ISTITUZIONI DI LOGICA

a.a. 2006-2007 5 crediti prof.ssa Giovanna Corsi

Test del 27 Settembre 2007

Cognome, Nome, Corso di Laurea:

- 1. Quali frasi tra le seguenti rientrano nel dominio di indagine della logica?
 - (a) Mozart ha scritto cinque sinfonie
 - (b) Se tutti i cavalli corrono veloci allora anche tutte le pecore sono mammiferi
 - (c) Esci domani sera?
 - (d) Il fumo fa enormemente male alla salute soprattutto di chi lo subisce senza colpa
 - (e) Fumare fa male alla salute altrui quindi non fumare!
 - (f) Fumare fa male alla salute altrui quindi quando pensi di smettere?
 - (g) Qualche cadavere è in avanzato stadio di decomposizione
 - (h) Il peso atomico dell'idrogeno è 1 e il ferro è un elemento

Dai una motivazione alla tua scelta.

2. Costruisci l'albero di formazione (l'albero morfologico) dei seguenti enunciati:

(a)
$$C \to ((A \lor B) \land B)$$

(b)
$$C \to ((A \lor B) \land \neg \neg B)$$

- 3. Quali dei seguenti connettivi sono vero-funzionali e quali invece no?
 - (a) Se oggi piove domani c'è il Sole
 - (b) Se oggi piovesse domani ci sarebbe il Sole
 - (c) Se 2+2=5 allora la somma degli angoli interni di un triangolo è 180 gradi
 - (d) Oggi piove e domani c'è il Sole
 - (e) Vengo a casa e mi metto subito a letto
- 4. Elenca le seguenti tautologie e regole:
 - (a) modus ponendo tollens
 - (b) modus tollendo ponens
 - (c) modus ponendo ponens
 - (d) modus tollendo tollens
 - (e) terzo escluso
 - (f) non contraddizione
 - (g) identità

- 5. Rispondi "VERO" o "FALSO":
 - (a) Se Bè conseguenza logica di $A_1,...,A_n$ allora
 - $A_1 \wedge \wedge A_n \to B$ è una tautologia?
 - $\neg A_1 \lor \dots \lor \neg A_n \lor B$ è una contraddizione?
 - $A_1 \wedge \wedge A_n \wedge C \rightarrow B$ è una tautologia?
- 6. Fai la tavola di verità delle seguenti formule, e indica quali sono tautologie:
 - (a) $A \to (B \to A)$

(b) $A \rightarrow (\neg B \rightarrow \neg A \land B)$

7. Marco è un ragazzo riservato con pochi amici. I suoi soli amici sono Paolo e Francesca. Sulla base di queste informazioni stabilisci quali delle seguenti formule sono vere, utilizzando il seguente vocabolario:

m := Marco, Axy := xè amico di y

- $\bullet \exists xAxm$
- $\exists x \exists y (Axm \land Aym)$
- $\exists x \exists y \exists z (Axm \land Aym \land Azm)$
- $\exists x \exists y \exists z (Axm \land Aym \land Azm \land x \neq y \land x \neq z \land y \neq z)$
- $\exists x \exists y \exists z (Axm \land Aym \land Azm \land x \neq z \land y \neq z)$
- 8. Formalizza le seguenti asserzioni in un linguaggio del primo ordine contentente i seguenti simboli descrittivi:

Ax:= x è animale, Ex:= x è elefante, Rx:= x è rinoceronte,

Fx:= x è formica, Cx:= x è cicala, Lx:= x è laborioso,

Sx:= x è sfaticato, Pxy:= x è più pimpante di y, p:= Pippo.

- (a) Qualche animale è laborioso
- (b) Ogni animale è laborioso

	(c)	Ogni elefante è più pimpante di ogni rinoceronte
	(d)	Ogni elefante è più pimpante di qualche rinoceronte
	(e)	Pippo è più pimpante di tutti gli elefanti
	(f)	Ogni formica è laboriosa e ogni cicala è sfaticata
	(g)	La formica è un animale laborioso
	(h)	Una cicala è sempre un animale sfaticato
	(i)	C'è una cicala sfaticata
	(j)	Esiste una formica laboriosa ed esiste una cicala sfaticata
	(k)	Ogni formica laboriosa è più pimpante di ogni cicala sfaticata (solo laurea specialistica)
	(1)	Se esiste un solo elefante laborioso, allora quello è Pippo (solo laurea specialistica)
9.		ondi "VERO" o "FALSO". La relazione binaria $x \neq y$
	(b) (c)	è riflessiva? è simmetrica? è transitiva? è antisimetrica?
10.		'albero semantico dei seguenti enunciati e stabilisci se sono verità logiche o meno. Individua ontromodello per le formule falsificabili.
		$(\exists xAx \to B) \to \forall x(Ax \to B)$ ove x non occorre libera in B $(\forall xAx \to \forall xBx) \to \forall x(Ax \to Bx)$

(c) $\forall x \forall y Rxy \rightarrow \exists y \exists x Rxy$

- 11. Nel calcolo della deduzione naturale deduci:
 - (a) $A \vee B$ dall'ipotesi $A \wedge B$
 - (b) $\forall xAx \to \exists xAx$
 - (c) $A \to B$ dall'ipotesi $\neg A \vee B$ (solo laurea specialistica)
- 12. Solo per la laurea specialistica: spiega perché le seguenti derivazioni non sono valide nel calcolo della deduzione naturale:

(a)
$$\frac{[Ax]^1}{\forall xAx}$$
$$Ax \to \forall xAx$$

(b)
$$\frac{\exists xBx \ \frac{[Bx]^1}{Bx \lor Cx}}{Bx \lor Cx}$$