u + v (by

proposition 3), which meanst+ v ≤T u+ v. If, on the other hand,depth(v) > depth(u), then we can first apply lemma 21

obtainingt ≤depth(u+v)
0 u and thent + v ≤

depth(u+v)
0 u + v (by proposition 3). By way of lemma 21 and propositions 6

and 5 we get

DT (t, u) + DT (u, v) = D
depth(u)
0 (t, u) + D

depth(v)
0 (u, v)

= D
depth(v)
0 (t, u) + D

depth(v)
0 (u, v)

≤ D
depth(v)
0 (t, v) = DT (t, v)

DT (t, u) = D
depth(u)
0 (t, u) ≤ D

depth(u+v)
0 (t, u)

≤ D
depth(u+v)
0 (t+ v, u+ v) = DT (t+ v, u+ v)

This concludes the proof. �

A light length spaceis a length space on the resource monoid(T ,+,≤T ,DT). Given a light length spaceA = (|A|,A),
we can define:

• The light length space!A = (|A|,!A) wheree, t !A a iff e, u A a andt ≥T !u.

• The light length space§A = (|A|,§A) wheree, t §A a iff e, u A a andt ≥T §u.

The following results states the existence of certain morphisms and will be useful when interpreting light affine logic.

Lemma 23 (Basic Maps)Given light length spacesA,B, there are morphisms:contr :!A →!A⊗!A, distr : §A ⊗ §B →
§(A⊗B) andderelict :!A→ §A wherecontr(a) = (a, a) anddistr(a, b) = (a, b) andderelict(a) = a.

Proof. We know that{econtr}(d) takes time linear in|d|, say at mostp|d| + q. Then, lett, u ∈ T be such thatFT (t) ≥
p + q + |econtr |, FT (u) ≥ cp. Definetcontr to bet + v + [1]T . Clearly,FT (tcontr) ≥ |econtr | Now, letv, d !A a. This
means thatv ≥T !w wherew, d A a. Then:

u+!w+!w ≥T !w+!w

FT (u+!w+!w) ≥ FT (u) + FT (!w) + FT (!w)

≥ cp + FT (!w) + FT (!w)

This means thatu+!w+!w, e !A⊗!A (a, a). Moreover,u+!w+!w = u+!w + [1]T ≤T u+!w + tcontr . Finally,

Time({econtr}(d)) ≤ p|d| + q ≤ (p+ q)(|d| + p+ q)

≤ FT (tcontr)(FT (v) + FT (tcontr))

≤ (FT (tcontr) + DT (v, v))(FT (tcontr) + FT (v))

≤ DT (v, v + tcontr)FT (tcontr + v)

This provescontr to be a morphism.
Let edistr = eid . We know that{eid}(d) takes time linear in|d|, say at mostp|d| + q. Then, lett, u ∈ T be such

thatFT (t) ≥ p + q + |edistr |, FT (u) ≥ cp. tdistr is then defined ast + §u. Now, let v, 〈d, c〉 §A⊗§B (a, b). This

19

means thatv ≥ §w + §x, wherew, d A a andx, c B b. This in turn means thatw + x + u, 〈d, c〉 A⊗B (a, b) and
§(w + x+ u), 〈d, c〉 A⊗B (a, b). Moreover

§(w + x+ u) = §w + §x+ §u ≤ v + tdistr

Finally:

Time({edistr}(〈d, c〉)) ≤ p|〈d, c〉| + q ≤ (p+ q)(|〈d, c〉| + p+ q) ≤ FT (tdistr)(FT (v) + FM (tdistr)

≤ (FT (tdistr) + DM (v, v))(FT (tdistr) + FT (v))

≤ DT (v, v + tdistr)FT (tdistr + v)

Thisdistr to be a morphism.
Let ederelict = eid . We know that{ederelict}(d) takes time linear in|d|, say at mostp|d|+ q. Then, lettdistr ∈ T be such

thatFT (tdistr) ≥ p+ q + |ederlict |. Now, letv, d !A a. This means thatv ≥!w, wherew, d A a. This in turn means that
§w, d §A a. Moreover

§w ≤!w ≤!w + tderelict .

Finally:

Time({edistr}(d)) ≤ p|d| + q ≤ (p+ q)(|d| + p+ q) ≤ FT (tderelict)(FT (v) + FT (tderelict)

≤ (FT (tderelict) + DT (v, v))(FT (tderelict) + FT (v))

≤ DT (v, v + tderelict)FT (tderelict + v)

This provesderelict to be a morphism. �

Lemma 24 For everyt ∈ T , there isu such that, for everyv, !(v + t) ≤T !v + u.

Proof. First of all we will prove the following statement by induction ont: for everyt, there is an integert such that for
everyu, u + t ≤

max{depth(u),depth(t)}

t
u. If t = empty, we can chooset to be just0, sinceu ≤n0 u for everyu. If

t = node(m, v, V), then we putt = m + v +
∑

w∈V w. Let u be an arbitrary tree and let us assume, without losing
generality, thatu = node(l, w,W). Letd = v +

∑

w∈V w. We get

l +m ≤ l +m+ (v +
∑

w∈V

w) − (v +
∑

w∈V

w)

= l + t− d

v + w ≤
max{depth(v),depth(w)}
v w

≤
max{depth(v),depth(w)}
0 w +

d∑

i=1

empty

∀x ∈ V.x ≤
depth(x)
x empty

∀x ∈W.x ≤
depth(x)
0 x

Using known results, we can rewrite these inequalities as follows

l +m ≤ l+ t− d

v + w ≤
max{depth(t),depth(u)}−1

t
w +

d∑

i=1

empty

∀x ∈ V.x ≤
max{depth(t),depth(u)}−1

t
empty

∀x ∈W.x ≤
max{depth(t),depth(u)}−1

t
x

This yieldsu+ t ≤
max{depth(u),depth(t)}

t
t.

20

Let us now go back to the lemma we are proving. We will now provethat for everyt, every termu = node(t, u, U) such
thatdepth(u) ≥ depth(t) + 1 satisfies the thesis. Indeed, if we putd = t andn = depth(!v + u) − 1, we get:

0 ≤ t− d

empty ≤nd2 u

v + t ≤nd v

This, in turn implies!(v + t) ≤n+1
0 !v + u, which yields!(v + t) ≤T !v + u. �

Lemma 25 (Functoriality) If f : A
e,ϕ
−→ B, then there areψ, θ such thatf :!A

e,ψ
−→!B andf : §A

e,θ
−→ §B.

Proof. Let ξ be the tree obtained fromϕ by lemma 24 and putψ = ξ + ϕ. Suppose thatd, t !A a. Thent ≥!u, where
d, u A a. Observe that there must bev, c such thatc, v B f(a), v ≤T u+ϕ andTime({e}(d)) ≤ FT (u+ϕ)DT (v, u+ϕ).
But thenc, !v !B f(a) and moreover

!v ≤T !(u+ ϕ) ≤T !u+ ξ ≤T t+ ψ

Time({e}(d)) ≤ FT (u + ϕ)DT (v, u + ϕ)

≤ FT (!(u + ϕ))DT (!v, !(u + ϕ))

≤ FT (!u + ξ)DT (!v, !u + ξ)

≤ FT (t+ ψ)DT (!v, t+ ψ)

This means thatf :!A
e,ψ
−→!B. Now, letθ be§ϕ and supposed, t §A a. Thent ≥ §u, whered, u A a. Observe that there

must bev, c such thate, v B f(a), v ≤T u+ ϕ andTime({e}(d)) ≤ FT (u + ϕ)DT (v, u + ϕ). But thenc, §v §B f(a)
and, moreover

§v ≤T §(u+ ϕ) = §u+ §ϕ ≤T t+ θ

Time({e}(d)) ≤ FT (u+ ϕ)DT (v, u+ ϕ)

≤ FT (§(u+ ϕ))DT (§v, §(u+ ϕ))

≤ FT (§u+ §ϕ)DT (§v, §u + §ϕ))

≤ FT (t+ θ)DT (§v, t+ θ)

This means thatf : §A
e,θ
−→ §B. �

Now, we can prove a polynomial bound onFT (t):

Proposition 7 For everyn ∈ N there is a polynomialpn : N → N such thatFT (t) ≤ pdepth(t)(|t|).

Proof. We prove a stronger statement by induction onn: for everyn ∈ N there is a polynomialqn : N
2 → N such that for

everyt, e, Dn
e (empty , t) ≤ qn(|t|, e). First of all, we know thatD0

e(empty , t) = 0, soq0 is just the function which always
returns0. qn+1 is defined fromqn as follows:qn+1(x, y) = x+ y + qn(x(x + y + 1), (x+ y)2). Indeed:

Dn+1
e (empty , empty) = e+ Dn

e (empty , empty)

≤ e+ qn(0, e) ≤ e+ |empty |

+qn(|empty |(|empty | + e+ 1), (|empty | + e)2)

Dn+1
e (empty ,node(m, t, T)) = m+ e+ max

f
{Dn

(m+e)2(empty , t+

m+e∑

i=1

f(i))}

≤ m+ e+ qn((m+ e+ 1)(|node(m, t, T)|), (m+ e)2)

≤ |node(m, t, T)| + e

+qn((|node(m, t, T)|+ e+ 1)(|node(m, t, T)|), (|node(m, t, T)| + e)2)

At this point, however, it suffices to putpn(x) = qn(x, 0). �

21

Exponential Rules and Contraction.

Γ,∆ ` A

§Γ, !∆ ` §A
P§

A ` B
!A `!B

P 1
!

` A
`!A

P 2
!

Γ, !A, !A ` B

Γ, !A ` B
C

Figure 4. Intuitionistic Light Affine Logic

6.1 Interpreting Light Affine Logic

The grammar of formulae is the one from Elementary Affine Logic, enriched with a new productionA ::= §A. Rules are
reported in figure 4. As for the! modality,J§AKR

η = §JAKR
η .

Theorem 3 Light length spaces form a model ofLAL.

Binary lists can be represented inLAL as cut-free proofs with conclusion

ListLAL ≡ ∀α.!(α(α)(!(α(α)(§(α(α)

Corollary 3 (Soundness)Letπ be anLAL proof with conclusioǹ {!, §}jListLAL ({!, §}kListLAL and letf : L → L be
the function induced byJπKR . Thenf is computable in polynomial time.

7 LFPL

In [6] one of us had introduced another language,LFPL, with the property that all definable functions on natural numbers
are polynomial time computable. The key difference betweenLFPL and other systems is that a function defined by iteration
or recursion is not marked as such using modalities or similar and can therefore be used as a step function of subsequent
recursive definitions.

In this section we will describe a resource monoidM for that language as well which will provide a proof of polytime
soundness for that system which is essentially the same as the proof from loc. cit., but more structured and, hopefully, easier
to understand.

The new approach also yields some new results, namely the justification of second-order quantification, a !-modality, and
a new type of binary trees based on cartesian product which allows alternative but not simultaneous access to subtrees.

7.1 Overview ofLFPL

LFPL is intuitionistic, affine linear logic, i.e., a linear functional language with⊗,(,+,×. Unlike in the original
presentation we also add polymorphic quantification here. In addition,LFPL has basic types for inductive datatypes, for
example unary and binary natural numbers, lists, and trees.There is one more basic type, namely♦, the resource type.

The recursive constructors for the inductive datatypes each take an additional argument of type♦ which prevents one to
invoke more constructor functions than one. Dually to the constructors one has iteration principles which make the♦-resource
available in the branches of a recursive definition. For example, the typeT (X) of X-labelled binary trees has constructors
leaf : T (X) andnode : ♦ (X (T (X) (T (X) (T (X). The iteration principle allows one to define a function
T (X)(A from closed termsA and♦ (X (A(A(A.

In this paper we “internalise” the assumption of closednessusing a!-modality.
Using this iteration principle one can encode recursive definitions by ML-style pattern matching provided recursive calls

are made on structurally smaller arguments only.
Here is a fragment of anLFPL program for “treesort” written in functional notation: theadditional arguments of type♦

are supplied using @. Note that the insert function takes an extra argument of type♦.

let insert x t d = match t with
Leaf -> Node(x,Leaf,Leaf)@d

| Node(y,l,r)@d’ ->
if x<=y then Node(y,insert x l d,r)@d’

22

else Node(y,l,insert x r d)@d’

let extract t = match t with
Leaf -> nil

| Node(x,l,r)@d ->
append (extract l) (cons(x,extract r)@d)

7.2 A resource monoid forLFPL

The underlying set ofM is the set of pairs wherel ∈ N is a natural number andp is a monotone polynomial in a single
variablex. The addition is defined by(l1, p1) + (l2, p2) = (l1 + l2, p1 + p2), accordingly, the neutral element is0 = (0, 0).
We have a submonoidM0 = {(l, p) ∈ M | l = 0}.

To define the ordering we set(l1, p1) ≤ (l2, p2) iff l1 ≤ l2 and(p2 − p1)(x) is monotone and nonnegative for allx ≥ l2.
For example, we have(1, 42x) ≤ (42, x2), but(1, 42x) 6≤ (41, x2). The distance function is defined by

DM((l1, p1), (l2, p2)) = (p2 − p1)(l2)

We can pad elements ofM by adding a constant to the polynomial. The following is now obvious.

Lemma 26 BothM andM0 are resource monoids.

A simple inspection of the proofs in Section 3.1 shows that the realisers for all maps can be chosen fromM0. This is actually
the case for an arbitrary submonoid of a resource monoid. We note that realisers of elements may nevertheless be drawn from
all of M. We are thus led to the following definition.

Definition 1 An LFPL-space is a length space over the resource monoidM. A morphism fromLFPL length spaceA toB
is a morphism between length spaces which admits a majorizerfromM0.

Proposition 8 LFPL length spaces with their maps form a symmetric monoidal closed category.

7.3 A !-modality for LFPL

We abbreviateσ + · · · + σ (n times) asn.σ.

Lemma 27 There is an elementδ ∈ M with the following “anti-archimedean” property. For eachσ ∈ M0 there exists
σ∗ ∈ M0 such that for alln ∈ N

n.(σ + δ) ≤ σ∗ + n.δ

Proof. Chooseδ = (l, q) wherel ≥ 1 andq arbitrary, e.g.,q = 1. Givenσ = (0, p) ∈ M0 defineσ∗ = (0, xp). Now,
n.(σ + δ) ≥ (nl, np + nq) andσ∗ + n.δ = (nl, xp + nq). But, xp − np is monotone and nonnegative whenx ≥ n so
(nl, xp+ nq) ≥ (nl, np+ nq) as required. �

Definition 2 LetA be anLFPL space andn ∈ N. TheLFPL spaceAn is defined by|An| = |A| ande, α An a iff α ≥ n.β
for someβ such thate, β A a.

So,An corresponds to the subset ofA⊗ · · · ⊗A consisting of those tuples with alln components equal to each other.
Let I be an index set andAi, Bi beI-indexed families ofLFPL spaces. A uniform map from(Ai)i to (Bi)i consists of a

family of mapsfi : Ai → Bi such that there existe, α with the property thate, α fi for all i. Recall that, in particular, the
denotations of proofs with free type variables are uniform maps.

It is clear that we have uniform isomorphismsAm+n → Am ⊗An and similar ones.

Proposition 9 There is anLFPL space♦ and for eachLFPL spaceA there is anLFPL space!A with the following proper-
ties:

• |!A| = |A|.

• If f : A→ B thenf :!A→!B.

23

• !(A⊗B) '!A⊗!B

• The obvious maps!A⊗ ♦n → An ⊗ ♦n are a uniform morphism.

The last property means intuitively that withn “diamonds” we can extractn copies from an element of type!A and get then
“diamonds” back for later use.

Proof. Let δ be as in the proof of Lemma 27. Pick anyd ∈ L so that|d| ≤ Fδ. Define|♦| = {♦} and putd, α ♦ ♦ if
α ≥ δ.

If A is anLFPL-space form the length space!A by |!A| = |A| andt, α !A a if there existsα′ = (0, p) ∈ M0 with
t, α′ A a andα ≥ (0, (x+ 1)p).

We have(0 + 1)p(0) = p(0) ≥ |t|. Compatibility with⊗ is obvious.
For functoriality assume thate, φ f whereφ = (0, q) ∈ M0. We claim thate, (0, (x + 1)q) f quamorphism from

!A to !B. Suppose thatt, α !A a whereα ≥ (0, (x+ 1)p) andt, (0, p) A. Sincef is a morphism, we obtainv, β such that
v, β B f(a) andβ ≤ φ + (0, p). This implies thatβ ∈ M0 as well, say,β = (0, r) wherer ≤ p+ q. We also know that
r(0) ≥ |v| by the definition of length spaces. Nowv, (0, (x + 1)r !B f(b). On the other hand(x+ 1)r ≤ (x + 1)(p+ q).
The resource bounds are obvious.

Finally, consider the required morphism!A⊗♦n → An ⊗♦n. Clearly, it may be realised by the identity; we claim that0
can serve as a majoriser. Indeed, a majoriser of(a, d) ∈ |!A⊗ ♦⊗n| is of the form(n, (x + 1)p) where(0, p) majorisesa in
A. Now, (n, np) is a majoriser of(a, d) in An ⊗ ♦n. But (x+ 1) − np is monotone and nonnegative aboven. �

Remark We remark at this point that we obtain an alternative resource monoidMS for SAL whose underlying set and
ordering are as inM, but whose addition is given by addition as(l1, p1) + (l2, p2) = (max(l1, l2), p1 + p2). Length
spaces overMS with maps majorised byMS (not M0) then also form a sound model ofSAL. This points to a close
relationship betweenLFPL andSAL and also shows a certain tradeoff between the two systems. The slightly more complex
model is needed forLFPL since inLFPL the C-rule ofSAL is so to say internalised in the form of the uniform map
!A⊗ ♦n → An ⊗ ♦n. Notice thatSAL’s map!A→ An cannot be uniform. This uniformity ofLFPL allows for an internal
implementation of datatypes and recursion as we now show.

7.4 Dependent typing

Definition 3 Let Ti be a family ofLFPL spaces such that|Ti| = T independent ofi. TheLFPL space∃i.Ti is defined by
|∃i.Ti| = |T | ande, α ∃i.Ti

t if e, α Ti
t for somei.

Note that if we have a uniform family of mapsTi → U whereU does not depend oni then we obtain a map∃i.Ti → U
(existential elimination).

Conversely, if we have a uniform family of mapsUi → Vf(i) then we get a uniform family of mapsUi → ∃j.Vj (existential
introduction). We will use an informal “internal language”to denote uniform maps which when formalised would amount to
an extension ofLFPL with indexed type dependency in the style of Dependent ML [10].

7.5 Inductive datatypes

In order to interpret unary natural numbers, we defineN = ∃n.Nn where

Nn = ♦n ⊗ ∀A.(A(A)n (A(A

We can internally define a successor map♦ ⊗ Nn → Nn+1 as follows: starting fromd : ♦, ~d : ♦n andf : ∀(A (

A)n (A (A we obtain a member of♦n+1 (from d and ~d) and we definef ′ : ∀(A (A)n+1 (A (A as
λ(uA(A, ~u(A(A)n

).λzA.u(f ~u z). From this, we obtain a map♦⊗N → N by existential introduction and elimination.
Of course, we also have a constant zeroI → N0 yielding a mapI → N by existential introduction.
Finally, we can define an iteration map

!(♦⊗A(A)(Nn(A(A

24

as follows: Givent :!(♦⊗A(A) and(~d, f) ∈ Nn we unpackt using Proposition 9 to yieldt′ ∈ ((♦⊗A)(A)n as well
as~d ∈ ♦n. Feeding these “diamonds” one by one to the components oft′ we obtaint′′ ∈ (A(A)⊗n. But thenf t′′ yields
the required element ofA(A.

Existential elimination now yields a single map

!(♦⊗A(A)(N (A(A

Similarly, we can interpret binaryX-labelled trees using a type family

Tn = ♦n ⊗ ∀(X (A(A(A)n (An+1 (A

and defining trees proper as∃n.Tn. We get mapsleaf : T0 andnode : ♦⊗X ⊗ Tn1 ⊗ Tn2 → Tn1+n2+1 and an analogous
iteration construct.

Finally, and this goes beyond what was already known, we can define “lazy trees” using cartesian product (also known as
additive conjunction).

First, we recall from ordinary affine linear logic that an additive conjunction can be defined as

A×B = ∀C.(C (A) ⊗ (C (B) ⊗ C

The first projection mapA × B → A is given internally byλ(fC(A, gC(B , cC).f c. Analogously, we have a second
projection. Given mapsf : C → A andg : C → B we obtain a map〈f, g〉 : C → A×B internally asλcC .(f, g, c).

Now, following the pattern of the binary treesTm,n above, we define another family

T×
d = ♦d ⊗ ∀A.(X ((A×A)(A)d(A(A

andT× = ∃d.T×
d . We get mapsleaf : ♦→ T×

0 andnode : ♦⊗X⊗ (Td1 ×Td2) → T1+max(d1,d2) as well as an analogous
iteration construct.

We describe in detail the construction of the “node” map which is not entirely straightforward. First, we note that for any
length spacesA,B andm,n the obvious map(♦m ⊗ A) × (♦n ⊗ B) → ♦max(m,n) ⊗ (A × B) is a morphism. This is
because a majoriser of an element of(♦m ⊗A)× (♦n ⊗B) must be of the form(k, p) wherek ≥ max(m,n) in view of the
existence of the projection maps.

Now suppose we are given (internally)d : ♦, x : X, lr : T×
d1

× T×
d2

. Using the just described morphism we decompose

lr into ~d : ♦max(d1,d2) andlr ′ : Wd1 ×Wd2 whereWi = (X ((A × A) (A)i (A (A. We have stripped off the
universal quantifier.

Now d and ~d together yield an element of♦1+max(d1,d2). It remains to construct a member ofW1+max(d1,d2). To this
end, we assumeu : X ((A × A)(A andf : (X ((A × A)(A)max(d1,d2) and define the required element ofA as
u x 〈lr ′.1 f a, lr ′.2 f a〉. Here.1 and.2 denote the projections from the cartesian product. The sharing of the variablesf ,
a, lr ′ is legal in the two components of a cartesian pairing, but would of course not be acceptable in a⊗ pairing. We have
elided the obvious coercions from()max(d1,d2) to ()di .

We remark that these cartesian trees are governed by their depth rather than their number of nodes. We also note that
if X = I we can form the functionλd♦.λtT

×

.node d () 〈t, r〉 : ♦ (T× (T×. Iterating this map yields a function
N (T× computing full binary trees of a given depth. Of course, on the level of the realisers, such a tree is not laid out in
full as this would require exponential space, but computed lazily as subtrees are being accessed. Exploring the implications
of this for programming is left to future work.

8 Conclusion and Related Work

We have given a unified semantic framework with which to establish soundness of various systems for capturing complex-
ity classes by logic and programming. Most notably, our framework has all of second-order multiplicative linear logic built
in, so that only the connectives and modalities going beyondthis need to be verified explicitly.

While resulting in a considerable simplification of previous soundness proofs, in particular forLFPL andLAL, our method
has also lead to new results, in particular polymorphism and“!” for LFPL.

The method proceeds by assiging both abstract resource bounds in the form of elements from a resource monoid and
resource-bounded computations to proofs, resp. programs.In this way, our method can be seen as a combination of tra-
ditional Kleene-style realisability (which only assigns computations) and polynomial and quasi interpretation known from

25

term rewriting (which only assigns resource bounds). An altogether new aspect is the introduction of more general notions
of resource bounds than just numbers or polynomials as formalised in the concept of resource monoid. We thus believe that
our methods can also be used to generalise polynomial interpretations to (linear) higher-order.

References

[1] Andrea Asperti and Luca Roversi. Intuitionistic light affine logic. ACM Transactions on Computational Logic,
3(1):137–175, 2002.

[2] Patrick Baillot and Virgile Mogbil. Soft lambda-calculus: a language for polynomial time computation. InProceedings
of the 7th International Conference on Foundations of Software Science and Computational Structures, 2004.

[3] Stephen Bellantoni, Karl Heinz Niggl, and Helmut Schwichtenberg. Higher type recursion, ramification and polynomial
time. Annals of Pure and Applied Logic, 104:17–30, 2000.

[4] Paolo Coppola and Simone Martini. Typing lambda terms inelementary logic with linear constraints. InProceedings
of the 6th International Conference on Typed Lambda-Calculus and Applications, pages 76–90, 2001.

[5] Jean-Yves Girard. Light linear logic.Information and Computation, 143(2):175–204, 1998.

[6] Martin Hofmann. Linear types and non-size-increasing polynomial time computation. InProceedings of the 14th IEEE
Syposium on Logic in Computer Science, pages 464–473, 1999.

[7] Martin Hofmann. Safe recursion with higher types and BCK-algebra.Annals of Pure and Applied Logic, 104:113–166,
2000.

[8] Martin Hofmann and Philip Scott. Realizability models for BLL-like languages.Theoretical Computer Science, 318(1-
2):121–137, 2004.

[9] Yves Lafont. Soft linear logic and polynomial time.Theoretical Computer Science, 318:163–180, 2004.

[10] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. InProceedings of the 26th ACM SIGPLAN
Symposium on Principles of Programming Languages, pages 214–227, 1999.

26

