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ABSTRACT 
Future digital entertainment services available to home users will 
share several characteristics: i) they will be deployed and 
delivered through the Internet, ii) a single media center will be 
exploited to orchestrate all parallel services, and iii) wireless 
technologies integrated within the home entertainment system 
will be massively utilized for the transmission of various data 
streams to networked devices. In this scenario, new effective 
strategies are needed to regulate the concurrent access to the 
wireless network when parallel applications generate different but 
simultaneous UDP/TCP-based flows. In this work, we present a 
novel technique aimed at guaranteeing a fast and smooth data 
delivery for real-time streams while maintaining a high 
throughput for TCP-based applications. Our approach is based on 
the utilization of a smart Access Point able to exploit available 
information about the ongoing traffic and existing features of the 
regular TCP. We compare the performance of our solution with 
an alternative one that makes use of an optimal setting of the 802-
11 MAC layer parameters. Simulation results confirm that our 
smart Access Point represents an optimal candidate to be 
exploited in complex wireless scenarios for in-home 
entertainment.  

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Performances Attributes.  

General Terms 
Algorithms, Measurement, Performance, Design, 
Experimentation, Verification. 

Keywords 
Media Center, Wireless Networks, Computer-Centered Home 
Entertainment, Transmission Protocols, Home Entertainment 
Center. 

1. INTRODUCTION 
Since its first appearance in 1999, TiVo has revolutionized the 

way millions of customers interact with their TVs. Its integration 
between TV sets and computers, in fact, enabled users to pause 
live-TV programs, even for several hours, and watch them at their 
own convenience, thus substituting the old VCR with a more 
functional Digital Video Recorder (DVR) [1]. This idea has been 
further extended by Microsoft through its Media Center, which 
represents a hub for all in-home entertainment experiences [2]. As 
a matter of fact, more than any other device, computers have 
evolved gaining the capability to handle heterogeneous media. 
Both TiVo and Media Center, as well as the future evolution of 
this technology, can be grouped into the class of Home 
Entertainment Center (HEC).  

In this context, Internet is going to play a fundamental role as the 
wider and wider diffusion of broadband connectivity is helping it 
in becoming the major vehicle for providing entertainment 
services. Therefore, a HEC is also designed to be connected to the 
Internet and perform as a gateway between client devices located 
in the house (or in a student dorm, for example) and the outside 
world. A HEC provides all-in-one functionalities and combines 
several services such as IPTV, Web radio, game console, picture 
viewer, electronic program guide, DVR, CD/DVD/video player, 
music jukebox, web browser, email handler, instant messenger. 
Contents related to these services can be locally available or 
distributed over the Internet to be dynamically retrieved based on 
the user’s needs. Several streams are thus produced by these 
active services, all distributed by the HEC throughout the home.  

To make the HEC able to communicate with client devices, 
several transmission strategies can be devised. However, wireless 
technologies present the flexibility and mobility features to 
overcome physical barriers and permit an (almost) instantaneous 
connectivity from every spot in the house. For this reason, we 
assume that HECs are endowed with an Access Point (AP) in 
order to guarantee wireless connectivity to the various user’s 
devices (e.g., screens, speakers, joypads).  

Indeed, a broad range of entertainment services can be singularly 
conveyed over IEEE 802.11 (Wi-Fi) technologies thanks to their 
transmission rates. Nominally, 11Mbit/s for the IEEE 802.11b, 
54Mbit/s for the IEEE 802.11g, or even 100 Mbit/s for the IEEE 
802.11n. Yet, mobility is achieved at the cost of a lower 
performance than that attainable through the use of a wired 
network. With respect to the latter, in fact, wireless networks 
provide lower bit rates which also depend on the distance and 
obstacles between the client device and its AP. Very limited effort 
has yet been devoted to study the impact of several heterogeneous 
streams that simultaneously shares the same (initial or final) 
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wireless hop while the question whether Wi-Fi can actually 
support the intense traffic generated by various and heterogeneous 
entertainment applications in an in-home environment needs an 
immediate and definite answer.  

Furthermore, networks and related protocols are often developed 
assuming that the traffic will be mostly TCP-based and that the 
main goal will be that of guaranteeing high throughputs. These 
assumptions need a radical reconsideration when services for 
entertainment come into the picture. Think, for instance, of fast-
paced gaming applications, according to which small amounts of 
data are transmitted at high constant rates via the UDP transport 
protocol. This kind of application is extremely delay sensitive 
thus having in low delay latencies for packet delivery its focal 
requirement. The same holds for IPTV, where TV programs 
and/or Video on Demand services are offered to clients using the 
medium of the Internet. In such scenarios, latencies and jitter 
must be reduced as much as possible in order to ensure an 
acceptable quality of service.  

To facilitate the deployment of networked services through the 
HEC, we presented in [3] a study of the problem focusing on 
cross-layer interactions between transport and MAC layers in 
presence of heterogeneous and concurrent entertainment 
transmission flows. We showed in particular how even a single 
persistent TCP connection is able to deteriorate the performance 
of real-time entertainment applications. We then proposed a MAC 
layer tune-up for APs in order to find a compromise between the 
requirements of downloading applications and those of real-time 
applications. Although it represents an improvement to the current 
state of the art, this solution is still not optimal. 

Aiming at finding an optimal solution, we present now an 
alternative approach focused on the transport layer and exploiting 
existing features of regular TCP. In substance, a HEC is centrally 
located in the house and communicates with the user’s devices 
through the AP. The AP is hence in the position of having a 
comprehensive sight on all the in-home transmissions and to 
control them. In particular, the AP can be enhanced to snoop all 
transiting streams and modify the advertised window of TCP 
packets in order to limit the growth of on-going TCP flows. If 
appropriately applied, this technique produces a good TCP rate, 
yet without exceeding the capacity of the channel: losses and 
consequent halving of the sending rate are, in fact, avoided. At the 
same time, as the buffer at the AP remains always (almost) empty, 
the delivery time for each transiting packet is not affected by 
queuing delay and users perceive a smooth progression of real-
time entertainment applications.  

We show how the AP associated with the HEC, can dynamically 
and effectively intervene on the advertised window of transiting 
TCP packets in order to ensure optimal performances for both 
downloading and real-time entertainment applications. We 
compare this solution with the one proposed in [3] by 
investigating both their efficiency and factual deployability. In 
our study, we analyzed a realistic scenario with 4 different 
applications simultaneously run: video stream, online gaming, 
video chat, and download of multimedia files.  

The paper is organized as follows. Section 2 discusses issues 
concerned with the transmission of multimedia streams over in-
home wireless scenarios. Section 3 presents the aforementioned 
solutions to face these issues. In Section 4, we describe the 

simulation scenario exploited to assess the efficacy of our devised 
approaches, while in Section 5 we analyze the obtained results. 
Finally, Section 6 concludes our work. 

2. ON THE IMPACT OF THE WIRELESS 
MAC / TCP INTERFERENCE 
As recently demonstrated by measurements on a real OC48 link, 
the available capacity over the Internet is generally larger than the 
aggregate bandwidth utilized by transiting flows [4]. Moreover, 
more and more providers are offering today guaranteed high 
speed connectivity to home customers [5, 6, 7]. In essence, tools 
are available to verify that the customer’s connection is factually 
supporting as much traffic as the bandwidth advertised by the 
provider.  

In this scenario, it is widely accepted that the bottleneck of the 
connection is generally located at the edge of the path connecting 
a sender and a receiver; specifically, the last link connecting an 
edifice with the Internet or the in-edifice wireless link. Since the 
rapid increase of the bandwidth delivered to homes and the 
broadband available in locations that intend to gain profit from 
offering high performance online entertainment to customers, we 
can assume to have the bottleneck located in correspondence of 
the wireless link. Indeed, when several contemporary applications 
share the same wireless link, it might be the case when the AP 
receives packets at higher rates than its forwarding one. This can 
happen for several reasons such as, for instance, the fact that the 
wireless medium allows the transmission of only one packet at a 
time and is not full-duplex as wired links.  

Moreover, interference, errors, fading, and mobility may cause 
packet losses which are handled by the MAC protocol through 
local retransmissions. These local retransmissions hide error 
losses to the TCP and are useful to increment the reliability of the 
connection. Without them, the TCP would misinterpret error 
losses as congestion evidences and reduce its sending rate 
decreasing its performance. On the other hand, retransmissions 
follow the well known back off mechanism by which an 
increasing amount of time is utilized to determine whether a 
packet has been lost and hence retransmit it. The 802.11 MAC 
protocol performs up to seven retransmissions of short packets 
(i.e., RTS/CTS, acks) and four retransmissions of long packets 
(i.e., data packets) [8]. This means that subsequent packets have 
to wait in queue until the preceding ones or their retransmissions 
finally reach the receiver and the corresponding acks get to be 
successfully sent back.  

Finally, the same wireless connection might be shared by several 
devices and applications that increase the congestion level 
causing queuing. As it is well known, TCP connections have an 
aggressive behavior and continuously probe the channel for more 
bandwidth until buffers are fully utilized and overflowed. In 
presence of persistent TCP connections (i.e., when downloading 
files) it is hence very likely to happen that buffers were steadily 
fully utilized, thus periodically slowing down the delivery time of 
each packet, and deteriorating the performance of time-sensitive 
applications such as online games, for example. 

At the same time large buffers help TCP-based flows in keeping a 
high sending rate. This happens for several reasons but the most 
important ones are: i) the link successive to the buffer remains 
fully utilized for longer periods of time since there are (almost) 



always packets in queue that are ready to be sent as soon as 
possible, and ii) traffic bursts can be more easily accommodated 
thus reducing packet losses and maintaining higher sending rates 
for longer periods of time. In essence, a tradeoff relationship 
exists among the per-packet delay and the total throughput 
achieved. The solution for this tradeoff depends on the buffer size 
and on its utilization. 

2.1 Problem Statement 
As previously mentioned, the impact of the interference between 
wireless MAC and transport protocols can produce delays which 
could hit also several tens of milliseconds. This represents a huge 
waste of time when trying to concurrently deliver real-time 
information for entertainment services. Think, for instance, of 
online games which have very stringent requirements on delay 
latencies, i.e., typically 150ms is considered as the maximum 
endurable transmission delay to guarantee interactivity [9]. For 
this reason, effective control schemes must be devised to limit 
queuing delays when data streams for real-time entertainment 
applications are simultaneously active. 

3. PROPOSED SOLUTIONS 
To solve the aforementioned problem we analyze two different 
possible solutions. The first one involves modifications of the 
802.11 MAC layer and, hence, is specifically intended for the 
wireless media [3]. The second one, instead, exploits existing 
features of regular TCP and could be extended also to the case 
where the connection is completely wired. For the proposed 
solutions we investigate both their efficiency and factual 
deployability to expose pros and cons. 

3.1 IEEE 802.11 Parameters Setting 
The first proposal regards the utilization of more appropriate 
setting for parameters of the IEEE 802.11 MAC protocol. 
Parameters such as the maximum number of retransmissions and 
the buffer size were, in fact, determined in a period when the 
TCP-based traffic was largely predominant in the Internet. The 
main concerns for designers were hence reliability and high 
throughputs. 

As already mentioned, nowadays, UDP-based real-time 
entertainment applications are becoming more and more popular 
and demand for low delays in packet delivery. This kind of 
applications is resilient to some packet loss while is extremely 
delay sensitive in packet delivery. For this reason, it is preferable 
to drop a packet than to waste time in retransmissions. 

This obviously partially contradicts the initial assumption that 
reliability is the most important issue over wireless links. 
Therefore, 802.11 parameters should be modified to make it more 
sensitive towards real-time application needs. In particular, the 
number of local retransmissions could be diminished in order to 
find an efficient compromise between reliability and low delays 
in packet delivery. 

Furthermore, having a large buffer size at the AP helps TCP 
connection to maintain large sending rates for longer periods and 
diminishes the impact of burst traffic. On the other hand, to a 
larger buffer corresponds a longer queuing time experienced when 
the buffer is full, thus jeopardizing the performance achieved by 
time-sensitive applications. By adjusting the buffer size to an 

appropriate value we can again try to find an optimal compromise 
between the needs of both traditional TCP-based and real-time 
entertainment applications. 

3.2 Limited Advertised Window 
Here, we are aiming at finding the best solution to the tradeoff 
relationship existing between TCP throughput and real-time 
application delays. The two types of traffic should be able to 
coexist without affecting each other and the employed solution 
should be easily and factually deployable. 

Starting from the last point, i.e., deployability, it is evident how a 
technique that would exploit existing features of the already 
utilized protocols could be easily implemented in a real scenario. 
A possible solution could hence be that of utilizing the advertised 
window to limit the bandwidth utilized by TCP flows.  

Indeed, the actual sending rate of a TCP flow depends on its 
current sending window; this value is determined as the minimum 
between the congestion window (continuously recomputed by the 
sender) and the advertised window (provided by the receiver via 
returning ACK packets) [10]. It is hence evident how the 
advertised window perfectly embodies a natural upper bound for 
the sending rate of TCP flows. 

Limiting the maximum sending rate of a TCP connection may 
greatly improve the performance of the HEC. An optimal tradeoff 
between throughput and low delays, in fact, could be achieved by 
maintaining the sending rate of the TCP flows high enough to 
efficiently utilize the available bandwidth but, at the same time, 
limited in its growth so as to not utilize buffers. In this way, in 
fact, the throughput is maximized by the absence of packet losses 
which would halve the congestion window, while the delay is 
minimized by the absence of queues. 
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Figure 1. Comparison between regular and limited sending 

windows (wnd). 

To better understand how limiting the sending window could 
guarantee the same or even a higher throughput with respect to 
utilizing regular TCP, we show in Figure 1 a general saw tooth 
shaped sending window of a regular TCP and overlap it with one 
limited by the advertised window. As it is evident, the latter is 
more stable since it does not use the buffer at the bottleneck link 
and consequently experiences no losses. The minus signs in the 
chart represent situations in which the regular sending window 
provides TCP with a sending rate that is inferior to the one 
guaranteed by the limited sending window. The plus signs 
represent the inverse situation (generally accompanied by having 
packets queuing on the buffer preceding the bottleneck link). If 
the upper bound for the sending window is appropriately chosen, 



the balance between the plus and minus signs will guarantee to 
the limited sending window an equal or even superior final 
throughput with respect to the regular sending window. At the 
same time, queuing delays will be avoided. 

To achieve this desirable result we need first to address two 
important issues: how to determine an appropriate upper bound 
and how to apply it in practice to the sending window. 

Regarding the first point, the most appropriate formula can be 
derived from the two main goals we want to achieve: i) full 
utilization of the available bandwidth and ii) no queuing delays. 
Real-time traffic generally exploits UDP and this transport 
protocol has no congestion control mechanism. Some smart UDP-
based application, however, implements congestion control at the 
application layer [11]. In any case, to avoid queuing delays, the 
aggregate bandwidth utilized by TCP flows cannot exceed the 
total capacity of the bottleneck link diminished by the portion of 
the channel occupied by the concurrent real-time traffic. 

In essence, the maximum sending rate for each TCP flow at time 
t, namely maxTCPrate(t), is represented by: 

 
)(#

))(()(
tTCPflows

tUDPtrafficCtmaxTCPrate −
=  (1) 

where UDPtraffic(t) corresponds to the amount of bandwidth 
occupied by UDP-based traffic at time t, #TCPflows(t) is the 
concurrent number of TCP flows, and C represents the capacity of 
the bottleneck link and must be accurately determined in order to 
optimize performances.  

The second issue that we need to address is how to practically 
employ this formula in order to have it working in a real scenario. 
This means i) identifying the location for its implementation, and 
ii) proposing a method to compute the value of the various 
variables in (1). 

Regarding the first issue, the advertised window is generally 
imposed by the receiver; however, this could not represent the 
most suitable place to set it. Determining the most appropriate 
value for the advertised window requires a comprehensive 
knowledge about all the flows that are transiting through the 
bottleneck. Since all flows have to pass through the AP, this 
represents the most appropriate node on which implementing our 
scheme. Indeed, the AP is integrated with the HEC and the 
mechanism can take advantage of this to retrieve all the necessary 
information. This approach is also in accordance with other 
proposals available in literature such as, for example, [12]. 
However, whereas [12] requires modifications at both the AP and 
the receiver, our scheme exploits a “smarter” AP.   

Focusing on the second issue, in any commercial operating 
system it is possible to know which kind of connection is in use 
and which its nominal speed is just by looking at the status of the 
network interface. Knowing this, in Section 5.3 we empirically 
find the optimal value for the considered in-home scenario. 
Through snooping the channel or exploiting information known at 
the HEC we can also infer the number of active TCP connections 
and the aggregate amount of current UDP traffic. The AP can 
hence easily compute the best maxTCPrate(t) utilizing (1) and 
accordingly modify the advertised window included in the 
transiting acks. From here on we refer to this scheme as Smart 
Access Point  with Limited Advertised Window (SAP-LAW). 

4. IN-HOME ENTERTAINMENT: A 
SIMULATION ASSESSMENT 
The aforementioned scenario has been analyzed in depth through 
the well known NS-2 network simulator (version ns-2.28) [13]. In 
particular, the simulated topology is depicted in Figure 2 where 
the in-house entertainment environment is represented by four 
mobile nodes named N1, N2, N3 and N4, and the HEC that 
incorporates also the AP.  

 

Figure 2. Simulated topology. 

The MAC layer parameters have been set accordingly to the IEEE 
802.11g standard. The simulation outcomes showed us that we 
were able to reach a maximum achievable bandwidth of circa 
20Mbps. This represents a reasonable value over the declared 
54Mbps even in the real world [14]. 

Table 1. Simulation configuration of the wired links 

Node 1 Node 2 Physical 
Latency 

Link 
Capacity 

Buffer 
Size 

W1 W0 10ms 100Mbps 140pkts 
W2 W0 20ms 100Mbps 140pkts 
W3 W0 30ms 100Mbps 140pkts 
W0 AP 10ms 100Mbps 140pkts 

 

Table 2. Simulated application flows 

From To Flow Type Transp. Prot. Start End 
AP N0 video stream UDP 0s 180s 
W1 N1 online game UDP 45s 180s 
N1 W1 online game UDP 46s 180s 
W2 N2 video chat UDP 90s 180s 
N2 W2 video chat UDP 91s 180s 
W3 N3 FTP TCP NewReno 135s 180s 

 

Regarding the wireless medium we have adopted the Shadowing 
Model which is a realistic and widely utilized signal fading model 
available in NS-2. We followed the directions provided by the 
official NS-2 manual to represent a home environment partitioned 
into several rooms. Specifically, in our simulations, the path loss 
exponent of the Shadowing Model was always set equal to 4, 
while different shadowing deviation values have been tested to 
simulate different partition degrees inside the house. The 
attenuation of the transmitted signal grows with the increase of 
these parameters; we hence expect to face higher percentages of 
packet losses over the wireless medium when setting the 
shadowing deviation to 9. 

Focusing on the wired links, their one-way delays and capacities 
have been configured as listed in Table 1, while their buffer sizes 
have been set equal to 140 packets. This value corresponds to the 



pipe size on the connection starting from W3 and reaching a 
wireless node. 

Table 3. Changing parameters in the simulated configurations 

Parameter Values Comment 
MAC data 

transmission 1, 2, 3, 4 standard value is 4 

Shadowing 
deviation 7, 9 medium, high 

user-AP distance 5m, 10m same room, 
different room 

MAC buffer size 50pkt, 100pkt common values in 
commerce 

 

In order to represent a general scenario we have run different 
kinds of applications which are listed in Table 2. The 
characteristics of the various simulated flows make them highly 
realistic. In particular, the video-stream and video-chat flows have 
been generated by feeding the NS-2 with real trace files of high 
quality MPEG4 Star Wars IV and VBR H.263 Lecture Room-
Cam, respectively [15]. 

Moreover, we have assumed that the player in the house is 
engaged in one of the very popular first person shooter games 
with other ~25 players, geographically apart from each other and 
connected through the Internet. We have hence set NS-2 to 
generate the corresponding traffic considering the approximations 
suggested in [16]. Specifically, game events have been generated 
at client side every 60ms; while the server was transmitting game 
state updates every 50ms toward the client. The packet size has 
been set to 42Bytes and 200Bytes for client and server generated 
game packets, respectively.  

Due the space limitation of this paper, we present results only for 
the throughput achieved by the FTP application and the jitter 
experienced by the online gaming application. However, no 
significant information is lost since the per-packet delay and jitter 
for all the simulated real-time applications showed similar 
behaviors.  

Simulation experiments have been replicated to examine the 
effects generated by differently setting some of the parameters 
involved in the scenario. Table 3 lists all the variable parameters 
in the simulations; each combination of their possible values has 
been simulated. However, where not differently stated, 
simulations were run utilizing some realistic default values for the 
simulative parameters. These values are written in bold in Table 
3. 

5. EXPERIMENTAL RESULTS 
We present here the most relevant results from the extensive set 
of simulations we have run. In particular, we first demonstrate 
how concurrent TCP-based traffic can affect the performance of 
real-time applications when our solutions are not employed. We 
then compare the outcome with those of our proposed solutions. 

5.1 FTP Impact on Real-Time Entertainment 
Applications 
In this Section we discuss results obtained when resorting to 
standard setting parameters for both MAC and TCP without 
resorting to our solutions. The various applications start in 

sequence at precise times. In this way, it is possible to evaluate 
the impact of every new flow over the preexisting ones. In 
particular, we expect to witness increasing delays and hence 
higher jitter in the arrival time of packets as we augment the 
traffic level.  

As it is evident from Figure 3 and Figure 4, the bandwidth 
requirement of the first starting applications (i.e., the real time 
ones) in our scenario is well below the effectively available 
capacity of the IEEE802.11g wireless medium. We have to wait 
until the FTP flow takes action, quickly saturating the channel 
and the buffers along the path with its packets, before being able 
to clearly detect a significant impact on the various real-time 
flows.  
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Figure 3. Measured TCP congestion window when the regular 

TCP NewReno and IEEE 802.11g are employed. 
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Figure 4. Measured online game jitter with regular IEEE 

802.11g employed; from 135s, a regular TCP NewReno flow is 
competing for the channel. 

More in detail, Figure 3 illustrates the congestion window and the 
slow start threshold for the TCP flow, plus the bandwidth-RTT 
product for the channel (i.e. the horizontal line in correspondence 
of 146 packets). As it is evident from the chart, the congestion 
window steadily surpasses the bandwidth-RTT product, which 
represents the pipe capacity of the channel, thus generating 
queuing up of packets at the bottleneck. Consequently, real-time 
gaming packets experience a steady increase in the delivery time, 
which is due to higher queuing delays. Corresponding to peaks in 



the saw tooth shape of the congestion window (see Figure 3), we 
have striking amplification of the jitter experienced by the online 
game application (see Figure 4). Real-time application providers 
typically deploy mechanisms to ensure low per-packet latencies 
over the Internet. Clearly, delay increments of tens of 
milliseconds on very last hop may jeopardize these efforts.  

5.2 Solution #1: Appropriately Setting MAC 
Layer Parameters 
To improve the performance of real-time applications, part of the 
FTP throughput can be bartered with lower queuing delays. 
Specifically, by utilizing different buffer sizes and/or maximum 
number of retransmissions at the MAC layer, we can improve the 
performances achieved by the various real-time applications.  

Starting with the first parameter, Figure 5 confirms that having 
larger buffer sizes at the MAC layer guarantees higher 
throughputs to TCP. Obviously, there is no difference in the 
achieved throughput when wireless losses are frequent enough to 
bind the TCP transmission rate below the pipe size. On the other 
hand, we have already anticipated that having large buffers along 
the path may augment the total delay time experienced by 
packets. In fact, each packet waits in queue for a time which 
proportionally grows with the number of preceding packets 
already present in the same buffer at its arrival. In case of intense 
traffic, buffers tend to be congested and hence queuing delays 
may become a significant component of the global delays 
experienced by each packet.  

Focusing on the second parameter, although it is true that having 
a high maximum number of retransmissions at the MAC layer 
improves the reliability in packet delivery, it also increments the 
delivery time of packets waiting in queue for being transmitted. 
Therefore, a more appropriate configuration of the IEEE 802.11g 
with respect to the traditional one would probably make use of a 
maximum number of 3 retransmissions, thus guaranteeing a high 
FTP throughput whilst maintaining a low jitter in packet delivery 
time. Moreover, when a unique queue is maintained for all the 
traffic flows, a small size (50 packets at most) should be 
preferred. 

This configuration ensures an elevate TCP throughput and also a 
reduction of the jitter experienced by real-time packets. As a 
demonstration, Figure 5 shows that the TCP total throughput 
during the 45 seconds when the FTP was running is 55371 
packets (the congestion window, slow start threshold, and 
bandwidth-RTT product are shown in Figure 6). The 
corresponding reduction of the jitter for the online game flow 
traveling from the server to the client can be noticed by 
comparing values in Figure 7 (appropriate setting of MAC layer 
parameters) with those presented in Figure 4 (standard 
configuration). 

An even better jitter could be gained further diminishing the 
maximum number of MAC retransmissions to 2. However, we 
advice against this choice because it may sensibly reduce the FTP 
throughput as can be observed in Figure 5. 

5.3 Solution #2: Limiting TCP’s Advertised 
Window 
In order to implement SAP-LAW, we have enhanced the 

simulated scenario by enabling the AP to modify the advertised 
window (included in returning acks) accordingly with (1). In 
particular, the average UDP-based aggregate traffic was computed 
through a simple low-pass filter and the new advertised window 
was determined every 200ms. 

Various values for the parameter C in (1) have been tested and 
results are reported in Figure 8. In this chart, we can see the 
average, the variance, and the maximum value for the jitter 
experienced by the game flow directed from the server to the 
client. Moreover, Figure 8 also presents the throughput trend of 
the concurrent TCP-based flow.  

 
Figure 5. FTP total throughput with different MAC buffer 

sizes; user-AP distance = 10m, shadowing deviation = 9. 
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Figure 6. Measured TCP NewReno congestion window with 

max 3 retransmissions at the IEEE 802.11g MAC layer. 

As clearly shown, both the average and the variance of the online 
game flow increase when we utilize higher values for C. This is 
coherent with the fact that higher C values decrease the resilience 
of the scheme to TCP bursts thus leading to some queuing at the 
AP. While the average results are very low for all C values, the 
variance sensibly increases with higher values of C thus 
indicating the presence of many peaks of very high delay in the 
packet delivery. This is confirmed also by the line representing 
the maximum delay value experienced by packets. 

Figure 8 also demonstrates how the throughput decreases when C 
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is set too low. Instead, if C is set higher than the maximum 
achievable throughput on the channel (in this case, 20Mbps), then 
the sender will be allowed to send more packets than those 
bearable by the bottleneck link causing queuing delays. Thus, it 
happens that some packets may overflow the buffer and the 
consequent losses cause the reduction of the sending window and 
average throughput. 
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Figure 7. Measured online game jitter with max 3 

retransmissions at the IEEE 802.11g MAC layer; from 135s, a 
regular TCP NewReno flow is competing for the channel. 
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Figure 8. Throughput achieved by the FTP flow and jitter 

statistics of the game flow when employing SAP-LAW. 

Supposing that we want to limit the maximum jitter within 10ms, 
we have to set C equal to 18Mbps (i.e., the 90% of the maximum 
achievable bandwidth). Indeed, this seems to be an appropriate 
choice able to guarantee both low queuing delays and high TCP 
efficiency. The advertised window exploited by the TCP flow is 
evident in Figure 9, which also reports the congestion window, 
the slow start threshold, and the bandwidth-RTT product. We 
have to keep in mind that the TCP flow starts at second 135 of the 
simulation time and that the actual sending window is determined 
as the minimum between the advertised window and the 
congestion window. This said, we can appreciate from the chart 
how the AP is able to keep track of the concurrent real-time 
traffic and determine the most appropriate advertised window. In 
particular, for this configuration, the final throughput in terms of 
acknowledged packets over 45 seconds hits 58677, while the jitter 
experienced by online game packets is kept low (see Figure 10). 

Following (1), when only one TCP flow is running, SAP-LAW 
sets its advertised window close to the difference between the 
bandwidth-RTT product and the aggregate UDP-based traffic. 

This difference also represents an estimate of the amount of real-
time (UDP-based) traffic present on the channel and, as Figure 9 
shows, its value is relatively small if compared to the whole 
channel capacity. This demonstrates that real-time applications 
generally do not have to face bandwidth shortage in an 802.11g 
wireless home, while they still have to deal with high and variable 
delays. 
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Figure 9. Measured congestion window and advertised 

window of a SAP-LAW flow with C = 18Mbps; regular IEEE 
802.11g employed. 
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Figure 10. Online game jitter with regular IEEE 802.11g 

employed; from 135s, a SAP-LAW flow with C = 18Mbps is 
competing for the channel. 

5.4 Summarizing Results 
In Figure 11 we summarize statistical results obtained by: i) 
utilizing regular TCP New Reno on a standard IEEE 802.11g 
MAC configuration (Regular), ii) appropriately setting the MAC 
layer parameters (MAC-Setting), and iii) employing SAP-LAW. 

The compared statistical parameters are the average, the variance, 
and the maximum value of jitter experienced by online game 
packets traveling from the server to the client via the AP. Again, 
results obtained from the other real-time applications running in 
the simulated scenario (i.e., video-stream and video-chat) are 
coherent with the showed ones and need no further explanation; 
we hence skip to present their outcomes. Rather, we also show the 
average throughput achieved by the concurrent TCP connection. 



As it is evident, employing SAP-LAW to support FTP traffic is 
the solution that would guarantee the best performance both in 
terms of lowest per-packet delay and achieved throughput. 
Moreover, SAP-LAW could be easily implemented as it only 
requires the presence of slightly “smarter” APs. The 
modifications to the AP are very limited, thus minimally 
impacting on their cost and, at the same time, SAP-LAW can 
perfectly coexist with the current Internet and its employed 
protocols. Considering this and the remarkable results achieved, 
SAP-LAW represents the optimal candidate for enhancing 
computer-centered home entertainment in a wireless scenario. 

0

10

20

30

40

50

avg(ms) var max(ms) thr(Mbps)

Statistical Parameters

Regular MAC-Setting SAP-LAW
 

Figure 11. Statistical values of the online game stream for the 
compared schemes. 

6. CONCLUSION 
In this paper, we evaluated a scenario involving in-home 
entertainment delivered to wireless device through a HEC. A 
discussion has been provided that analyzes the mutual influence 
among several concurrent transmission streams in this context. 
We investigated the impact of the underlying wireless technology 
and showed how even a single persistent TCP connection can 
conspicuously increase the queuing delay suffered by concurrent 
real-time entertainment applications. 

To solve this problem, we proposed SAP-LAW: a solution that 
exploits regular features of TCP and an enhanced AP to optimize 
the performances of both TCP and UDP-based transmission 
streams. In particular, our scheme snoops the on-going traffic 
through the AP and appropriately assigns an upper bound to the 
advertised window of TCP flows. We compared SAP-LAW to a 
solution that acts at the MAC layer by optimizing parameters 
setting and showed how the former outperforms the latter by 
consistently ameliorating the global performance of computer-
centered home entertainment services. However, the two solutions 
are not incompatible with each other and could also be employed 
together. 

Finally, even if in our model we assumed to have the bottleneck 
located in correspondence of the wireless link, the considerations 
we expressed in this paper, as well as the results that we showed, 
could be easily extended to a different scenario where a 
bottleneck is located before entering the edifice. We reserve to 
analyze this case as a future work. 
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