1

Higher-Order Probabilistic Programming
A Tutorial at POPL 2019

Ugo Dal Lago*

Abstract

This tutorial is meant to be an introduction to the principles of randomized and bayesian
higher-order programming languages. We will start by giving some simple examples of prob-
abilistic higher-order programs, written in generic or domain specific functional programming
languages. Particular attention will be given in highlighting why sampling and conditioning
can be useful in programming, and how the metatheory of higher-order probabilistic program-
ming differs from the one of its deterministic sibling.

Tutorial Description

Functional programming languagues are well known to enable modularity and code reuse. More-
over, functional programs are easy to reason about, thanks to the simplicity and cleanliness of
the underlying semantics. This is particularly useful in application domains in which symbolic
manipulation or complex mathematical modeling are needed. An essential ingredient in many
functional programming idioms are higher-order functions, namely functions which can take other
functions as input and produce functions in output. This mechanism allows for modularity and
code reuse, e.g., through so-called higher-order combinators like fold, map, or filter.

This tutorial is meant to be an introduction to the principles of randomized and bayesian

higher-order programming languages. The tutorial is structured into four parts:

1. Motivating Examples. We will first introduce some examples of classic randomized algo-

rithms implemented in the OCAML functional programming langaage. Then, we will look at
how probabilistic graphical models can be written as programs in functional programming
languages like HANSEI, giving rise to so-called bayesian programming. This part will also
serve as a gentle introduction to probabilistic programming for those among the attendants
who are not familiar with these concepts.

. A \-Calculus Foundation. We will introduce a hierarchy of two increasingly expressive

typed A-calculi in which forms of sampling and conditioning operators are available, this way
allowing for general enough forms of randomized and bayesian programming. Both calculi
will be based on Plotkin’s PCF.

. Operational and Denotational Semantics. We will endow the languages introduced in

the Second Part with two forms of operational semantics, the first of them capturing program
evaluation through distributions, the second one capturing learning through a notion of
sampling. A notion of contextual equivalence will be given together with a refinement in the
form of a pseudometric. We will also describe the challenges one faces when generalizing
classic domain theory to probabilistic programming.

. Resource-Bound Verification through Type Systems. The main reason for the adop-

tion of randomized algorithms lies in their efficiency: in many computational problems, the
most time-efficient algorithms, practically if not theoretically, are randomized. In Bayesian

*University of Bologna & INRIA Sophia Antipolis, ugo.dallago@unibo.it



programming, termination is crucial for learning. We will describe how termination and
complexity analysis can be carried out by type systems when done in probabilistic program-
ming languages. We will focus on two aspects, namely on how a proof of soundness for the
introduced type systems can be carried out, and on the expressive power of the introduced
type systems.

Prerequisites for this tutorial will be kept to a minimum, being limited to some familiarity with
basic probability theory and with the theory and practice of functional programming. Slides will
be available in the tutorial’s webpagdﬂ

2 Biography

Ugo Dal Lago is Associate Professor of Computer Science at the University of Bologna, and the
vice-head of the FoCUS research group at INRIA Sophia Antipolis. Along the last twenty years, he
has worked on complexity analysis of functional programming languages, on relational reasoning
about probabilistic programming. He recently applied the above to A-calculi for machine learning
and for the verification of cryptographic primitives.

Thttp://www.cs.unibo.it/~dallago/HOPP/


http://www.cs.unibo.it/~dallago/HOPP/

	Tutorial Description
	Biography

