
Notes on the Intensional Expressive Power

of Bounded Calculi

Ugo Dal Lago

February 2, 2007

Until recently, implicit computational complexity has focused on extensional characterizations of
complexity classes. These characterizations are interesting from a programming language perspec-
tive as well, but with the following proviso: extensional correspondence with complexity classes
is not enough, we need to capture as many algorithms as possible (without losing the corre-
spondence with complexity classes). There have been advances in this direction (for example:
non-size-increasing, quasi-interpretations, etc.). It is not easy, however, to measure the improve-
ment that these new systems achieve. What we need are sharp results on the intensional expressive
power of existing systems.
In these notes, I will clarify my previous statement by a toy example: I introduce a language for
primitive recursive definitions and characterize the class of bounded primitive recursive definitions
(due to Cobham [1]) as the primitive recursive definitions which are hereditarily polytime. What
is interesting is not this result itself but the question it implicitly raises: is it possible to sharply
characterize the intensional expressive power of other, more interesting, systems (Bounded Linear
Logic, Non-size increasing, Quasi-interpreations, etc.)?

1 Bounded Recursion on Notation

We can give the notion of a primitive recursive definition (PRD) with a integer arity as follows,
by induction:
• The symbol nil is a PRD with arity 0.
• The symbols cons0 and cons1 are PRDs with arity 1.
• For every n ≥ 1 and for every 1 ≤ i ≤ n, the symbo πn

i
is a PRD with arity n.

• If s is a PRD with arity n ≥ 0 and t1, . . . , tn are PRDs with arity m ≥ 0, then comp(s, t1, . . . , tn)
is a PRD with arity m.

• If s is PRD with arity n ≥ 0 and t0, t1 are two PRDs with arity n + 2, then rec(s, t0, t1) is a
PRD with arity n + 1.

D is the class of all primitive recursive definitions. B is simply the language {0, 1}∗ of binary,
finite, strings. The semantics of a PRD s with arity n is a function JsK : Bn → B defined as
follows:

JnilK = ε

Jcons0 K(u) = 0 · u

Jcons1 K(u) = 1 · u

Jπn

i K(u1, . . . , un) = ui

Jcomp(s, t1, . . . , tn)K(u1, . . . , um) = JsK(Jt1K(u1, . . . , um), . . . , JtnK(u1, . . . , um))

Jrec(s, t0, t1)K(ε, u1, . . . , un) = JsK(u1, . . . , u1)

Jrec(s, t0, t1)K(0 · u0, u1, . . . , un) = Jt0K(Jrec(s, t0, t1)K(u0, . . . , un), u0, . . . , un)

Jrec(s, t0, t1)K(1 · u0, u1, . . . , un) = Jt1K(Jrec(s, t0, t1)K(u0, . . . , un), u0, . . . , un)

1

1 BOUNDED RECURSION ON NOTATION 2

The semantics JsK of a PRD s is a primitive recursive function in the classical sense. Conversely,
every primitive recursive function can be expressed as a PRD. As a consequence, JDK = R, where
R is the class of primitive recursive functions.
We will now look at an operational semantics for PRDs. To do that, we need syntactic object
expressing (partially evaluated) function calls to PRDs. A primitive recursive expression (PRE) is
either an element of B or has the form s(e1, . . . , en), where s is a PRD with arity n and e1, . . . , en

are PREs. E is the class of primitive recursive expressions. The relation −→ on E is obtained from
the following rules by closing them under any context:

nil −→ ε

cons0 (u) −→ 0 · u

cons1 (u) −→ 1 · u

πn

i (u1, . . . , un) −→ ui

comp(s, t1, . . . , tn)(u1, . . . , um) −→ s(t1(u1, . . . , um), . . . , tn(u1, . . . , um))

rec(s, t0, t1)(ε, u1, . . . , un) −→ s(u1, . . . , un)

rec(s, t0, t1)(0 · u0, u1, . . . , un) −→ t0(rec(s, t0, t1)(u0, . . . , un), u0, . . . , un)

rec(s, t0, t1)(1 · u0, u1, . . . , un) −→ t1(rec(s, t0, t1)(u0, . . . , un), u0, . . . , un)

Clearly, t(u1, . . . , un) −→∗ u iff JtK(u1, . . . , un) = u. A string u ∈ B appears inside the PRE e iff
u is a subterm of e. Similarly, a PRD t appears inside e iff t is a subterm of e.

Proposition 1.1 Let t be a PRD with arity n and let u1, . . . , un ∈ B. If t(u1, . . . , un) −→n e and
u appears inside e, then |u| ≤ n + max{|u1|, . . . , |un|}. Moreover, if a PRD s appears inside e,
then s is a subterm of t.

Proof We proceed by induction on the structure of t:
• If t = ε, then the hypothesis cannot be realized.
• If t = 0, then t(u1) −→ 0 · u1 and the thesis is verified. Similarly when t = 1 and t = πn

i
.

• If t = comp(s, t1, . . . , tn), then the reduction of t(u1, . . . , um) goes as follows:

t(u1, . . . , um) −→ s(t1(u1, . . . , um), . . . , tn(u1, . . . , um))

−→k s(v1, . . . , vn))

−→h v

where t1(u1, . . . , um) −→ki vi for every 1 ≤ i ≤ m and k =
∑m

i=1
ki. The thesis is satisfied.

• If t = rec(s, t0, t1) and u0, . . . , um ∈ B, it is convenient to go by induction on u0 as follows:
• If u0 = ε, then the reduction of t(u0, . . . , um) goes as follows:

t(u0, . . . , un) −→ s(u1, . . . , un) −→k v

The thesis follows.
• If u0 = 0 · u, then the reduction of t(u0, . . . , um) goes as follows:

t(u0, . . . , un) −→ t0(t(u, u0 . . . , un), u, u1 . . . , un)

−→k t0(v, u, u1, . . . , un)

−→h w

where t(u, u0 . . . , un) −→k v. The thesis is satisfied.
• If u0 = 1 · u, then we can proceed similarly.

This concludes the proof. 2

As an easy corollary we get the following:

Corollary 1.1 For every PRD t with arity n, there is a polynomial p : N
n+1 → N such that

whenever t(u1, . . . , un) −→m e, it holds that |e| ≤ p(m, |u1|, . . . , |un|).

REFERENCES 3

Proof Let k be a natural number greater than the size of t and let h be a natural number greater
than the maximum arity of subterms of t. Then we define:

p(x, y1, . . . , yn) = h(x + 1)(k + x + y1 + . . . + yn)

Clearly, p is a polynomial. Moreover, the size of t(u1, . . . , un) is clearly majorized by

p(0, |u1|, . . . , |un|) = h(k + |u1| + . . . + |un|) ≤ k + |u1| + . . . + |un|.

Finally, observe that, by proposition 1.1, if t(u1, . . . , un) −→m e −→ f , then

|f | ≤ |e| + h(m + |u1| + . . . , |un|) + k ≤ h(k + m + |u1| + . . . , |un|).

However,

p(x + 1, y1, . . . , yn) = h(x + 2)(k + x + 1 + y1 + . . . + yn)

≥ h(x + 2)(k + x + y1 + . . . + yn)

= h(x + 1)(k + x + y1 + . . . + yn) + h(k + x + y1 + . . . + yn)

= p(x, y1, . . . , yn) + h(k + x + y1 + . . . + yn)

The thesis follows. 2

By the previous results, we can define the notion of a polytime PRD t with arity n by just
counting the number of reductions steps: t is polytime iff there is a polynomial p : N

n → N such
that whenever t(u1, . . . , un) −→m v, it holds that m ≤ p(|u1|, . . . , |un|). A PRD t is hereditarily
polytime iff t and every sub-definition of t are polytime. PD ⊆ D is the class of all polytime
PRDs. Similarly, HPD ⊆ PD is the class of all hereditarily polytime PRDs. These classes are
defined from the operational semantics. The class P of polytime functions from Bn to B is usually
defined in terms of Turing Machines. From corollary 1.1, it follows that JPDK = JHPDK = P. In
other words, the cost model induced by the operational semantics is invariant [2]. Notice there are
polytime PRDs which are not hereditarily polytime (for example, comp(const , exp), where JconstK
is a constant function and exp takes exponential time)
. We can now define the class of bounded primitive recursive definitions (BPRD) as follows1: take
the definition of a PRD and modify the last inductive clause as follows: If s is BPRD with arity
n ≥ 0 and t0, t1 are two BPRDs with arity n + 2, then t = rec(s, t0, t1) is a BPRD with arity
n + 1 provided there is a polynomial p : N

n+1 → N such that |JtK(u0, . . . , un)| ≤ p(|u0|, . . . , |un|)
whenever u0, . . . , un ∈ B. BD is the class of all BPRD. Extensionally, bounded primitive recursive
definitions capture polynomial time:

Theorem 1.1 (Cobham) JBDK = P.

What we would like, however, is a result on the intensional expressive power of bounded recursion.
We can easily get it:

Theorem 1.2 BD = HPD.

This is not too surprising, since the definition of a BPRD involves the existence of a polynomial,
precisely as the definition of a polytime primitive recursive definition. In the definition of a BPRD,
however, the operational semantics is not mentioned.

References

[1] Cobham, A. The intrinsic computational difficulty of functions. In Proceedings of 1964
International Congress for Logic, Methodology and Philosophy of Sciences (1965), pp. 24–30.

[2] van Emde Boas, P. Machine models and simulations. In Handbook of Theoretical Computer
Science, vol. A. Elsevier Science Publishers, 1990, pp. 1–66.

1this way of defining bounded recursion on notation is slightly different from the original one [1]

