
Wireless Home Entertainment Center:
Reducing Last Hop Delays for Real-time Applications

Claudio E. Palazzi(1, 2), Giovanni Pau(1), Marco Roccetti(2), Stefano Ferretti(2), Mario Gerla(1)

(1) Computer Science Department
University of California, Los Angeles, CA 90095, USA

Tel: +1 - 310 - 825 4367

e-mail: {cpalazzi | gpau | gerla}@cs.ucla.edu

(2) Dipartimento di Scienze dell’Informazione
Università di Bologna, 40126, Bologna, Italia

Tel: +39 - 051 - 209 4503

e-mail: {roccetti | sferrett}@cs.unibo.it

ABSTRACT
Future digital entertainment services available to home users will
share several characteristics: i) they will be deployed and
delivered through the Internet, ii) a single media center will be
exploited to orchestrate all parallel services, and iii) wireless
technologies integrated within the home entertainment system
will be massively utilized for the transmission of various data
streams to networked devices. In this scenario, new effective
strategies are needed to regulate the concurrent access to the
wireless network when parallel applications generate different but
simultaneous UDP/TCP-based flows. In this work, we present a
novel technique aimed at guaranteeing a fast and smooth data
delivery for real-time streams while maintaining a high
throughput for TCP-based applications. Our approach is based on
the utilization of a smart Access Point able to exploit available
information about the ongoing traffic and existing features of the
regular TCP. We compare the performance of our solution with
an alternative one that makes use of an optimal setting of the 802-
11 MAC layer parameters. Simulation results confirm that our
smart Access Point represents an optimal candidate to be
exploited in complex wireless scenarios for in-home
entertainment.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performances Attributes.

General Terms
Algorithms, Measurement, Performance, Design,
Experimentation, Verification.

Keywords
Media Center, Wireless Networks, Computer-Centered Home
Entertainment, Transmission Protocols, Home Entertainment
Center.

1. INTRODUCTION
Since its first appearance in 1999, TiVo has revolutionized the

way millions of customers interact with their TVs. Its integration
between TV sets and computers, in fact, enabled users to pause
live-TV programs, even for several hours, and watch them at their
own convenience, thus substituting the old VCR with a more
functional Digital Video Recorder (DVR) [1]. This idea has been
further extended by Microsoft through its Media Center, which
represents a hub for all in-home entertainment experiences [2]. As
a matter of fact, more than any other device, computers have
evolved gaining the capability to handle heterogeneous media.
Both TiVo and Media Center, as well as the future evolution of
this technology, can be grouped into the class of Home
Entertainment Center (HEC).

In this context, Internet is going to play a fundamental role as the
wider and wider diffusion of broadband connectivity is helping it
in becoming the major vehicle for providing entertainment
services. Therefore, a HEC is also designed to be connected to the
Internet and perform as a gateway between client devices located
in the house (or in a student dorm, for example) and the outside
world. A HEC provides all-in-one functionalities and combines
several services such as IPTV, Web radio, game console, picture
viewer, electronic program guide, DVR, CD/DVD/video player,
music jukebox, web browser, email handler, instant messenger.
Contents related to these services can be locally available or
distributed over the Internet to be dynamically retrieved based on
the user’s needs. Several streams are thus produced by these
active services, all distributed by the HEC throughout the home.

To make the HEC able to communicate with client devices,
several transmission strategies can be devised. However, wireless
technologies present the flexibility and mobility features to
overcome physical barriers and permit an (almost) instantaneous
connectivity from every spot in the house. For this reason, we
assume that HECs are endowed with an Access Point (AP) in
order to guarantee wireless connectivity to the various user’s
devices (e.g., screens, speakers, joypads).

Indeed, a broad range of entertainment services can be singularly
conveyed over IEEE 802.11 (Wi-Fi) technologies thanks to their
transmission rates. Nominally, 11Mbit/s for the IEEE 802.11b,
54Mbit/s for the IEEE 802.11g, or even 100 Mbit/s for the IEEE
802.11n. Yet, mobility is achieved at the cost of a lower
performance than that attainable through the use of a wired
network. With respect to the latter, in fact, wireless networks
provide lower bit rates which also depend on the distance and
obstacles between the client device and its AP. Very limited effort
has yet been devoted to study the impact of several heterogeneous
streams that simultaneously shares the same (initial or final)

 Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACE 06, June 14-16, 2006, Hollywood, California, USA.
Copyright 2006 ACM 1-59593-380-8 /06/0006 ...$5.00.

wireless hop while the question whether Wi-Fi can actually
support the intense traffic generated by various and heterogeneous
entertainment applications in an in-home environment needs an
immediate and definite answer.

Furthermore, networks and related protocols are often developed
assuming that the traffic will be mostly TCP-based and that the
main goal will be that of guaranteeing high throughputs. These
assumptions need a radical reconsideration when services for
entertainment come into the picture. Think, for instance, of fast-
paced gaming applications, according to which small amounts of
data are transmitted at high constant rates via the UDP transport
protocol. This kind of application is extremely delay sensitive
thus having in low delay latencies for packet delivery its focal
requirement. The same holds for IPTV, where TV programs
and/or Video on Demand services are offered to clients using the
medium of the Internet. In such scenarios, latencies and jitter
must be reduced as much as possible in order to ensure an
acceptable quality of service.

To facilitate the deployment of networked services through the
HEC, we presented in [3] a study of the problem focusing on
cross-layer interactions between transport and MAC layers in
presence of heterogeneous and concurrent entertainment
transmission flows. We showed in particular how even a single
persistent TCP connection is able to deteriorate the performance
of real-time entertainment applications. We then proposed a MAC
layer tune-up for APs in order to find a compromise between the
requirements of downloading applications and those of real-time
applications. Although it represents an improvement to the current
state of the art, this solution is still not optimal.

Aiming at finding an optimal solution, we present now an
alternative approach focused on the transport layer and exploiting
existing features of regular TCP. In substance, a HEC is centrally
located in the house and communicates with the user’s devices
through the AP. The AP is hence in the position of having a
comprehensive sight on all the in-home transmissions and to
control them. In particular, the AP can be enhanced to snoop all
transiting streams and modify the advertised window of TCP
packets in order to limit the growth of on-going TCP flows. If
appropriately applied, this technique produces a good TCP rate,
yet without exceeding the capacity of the channel: losses and
consequent halving of the sending rate are, in fact, avoided. At the
same time, as the buffer at the AP remains always (almost) empty,
the delivery time for each transiting packet is not affected by
queuing delay and users perceive a smooth progression of real-
time entertainment applications.

We show how the AP associated with the HEC, can dynamically
and effectively intervene on the advertised window of transiting
TCP packets in order to ensure optimal performances for both
downloading and real-time entertainment applications. We
compare this solution with the one proposed in [3] by
investigating both their efficiency and factual deployability. In
our study, we analyzed a realistic scenario with 4 different
applications simultaneously run: video stream, online gaming,
video chat, and download of multimedia files.

The paper is organized as follows. Section 2 discusses issues
concerned with the transmission of multimedia streams over in-
home wireless scenarios. Section 3 presents the aforementioned
solutions to face these issues. In Section 4, we describe the

simulation scenario exploited to assess the efficacy of our devised
approaches, while in Section 5 we analyze the obtained results.
Finally, Section 6 concludes our work.

2. ON THE IMPACT OF THE WIRELESS
MAC / TCP INTERFERENCE
As recently demonstrated by measurements on a real OC48 link,
the available capacity over the Internet is generally larger than the
aggregate bandwidth utilized by transiting flows [4]. Moreover,
more and more providers are offering today guaranteed high
speed connectivity to home customers [5, 6, 7]. In essence, tools
are available to verify that the customer’s connection is factually
supporting as much traffic as the bandwidth advertised by the
provider.

In this scenario, it is widely accepted that the bottleneck of the
connection is generally located at the edge of the path connecting
a sender and a receiver; specifically, the last link connecting an
edifice with the Internet or the in-edifice wireless link. Since the
rapid increase of the bandwidth delivered to homes and the
broadband available in locations that intend to gain profit from
offering high performance online entertainment to customers, we
can assume to have the bottleneck located in correspondence of
the wireless link. Indeed, when several contemporary applications
share the same wireless link, it might be the case when the AP
receives packets at higher rates than its forwarding one. This can
happen for several reasons such as, for instance, the fact that the
wireless medium allows the transmission of only one packet at a
time and is not full-duplex as wired links.

Moreover, interference, errors, fading, and mobility may cause
packet losses which are handled by the MAC protocol through
local retransmissions. These local retransmissions hide error
losses to the TCP and are useful to increment the reliability of the
connection. Without them, the TCP would misinterpret error
losses as congestion evidences and reduce its sending rate
decreasing its performance. On the other hand, retransmissions
follow the well known back off mechanism by which an
increasing amount of time is utilized to determine whether a
packet has been lost and hence retransmit it. The 802.11 MAC
protocol performs up to seven retransmissions of short packets
(i.e., RTS/CTS, acks) and four retransmissions of long packets
(i.e., data packets) [8]. This means that subsequent packets have
to wait in queue until the preceding ones or their retransmissions
finally reach the receiver and the corresponding acks get to be
successfully sent back.

Finally, the same wireless connection might be shared by several
devices and applications that increase the congestion level
causing queuing. As it is well known, TCP connections have an
aggressive behavior and continuously probe the channel for more
bandwidth until buffers are fully utilized and overflowed. In
presence of persistent TCP connections (i.e., when downloading
files) it is hence very likely to happen that buffers were steadily
fully utilized, thus periodically slowing down the delivery time of
each packet, and deteriorating the performance of time-sensitive
applications such as online games, for example.

At the same time large buffers help TCP-based flows in keeping a
high sending rate. This happens for several reasons but the most
important ones are: i) the link successive to the buffer remains
fully utilized for longer periods of time since there are (almost)

always packets in queue that are ready to be sent as soon as
possible, and ii) traffic bursts can be more easily accommodated
thus reducing packet losses and maintaining higher sending rates
for longer periods of time. In essence, a tradeoff relationship
exists among the per-packet delay and the total throughput
achieved. The solution for this tradeoff depends on the buffer size
and on its utilization.

2.1 Problem Statement
As previously mentioned, the impact of the interference between
wireless MAC and transport protocols can produce delays which
could hit also several tens of milliseconds. This represents a huge
waste of time when trying to concurrently deliver real-time
information for entertainment services. Think, for instance, of
online games which have very stringent requirements on delay
latencies, i.e., typically 150ms is considered as the maximum
endurable transmission delay to guarantee interactivity [9]. For
this reason, effective control schemes must be devised to limit
queuing delays when data streams for real-time entertainment
applications are simultaneously active.

3. PROPOSED SOLUTIONS
To solve the aforementioned problem we analyze two different
possible solutions. The first one involves modifications of the
802.11 MAC layer and, hence, is specifically intended for the
wireless media [3]. The second one, instead, exploits existing
features of regular TCP and could be extended also to the case
where the connection is completely wired. For the proposed
solutions we investigate both their efficiency and factual
deployability to expose pros and cons.

3.1 IEEE 802.11 Parameters Setting
The first proposal regards the utilization of more appropriate
setting for parameters of the IEEE 802.11 MAC protocol.
Parameters such as the maximum number of retransmissions and
the buffer size were, in fact, determined in a period when the
TCP-based traffic was largely predominant in the Internet. The
main concerns for designers were hence reliability and high
throughputs.

As already mentioned, nowadays, UDP-based real-time
entertainment applications are becoming more and more popular
and demand for low delays in packet delivery. This kind of
applications is resilient to some packet loss while is extremely
delay sensitive in packet delivery. For this reason, it is preferable
to drop a packet than to waste time in retransmissions.

This obviously partially contradicts the initial assumption that
reliability is the most important issue over wireless links.
Therefore, 802.11 parameters should be modified to make it more
sensitive towards real-time application needs. In particular, the
number of local retransmissions could be diminished in order to
find an efficient compromise between reliability and low delays
in packet delivery.

Furthermore, having a large buffer size at the AP helps TCP
connection to maintain large sending rates for longer periods and
diminishes the impact of burst traffic. On the other hand, to a
larger buffer corresponds a longer queuing time experienced when
the buffer is full, thus jeopardizing the performance achieved by
time-sensitive applications. By adjusting the buffer size to an

appropriate value we can again try to find an optimal compromise
between the needs of both traditional TCP-based and real-time
entertainment applications.

3.2 Limited Advertised Window
Here, we are aiming at finding the best solution to the tradeoff
relationship existing between TCP throughput and real-time
application delays. The two types of traffic should be able to
coexist without affecting each other and the employed solution
should be easily and factually deployable.

Starting from the last point, i.e., deployability, it is evident how a
technique that would exploit existing features of the already
utilized protocols could be easily implemented in a real scenario.
A possible solution could hence be that of utilizing the advertised
window to limit the bandwidth utilized by TCP flows.

Indeed, the actual sending rate of a TCP flow depends on its
current sending window; this value is determined as the minimum
between the congestion window (continuously recomputed by the
sender) and the advertised window (provided by the receiver via
returning ACK packets) [10]. It is hence evident how the
advertised window perfectly embodies a natural upper bound for
the sending rate of TCP flows.

Limiting the maximum sending rate of a TCP connection may
greatly improve the performance of the HEC. An optimal tradeoff
between throughput and low delays, in fact, could be achieved by
maintaining the sending rate of the TCP flows high enough to
efficiently utilize the available bandwidth but, at the same time,
limited in its growth so as to not utilize buffers. In this way, in
fact, the throughput is maximized by the absence of packet losses
which would halve the congestion window, while the delay is
minimized by the absence of queues.

time

wnd

pipe size

limited wnd

regular wnd

time

wnd

pipe size

limited wnd

regular wnd

Figure 1. Comparison between regular and limited sending

windows (wnd).

To better understand how limiting the sending window could
guarantee the same or even a higher throughput with respect to
utilizing regular TCP, we show in Figure 1 a general saw tooth
shaped sending window of a regular TCP and overlap it with one
limited by the advertised window. As it is evident, the latter is
more stable since it does not use the buffer at the bottleneck link
and consequently experiences no losses. The minus signs in the
chart represent situations in which the regular sending window
provides TCP with a sending rate that is inferior to the one
guaranteed by the limited sending window. The plus signs
represent the inverse situation (generally accompanied by having
packets queuing on the buffer preceding the bottleneck link). If
the upper bound for the sending window is appropriately chosen,

the balance between the plus and minus signs will guarantee to
the limited sending window an equal or even superior final
throughput with respect to the regular sending window. At the
same time, queuing delays will be avoided.

To achieve this desirable result we need first to address two
important issues: how to determine an appropriate upper bound
and how to apply it in practice to the sending window.

Regarding the first point, the most appropriate formula can be
derived from the two main goals we want to achieve: i) full
utilization of the available bandwidth and ii) no queuing delays.
Real-time traffic generally exploits UDP and this transport
protocol has no congestion control mechanism. Some smart UDP-
based application, however, implements congestion control at the
application layer [11]. In any case, to avoid queuing delays, the
aggregate bandwidth utilized by TCP flows cannot exceed the
total capacity of the bottleneck link diminished by the portion of
the channel occupied by the concurrent real-time traffic.

In essence, the maximum sending rate for each TCP flow at time
t, namely maxTCPrate(t), is represented by:

)(#

))(()(
tTCPflows

tUDPtrafficCtmaxTCPrate −
= (1)

where UDPtraffic(t) corresponds to the amount of bandwidth
occupied by UDP-based traffic at time t, #TCPflows(t) is the
concurrent number of TCP flows, and C represents the capacity of
the bottleneck link and must be accurately determined in order to
optimize performances.

The second issue that we need to address is how to practically
employ this formula in order to have it working in a real scenario.
This means i) identifying the location for its implementation, and
ii) proposing a method to compute the value of the various
variables in (1).

Regarding the first issue, the advertised window is generally
imposed by the receiver; however, this could not represent the
most suitable place to set it. Determining the most appropriate
value for the advertised window requires a comprehensive
knowledge about all the flows that are transiting through the
bottleneck. Since all flows have to pass through the AP, this
represents the most appropriate node on which implementing our
scheme. Indeed, the AP is integrated with the HEC and the
mechanism can take advantage of this to retrieve all the necessary
information. This approach is also in accordance with other
proposals available in literature such as, for example, [12].
However, whereas [12] requires modifications at both the AP and
the receiver, our scheme exploits a “smarter” AP.

Focusing on the second issue, in any commercial operating
system it is possible to know which kind of connection is in use
and which its nominal speed is just by looking at the status of the
network interface. Knowing this, in Section 5.3 we empirically
find the optimal value for the considered in-home scenario.
Through snooping the channel or exploiting information known at
the HEC we can also infer the number of active TCP connections
and the aggregate amount of current UDP traffic. The AP can
hence easily compute the best maxTCPrate(t) utilizing (1) and
accordingly modify the advertised window included in the
transiting acks. From here on we refer to this scheme as Smart
Access Point with Limited Advertised Window (SAP-LAW).

4. IN-HOME ENTERTAINMENT: A
SIMULATION ASSESSMENT
The aforementioned scenario has been analyzed in depth through
the well known NS-2 network simulator (version ns-2.28) [13]. In
particular, the simulated topology is depicted in Figure 2 where
the in-house entertainment environment is represented by four
mobile nodes named N1, N2, N3 and N4, and the HEC that
incorporates also the AP.

Figure 2. Simulated topology.

The MAC layer parameters have been set accordingly to the IEEE
802.11g standard. The simulation outcomes showed us that we
were able to reach a maximum achievable bandwidth of circa
20Mbps. This represents a reasonable value over the declared
54Mbps even in the real world [14].

Table 1. Simulation configuration of the wired links

Node 1 Node 2 Physical
Latency

Link
Capacity

Buffer
Size

W1 W0 10ms 100Mbps 140pkts
W2 W0 20ms 100Mbps 140pkts
W3 W0 30ms 100Mbps 140pkts
W0 AP 10ms 100Mbps 140pkts

Table 2. Simulated application flows

From To Flow Type Transp. Prot. Start End
AP N0 video stream UDP 0s 180s
W1 N1 online game UDP 45s 180s
N1 W1 online game UDP 46s 180s
W2 N2 video chat UDP 90s 180s
N2 W2 video chat UDP 91s 180s
W3 N3 FTP TCP NewReno 135s 180s

Regarding the wireless medium we have adopted the Shadowing
Model which is a realistic and widely utilized signal fading model
available in NS-2. We followed the directions provided by the
official NS-2 manual to represent a home environment partitioned
into several rooms. Specifically, in our simulations, the path loss
exponent of the Shadowing Model was always set equal to 4,
while different shadowing deviation values have been tested to
simulate different partition degrees inside the house. The
attenuation of the transmitted signal grows with the increase of
these parameters; we hence expect to face higher percentages of
packet losses over the wireless medium when setting the
shadowing deviation to 9.

Focusing on the wired links, their one-way delays and capacities
have been configured as listed in Table 1, while their buffer sizes
have been set equal to 140 packets. This value corresponds to the

pipe size on the connection starting from W3 and reaching a
wireless node.

Table 3. Changing parameters in the simulated configurations

Parameter Values Comment
MAC data

transmission 1, 2, 3, 4 standard value is 4

Shadowing
deviation 7, 9 medium, high

user-AP distance 5m, 10m same room,
different room

MAC buffer size 50pkt, 100pkt common values in
commerce

In order to represent a general scenario we have run different
kinds of applications which are listed in Table 2. The
characteristics of the various simulated flows make them highly
realistic. In particular, the video-stream and video-chat flows have
been generated by feeding the NS-2 with real trace files of high
quality MPEG4 Star Wars IV and VBR H.263 Lecture Room-
Cam, respectively [15].

Moreover, we have assumed that the player in the house is
engaged in one of the very popular first person shooter games
with other ~25 players, geographically apart from each other and
connected through the Internet. We have hence set NS-2 to
generate the corresponding traffic considering the approximations
suggested in [16]. Specifically, game events have been generated
at client side every 60ms; while the server was transmitting game
state updates every 50ms toward the client. The packet size has
been set to 42Bytes and 200Bytes for client and server generated
game packets, respectively.

Due the space limitation of this paper, we present results only for
the throughput achieved by the FTP application and the jitter
experienced by the online gaming application. However, no
significant information is lost since the per-packet delay and jitter
for all the simulated real-time applications showed similar
behaviors.

Simulation experiments have been replicated to examine the
effects generated by differently setting some of the parameters
involved in the scenario. Table 3 lists all the variable parameters
in the simulations; each combination of their possible values has
been simulated. However, where not differently stated,
simulations were run utilizing some realistic default values for the
simulative parameters. These values are written in bold in Table
3.

5. EXPERIMENTAL RESULTS
We present here the most relevant results from the extensive set
of simulations we have run. In particular, we first demonstrate
how concurrent TCP-based traffic can affect the performance of
real-time applications when our solutions are not employed. We
then compare the outcome with those of our proposed solutions.

5.1 FTP Impact on Real-Time Entertainment
Applications
In this Section we discuss results obtained when resorting to
standard setting parameters for both MAC and TCP without
resorting to our solutions. The various applications start in

sequence at precise times. In this way, it is possible to evaluate
the impact of every new flow over the preexisting ones. In
particular, we expect to witness increasing delays and hence
higher jitter in the arrival time of packets as we augment the
traffic level.

As it is evident from Figure 3 and Figure 4, the bandwidth
requirement of the first starting applications (i.e., the real time
ones) in our scenario is well below the effectively available
capacity of the IEEE802.11g wireless medium. We have to wait
until the FTP flow takes action, quickly saturating the channel
and the buffers along the path with its packets, before being able
to clearly detect a significant impact on the various real-time
flows.

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180

pa
ck

et
s

time(sec)

"cwnd"
"ssth"

"RTTxBW"

Figure 3. Measured TCP congestion window when the regular

TCP NewReno and IEEE 802.11g are employed.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 40 60 80 100 120 140 160 180

jit
te

r(
m

se
c)

time(sec)

"jitter_game11"

Figure 4. Measured online game jitter with regular IEEE

802.11g employed; from 135s, a regular TCP NewReno flow is
competing for the channel.

More in detail, Figure 3 illustrates the congestion window and the
slow start threshold for the TCP flow, plus the bandwidth-RTT
product for the channel (i.e. the horizontal line in correspondence
of 146 packets). As it is evident from the chart, the congestion
window steadily surpasses the bandwidth-RTT product, which
represents the pipe capacity of the channel, thus generating
queuing up of packets at the bottleneck. Consequently, real-time
gaming packets experience a steady increase in the delivery time,
which is due to higher queuing delays. Corresponding to peaks in

the saw tooth shape of the congestion window (see Figure 3), we
have striking amplification of the jitter experienced by the online
game application (see Figure 4). Real-time application providers
typically deploy mechanisms to ensure low per-packet latencies
over the Internet. Clearly, delay increments of tens of
milliseconds on very last hop may jeopardize these efforts.

5.2 Solution #1: Appropriately Setting MAC
Layer Parameters
To improve the performance of real-time applications, part of the
FTP throughput can be bartered with lower queuing delays.
Specifically, by utilizing different buffer sizes and/or maximum
number of retransmissions at the MAC layer, we can improve the
performances achieved by the various real-time applications.

Starting with the first parameter, Figure 5 confirms that having
larger buffer sizes at the MAC layer guarantees higher
throughputs to TCP. Obviously, there is no difference in the
achieved throughput when wireless losses are frequent enough to
bind the TCP transmission rate below the pipe size. On the other
hand, we have already anticipated that having large buffers along
the path may augment the total delay time experienced by
packets. In fact, each packet waits in queue for a time which
proportionally grows with the number of preceding packets
already present in the same buffer at its arrival. In case of intense
traffic, buffers tend to be congested and hence queuing delays
may become a significant component of the global delays
experienced by each packet.

Focusing on the second parameter, although it is true that having
a high maximum number of retransmissions at the MAC layer
improves the reliability in packet delivery, it also increments the
delivery time of packets waiting in queue for being transmitted.
Therefore, a more appropriate configuration of the IEEE 802.11g
with respect to the traditional one would probably make use of a
maximum number of 3 retransmissions, thus guaranteeing a high
FTP throughput whilst maintaining a low jitter in packet delivery
time. Moreover, when a unique queue is maintained for all the
traffic flows, a small size (50 packets at most) should be
preferred.

This configuration ensures an elevate TCP throughput and also a
reduction of the jitter experienced by real-time packets. As a
demonstration, Figure 5 shows that the TCP total throughput
during the 45 seconds when the FTP was running is 55371
packets (the congestion window, slow start threshold, and
bandwidth-RTT product are shown in Figure 6). The
corresponding reduction of the jitter for the online game flow
traveling from the server to the client can be noticed by
comparing values in Figure 7 (appropriate setting of MAC layer
parameters) with those presented in Figure 4 (standard
configuration).

An even better jitter could be gained further diminishing the
maximum number of MAC retransmissions to 2. However, we
advice against this choice because it may sensibly reduce the FTP
throughput as can be observed in Figure 5.

5.3 Solution #2: Limiting TCP’s Advertised
Window
In order to implement SAP-LAW, we have enhanced the

simulated scenario by enabling the AP to modify the advertised
window (included in returning acks) accordingly with (1). In
particular, the average UDP-based aggregate traffic was computed
through a simple low-pass filter and the new advertised window
was determined every 200ms.

Various values for the parameter C in (1) have been tested and
results are reported in Figure 8. In this chart, we can see the
average, the variance, and the maximum value for the jitter
experienced by the game flow directed from the server to the
client. Moreover, Figure 8 also presents the throughput trend of
the concurrent TCP-based flow.

Figure 5. FTP total throughput with different MAC buffer

sizes; user-AP distance = 10m, shadowing deviation = 9.

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180

pa
ck

et
s

time(sec)

"cwnd"
"ssth"

"RTTxBW"

Figure 6. Measured TCP NewReno congestion window with

max 3 retransmissions at the IEEE 802.11g MAC layer.

As clearly shown, both the average and the variance of the online
game flow increase when we utilize higher values for C. This is
coherent with the fact that higher C values decrease the resilience
of the scheme to TCP bursts thus leading to some queuing at the
AP. While the average results are very low for all C values, the
variance sensibly increases with higher values of C thus
indicating the presence of many peaks of very high delay in the
packet delivery. This is confirmed also by the line representing
the maximum delay value experienced by packets.

Figure 8 also demonstrates how the throughput decreases when C

Tot Throughput

0

10000

20000

30000

40000

50000

60000

1 2 3 4
max number of MAC retransmission

pa
ck

et
s

50 pkts 100 pkts

is set too low. Instead, if C is set higher than the maximum
achievable throughput on the channel (in this case, 20Mbps), then
the sender will be allowed to send more packets than those
bearable by the bottleneck link causing queuing delays. Thus, it
happens that some packets may overflow the buffer and the
consequent losses cause the reduction of the sending window and
average throughput.

 0

 5

 10

 15

 20

 25

 30

 40 60 80 100 120 140 160 180

jit
te

r(
m

se
c)

time(sec)

"jitter_game11"

Figure 7. Measured online game jitter with max 3

retransmissions at the IEEE 802.11g MAC layer; from 135s, a
regular TCP NewReno flow is competing for the channel.

0

5

10

15

20

25

30

15 16 17 18 19 20 21 22 23

Parameter C (Mbps)

avg(ms)
var
max(ms)
thr(Mbps)

Figure 8. Throughput achieved by the FTP flow and jitter

statistics of the game flow when employing SAP-LAW.

Supposing that we want to limit the maximum jitter within 10ms,
we have to set C equal to 18Mbps (i.e., the 90% of the maximum
achievable bandwidth). Indeed, this seems to be an appropriate
choice able to guarantee both low queuing delays and high TCP
efficiency. The advertised window exploited by the TCP flow is
evident in Figure 9, which also reports the congestion window,
the slow start threshold, and the bandwidth-RTT product. We
have to keep in mind that the TCP flow starts at second 135 of the
simulation time and that the actual sending window is determined
as the minimum between the advertised window and the
congestion window. This said, we can appreciate from the chart
how the AP is able to keep track of the concurrent real-time
traffic and determine the most appropriate advertised window. In
particular, for this configuration, the final throughput in terms of
acknowledged packets over 45 seconds hits 58677, while the jitter
experienced by online game packets is kept low (see Figure 10).

Following (1), when only one TCP flow is running, SAP-LAW
sets its advertised window close to the difference between the
bandwidth-RTT product and the aggregate UDP-based traffic.

This difference also represents an estimate of the amount of real-
time (UDP-based) traffic present on the channel and, as Figure 9
shows, its value is relatively small if compared to the whole
channel capacity. This demonstrates that real-time applications
generally do not have to face bandwidth shortage in an 802.11g
wireless home, while they still have to deal with high and variable
delays.

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160 180

pa
ck

et
s

time(sec)

"cwnd"
"ssth"

"RTTxBW"
"adv_win"

Figure 9. Measured congestion window and advertised

window of a SAP-LAW flow with C = 18Mbps; regular IEEE
802.11g employed.

 0

 2

 4

 6

 8

 10

 12

 40 60 80 100 120 140 160 180

jit
te

r(
m

se
c)

time(sec)

"jitter_game11"

Figure 10. Online game jitter with regular IEEE 802.11g

employed; from 135s, a SAP-LAW flow with C = 18Mbps is
competing for the channel.

5.4 Summarizing Results
In Figure 11 we summarize statistical results obtained by: i)
utilizing regular TCP New Reno on a standard IEEE 802.11g
MAC configuration (Regular), ii) appropriately setting the MAC
layer parameters (MAC-Setting), and iii) employing SAP-LAW.

The compared statistical parameters are the average, the variance,
and the maximum value of jitter experienced by online game
packets traveling from the server to the client via the AP. Again,
results obtained from the other real-time applications running in
the simulated scenario (i.e., video-stream and video-chat) are
coherent with the showed ones and need no further explanation;
we hence skip to present their outcomes. Rather, we also show the
average throughput achieved by the concurrent TCP connection.

As it is evident, employing SAP-LAW to support FTP traffic is
the solution that would guarantee the best performance both in
terms of lowest per-packet delay and achieved throughput.
Moreover, SAP-LAW could be easily implemented as it only
requires the presence of slightly “smarter” APs. The
modifications to the AP are very limited, thus minimally
impacting on their cost and, at the same time, SAP-LAW can
perfectly coexist with the current Internet and its employed
protocols. Considering this and the remarkable results achieved,
SAP-LAW represents the optimal candidate for enhancing
computer-centered home entertainment in a wireless scenario.

0

10

20

30

40

50

avg(ms) var max(ms) thr(Mbps)

Statistical Parameters

Regular MAC-Setting SAP-LAW

Figure 11. Statistical values of the online game stream for the
compared schemes.

6. CONCLUSION
In this paper, we evaluated a scenario involving in-home
entertainment delivered to wireless device through a HEC. A
discussion has been provided that analyzes the mutual influence
among several concurrent transmission streams in this context.
We investigated the impact of the underlying wireless technology
and showed how even a single persistent TCP connection can
conspicuously increase the queuing delay suffered by concurrent
real-time entertainment applications.

To solve this problem, we proposed SAP-LAW: a solution that
exploits regular features of TCP and an enhanced AP to optimize
the performances of both TCP and UDP-based transmission
streams. In particular, our scheme snoops the on-going traffic
through the AP and appropriately assigns an upper bound to the
advertised window of TCP flows. We compared SAP-LAW to a
solution that acts at the MAC layer by optimizing parameters
setting and showed how the former outperforms the latter by
consistently ameliorating the global performance of computer-
centered home entertainment services. However, the two solutions
are not incompatible with each other and could also be employed
together.

Finally, even if in our model we assumed to have the bottleneck
located in correspondence of the wireless link, the considerations
we expressed in this paper, as well as the results that we showed,
could be easily extended to a different scenario where a
bottleneck is located before entering the edifice. We reserve to
analyze this case as a future work.

ACKNOWLEDGMENTS
Partial financial support for this work is provided supported by:

the Italian MIUR (under the ICTP/E-Grid, Interlink, MOMA,
DAMASCO initiatives); the National Science Foundation
(through grants CNS-0435515/ANI-0221528); and
STMicroelectronics (under the UC-CoRe Grant MICRO 05-06).

REFERENCES
[1] The TiVo Homepage. http://www.tivo.com/
[2] Windows XP Media Center Edition 2005 Home Page.

http://www.microsoft.com/windowsxp/mediacenter/
[3] C. E. Palazzi, G. Pau, M. Roccetti, M. Gerla, “In-Home

Online Entertainment: Analyzing the Impact of the Wireless
MAC-Transport Protocols Interference”, in Proc. of IEEE
International Conference on Wireless Networks,
Communications and Mobile Computing (WIRELESSCOM
2005), Maui, HI, USA, Jun 2005.

[4] H. Jiang, C. Dovrolis, “Why is the Internet traffic bursty in
short (sub-RTT) time scales?”, in Proc. of ACM
SIGMETRICS 2005, Banff, AL, Canada, Jun 2005.

[5] Broadband Speed Tests. http://www.dslreports.com/stest
[6] Verizon Online DSL. http://www.verizon.com/dsl/
[7] AT&T Worldnet DSL Service. http://www.att.net/dsl/
[8] IEEE, “Standard for Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) Specifications,”
Specifications, ISO/IEC 8802-11:1999(E), 1999.

[9] L. Pantel, L. C. Wolf, “On the Impact of Delay on Real-
Time Multiplayer Games”, in Proc. of the 12th International
Workshop on Network and Operating Systems Support for
Digital Audio and Video, Miami, FL, May 2002.

[10] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols,
Addison Wesley, 1994.

[11] A. Balk, M. Gerla, M. Sanadidi, D. Maggiorini, “Adaptive
Video Streaming: Pre-encoded MPEG-4 with Bandwidth
Scaling”, Computer Networks: The International Journal of
Computer and Telecommunications Networking, 15, 5, 2004,
415-439.

[12] L. L. H. Andrew, S. V. Hanly, R. G. Mukhtar, “CLAMP:
Active Queue Management at Wireless Access Points”, in
Proc. of the 11th European Wireless Conference 2005,
Cyprus, April 2005.

[13] The Network Simulator, NS-2. http://www.isi.edu/nsnam/ns/
[14] A. L. Wijesinha, Y. Song, M. Krishnan, V. Mathur, J. Ahn,

V. Shyamasundar, “Throughput Measurement for UDP
Traffic in an IEEE 802.11g WLAN”, in Proc. of 6th
International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed
Computing and First ACIS International Workshop on Self-
Assembling Wireless Networks (SNPD/SAWN'05), Towson,
MD, USA, May 2005.

[15] Movie Trace Files. http://www-tkn.ee.tu-
berlin.de/research/trace/ltvt.html

[16] J. Farber, “Traffic Modelling for Fast Action Network
Games”, Multimedia Tools and Applications, 23, 1, 2004,
31-46.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

