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Abstract. The majority of Internet users rely on the Transmission Control Pro-
tocol (TCP3) to download large multimedia files from remote servers (e.g. P2P
file sharing). TCP has been advertised as a fair-share protocol. However, when
session round-trip-times (RTTs) radically differ from each other, the share (of the
bottleneck link) may be anything but fair. This motivates us to explore a new TCP,
TCP Libra4, that guarantees fair sharing regardless of RTT.
The key element of TCP Libra is the unique window adjustment algorithm that
provably leads to RTT-independent throughput, yet converging to the fair share.
We position TCP Libra in a non-linear optimization framework, proving that it
provides fairness (in the sense of minimum potential delay fairness) among TCP
flows that share the same bottleneck link. Equally important are the friendliness
of Libra towards legacy TCP and the throughput efficiency.
TCP Libra is source only based and thus easy to deploy. Via analytic modeling
and simulations we show that TCP Libra achieves fairness while maintaining
efficiency and friendliness to TCP New Reno. A comparison with other TCP
versions that have been reported asRTT-fair in the literature is also carried out.

1 Introduction

TCP was initially designed to provide a connection-oriented reliable service in the
ARPANET environment, which later became the Internet. TCP addresses three ma-
jor issues: reliability, flow control and congestion control [3]. To achieve the third goal,
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Fig. 1. With TCP New Reno, RTT imbalance typically leads to uneven share of bandwidth be-
tween two competing flows. In this experiment one server is at UCLA (with RTT< 1ms) and the
other in Taiwan (with RTT = 200ms). Two clients repeatedly download a 26MB file from both
servers: both clients are at UCLA. The clients share a 1Mbps wireless LAN Access to the Inter-
net. We show the respective transfer times averaged over more than 100 trials. If clients download
from Taiwan and UCLA separately, they complete the downloads in 540 and 305 sec respectively
(with equivalent rates .68Mbps and .38Mbps). When the clients share the access link, the UCLA
client completes the download in less than 400 sec (equivalent to .52Mbps net rate). The client
in Taiwan completes the download in almost 900 sec. Thus, the download from Taiwan achieves
the solo rate of .38Mbps only AFTER the UCLA client completes. While the two clients share
(during the first 400 sec), the UCLA download achieves .52Mbps, while the Taiwan download
achieves only .04Mbps rate! This is a very severe example of unfairness induced by TCP New
Reno.

the sending rate is dynamically adjusted to avoid both service starvation and network
overflow. The most widely deployed version, TCP New Reno, implements a conges-
tion control algorithm, known as AIMD (Additive Increase, Multiplicative Decrease).
The very basic concept can be summarized as follows (for a detailed description, please
refer to [2]):

– When a packet loss is detected, the TCP sender decreases its sending window by
half.

– When a packet is successfully delivered, it increases its sending window by one.

The data-sending rate of TCP5 is determined by the rate of incoming acknowl-
edgments (ACKs). At steady state, it equals the arrival rate of ACKs. This behavior
has been referred to as TCP’s “self-clocking behavior”. This self-regulation procedure,
however, may be unfair. Competing TCP senders with different end-to-end propaga-
tion delays will receive ACKs at different rates and likewise will increase their sending
window at different rates. This property is know as RTT-bias (of TCP New Reno). It
was analytically derived in [4]. As a rule of thumb competing TCP throughputs are in-
versely proportional to round-trip-times. An example of this phenomenon, from a real
experiment, can be appreciated in Fig. 1.

5 We will interchangeably use the terms congestion window, sending window, and data-sending
rate.



Because of RTT-bias, competing users with larger RTTs will experience higher file
download latency. This problem affects big users (e.g., supercomputer researchers), as
well as small users. The RTT induced throughput imbalance is often compensated by
content providers by deploying a content delivery network with a fine-grain geographic
distribution. Users can then download content from nearby caches instead of the remote
server.

TCP congestion control has been extensively studied during the last 30 years, lead-
ing to several TCP variants, each providing some added features (along with possible
drawbacks). In this context we introduce TCP Libra, a sender-side-only variation to
legacy TCP. The goal of TCP Libra is to maintain fairness in the face of uneven RTT
values. A similar line of work was followed in [6] and [7], where the authors were in-
spired by intuition and heuristics. The TCP Libra design was inspired by the analysis
of a generalized TCP model. By properly optimizing the model parameters we were
able to obtain an algorithm that can be rigorously shown to converge to the RTT fair
share. Moreover, the TCP Libra is not only RTT-fair. It also preserves link efficiency
and scalability to large link capacities, being friendly to legacy TCP. Another important
property of TCP Libra is the sender-side-only modification - non reliant on router active
queue management and thus easy to deploy.

We have modeled, simulated and implemented TCP Libra (on Linux 2.6.15). An-
alytical and simulation results are presented in the paper. The remainder of the paper
is organized as follows. The congestion control algorithm is introduced in Section 2,
along with the key control parameters/function and with the utility model interpreta-
tion. Experimental results are reported in Section 3. Conclusions and future work are in
Section 4.

2 The TCP Libra Algorithm

TCP Libra behaves exactly like TCP New Reno except for congestion window manage-
ment. In fact, Libra differs from TCP New Reno in the following details:

– windown+1 ← windown + 1
windown

αnT 2
n

Tn+T0
in case of a successful transmission.

– windown+1 ← windown − T1windown

2(Tn+T0)
in case of 3 DUPACK (and the threshold

is set accordingly).

wherewindown is the congestion window at stepn, αn a unique control function
described in the next section,T0 andT1 are fixed parameters andTn is the RTT at step
n. T1 is the parameter that sets the multiplicative decrease term.T0 is the parameter that
sets the sensitivity of the protocol to the RTT. We can see that the window increase is
driven, forTn << T0 (the typical case), by theα factor and by the square of round-trip-
time. In this case, RTT-fairness is enforced (as we will show later) and the algorithm
helps large bandwidth-delay-product flows, by letting their windows grow much faster
than in TCP New Reno. If insteadTn >> T0 (a rather rare event), the window increase
is driven by theα factor and round-trip-time. RTT-fairness is not preserved in this case,
but it is weighted as the inverse square root of round-trip-time. This last property of
TCP Libra ensures that flows with pathological problems on their paths get a lower
sending rate.



2.1 Theα control function

In the previous section we introduced the newα control function. The design ofα was
accomplished with the objective of pursuing the following main objectives:

1. Increase convergence speed and achieve scalability for the algorithm.
2. Keep the algorithm behavior stable.6

For the above reasons, theα factor is expressed as the product of two components,
namely:

α = S ∗ P , where

1. S = Scalabilityfactor.
2. P = Penaltyor Dampingfactor.

We achieve scalability by adjusting thescalability factor to the capacity of the nar-
row link. To compute the latter, we use packet pair techniques that are run embedded
into the algorithm. We will further expand this point in the following subsection. In
particular, we set:

S = k1Cr (1)

wherek1 is a constant andCr, expressed in Mbps, is the capacity of the narrow link
seen by ther-th source.

The penaltyfactor P has been designed in order to adapt the source sending rate
increase to the network congestion. As usual, congestion is measured by connection
backlog time (i.e. the difference between RTT and minimum RTT). One may use differ-

ent expressions of penalty functions here. A possible option forP is e
−k2

Tr(t)−T min
r

T max
r −T min

r ,
whereTr(t) represents the instantaneous round-trip-time,Tmax

r the maximum round-
trip-time andTmin

r the minimum round-trip-time experienced by ther-th connection.
This function tends topenalizethe growth of the congestion window when the cur-
rent round-trip-time approaches to the historic maximum round-trip-time experienced
during connection lifetime.

In a later section we will show the simulation results for TCP Libra. The simulations
have been obtained by substitutingT0 = 1, T1 = 1, k1 = 2 andk2 = 2. While a
higher value ofk2, in the penalty function, would have improved the link utilization by
keeping the window at its maximum for a longer time, we have noticed that a higher
k2 generates an excessively timid behavior of TCP Libra toward TCP New Reno. We
adjusted this value as a trade off between utilization and friendliness. The parameterk1

is adjusted accordingly tok2. T0 is set to1 (i.e. 1 second), since in the great majority
of cases this will result inTr << T0 [10], which gives a diminished sensitivity toTr,
without excessively penalizing the algorithm’s stepsize.T1 is set to1, which means that
the window decrease will mainly be driven by legacy TCP’s decrease rate.

Before moving to comparisons and results, we will discuss in the remainder of this
section two other important TCP Libra design components, namely, capacity estimation
and the utility function that the Libra algorithm attempts to maximize.

6 Here we mean stability in terms of the local asymptotic stability.



2.2 Capacity estimation

TCP Libra relies on CapProbe [11] for capacity estimation. CapProbe is an accurate
and fast converging estimation algorithm that may be implemented passively by any
TCP scheme. In brief, CapProbe relies on packet pairs and on the concept of mini-
mum delay sum of a packet pair. When a packet pair is sent, if any of the two packets
experiences queuing, the sum of RTTs will increase. By monitoring packet pairs and
selecting the pair that has the minimum delay sum it is possible, with a high probability
to recognize the pair that did not experience any queuing (please refer to [12] for more
information regarding this algorithm and on useful ideas on how to incorporate it into
a TCP scheme). By isolating one pair that did not experience any queuing and from the
knowledge of the interval between the two ACKs for that packet pair, it is possible to
compute the capacity of the narrow link of the path. The capacity information is used
in eq. (1).

2.3 TCP Libra fairness: a Utility Function interpretation

We begin by deriving the TCP Libra fluid flow equation for any one of the several TCP
flows sharing the same bottleneck. In the followingw(t), x(t), T (t) andλ(t) represent,
respectively, the instant window size, instant rate, round-trip-time and probability of

packet drop. Libra increments the window by1w(t)
α(t)T 2(t)
T (t)+T0

per each successful ACK,

hence the window increase per unit time =x(t)
w(t)

α(t)T 2(t)
T (t)+T0

(1− λ(t)).
When a packet is dropped, causing 3 DUPACK the window decreases byw(t) −

T1w(t)
2(T (t)+T0)

. The rate of this event isx(t)λ(t). The window decrease per unit time =

x(t)λ(t)(w(t) − T1w(t)
2(T (t)+T0)

). We now have all the ingredients to write the fluid model
of TCP Libra:

ẇ(t) =
α(t)T (t)
T (t) + T0

(1− λ(t))− x(t)λ(t)(w(t)− T1w(t)
2(T (t) + T0)

) (2)

By settingT (t) = T̃ , w(t) = x(t)T̃ andα(t) = α̃, we have:

ẋ(t) =
α̃

T̃ + T0

(1− λ(t))− x(t)λ(t)(x(t)− T1x(t)
2(T̃ + T0)

) (3)

which (after settingT0 = T1 = 1 and assumingT0 >> T̃ ) may be rewritten as:

ẋ(t) =
x2(t)/2 + α̃

T̃ + 1
(

1
1
2α̃x2(t) + 1

− λ(t)) (4)

Eq. (4) is expressed in the form of a gradient algorithm (please refer to [1] [9] for a
rigorous treatment of this topic), where 1

1
α̃ x2(t)+1

represents the marginal utility func-

tion (i.e. the first derivative of the utility function) the algorithm attempts to optimize,

λ(t) the aggregate price andx
2(t)+α̃

T̃+1
a non negative, non decreasing function that acts

as a gradient step amplifier. By equating marginal utility and price, we nullify the gra-
dient and find the equilibrium solution for ratex(t). The equilibrium point is unique



because the derivative of the objective function = marginal utility price (see eq. (4)),
decreases withx, and thus the objective function is concave.

x̃ =

√
α̃

1− λ̃

λ̃
(5)

It will be noticed that the equilibrium TCP Libra throughputx̃ does not depend on
RTT under the assumption thatT0 >> T̃ . Thus, our design of window increase and
decrease algorithm, coupled with the careful setting of parameterT0, will guarantee
fairness among all flows sharing the same bottleneck. Indeed, this fairness property is
not a coincidence: we reverse- engineered TCP Libra to make it happen!

3 Performance Evaluation

We evaluate TCP Libra using the NS-2 [13] simulation platform. We compare it to
TCP Sack and to other TCP versions that claim RTT-fairness, namely, BIC [8] and Fast
TCP [5]. For the latter schemes, we have selected the parameters made available online
in simulation scripts by the authors themselves.

Each experiment was run for 1000 seconds in order to reach steady state. Two differ-
ent topologies are used, each featuring different scenarios. The bottleneck link can take
different values. The bottleneck buffer can take two different values: (a) the number of
packets that fill the bottleneck link, or; (b) the packets that fill the longest path.

Routers along the path were configured to implement either drop tail or an adaptive
RED queuing policy. The advertised window for each connection was set larger than
the corresponding pipe size so that occasional packets may be dropped, even when that
connection is the only active connection. Finally, the packet size was set equal to 1000
bytes.

Space limitations allow us to present only a subset of the obtained simulation re-
sults. We report only 100Mbps bottleneck results since other values did not show sig-
nificant difference. The Fast TCP parametersalphaandbetawere set to 100, as found
in literature. BIC TCP parameters were set as recommended in [8].

3.1 Parking Lot Topology

Fig. 2 shows the so called parking lot topology with 8 end to end flows. Flows 1 and 2
have 180ms of minimum RTT and traverse 9 links; flows 3 and 4 have 90ms of mini-
mum RTT and also traverse 9 links. The remaining flows, 5 through 8, are short flows.
They utilize 3 link paths with 30ms minimum RTT. With these values, the bottleneck
buffer choices are 375 pkts (bottleneck link pipe) and 2,250 pkts (longest path pipe). To
overcome phase effects, flows were started at random times within the first 5 seconds
of simulation.

In Fig. 3, for each TCP variant we report the Jain’s index values for flows 1-4.
TCP Libra provides good fairness with both buffer sizes. Thepenaltyfactor in Libra
adapts the window increase slope to the relative backlog time, thus reducing sensitivity
to buffer size.
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Throughput efficiency is considered in Fig. 4. TCP Libra’s utilization is slightly
lower than that of TCP Sack. As expected, utilization for all protocols increases with
buffer size. The particular behavior of short RTT connections 5-8 and longer RTT con-
nections 1-4 is revealed by Fig. 5 where a strong fluctuation of fairness index is noted.
Fast TCP performance visibly changes with buffer size. In the small buffer case, Fast
TCP’s alpha parameter is not optimally tuned and hence a Fast TCP flow tries to keep
too many packets in the bottleneck buffer (Note: the alpha parameter in Fast controls
the number of packets a flow maintains in the bottleneck link).

3.2 Dumbbell Topology

The coexistence of legacy TCP (i.e. TCP Sack) and the new protocols is evaluated in
Fig. 6. The bar chart in Fig. 6 presents the relative TCP Sack throughputs when TCP



Sack is competing with itself first, and then with each of the new protocols. We measure
the TCP Sack goodput achieved in each of the RTT flow classes (long to short) as well
as the aggregate goodput over all of its connections. More precisely, TCP Sack was
used for flows 2 (180ms of RTT), 4 (90ms of RTT), 6 and 8 (30 ms of RTT each),
while the new protocol was used for flows 1 (180ms of RTT), 3 (90ms of RTT), 5
and 7 (30 ms of RTT each). Fast TCP’s unfriendliness towards TCP Sack is again due
to an incorrect value of the alpha parameter. When coexisting with BIC TCP, TCP
Sack achieves a slight increase in its achieved goodput. TCP Libra shows a friendly,
balanced behavior toward TCP Sack. The aggregate throughput of the coexisting TCP
Sack flows diminishes only by 11%. There is a desirable, even if limited, redistribution
of the TCP Sack goodput from the 30ms RTT flows to the 90ms and 180ms RTT ones.
In this respect, TCP Libra seems to help the coexisting TCP Sack flows by (slightly)
improving their fairness degree.

The dumbbell topology is the classic topology used for TCP fairness evaluation. We
adapted the simulation scripts utilized by [8]. Each link has a different RTT. The one
way propagation delay on the links is 21ms for the short connections (from S2 to R2

and between Bi and Ci) and 119ms for the longest one (from S1 to R1).

Background traffic flows between Bi to Ci and Cj to Bj . This is composed by 4
forward regular long-lived TCP Sack flows, 4 backward regular long-lived TCP Sack
flows, 25 small TCP flows with advertised window limited to 64 segments and an
amount of web traffic in both directions able to occupy from 20% to 50% of the avail-
able bottleneck link capacity when no other flows are present.

We here only examine the case in which the bottleneck link is small (i.e. equal to
bottleneck link pipe size), the most demanding case for all protocols. Two different
queuing policies are tested: drop tail and RED (Random Early Detection). The results
are reported in Fig. 8. RED can considerably improve fairness, as expected, since RED
was designed to prevent capture by aggressive flows.
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4 Conclusions and Future Work

The very interesting properties exhibited by TCP Libra strongly motivate us to con-
tinue refine the scheme using the feedback from simulation and early experiments. In
particular, we will study TCP Libra performance in a larger number of heterogeneous
network scenarios. Following the success of the early lab tests and eager to explore the
practical impact on real Internet applications, we are now deploying TCP Libra in con-
trolled Internet testbeds such as PLANET Lab. At the same time, we are preparing to
run Internet experiments in increasingly complex and demanding scenarios with several
collaborators at other institutions around the world.
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