Architectures and design patterns for functional
design of logic control and diagnostics in
industrial automation

Ph.D. Thesis

Matteo Sartini

Tutor: Prof. Claudio Bonivento

Coordinator: Prof. Claudio Melchiorri

University of Bologna

& wi\l /Y
4] /
XXII Ciclo ' '

WWW.LLINITBOLI |

A.A. 2006 -2009

Architectures and design patterns for functional
design of logic control and diagnostics in
industrial automation.

Ph.D. Thesis

Matteo Sartini

Tutor: Prof. Claudio Bonivento

Coordinator: Prof. Claudio Melchiorri

University of Bologna
XXII Ciclo
A.A. 2006 - 2009

Keywords:

Architectural Design Patterns, Fault Diagnosis, Discrete Event Systems, Automated Manufac-
turing Systems, Model Driven Engineering.

Ing. Matteo Sartini

CASY - DEIS - University of Bologna

Viale Pepoli 3/2, 40136 Bologna.

Phone: +39 051 2093870, Fax: +39 051 2093871

Email: mat t eo. sartini @ni bo. it

URL:http://wwe | ar. dei s. uni bo. it/ peopl e/ nsarti ni

This thesis has been written in IXTgX.
Copyright (02010 by Matteo Sartini. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording or any information storage and re-
trieval system, without permission in writing from the author.

Acknowledgments:
This work has been partially funded by the European Artemis Joint Undertaking funded project
CESAR: Cost-Efficient methods and processes for SAfety Relevant embedded systems, sponsored by
the European Commission in the IST programme 2008 of the 7th EC framework programme
(ARTEMIS-2008-1).

This work has been partially funded by MIUR (Ministero dell’istruzione, dell'universita e della
ricerca).

To Anna

SOONER OR LATER,

THE WORST POSSIBLE COMBINATION OF CIRCUMSTANCES
WILL HAPPEN.

SODD’S LAW.

IN THEORY THERE IS NO DIFFERENCE BETWEEN THEORY AND PRACTICE.
IN PRACTICE THERE IS.

YOGI BERRA.

Contents

Preface

1

Control design in industrial automated systems

1.1 Design specification in industrial automated system

1.2 Classification of industrial automated systems
121 Assemblymachines
122 Inspectionmachines,
123 Testmachines
124 Packagingmachines
1.2.5 Computer numerical control machines
1.2.6 Production Processes

1.3 Conclusions e e e

State of the art of software engineering in industrial automated systems

2.1 Software architecture in industrial automation

2.2 Design patterns in industrial automation 0 0L,
22.1 A design pattern for control process-S88
2.2.2 A design pattern for manufacturing systems- GEMMA

2.3 Standard language in industrial automation Lo o000 L
23.1 Standard language: IEC61131-3
2.3.2 Standard language: IEC61499

24 ObjectOriented
241 UML - Unified Modeling Language

25 Conclusions

Architecture in industrial automation: The Generalized Actuator approach
3.1 Introduction
32 Classicdesignprocedure o ..
3.3 Generalized Actuatorapproach oo oL
3.4 Generalized actuator definition and design procedure formalization
341 Typesofactions
3.5 GAinrapid prototyping Lo
3.6 Conclusions e e e

15

23
23
25
26
27
27
28
28
29
31

6 Contents
4 The Generalized Device concept 77
4.1 Actuationmechanism 77
4.2 Devices classification e 80
43 A hierarchical multi-layer architecture 82
44 The Generalized Devices e 85
4.5 Fault diagnosis functionalities o o 0oL 91
4.6 Conclusions e 96

5 A discrete event approach to fault diagnosis in automated system 97
5.1 Formal verification in industrial automation 97
5.2 A DES approach for formal verification 99
52.1 Architecture for supervisory control in industrial automation 100

522 Model building methodology, . 102

523 Lowlevel 103

524 Modeling faultatlowlevel 106

52.5 Control and monitoring of low level devices 110

5.3 Conclusions on DES approach for formal verification 118

5.4 Active fault tolerant control online diagnostics 121
5.4.1 Faulttolerantcontrol 121

5.4.2 Supervisory control of DES with faults 122

5.4.3 Safe controllability of DES 125

5.4.4 Active fault tolerance of DES 127

5.4.5 Anillustrativeexample L. 130

5.4.6 Conclusions on active fault tolerant control using online diagnostic 133
Conclusions and future works 135
A Introduction to discrete event systems theory 139
A.l1 Discreteeventsystems o o oL 139
A2 OperationsonLanguages 140
A.3 Representation of languages: automata 141
A3.1 Operationsonautomata 142

A32 Observerautomata 144

A4 Regularlanguages 145
A5 Supervisorycontrol L L 146
A.6 Uncontrollability problem, .. 148
A.6.1 Dealing with uncontrollableevents 148

A.6.2 Realization of supervisors L. 148

A.7 Unobservability problem o L o 149

B The demonstrator 151
B.1 Testbed description 151
B.1.1 Distributionstation 152

B.1.2 Testingstation. 154

B.1.3 Processing Station L Lo 156

B.1.4 Assemblystation oo 158

B.2 Partofcodeof FESTO e 161

Contents

C Components models of DES approach

C.1 Examples of model composition

C.2 Control and monitoring of low level devices
Bibliography
Index

Curriculum vitae

167
167
175

180

187

191

Contents

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
24
25
2.6
2.7
2.8
29
2.10

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
44
4.5

Control systems architecture evolution. 24
Control system architecture in automated systems. 25
Example of industrial automated machine. 26
Example of a classic CNC machine. 29
Example of production process machine for a gasification process. 30
Example of S88 design pattern. 38
Gemma architecture state. 41
The IEC 61131-3 softwaremodel. 44
A simple ladder diagram example. oL L oL 45
Asimple FBDexample. L L o 46
Example of 61131-3 function block connection. 47
Using 61131-3 function block with enable. 48
61499 Function block definition. 49
Example of UML diagram. 52
Comparison between objects and functionblocks. 54
Drilling module of Festo FMS. 59
“Common” SFC solution for the caseinexample 60
“Common” SFC solution for the case in example with new specification. 61
“Common” SFC solution for the case in example with fault. 62
“Common” SFC solution for the case in example with new specification and fault. 63
Actions, sensors and actuators of the systems. 64
Interfaces of GAS. e 67
Characteristics of Do/Done actions (a) and Start/Stop actions (b) 68
Characteristicof GAsaction. 69
Processing station. L o o 70
Hierarchical GA DrillingUnitTotal. 73
An example of policy manager with GA approach. 74
Device in industrial automation L. 79
Single acting device using a double acting cylinder. 80
Double acting device using a double acting cylinder 81
Different type of devices: single acting devices (a) and double acting devices (b) . 82
The proposed hierarchical multi-layer architecture. 83

9

10 LIST OF FIGURES
4.6 The miniaturized AMSused astestbed. 84
4.7 The hierarchical multi layer architecture envisaged for the control of the AMS

used astestbed. 86
48 TheSADFGD anditsinterfaces. 86
49 FMS modeling the behavior of the SADFGD. 87
4.10 State diagram for the single acting GD with double feedback 88
4.11 State diagram for the single acting GD with double feedback 89
4.12 State diagram for the double acting GD with double feedback 90
4.13 Fault diagnosisapproach., 91
4.14 The SADF GD state space: state evolution during an activation cycle in absence

of faults. e 92
4.15 Dynamic fault detection in the SADF GD state space. 93
4.16 Static fault detection in the SADF GD state space. 93
417 Summary of diagnosticsignals. Lo L L oL 94
418 Anexample of highlevelfault. 96
5.1 Hierarchical architecture. 101
5.2 Illustrative example: Single acting device. 102
5.3 Physical and logic components of the low level of the architecture. 103
5.4 Nominal models of the sensors and actuator. 103
5.5 [Illustrative example: Single acting device. 104
5.6 Physical Constraint Automaton (PCA) Grpca . . - -« . . . oo oo oL 105
5.7 Composition of nominal sensors, actuator and PCA. G compNom -+ « « « - - - . 106
5.8 Statesmodelof thesystem. 107
5.9 Composition of PCA automata, sensor D and sensor A fault model. 107
5.10 Nominal and faulty model with livelock. 108
511 Modelsof fault fao. o o o o e 109
5.12 Composition of automata connection with sensor A fault model. 109
5.13 Nominal and faulty model for the single acting device, G1 compfa0 - - - - - - - . 110
514 Modelsof fault fa1. o o o e 111
5.15 Models of sensor Aand sensor D. 112
5.16 Physical Constraint Automaton with fault fy or fault fq1, Gr.pca,. - - - - - . . 112
5.17 Models of fault fgoand foo. 113
5.18 Models of faults fg; and fo1. 113
5.19 Physical Constraint Automaton with fault on sensor A and sensor D. 114
5.20 Models of actuator faults. 114
5.21 Single actuator devicecontrol. Lo L oL 115
5.22 Specification automaton Er, connom for low level control of a single acting de-

VICE. . e e e e 115
5.23 Controlled single acting devicemodels. 116
5.24 Timer model for fault fa0, Grrfa0 - - - - - - o o o o o oo 117
5.25 Supervisor G, conDiag for the single acting device considering fault fa0. 117
5.26 Diagnoser of the closed loop model G, rotfa0- - - - - - v v o o v oo 119
5.27 Physical Constraint Automaton for a double acting cylinder. 120
5.28 Physical Constraint Automaton for a electricmotor. 120
5.29 Supervised DES with faults. 123
5.30 Fault Tolerance specifications for a supervised DES. 124
5.31 Post-fault uncontrolled model. 127

LIST OF FIGURES 11

5.32
5.33
5.34

Fault tolerant supevision architecture for DES. 128
The diagnosing-controller for the example in Fig. 5.31.. 129
The hydraulic system example: (a) the system; (b) nominal model G}°™ for the

set of valves; (c) nominal pump model G5°™; (d) global nominal model G"™; (e)

nominal specification H"*™; (f) nominal supervised system Ggopt. 131
5.35 The hydraulic system example: (a) model of valves with fault f, Grerf; (b) com-

plete model G**f = GU+||G5o™; (d) complete supervised model Gedloooo 132
5.36 The hydraulic system example: (a) safe diagnoser G4%&; (b) post-fault model

G8; (c) post-fault specification HY®. 133
5.37 The hydraulic system example: the diagnosing-controller Gdia=swe = = 134
B.1 Micro flexible manufacturing system. 151
B.2 Control hardware and short-stroke cylinders. 152
B.3 Micro flexible manufacturing system. 153
B.4 Distribution Stationlayout o oL oo 154
B.5 Testingstationlayout o Lo 155
B.6 Processing stationlayout o L Lo oo 157
B.7 Assembly stationlayout o Lo Lo o 159
B.8 Example of GAcodeon FESTO 164
B.9 Example of GAcodeon FESTO 165
C.1 Nominal models of the sensors, actuator and Physical Constraint Automaton

(PCA) GL.PCA- + v o o e 167
C.2 Composition of nominal sensorsand PCA. 168
C.3 Composition of nominal and faulty model (faults f,; and fq0). 169
C.4 Composition of nominal and faulty model with faults on sensor D and sensor A. 171
C.5 Composition of nominal and faulty model with faults on actuator. 173
C.6 Modelsof fault fgo. o o e 174
C.7 Modelsof fault fg1. o o e 174
C.8 Models of actuator faults. 174
C.9 State concatenation of diagnoser of figure5.26. 175
C.10 State concatenation of diagnoser of figure5.26. 176
C.11 List of state concatenation of diagnoser of figure 5.26. 177

C.12 List of state concatenation of diagnoser of figure 526. 178

12

LIST OF FIGURES

List of Tables

3.1
3.2

51

B.1
B.2
B.3
B.4

C1

List of acronyms used inthethesis. 21
List of signals used in the drilling example 62
List of sensors and actuators associated toactions. 72
Observables and unobservables componentsevents. 104
List of signals used in distribution station. 154
List of signals used in testing station. 156
List of signals used in processing station. 158
List of signals used in assembly station. 161
List of events and automatamodels. 179

13

14

LIST OF TABLES

Preface

Recently in most of the industrial automation process an ever increasing degree of automation
has been observed. This increasing is motivated by the higher requirement of systems with
great performance in terms of quality of products/services generated, productivity, efficiency
and low costs in the design, realization and maintenance. This trend in the growth of com-
plex automation systems is rapidly spreading over automated manufacturing systems (AMS),
where the integration of the mechanical and electronic technology, typical of the Mechatronics
(see [87] and [8]), is merging with other technologies such as Informatics and the communi-
cation networks. An AMS is a very complex system that can be thought constituted by a set
of flexible working stations, one or more transportation systems. To understand how this ma-
chine are important in our society let considerate that every day most of us use bottles of water
or soda, buy product in box like food or cigarets and so on. Another important considera-
tion from its complexity derive from the fact that the the consortium of machine producers
has estimated around 350 types of manufacturing machine (see [22]). A large number of man-
ufacturing machine industry are presented in Italy and notably packaging machine industry,
in particular a great concentration of this kind of industry is located in Bologna area; for this
reason the Bologna area is called “packaging valley”.

Usually, the various parts of the AMS interact among them in a concurrent and asynchronous
way, and coordinate the parts of the machine to obtain a desiderated overall behaviour is an
hard task (see for some example [71] and [14]). Often, this is the case in large scale systems,
organized in a modular and distributed manner. Even if the success of a modern AMS from a
functional and behavioural point of view is still to attribute to the design choices operated in
the definition of the mechanical structure and electrical electronic architecture, the system that
governs the control of the plant is becoming crucial, because of the large number of duties asso-
ciated to it. Apart from the activity inherent to the automation of the machine cycles, the super-
visory system is called to perform other main functions such as: emulating the behaviour of tra-
ditional mechanical members thus allowing a drastic constructive simplification of the machine
and a crucial functional flexibility; dynamically adapting the control strategies according to the
different productive needs and to the different operational scenarios; obtaining a high quality
of the final product through the verification of the correctness of the processing; addressing the
operator devoted to the machine to promptly and carefully take the actions devoted to establish
or restore the optimal operating conditions; managing in real time information on diagnostics,
as a support of the maintenance operations of the machine. The kind of facilities that designers
can directly find on the market, in terms of software component libraries provides in fact an ad-
equate support as regard the implementation of either top-level or bottom-level functionalities,
typically pertaining to the domains of user-friendly HMIs, closed-loop regulation and motion

15

16 Preface

control, fieldbus-based interconnection of remote smart devices. What is still lacking is a refer-
ence framework comprising a comprehensive set of highly reusable logic control components
that, focussing on the cross-cutting functionalities characterizing the automation domain, may
help the designers in the process of modelling and structuring their applications according to
the specific needs. Historically, the design and verification process for complex automated in-
dustrial systems is performed in empirical way, without a clear distinction between functional
and technological-implementation concepts and without a systematic method to organically
deal with the complete system. Traditionally, in the field of analog and digital control de-
sign and verification through formal and simulation tools have been adopted since a long time
ago, at least for multivariable and/or nonlinear controllers for complex time-driven dynam-
ics as in the fields of vehicles, aircrafts, robots, electric drives and complex power electronics
equipments. Moving to the field of logic control, typical for industrial manufacturing automa-
tion, the design and verification process is approached in a completely different way, usually
very “unstructured”. No clear distinction between functions and implementations, between
functional architectures and technological architectures and platforms is considered. Probably
this difference is due to the different “dynamical framework”of logic control with respect to
analog/digital control. As a matter of facts, in logic control discrete-events dynamics replace
time-driven dynamics; hence most of the formal and mathematical tools of analog/digital con-
trol cannot be directly migrated to logic control to enlighten the distinction between functions
and implementations. In addition, in the common view of application technicians, logic control
design is strictly connected to the adopted implementation technology (relays in the past, soft-
ware nowadays), leading again to a deep confusion among functional view and technological
view.

In Industrial automation software engineering, concepts as modularity, encapsulation, com-
posability and reusability are strongly emphasized and profitably realized in the so-called
object-oriented methodologies. Industrial automation is receiving lately this approach, as tes-
tified by some IEC standards IEC 611313, IEC 61499 (see [45], and [46]) which have been con-
sidered in commercial products only recently. On the other hand, in the scientific and technical
literature many contributions have been already proposed to establish a suitable modelling
framework for industrial automation (see [9], [94], [86] and [30]). During last years it was
possible to note a considerable growth in the exploitation of innovative concepts and technolo-
gies from ICT world in industrial automation systems. For what concerns the logic control
design, Model Based Design (MBD) is being imported in industrial automation from software
engineering field. Another key-point in industrial automated systems is the growth of require-
ments in terms of availability, reliability and safety for technological systems. In other words,
the control system should not only deal with the nominal behaviour, but should also deal with
other important duties, such as diagnosis and faults isolations, recovery and safety manage-
ment. Indeed, together with high performance, in complex systems fault occurrences increase.
This is a consequence of the fact that, as it typically occurs in reliable mechatronic systems,
in complex systems such as AMS, together with reliable mechanical elements, an increasing
number of electronic devices are also present, that are more vulnerable by their own nature.
The diagnosis problem and the faults isolation in a generic dynamical system consists in the
design of an elaboration unit that, appropriately processing the inputs and outputs of the dy-
namical system, is also capable of detecting incipient faults on the plant devices, reconfiguring
the control system so as to guarantee satisfactory performance. The designer should be able
to formally verify the product, certifying that, in its final implementation, it will perform its
required function guarantying the desired level of reliability and safety; the next step is that of
preventing faults and eventually reconfiguring the control system so that faults are tolerated.

Preface 17

On this topic an important improvement to formal verification of logic control, fault diagnosis
and fault tolerant control results derive from Discrete Event Systems theory (see [17]).

The aim of this work is to define a design pattern and a control architecture to help the designer
of control logic in industrial automated systems. The work starts with a brief discussion on
main characteristics and description of industrial automated systems on Chapter 1. In Chapter
2 a survey on the state of the software engineering paradigm applied to industrial automation
is discussed. Chapter 3 presentes a architecture for industrial automated systems based on the
new concept of Generalized Actuator (see [27], [72] and [90]) showing its benefits, while in Chap-
ter 4 this architecture is refined using a novel entity, the Generalized Device (see [28]) in order to
have a better reusability and modularity of the control logic. In Chapter 5 a new approach will
be present based on Discrete Event Systems for the problem of software formal verification and
an active fault tolerant control architecture using online diagnostic ([70]). Finally conclusive re-
marks and some ideas on new directions to explore are given.

In Appendix A are briefly reported some concepts and results about Discrete Event Systems
which should help the reader in understanding some crucial points in chapter 5; while in Ap-
pendix B an overview on the experimental testbed of the Laboratory of Automation of Uni-
versity of Bologna, is reported to validated the approach presented in chapter 3, chapter 4 and
chapter 5. In Appendix C some components model used in chapter 5 for formal verification
are reported.

* Kk ok ok

First of all I would like to thank my supervisor, Prof. Claudio Bonivento, who lead me three
years ago inside this major and who places its trust on me since the first day of this period. I
can not exempt myself from thanking Andrea Paoli that following me inside all my three years
with priceless teaching and suggestions. A special thanks goes to Prof. Eugenio Faldella for its
precious teaching on industrial automation field and Andrea Tilli for its advice and suggestions
during my work.

A special thank goes to Prof. Stéphane Lafortune of the University of Michigan, for the contin-
uous encouragement during my staying in Ann Arbor and for its teachings on discrete events
systems. I always remember with pleasure the stimulating and formative discussions with Rick
Hill. Thanks to the other members of University, Luca Gentili and Alessandro Macchelli.

I have to thanks my family that always support mer, my mum with her sweetness and my dad
that pass on me the quality to get what I want with work hard.

Last but always first in my heart and my mind a heartfelt thanks goes to my wonderful wife
Anna that always support me, trusting in me and encouraging me during my work and espe-
cially during my life.

Bologna, 15" of March, 2010 Matteo

18

Preface

Architectures and design patterns for
functional design of logic control and
diagnostics in industrial automation

19

Preface

21

AMS
CAD
CAE
CAM
COTS
CNC
DES
ECC
FBD
FMS
FSM
GA
GAMP
GD
GEMMA
GSp
IEC

IL

ISA
ISPE
LD
LTL
CTL
OMG
oor
OOPSA
PCA
PLC
PMMI
SFC
ST
SYSML
UML
V&V

Automated Manufacturing System

Computer Aided Design

Computer Aided Engineering

Computer Aided Manufacturing

Commercial Off-The-Shelf

Computer Numerical Control

Discrete Events Systems

Execution Control Chart

Function Block Diagram

Flexible Manufacturing System

Finite State Machine

Generalized Actuator

Good Automated Manufacturing Practice
Generalized Device

Le Guide d’Etude des Modes de Marches et d’Arréts
General Supervision Policy

International Electrotechnical Commission
Instruction List

International Society of Automation
International Society of Pharmaceutical Engineering
Ladder Diagram

Linear Temporal Logic

Computation Tree Logic

Object Management Group

Object Oriented Programming
Object-Oriented Programming, Systems, Languages & Applications
Physical Constraint Automaton

Programable Logic controller

Packaging Machinery Manufacturers Institute
Sequential Functional Chart

Structured Text

Systems Modeling Language

Unified Modeling Language

Verification and Validation

Table 1: List of acronyms used in the thesis.

22

Preface

Chapter

Control design in industrial automated

systems

This chapter showes the main characteristic of modern industrial auto-
mated systems. In last years there was a growth in the automation of
production lines, implying the use of systems that are required to be
ever more performing, reliable, flexible but at a lower price. Machines
are then increasingly filled with embedded components constituted by
engines, integrated in the mechanics, managed through a specific soft-
ware command. The number and types of embedded components and
technologies enabling specific functions (i.e. motion control, failure anal-
ysis, monitoring etc.) has raised the level of complexity of the whole
systems with a clear impact on design process, that becomes a complex
task, in which different technological fields interact (i.e. competences in
mechanical engineering, in electronic engineering, in software and con-
trol engineering are needed to fulfil these tasks).

1.1 Design specification in industrial automated system

The enlarged demand of innovative and technologically advanced solutions in all industrial
application domains has in recent years strongly promoted the development of powerful and
versatile Automated Manufacturing Systems (AMSs), capable of working more reliably, with
an increased product processing accuracy, and at a faster, sometimes astonishing, speed. The
enhanced functionalities and overall performance characterizing the modern AMSs are, doubt-
less, primarily attributable to the novel ideas and effective solutions purposely conceived by
the designers of their mechanical structure. In the achievement of these goals, however, also
the design of the AMS control system plays a crucial role, because of the always more relevant
and wider spectrum of activities delegated to it. Besides the automation of working cycles,
other essential requirements that the control system is asked to deal with typically concern the

need of:

23

24 Control design in industrial automated systems

(a) Centralized architecture. (b) Decentralized architecture. (c) Distributed architecture.

Figure 1.1: Control systems architecture evolution.

e emulate the behaviour of manifold mechanical devices (e.g., cams, gear wheels, etc.),
so as to reduce the system structural complexity and limit downtimes due to automatic
changeover of its constituent parts;

e dynamically adapt the control strategies according to different productive requirements
and operational scenarios;

e ensure high quality of the finished product, making a thorough verification of its process-
ing correctness while preventing useless workings and wastage of raw materials;

e support the operator with timely and precise indications about the actions that should
be undertaken to establish or restore the desired operating conditions, ridding him of
hazardous or burdensome jobs;

e provide a comprehensive set of real-time diagnostics information and pre-processed pro-
duction data, adequately supporting system maintenance, raw materials and finished
products handling, production organization and planning.

Such a broad set of functional requirements highlights and common experience makes it ev-
ident, that the design of the control system of a complex AMS is undoubtedly a hard task,
involving a multidisciplinary cultural background [85]. Different considerations, however,
should be pointed out as regards hardware and software design. From the former viewpoint,
designers can profitably rely on technologically advanced commercial-off-the-shelf (COTS) re-
sources, as powerful processing units, special-purpose controllers, smart I/O devices, network-
ing infrastructures, which can be modularly composed to build up quite sophisticated and scal-
able architectures conforming to the application needs.

The hardware architectures of automated systems during last decades, like it’s possible to
see in figure 1.1, it's developed through different architectures. Centralized architectures (see
tig. 1.1(a)), typically based on programmable logic controllers (PLCs) equipped with simple
operator panels and supported in the accomplishment of complex or time-constrained tasks
by special-purpose smart units (such as electrical axes controllers, simple HMI panale, ecc.),
have dominated the hardware architecture up to the 80’s. In the next decade, the spreading of
decentralized architectures (see fig. 1.1(b)) is strongly promoted by the advent of the field-bus
technology and by the use of industrial PC as a means to provide highly complex and expensive
machines with definitely more user-friendly human-machine interfaces (HMlIs). The ensuing

1.2. Classification of industrial automated systems 25

| Human Machine Interface U

Figure 1.2: Control system architecture in automated systems.

availability of powerful multi-core PC-embedded systems, suitably enriched with soft-PLC en-
vironments and natively fitted out with the facilities needed for network interoperability, not
only leads to the integration of both the control and HMI functionalities within a single plat-
form, but also discloses the way towards fully distributed architectures (see fig. 1.1(c)). The
overall automated system becomes not only a single machine but complex more different ma-
chine working together in a production lines.

Unfortunately, plain applicability of the “buy, plug & play” principle continues to have a nar-
rower scope when the design of the control system from the software viewpoint is considered.
The kind of facilities that designers can directly find on the market, in terms of COTS soft-
ware component libraries, networking-oriented middleware, development tools and run-time
environments, provide in fact an adequate support as regard the implementation of either top-
level or bottom-level functionalities, typically pertaining to the domains of user-friendly HMIs,
closed-loop regulation and motion control, fieldbus-based interconnection of remote smart de-
vices. This functionalities are represented in figure 1.2, in a hierarchical representation where
in the top level are presented the functionalities to interface the machine with the operator,
and in the bottom level are presented the field functionalities. In the middle is presented the
control logic of the automated system, for this part of control of the entire machine there are
not availability and usually in this part is inserted the basic control of the machine during the
nominal condition and all the diagnosis algorithms of fault detection. The “huge hole” exist-
ing in the middle needs to be properly filled in by software designers, still missing concrete
support from vendors of industrial automation technologies as regards generally applicable
frameworks, or at least application-level design patterns (in 2.2 wil be present a definition of
design pattern), that can be profitably exploited (or assumed as reference guidelines) in the
process of organizing and structuring the control logic of AMSs.

1.2 Classification of industrial automated systems

To better understand what are industrial automated systems and their complexity from a point
of view of their mechanical architecture and control logic architecture it’s possible to classify
industrial automated systems based on its function and by the form of material handling sys-

26 Control design in industrial automated systems

(a) An example of assembly machine. (b) An example of testing machine.

Figure 1.3: Example of industrial automated machine.

tem. There are a wide number of functions that a machine can perform, but if one looks at the
history of what has been built to date, and one was to try to classify the significant groupings
that would result, several major classifications are:

e Assembly machines;

e Inspection machines;

Test machines;

Packaging machines;

Computer numerical control (CNC) machines;
e Production processes.

This classification wants only try to defined different kind of automatic machine, of curse in
complex production line we can found a mix of this machine.

1.2.1 Assembly machines

Assembly Machines as a group can range from the production of a high-volume part such as
a spark plug or a piece of home kitchen cabinet hardware, to the construction of a cell phone.
Throughput rates and product flexibility expectations can vary and usually changeover is re-
quired. Figure 1.3(a) shows a generic assembly machine, a robot that assembles short-stroke
cylinders. There is the base part of the product brought into the workcell in some fashion.
Parts feeders are used for the components to be added to the base part. And another method
of transferring out the completed assembly is usually required. If the assembled part is a hinge
for your home kitchen cabinets, then the output could be simply dumping them into a bin.

1.2. Classification of industrial automated systems 27

1.2.2 Inspection machines

Although in-process inspection is currently desired even more, inspection is often performed as
an integral operation within the assembly machine. Computer vision systems and dimensional
measurements are two of the commonly found inspections performed within the assembly
machine. However, stand-alone inspection machines for checking a packaged product for the
correct weight (check-weighers) and making sure no metal filing from all of the food processing
machines fall into your box of corn flakes (metal detectors) do exist and have meaningful niche
markets. Most of these inspection machines generically have a product inflow, a checking
station, and two outflows. One of these outflows is the good product and the other outflow
is for defective products. Depending on the product and its defect, the defective product may
still be sold. If it is a food product and is only underweight, it can be eaten, possibly showing
up in a factory seconds store. Obviously, products with metal filings are recycled, burned for
heat value, or thrown away. Some examples of inspection process are:

o Checking one or more dimensions with mechanical gauging or electrical sensor;

e Checking one or more dimensions or features using a vision system;

Checking weight for correct amount;

Checking a liquid’s volume by weight or level;

Checking a filled Stand up Pouch (SUP) for leaks;
e Checking a product for metal filings, etc.;
o Checking free prize inside a box product.

The results from all of these can range from health risks (metal filings) to disappointed cus-
tomers like a missing free prize. If we consider a production line to product wine bottle, of
course the quality of wine bottle is depending from wine and bottling process, but from cus-
tomer point of view and not perfect label alignment is a index of low quality of the wine bottle.
An example of inspection machine is shown in figure 1.3(b), the machine test the colour of the
workpiece and its height to decide if to works or not the workpiece.

1.2.3 Test machines

Machines that conduct some performance check on the filled, assembled, or processed product
are sometimes referred to as test machines. Although some might argue that testing is part of
inspection, the distinguishing feature is often the cycling of the product in some or all of its
designed operation. In other words, an inspection machine functions by either a noncontact
mode, or with a simple contact where some measurement or property is determined. A test
machine makes the product do some action or work, such as cycling a spray head from a hand-
powered misting bottle. The test is carried out on either a random basis, or on every spray
head if trouble has been observed in the past, but the spray head is either passed as working
properly, or is rejected. As opposed to inspection machines being potentially integrated into an
assembly machine, most test machines are separate from the assembly process. Test machines
are often highly specialized to the product being assembled or processed, and the devices used
to perform the test and to judge the results cannot be easily integrated into the other machines.
Figure 4.3 shows a test machine that is checking the previously assembled widget to see if it
will hold together or whether it will fall apart. Following the example of testing the spray head,

28 Control design in industrial automated systems

there would need to be devices to move a single spray head into the test station in the correct
orientation, an actuator to perform the test, a device to advance spray heads that pass the test,
and another device to dump a rejected spray head into a hopper. The controller may need to
be smart enough to allow the spray head to be actuated a variable number of times, so as not
to reject heads that are good but not the best performers.

1.2.4 Packaging machines

Any finished consumer product of any value gets packaged in one of many different types of
packages. It can be bags, boxes, cartons, aseptic boxes etc.. None of these packages significantly
improves the performance of the product inside, but the packaging does help the consumer
understand the product, differentiate the product from the competition, and improve sales
dramatically. The area of packaging results quite large some typical packaging machines are
machines devote to:

e Closing filled corrugated cardboard boxes;

Filling bottles with liquids;

Filling bags with dry products;

Placing products into cartons;
e Weighing products for accuracy;
e Metal detection for safe consumption by consumer.

As it’s to note the last two machines have been discussed in the previous section, this fact
depend that it’s not possible to have a complete division from machines and a complex pro-
duction line is a composition of different kind of machine. To understand how is important
packaging machine, we can think about how many product from packaging machine are in
our daily life. Every day most of us use bottles filled with liquids, buy product in box like bis-
cuits or cigarets, so there is a very large number and different kind of manufacturing machine.

1.2.5 Computer numerical control machines

Computer numerical control refers to the automation of machine tools that are operated by
abstractly programmed commands encoded on a storage medium, as opposed to manually
controlled via handwheels or levers, or mechanically automated via cams alone. The first CNC
machines were built in the 1940s and '50s, based on existing tools that were modified with
motors that moved the controls to follow points fed into the system on paper tape. These
early servomechanisms were rapidly augmented with analog and digital computers, creating
the modern computer numerical controlled machine tools that have revolutionized the design
process. In modern CNC systems, end-to-end component design is highly automated using
CAD/CAM programs. The programs produce a computer file that is interpreted to extract the
commands needed to operate a particular machine, and then loaded into the CNC machines
for production. Since any particular component might require the use of a number of different
tools (as drills, saws, etc.) modern machines often combine multiple tools into a single “cell”.
In other cases, a number of different machines are used with an external controller and hu-
man or robotic operators that move the component from machine to machine. In either case,
the complex series of steps needed to produce any part is highly automated and produces a

1.2. Classification of industrial automated systems 29

Figure 1.4: Example of a classic CNC machine.

part that closely matches the original CAD design. In figure 1.4 an example of a classic CNC
machine.

1.2.6 Production Processes

Production processes are procedures involving chemical or mechanical steps to aid in the man-
ufacture of an item or items, usually carried out on a very large scale. Most processes make the
production of an otherwise rare material vastly cheaper in price, thus changing it into a com-
modity; i.e. the process makes it economically feasible for society to use the material on a large
scales, in machinery, or a substantial amount of raw materials, in comparison to batch or craft
processes. Production of a specific material may involve more than one type of process. Typ-
ical examples of production processes are chemical process, like in figure 1.5 where is shown
an example of a gasification process, pharmaceutical process, industrial heavy etc. Production
process can be roughly categorized as one of three types: batch, continuos, and discrete.

Batch Processes this kind of process are characterized by generation of finite quantities of ma-
terial, called a batch, at each production cycle. Material is produced by subjecting specific
quantities of input materials to a specified order of processing actions using one or more
pieces of equipment. The batch goes through discrete and different steps as it is trans-
formed from raw materials, to intermediates, and to final materials. Processed material
is often moved, in total, between different vessels for different processing steps. Con-
trol of batch processes is not discrete or continuous, but it has the characteristics of both.
Many pharmaceutical, specialty chemical, food, and consumer packaged goods are batch
processes. They may be batch processes because the underlying chemistry or physics
can only be done on all the material at once. Some batch processes are defined as batch

30 Control design in industrial automated systems

Biomass
Gas Reactor

Temperature Control

Figure 1.5: Example of production process machine for a gasification process.

because there are more product types than production lines, and each production line
must be able to produce several different products. This is common in electronics, semi-
conductors, food processing, consumer products, and specialty chemical production. For
example, the same production equipment may produce batches of chocolate cookies in
the morning and sugar cookies in the afternoon.

Continuos Processes this kind of processes are characterized by the production of material
in a continuous flow. Continuous processes deal with materials that are measured by
weight or volume, without a discrete identity for any part of the produced material. Ma-
terials pass through different pieces of specialized equipment, each piece operating in a
steady state and performing one dedicated part of the complete process. Once running in
a steady state, the process is not dependent on the length of time it operates. Many bulk
chemicals are produced in continuous production systems. Startup, transition, and shut-
down do not usually contribute to achieving the desired processing. Material produced
during these times often does not meet end product quality specifications and must be
handled separately. Startup, transition, and shutdown, however, are important events
that require specific procedures to be followed for safe and efficient operations.

Discrete Processes Discrete processes are characterized by production of a specific quantity of
material, where each element of the material can be uniquely identified. Discrete pro-
cesses deal with material that is counted, or could be counted. In discrete processes, a
specified quantity of material (maybe just one element) moves as an entity between dif-
ferent pieces of processing equipment. The assembly of computer circuit boards is an
example of a discrete process. Usually, multiple elements are processed using the same
equipment configuration and raw materials. Startup, transition, and shutdown often pro-
duce the desired end product. Startup, transition, and shutdown are usually tightly con-
trolled because they significantly impact the overall equipment efficiency. These events
require specific procedures to be followed to place production equipment in the right
state to make the desired product.

A widen discussion and description of production process can be found in [15].

1.3. Conclusions 31

1.3 Conclusions

In chapter was presented an introduction of industrial automated systems. In section 1.1 a brief
description of most important specification and task of an automated systems are reported and
it was presented some easy and typical example to understand what are automated systems.
Starting from this typical example a functionality characterization was presented, an interest-
ing reader can found more information in [22],[91] [15]. A particular consideration is has to
focus on packaging machine, to understand its importance the consortium of machine pro-
ducers, is called Packaging Machinery Manufacturers Institute (PMMI) has estimated around
350 types of packing machine (see [22] and www.packexpo.com). Also in Italy are presented
a large number of packaging machine industry, in particular a great concentration of industry
is located around Bologna area; for this reason the area around Bologna is called “packaging
valley”.

From this brief introduction is clear how automated systems and in particular manufacturing
systems are very complex systems, of sure the “success” of an automated industrial system,
in terms of functionalities and performances, are strongly relies on its physical structure: i.e.
on the choices made during design phase in terms of the mechanical structure and electrical
electronic architecture, but how discussed in 1.1 the control system plays a key role for the
achievement of the targeted performance. The aim of this thesis is define an architectures for
the modern industrial automated systems to help the designer to design the control system.

32

Control design in industrial automated systems

Chapter

State of the art of software engineering in
industrial automated systems

This chapter deals with an overview of the control design in indus-
trial automated systems and how the modern software engineering tec-
quiniques, like object orienting programming, are applied to modern in-
dustrial automated systems.

2.1 Software architecture in industrial automation

As explained in the chapter before an automated manufactory system is a machine that per-
forms autonomously an industrial process, in which materials and energy are transformed to
produce either consumer goods or input to other manufacturing systems. The task of con-
trol design for manufacturing systems represent a challenging and interesting problem, since
the application domain presents heterogeneous and requires engineering efforts that include
different kind of technological skills. In fact, the development process of a manufacturing ma-
chine control system is composed of several sub-tasks in the field of mechanical engineering,
electric/electronic engineering, systems theory and also computer science, as the whole sys-
tems is composed by mechanical parts for product handling, heterogenous sensors and actua-
tors for motion control and overall supervision, and several special on general purpose digital
controllers that must be adequately programmed to perform efficiently the control algorithms.
One of the most important control hardware in industrial automation filed are Programmable
logic controller (PLC). PLC or programmable controller is a digital computer used for automa-
tion of electromechanical processes,such as control of machinery on factory assembly lines,
amusement rides, or lighting fixtures. PLCs are used in many industries and machines. Un-
like general-purpose computers, the PLC is designed for multiple inputs and output arrange-
ments, extended temperature ranges, immunity to electrical noise, and resistance to vibration
and impact. Programs to control machine operation are typically stored in battery-backed or
non-volatile memory. A PLC is an example of a real time system since output results must be

33

34 State of the art of software engineering in industrial automated systems

produced in response to input conditions within a bounded time, otherwise unintended oper-
ation will result. The PLC was invented in response to the needs of the American automotive
manufacturing industry. Programmable logic controllers were initially adopted by the auto-
motive industry where software revision replaced the re-wiring of hard-wired control panels
when production models changed. Before the PLC, control, sequencing, and safety interlock
logic for manufacturing automobiles was accomplished using hundreds or thousands of re-
lays, cam timers, and drum sequencers and dedicated closed-loop controllers. The process for
updating such facilities for the yearly model change-over was very time consuming and expen-
sive, as electricians needed to individually rewire each and every relay (a complete description
of PLC can be find in [7]).

As it is common practice in every engineering context dealing with complex systems, software
designers tackle the problem relying on the “divide et impera” approach. Drawing inspira-
tion from the fundamental principles of decomposition and abstraction, they proceed to par-
tition the whole AMS control logic into manageable simpler components, usually organized
according to a hierarchical multi-layer architecture that directly mirrors, at least to a certain ex-
tent, the mechanical structure and the sensorial-actuation equipment of the AMS itself. Many
factors, however, often hinder software designers from targeting the decomposition process
towards the definition of an architecture comprising a wide variety of modular and reusable
components, as much as possible platform-independent and directly applicable in other sim-
ilar contexts. Among the common claimed (some arguably) factors causing software design
to be more adherent to the code-and-fix approach rather than properly focussed in the prob-
lem domain, the following ones seem generally the most relevant. First of all, the ancillary
role attributed to the software designers activity, too often addressed at the implementation of
quickly-operative vehicles used for experimentally ascertaining the validity and effectiveness
of the choices made by the AMS mechanical and electrical design team. Secondly, the burden of
compelling, sometimes inappropriate, time-to-delivery commitments, which not only preclude
any form of brain storming and exchange of significant experience among software designers,
but often direct them to take approaches targeted at application-specific objectives only. Fi-
nally, the limited expressive power of (most of) programming languages currently available for
PLC-based or soft-PLC PC-based platforms, somehow precluding plain applicability of well-
established principles and methodologies proper of the object-oriented design paradigm.

It is therefore not entirely surprising that the costs associated with the software development
lifecycle generally grow well beyond the budgeted expectations. In order to help solve these
problems, many interesting proposals have been recently reported in the scientific and techni-
cal literature. Among them, some (e.g., mechatronic approaches) aim at improving the cost-
effectiveness of the overall design process, favoring and stimulating concurrent engineering,
co-design and co-simulation. Others suggest the use of state-of-the-art modelling languages
(e.g., UML) and automatic code generation tools to enhance the software design, development
and maintenance process. Several propose formal models (e.g. compositional theories, model-
checking, model extraction) or techniques for verification and validation of component soft-
ware, as a viable means to enforce reliability and reduce debugging efforts. Particularly impor-
tant is also the contribution of renowned International Committees and Organizations, paving
the way towards a standardization of the design methodologies (e.g. the IEC 61131/61499
norms, the Model Driven Architecture, MDA, proposal). The work here referred takes the
cue from the ascertainment that an effective solution to the mentioned problems cannot derive
solely from a fully synergistic cooperation between all design team’s members, as well as from
the use of powerful CAD-CAE tools and integrated development environments. This work try
to define a generally-applicable design patterns focussing on cross-cutting control logic func-

2.2. Design patterns in industrial automation 35

tionalities and suitably abstracting from application-specific details, may support the process
of modelling, structuring and implementing highly modular and reusable components.

2.2 Design patterns in industrial automation

The aim of this thesis is define a design pattern for industrial automated systems, so it is impor-
tant to understand what design patterns are, and what they mean. A pattern can be variously
described as:

e a practice or a customary way of operation or behavior.
e a model considered worthy of imitation.
e ablueprint intended as a guide for making something.

All of these descriptions apply to design patterns. A design pattern is a blueprint intended
as a guide for use in design processes. Specifically in the field of software engineering and
programming, a design pattern is a repeatable solution to a commonly occurring problem. A
design pattern is not a design. Instead, a design pattern is a template for how to solve complex
problems that applies to different, but related, situations. A design pattern can be transformed
directly into code. Design patterns exist in many areas, from architecture and construction, to
software design and development.

e In architecture, there are design patterns in houses. For example, colonial-style houses
have the same first and second floor layout, varying in details and size, but not in overall
structure.

¢ In civil engineering, suspension bridges follow design patterns, varying in scale and de-
tails, but not in overall structure.

¢ In software engineering, computer-human interfaces follow design patterns for windows
and mouse actions, varying in detail for each application, but not in overall structure.

e Novels and plays follow design patterns, such as a typical mystery or romance novel plot.

Design patterns are used everywhere in modern society. They allow us to reuse the knowledge
and experience of others. Design patterns mean that we do not have to solve every problem
from first principles, but can instead rely on the experience of others who have come up with
reusable solutions. Design patterns are usually developed as solutions to problems that can be
reapplied to related problems. The term design pattern was first defined by an architect Christo-
pher Alexander. His book (see [3]) related to urban planning and building architectures. He
claimed that the architectural and engineering methods did not fulfil the real demands of the
users of the buildings and urban environment. In its work, Alexander explained that there was
some uniform way of building houses and towns that were comfortable and suit for the users’
need. Alexander defines the pattern language, a common language that is shared by the archi-
tects to define the patterns that occur repeatedly during the design of buildings. This language
should not be confused with programming languages. It is merely a common vocabulary and
semantics for architects to speak about best-practice designs that solve a common problems.
There are several one sentence definitions of patterns by various authors, one used by Alexan-
der is:

36 State of the art of software engineering in industrial automated systems

Each pattern describes a problem which occurs over and over again in our environment, and then de-
scribes the core of the solution to that problem, in such way that you can use that solution a million times
over, without ever doing it the same way twice

In 1987 Kent Beck and Ward Cunningham began experimenting with the idea of applying pat-
terns to programming at OOPSLA (Object-Oriented Programming, Systems, Languages & Ap-
plications) [5], they used the Alexander’s idea in Smalltalk programming Tektronix. The same
idea was applied later by Erich Gamma to study the reuse of Object-Oriented software (see
[36]). In software engineering, a design pattern is a general reusable solution to a commonly
occurring problem in software design. A design pattern is not a finished design that can be
transformed directly into code. It is a description or template for how to solve a problem that
can be used in many different situations. Object-oriented design patterns typically show rela-
tionships and interactions between classes or objects, without specifying the final application
classes or objects that are involved. Design patterns reside in the domain of modules and inter-
connections. At a higher level there are Architectural patterns that are larger in scope, usually
describing an overall pattern followed by an entire system. Not all software patterns are design
patterns. For instance, algorithms solve computational problems rather than software design
problems.

In industrial automated systems, automation patterns have been applied mainly in software
engineering problems of the automation systems. This is due to the origins of patterns in
object-oriented software engineering. In general, in an object-oriented automation software
the patterns proposed by E. Gamma ([36]) should be applicable. These patterns are generic
in object-oriented programming, and the context of industrial automation does not make an
exception. Automation systems are, however, a bit different from other information process-
ing systems. The context of industrial automation, or the application domain, has a dynamic
and changing nature of the system configuration, high data intensity, real-time constraints of
measurements and control as well as the heterogeneity of the systems in a production plant.
Somewhat similar environments could be found from telecommunication networks, and there-
fore the design patterns could be thought to be similar. An example to describe an automation
pattern i using formal and informal diagrams, the formal notation uses UML notation. UML is
the Unified Modelling Language (see [66], [67] and [77]). UML defines a rich set of diagrams
and methods for describing complex systems and complex system solutions. In next sections
we will see different design patterns for industrial automated systems.

2.2.1 A design pattern for control process - S88

A first example of design patterns for automated systems is the standard ANSI/ISA 88 (called
S88). 588 is a standard addressing batch process control, it is a design philosophy for describing
equipment, and procedures. It was approved by the ISA in 1995 and it was adopted by the IEC
in 1997 as IEC 61512-11.

S88 provided for the first time a well thought-out approach to flexible manufacturing that was
accepted by automation, control, and process engineers. It is a consistent set of standards and
terminology for batch control and defines the physical model, procedures, and recipes. The
standard sought to address the following problems: lack of a universal model for batch control,
difficulty in communicating user requirement, integration among batch automation suppliers,
difficulty in batch control configuration. The first step of a process-automation project is to de-
fine the requirements, usually they are defined by functional specification to try to design the

'The official standard is ANSI/ISA-88.01-1995. Batch control Part 1: Models and terminology. The international
equivalent is IEC 61512-1.

2.2. Design patterns in industrial automation 37

systems with a modular approach. A functional specification defines what the system should
do, and what functions and facilities are to be provided. The GAMP (Good Automated Man-
ufacturing Practice), a trademark of the International Society of Pharmaceutical Engineering
(ISPE) describes a set of principles and procedures that help ensure that the product have the
required quality. One of the core principles of GAMP is that quality cannot be tested into a
batch of product but must be built into each stage of the manufacturing process (for a more
exhaustive definition the reader is refereed to [37] [51]). For this reason it is important to have
modular approach to design the entire systems (control logic, mechanical structure etc.).

The S88 standard try to define a sort of architecture separating the product definition informa-
tion from production equipment capability. This separation wants define a procedure which
allows same equipment can be use in different ways to make multiple products, or different
equipment can be to be use to produce the same product. Product definition information is
contained in recipes, and the production equipment capability is described using a hierarchical
equipment model. This choice for the recipe/equipment separation is to try to make recipe
development simple enough to be accomplished without requiring the services of a control
systems engineer.

The recipe phase does not specify how the action is performed, the recipe only under what
condition the phase is to be executed. S88 define 4 types of recipe but the most important
are master and control recipes: master recipes are the templates used to create control recipes
while control recipes are executed to produce a batch. The master recipe may specify informa-
tion such as what types of equipment will be used, or what types of materials will be used. The
control recipe has information added for the specific batch, such as what batch ID to assign to
the batch, what material lot ID to assign to the produced material, and what equipment to use
in production of the batch. The organization structure for equipment is called the equipment
hierarchy. The S88 for the equipment hierarchy starts at the corporate level, called an enter-
prise in the standard and it arrives up to the production unit (to a complete definition see [49],
and [50]). Equipment modules use equipment procedural control to achieve minor processing
tasks. An equipment module is the container for performing the different elements of proce-
dural logic required to achieve the process task. Equipment modules may be contained within
units, or may be shared between units in a process cell. In either case, they usually contain
all of the physical equipment and control capabilities to perform their minor processing func-
tion. The purpose of an equipment module is to coordinate and execute the procedural logic
required to implement a phase, or to execute any other required equipment procedural control.
The S88 try to standardize how the different actions, the recipes, are executed defining the ex-
ecution states. In the S88 the execution state is called procedure’s state. The standard don not
define all the states but it provides an example set of states but not establish a formal standard,
an example of procedural control state is depicted in figure 2.1(a). The states usually have this
signification:

Idle: The procedure element is available for execution.

Running: The procedure element has received a start command and is running its procedural
logic.

Complete: The procedural element has completed normally.

Holding: The procedural element has received a hold command and is in the process of going
to a stable held state. The procedural element may transition directly to held state, if no
special actions are required.

38 State of the art of software engineering in industrial automated systems

RESTARTING

EXECUTING

Complete U stop 1 Abort MANUAL AUTOMATIC
Reset STOPPING ! ABOlRTING) Manual] somi Auto] Jsomi

(SEMIAUTOMATIC |

\ (compLETE] [STO;PED] [AB(;RTEDy

(a) State model procedural control. (b) State model element modes.

Figure 2.1: Example of S88 design pattern.
Held: The procedural element is in a state suitable for a longterm delay that may be resumed
later.

Restarting: The procedural element is performing any restart logic required to go from a held
state to a running state. The procedural element may transition directly to running state,
if no special actions are required, then .

Stopping: The procedural element has received a stop command and is transitioning to a
stopped state as a controlled normal stop. The procedural element may transition di-
rectly to stopped state, if no special actions are required.

Stopped: The procedural element is no longer running and has performed a controlled normal
stop.

Aborting: The procedural has received an abnormal stop (abort command) and is executing
any aborting logic. The procedural element may transition directly to aborted state, if no
special actions are required.

Aborted: The procedural element is no longer running and has performed an abnormal stop.
The states of machine of figure 2.1(a) evolves under the commands:

Start : Starts the procedural element. Used by an operator to start a control recipe, the logic in
the procedure takes care of starting the lower-level elements.

Hold: Commands the procedural logic to go to a held state. Usually used by an operator to
pause operation of the procedure logic.

Restart: Commands the procedure logic to release the hold and return to the running state.
Stop: Commands the procedure logic to stop executing and perform a normal shutdown.
Abort: Commands the procedure logic to stop executing and perform an abnormal shutdown.

Reset: Commands the procedural logic to reset and be ready to execute again. This command
is usually performed by the recipe-execution system and is automatically sent after the
system determines that the procedure element has completed.

2.2. Design patterns in industrial automation 39

S88 try to standardize also a “mode of operation”. The mode determines how procedural ele-
ments respond to commands and how procedural control progresses. The modes can be rep-
resented in a state model as depicted in figure 2.1(b), this is an independent state model from
the procedural element states. The mode defines what a recipe-execution system does with
transitions between procedure steps. In automatic mode, the procedure logic is automatically
executed. In manual mode, the operator determines what logic to perform. In semiautomatic
mode, the operator decides when to step the logic.

While the ISA 88 standard has been applied to many non batch problems, the is no consistently
defined methods for applying it in non stop-production. Non stop production is either contin-
uos or discrete manufacturing where there are no breaks allowed in the product flow. Discrete
production examples include the movement of discrete products , such as bottles, electronic
components etc. Continuos production occurs when the product moves in a a flow there are
no discrete countable elements a typical example are chemical production. To extend the S88 of
this kind of process, a set of rules was defined to apply S88. This set of rules is called NS88, the
goal of this approach is to maintain the concepts of separation of product definition, the recipes
from intrinsic equipment capabilities. For a complete definition of this approach the reader is
referred to [15].

2.2.2 A design pattern for manufacturing systems - GEMMA

Another example of design pattern is GEMMA (Le Guide d’Etude des Modes de Marches et
d’Arréts.), it means literally design guide for start and stop modes. GEMMA is a graphical
checklist which allows the designer to define from the beginning all the operations and their
consequences for a machine. The goal of Gemma is help the designer to define all the possible
machine situation during its working and managing all the fault and emergency situation.
GEMMA is a graphical tool and it borns as an helper to define a SFC project with a well-define
structure. GEMMA is baed on three basic concepts: (i) Start modes are defined with the control
part fully energized, (ii) The definition of production state (iii) Three general types of start and
stop modes.

For GEMMA, the definition of start and stop modes affects the whole production and control
parts of the machine, but from a control point of view, with the control part fully energized and
i n working order. Basically, we can define two general modes: control part not energized and
control part energized. The system, comprised of the machine and its control, will be in only
one of those two states and can switch from one state t o the other through transitions. Start
modes are defined with the control part fully energized. Any machine can be broken down
into a productive part and a control part. Materials and energy are supplied to an automation
production system, which produces transformed materials in accordance with the operator’s
orders and the environment. The production state is referred to a set state where the machine
produces some work which adds value to materials which are fed into it; this is the added
value. However, a machine is not 100% of the time in the production mode; it could be, for
example, under repair, adjustment or modification. Three general types of start and stop modes are
defined in GEMMA, in these three “ways” are groped all the different modes of the machine
have been defined as:

Production Procedures: These include all necessary modes used too obtain the added value
expected for the machine; they are not necessarily all productive modes (preparation
mode) but are indispensable for production (before, during or after production).

Stop Procedures: A machine i s never operated 100% of its full useful life, so it is stopped it

State of the art of software engineering in industrial automated systems

o r external reasons (end of the work period, lack of supply).

Failure Procedures: Any machine or system fails at one moment or another. These circum-

stances are described in the failure procedures, which cover all the internal reasons for
stopping the machine. NOTE: The description of the states includes actions or states of
any part of the machine, including the control part; it can also include special action to be
taken by the operator or maintenance people themselves, such as manual action on the
mechanisms, or writing in a log book, or reference to external written procedures, among
others.

In figure 2.2 is depicted the model architecture of GEMMA where are emphasize the three types
of start and stop, in the following a brief description of the three states groups:

Production Procedures

F1 Normal Production: This is the normal mode of production of the machine which,
in this state, produces the transformed materials as the main and expected output of the
machine.

F2 Start up: This state i s used for the machines which request special action, such as
preheating, pressurization, prefilling or other, prior to production.

F3 Shut down: Some machines need to be emptied and cleaned before stopping or be-
tween production cycles.

F4 Unsequenced Test Mode: this mode allows the operation of some parts of the ma-
chine to be checked without following the usual sequence of operation. More commonly,
this state can be called “human” control.

F5 Sequenced test mode: In this mode, the machine’s cycle of operation can be followed
step by step in the normal sequence. The machine can or cannot produce during this
state.

F6 CALIBRATION MODE: This mode allows the instruments installed on the machine
to be adjusted, set, calibrated or recalibrated.

Stop Procedures

A1 Initial State Stop: This corresponds to the zero energy state, with the machine de-
energized but with the control circuits energized. Exist a clear relationship with GRAFCET
initial state stop.

A2 Requested Stop at the End of Cycle: In this mode, the machine has been asked to
stop at the end of the normal production cycle, i.e. to go into the A1 state, but production
must be completed before then. A2 is a transient mode to Al.

A3 Requested stop in a determined state: The machine has been asked to continue pro-
duction before stopping at a state other than the end of the production cycle. This a
trancient state before A4.

Obtained stop: The machine i s stopped in a step other than the normal cycle’s final po-
sition of the normal cycle.

A5 Preparation to Restart after a Failure: In this mode, all the requested actions (ma-
terial, clearing, cleaning, change of broken tool, etc.) after a failure are effected before
restarting.

A6 Production Reset to the Initial State: In this mode, the machine or its mechanism
is set back, manually or automatically, to a position ready for resumption of production
from the initial state.

Failure Procedures

D1 Emergency Stop: This mode regroups all the special sequences or actions which have

2.2. Design patterns in industrial automation 41

A: Stop Procedures F: Production Procedures

1|

F4: Unsequenced
test mode

Y
A6: Production Al: Initial <
reset in the »| state

initial state
A A A A
A\

A7: Production
reset in a | A4: Obtained stop F2: Start up F3: Shut down
determined state

A
S B S S

A4

I
1 A3: Requested stop in
. T

1 a determined cycle v
I

I

I

I

I

Ab5: Preparation to
restart after a failure

A
F1: Normal production

F5: Sequenced
test mode

A A2: Requested stop at
<

the end of the cycle

lJ

oo == 7Y

Y

Fé6: Calibration
mode

T o B

D1: Emergency | ¢
stop

and repair production

t
|
|
|

D2: Trouble shootting | ! D3: Derated
T
|
|

D: Failure Procedures

Figure 2.2: Gemma architecture state.

to be taken in any emergency conditions. This mode includes stops, but also special
movements to limit the consequences of the emergency or the failure conditions.

D2 Trouble-shooting and Repair: In this mode the machine can be examined after the
failure and actions taken to allow a restart.

D3 Derated Production: Under certain circumstances, it is necessary to continue pro-
duction, even after a failure of parts of a machine. In this case, the production can be
derated or forced; it could be effected by manual interventions of the operators, instead
of automatically.

GEMMA is comprised of a set of “boxes” representing the different modes families F, A or D
of the machine and showing the transitions between the boxes. Each box has a general name,
chosen from the 16 general modes, and contains a specific function or action adapted to the
machine itself. Probably the most important feature of GEMMA is help the designer in a struc-
tured design approach. This makes it suitable for process automation when one wants to take
into account all the different factors and operation modes that may appear. Roughly speaking
we can identify the following three modules when dealing with the design of an automated
system: (i) Security module, (ii) Operation Modes module and (iii) Production module

The representation used within GEMMA takes into account these modules as well as the in-
ternal relations among them. The hierarchy shown in figure 2.2 tries to stress the security
aspects of automated production systems. This will be the case in an emergency situation, de-
vice failure, or even when the production system; for any reason; is not generating the product
properly. Under these situations the Security module has higher priority over the other mod-

42 State of the art of software engineering in industrial automated systems

ules in order to take the appropriate decision. It is also worth to notice the introduction of the
operator as an integral part of the system. The operator adds experience in the switch from
automatic to manual operation modes. This way the global control of the process can be the
result of intermittent actuation within the Manual mode and the Automated mode. The Produc-
tion module appears hierarchically under the previous ones. This module is the responsible
for the sequential operation of the production process and operate son the basis of the state
of the other modules. As it has been noticed before, GEMMA has a close connection with
GRAFCET. Within this modular approach this means we will have different partial GRAFCET
that will be needed to interconnect. Therefore, within the Production module we will start
with the basic GRAFCET that implements the automation of the production system. This will
be done without taking into consideration any other specification; just a sequential operation
that implements a production cycle. This GRAFCET is known as the Production GRAFCET
and will be the starting point for the application of GEMMA. On the other hand, within the
Operation Modes module the operator takes decisions over the Production GRAFCET and can
decide to enter into the control loop (by changing the operation mode to manual; or to leave
the loop if the problem is solved by turning back to Automatic mode). This module will also
have an associated GARFCET that is usually referred as the Conduction GRAFCET. Finally the
Security module emergency situations and failures are taken into account. The protocol for an
emergency stop is implemented as well as the convenient steps towards the take of the sys-
tem to the initial conditions in order to restart the production. In this later case the associated
GRAFCET is called the Security GRAFCET. As it is seen, one of the important parts of this
structured approach is the presence of the operator and the possibility of introducing decisions
over specific devices inside the Security module and the Operation models module. To a complete
definition and description of GEMMA the interesting reader is refereed to [65] [19]

2.3 Standard language in industrial automation

Systematic approaches and development methodologies deriving from Software Engineering
field have improved the programming practice in many application domains. However, large
part of the success of analysis and design methods, especially those relying on the Object Ori-
enting approach (OO approach), derives from the features of programming languages and en-
vironments supporting the same principles that drive the specification phase: modularity, en-
capsulation and information hiding. In fact, even if design models based on object-orientating
may be implemented on non-OO languages, with some programming rules, constraints arid a
certain amount of efforts, the results that cart be achieved with regard to maintenability and
reusability depend considerably on the skill and programming experience of software devel-
opers. In practice, an efficient software development methodology should be supported by an
implementation phase in which the design model is accomplished with minimal efforts within
the constructs of the programming language. The standardization and portability features of
that language, will furthermore help in the readability of code and module libraries within sev-
eral different projects.

The main reasons that justify the slower improvements of PLC programming languages can be
find in these points:

e Compatibility with old programming language is generally a desirable point, but this it
is a “weight ” in term of evolution PLC programming.

e Software implementation is an important point, but industrial control are strictly con-

2.3. Standard language in industrial automation 43

nected with I/O boards and are supposed to work in hard physical environment, so reli-
ability and robustness of acquisition device are priority than software aspects.

e The hard connection between the PLC and the controlled physical world leads the pro-
grammer to adopt of low level mechanisms directly handle I/O and memory informa-
tion, expecting that this improve computational performance.

Hardware vendors are in general affected by similar constraints with old hardware compatibil-
ity the result is that the PLC market is almost exclusively composed of “stand alone ” solutions,
with incompatible and proprietary tools. However, this historical scenario have had recently a
turn towards standardization, thanks to the publication in 1993 of a document from the Interna-
tional Electrotechnical Committee (IEC 61131), which defines a standard set of terms, require-
ments, guidelines, programming languages, software and communication features specifically
oriented to the domain of industrial controllers and PLC. This document, called IEC 61131 is
divided into eight parts. The most well-known part of the IEC 61131 document, the third one,
focus on the programming languages and is currently an International Standard, called IEC
61131-3, on which a large part of PLC vendors and users are more and more converging, in
order to improve both the market offer and the features of programming tools for industrial
controllers.

The importance of IEC 61131-3 and its contents is not only related to its attempt to unify, at least
from a syntactical point of view, programming languages designed for PLC applications, but
especially to the introduction of modularization and encapsulation structures that can improve
the applicability of Software Engineering methods even in industrial domains, with particu-
lar regard to those driven by the Object-oriented approach. In last years a new standard has
been presented in industrial automation world from International Electrotechnical Committee,
the IEC 61499 a new standard to extend the IEC 61131 to distributed control systems. In next
sections will show a briefly discussion on IEC 61131 standard and IEC 61499.

2.3.1 Standard language: IEC 61131-3

The IEC 61131-3 standard collects concepts and features derived from a wide set of preceding
documents and standard widely adopted in the manufacturing industry, i.e. those related to
the definition of GRAFCET (see [44]), but also from the consolidated practice of industrial con-
trol programming. The IEC 61131-3 defines a set of five different programming language and
some common software feature as data type, software organization, execution control, etc. This
standard represents a great progress in the domain of PLC and industrial control programming
and the concepts and features that it prescribes cannot be disregarded, considering the current
status of diffusion of the standard, in the definition of any design methodology for industrial
control. The software model defined by the IEC 61131-3 standard covers all the aspects related
to the modularization of control application, the definition of variables and data flow connec-
tions between program modules, computanional resources and with external I/O. The basic
high-level language elements and their interrelationships are illustrated in figure 2.3. These
consist of elements which are programmed using the languages defined in this standard, that s,
programs and function blocks; and configuration elements, namely, configurations, resources,
tasks, global variables, access paths, and instance-specific initializations, which support the
installation of programmable controller programs into programmable controller systems. A
configuration is the language element which corresponds to a programmable controller system
as defined in IEC 61131-1. A resource corresponds to a “signal processing function” and its
“man machine interface” and “sensor and actuator interface” functions (if any) as defined in

44 State of the art of software engineering in industrial automated systems

CONFIGURATION
RESOURCE RESOURCE
TASK TASK TASK TASK
1 \ T 1
1 N \ ! 1
PROGRAM | ~ JPROGRAM PROGRAM PROGRAM
\ \]
s FB|—|FB FB [—|FB
GLOBAL and DIRECTLY M REPRESENTED VARIABLES
and INSTANCE-SPECIFIC | INITIALIZATIONS
ACCESS PATHS

Communication functioni i (See IEC 61131-5)

—————— Execution control path

- or — P Variable access paths

Function block

[Variable

Figure 2.3: The IEC 61131-3 software model.

IEC 61131-1. A configuration contains one or more resources, each of which contains one or
more programs executed under the control of zero or more tasks. A program may contain zero
or more function blocks or other language elements as defined in this part. Configurations and
resources can be started and stopped via the “operator interface”, “programming, testing, and
monitoring”, or “operating system”functions defined in IEC 61131-1. The starting of a config-
uration shall cause the initialization of its global variables, followed by the starting of all the
resources in the configuration. The starting of a resource shall cause the initialization of all the
variables in the resource, followed by the enabling of all the tasks in the resource. The stopping
of a resource shall cause the disabling of all its tasks, while the stopping of a configuration
shall cause the stopping of all its resources. Mechanisms for the starting and stopping of con-
figurations and resources via communication functions are defined in IEC 61131-5. Programs,
resources, global variables, access paths (and their corresponding access privileges), and con-
figurations can be loaded or deleted by the “communication function” defined in IEC 61131-1.
The loading or deletion of a configuration or resource shall be equivalent to the loading or dele-
tion of all the elements it contains.

In detail, the common elements that compose the software model described above are: (i) vari-
ables and their data-types, defined according to their visibility and role in the execution of the
application. (ii) Program organization Units that permit to organize the application according to
hierarchical modularity and encapsulation concepts (i.e. POUs can be nested by invocation and
declaration). POUs defined in IEC 61131-3 are Programs, functions and Function Blocks. (iii)
Configuration and execution control elements, that define the allocation of POUs to the com-
putational resources (processors, tasks) of the application. (iv) SFC elements, defined within

2.3. Standard language in industrial automation 45

| a b c d |
o= ()= [t ()= ()
| | e |

Figure 2.4: A simple ladder diagram example.

common programming features for the reasons described above.

IEC 61131-3 Languages

The definition of IEC 61131-3 programming language have been formalized according to the
trends of users and vendors of industrial automation. The internal code of any POU can be
programmed with any IEC language, which permit to choose the appropriate implementation
for each specific POU, considering performance optimization, type and complexity of opera-
tion executed or even background and experience of the programmer. The five IEC languages
are : ladder diagram, instruction list, function block diagram, structured text and sequential
function chart. The ladder diagram is historically the most used notation to implement logic
controllers in the industrial automation field. Writing a program is then equivalent to drawing
a switching circuit. The ladder diagram consists of two vertical lines representing the power
rails. Circuits are connected as horizontal lines, i.e. the rungs of the ladder, between these two
verticals. In drawing a ladder diagram, certain conventions are adopted: (i) the vertical lines of
the diagram represent the power rails between which circuits are connected. The power flow
is taken to be from the left-hand vertical across a rung. (ii) Each rung on the ladder defines one
operation in the control process. (iii) A ladder diagram is read from left to right and from top
to bottom, the top rung is read from left to right. Then the second rung down is read from left
to right and so on. When the PLC is in its run mode, it goes through the entire ladder program
to the end, the end rung of the program being clearly denoted, and then promptly resumes
at the start. (iv) Each rung must start with an input or inputs and must end with at least one
output. The term input is used for a control action, such as closing the contacts of a switch,
used as an input to the PLC. The term output is used for a device connected to the output of
a PLC, e.g. a motor. (v) Electrical devices are shown in their normal condition. Thus a switch
which is normally open until some object closes it, is shown as open on the ladder diagram.
A switch that is normally closed is shown closed. (vi) A particular device can appear in more
than one rung of a ladder. For example, we might have a relay which switches on one or more
devices. The same letters and /or numbers are used to label the device in each situation. (vii)
The inputs and outputs are all identified by their addresses, the notation used depending on
the PLC manufacturer. In figure 2.4 is depicted a ladder diagram example.

A programming method, which can be considered to be the entering of a ladder program
using text, is instruction lists (IL). Instruction list gives programs which consist of a series of
instructions, each instruction being on a new line. An instruction consists of an operator fol-
lowed by one of more operands, i.e. the subjects of the operator. In terms of ladder diagrams an
operator may be regarded as a ladder element. Each instruction may either use or change the
value stored in a memory register. For this, mnemonic codes are used, each code correspond-
ing to an operator/ladder element. The codes used differ to some extent from manufacturer to
manufacturer, though a standard IEC 1131-3 has been proposed and is being widely adopted.

46 State of the art of software engineering in industrial automated systems

Fomm e + oo +
| BCD_ | A——————- + | INT_ |
| TO_INT | | susB | | TO_BCD |
weigh command---|EN ENO|---|EN ENO|---|EN ENO|---ENO
gross_weight----| | === [-==] | --WEIGH
o + | | o +
tare weight————————mmmmmo o | |
[+

Figure 2.5: A simple FBD example.

An example of IL is reported following

ST Q (Store resultin Q, i.e. output to Q)

AND B (ANDB)

LD A (Load A)
In the first line of the program, LD is the operator, A the operand, and the words at the ends of
program lines and in brackets and preceded and followed by are comments added to explain
what the operation is and are not part of the program operation instructions to the PLC. LD A
is thus the instruction to load the A into the memory register. It can then later be called on for
further operations. The next line of the program has the Boolean operation AND performed
with A and B. The last line has the result stored in Q, i.e. outputted to Q.
The term function block diagram (FBD) is used for PLC programs described in terms of graph-
ical blocks. It is described as being a graphical language for depicting signal and data flows
through blocks, these being reusable software elements. A function block is a program instruc-
tion unit which, when executed, yields one or more output values. Thus a block is represented
in the manner shown in figure 2.5 with the function name written in the box. A function block
is depicted as a rectangular block with inputs entering from the left and outputs emerging from
the right. The function block type name is shown in the block, with the name of the function
block in the system shown above it. Names of function block inputs are shown within the
block at the appropriate input and output points. Cross diagram connectors are used to indi-
cate where graphical lines would be difficult to draw without cluttering up or complicating a
diagram and show where an output at one point is used as an input at another.
Structured text is a programming language that strongly resembles the programming language
PASCAL. Programs are written as a series of statements separated by semicolons. The state-
ments use predefined statements and subroutines to change variables, these being defined val-
ues, internally stored values or inputs and outputs. Assignment statements are used to indicate
how the value of a variable it to be changed, for example Li ght := Sw tchA; isused to
indicate that a light is to have its value changed, i.e. switched on or off, when switch A changes
its value, i.e. is on or off. The general format of an assignment statement is: Vari abl e : =
Expressi ons; where Y represents an expression which produces a new value for the vari-
able X.
The sequential function chart (SFC) it is not only a language but it is an element for use in
structuring the internal organization of a programmable controller program organization unit,
written in one of the languages defined in this standard, for the purpose of performing sequen-
tial control functions. The definitions in this subclause are derived from IEC 60848, with the
changes necessary to convert the representations from a documentation standard to a set of
execution control elements for a programmable controller program organization unit. The SFC
elements provide a means of partitioning a programmable controller program organization
unit into a set of steps and transitions interconnected by directed links. Associated with each

2.3. Standard language in industrial automation 47

step is a set of actions, and with each transition is associated a transition condition. Since SFC
elements require storage of state information, the only program organization units which can
be structured using these elements are function blocks and programs. If any part of a program
organization unit is partitioned into SFC elements, the entire program organization unit shall
be so partitioned. If no SFC partitioning is given for a program organization unit, the entire
program organization unit shall be considered to be a single action which executes under the
control of the invoking entity. From the syntactical and semantical point of view, Grafcet and
SFC are identical with regard to the concepts of activation of steps, enabling of transitions rules
of evolution, some example of SFC are shown in figure 3.3 and figure 3.4

To a complete guide to IEC 61131 the reader is referred to [45] and [59].

2.3.2 Standard language: IEC 61499

IEC 61499 provides for the first time a framework and architecture for describing the function-
ality in distributed control systems in terms of cooperating networks of function blocks. This
new standard wants that the benefits of this standard will be understood by a wide audience;
including not only people working in industrial control but also those with a general interest in
methodologies for modelling distributed systems. In IEC 61131-3 standard there is the defini-
tion of function block but it is not possible to use it in distributed systems. There are a number
of limitations with the original function block concept introduced by the PLC Languages stan-
dard IEC 61131-3. With the IEC 61131-3 Function Block Diagram (FBD) graphical language,

Loopl Loadl

MainControl Load
ProcVal Output FlowRate Level
SetPoint Error Model Error

(a) Function block network.

Loop1l Load1

MainControl Load
> ProcVal Output FlowRate Level
—— SetPoint Error Model Error

(b) Network with feedback connection.

Figure 2.6: Example of 61131-3 function block connection.

function blocks can be linked by simply connecting data flow connections between block input

48 State of the art of software engineering in industrial automated systems

and output variables, see figure 2.6(a). Each function block provides a single internal algorithm
that is executed when the function block is invoked. The normal execution order is determined
by the function block dependency on the other blocks; the order normally runs from left to right
because blocks to the right depend on the output values of blocks on the left. However, when
a feedback path is introduced, see figure 2.6(b), the execution order cannot be determined from
the diagram, since the execution of both blocks depends on an output value of the other block.
In a complex network, it is very difficult for a programming system to determine a valid order
of execution. To overcome this problem, many IEC 61131-3 programming systems provide ad-
ditional mechanisms to define the execution order of blocks. For example, the user can view
a list of function blocks and manually assign an execution order. Unfortunately, such mecha-
nisms are outside the scope of the IEC 61131-3 standard. As a consequence, an important aspect
of a function block network, i.e. the method for defining the execution order of blocks, is not
consistent or portable across different control systems. There is one feature in IEC 61131-3 that
does provide a crude mechanism for passing execution flow through a chain of function blocks
that is worth consideration; that is the use of the EN input and ENO output signals (see fig. 2.7).
The EN and ENO signals were intended for function blocks to pass “power flow” when used in

Loop1 Load1
MainControl Load
—‘ }— EN ENO EN ENO —<>—
—— ProcVal Output FlowRate Level
SetPoint Error SetPoint Error

Figure 2.7: Using 61131-3 function block with enable.

rungs of a Ladder Diagram. However, it is now recognised that use of the EN and ENO signals
does not provide the degree of flexibility needed for complex FB networks. In effect, the EN
and ENO signals can be regarded as a means of passing events between blocks. “EN” signals
that the block may be invoked because its input data is ready; “ENO” is signaling that the block
has executed and the output data is ready for the next block. We will see that this idea of event
passing has been extended in IEC 61499. The focus of the IEC 61131-3 standard (see [45] and
[59]) has been to define a software model and languages for PLCs where software is typically
running on one processing resource. However, the IEC 61131-3 software model, see figure 2.3,
does consider configurations that have multiple resources. The standard provides two different
mechanisms for passing data and control signals between resources, namely global variables
and communications function blocks.

At the core of the standard is the function block model that underpins the whole IEC 61499
architecture. A function block is described as a “functional unit of software” that has its own
data structure which can be manipulated by one or more algorithms. A function block type
definition provides a formal description of the data structure and the algorithms to be applied
to the data that exists within the various instances. This is not a new concept but based on com-
mon industrial practice applied to reusable control blocks of various forms. A good example is
the Proportional, Integral and Derivative (PID) block used in many PLCs and controllers. The
system vendor will typically supply a type definition for a PID block. The programmer can
then create multiple instances of the PID block within the control program, each of which can

2.3. Standard language in industrial automation 49

be run independently. Each PID instance, such as “Loopl” “Loop2” will have its own set of
initialisation parameters and internal state variables and yet share the same update algorithm.
IEC 61499 defines several forms of function block to a complete list the reader is referred to

([46],

[47] and [60]). The main features of a function block are summarised as follows:

Each function block type has a type name and an instance name. These should always be
shown when the block is depicted graphically.

Each block has a set of event inputs, which can receive events from other blocks via event
connections.

There are one or more event outputs, which can be used to propagate events on to other
blocks.

There is a set of data inputs that allow data values to be passed in from other blocks.

There is a set of data outputs to pass data values produced within the function block out
to other blocks.

Each block will have a set of internal variables that are used to hold values retained be-
tween algorithm invocations.

The behaviour of the function block is defined in terms of algorithms and state informa-
tion. Using the block states and changes of state, various strategies can be modelled to
define which algorithms are to execute in response to particular events.

Event inputs Event outputs

\ Instance Name /
Event flow Event flow

|:(> Execution control |:>

(hidden within block)

Type Name

Data flow —— Algorithms Data flow

::> (hidden within block) |:(>

Data inputs Data outputs

Figure 2.8: 61499 Function block definition.

In figure 2.8, the main characteristics of an IEC 61499 function block are depicted. The top
part of the function block, called the “Execution Control” portion contains a definition in some
cases, given in terms of a state machine, to map events on to algorithms; i.e. it defines which

50 State of the art of software engineering in industrial automated systems

algorithms defined in the lower body are triggered on the arrival of various events at the “Ex-
ecution Control” and when output events are triggered, what the standard calls the causal
relationship among event inputs, event outputs and the execution of algorithms. The standard
defines means to map the relationships between events arriving at the event inputs, the ex-
ecution of internal algorithms and the triggering of output events. The lower portion of the
function block contains the algorithms and internal data, both of which are hidden within the
function block. A function block is a type of software component and, if well designed, there
should be no requirement for a user to have a detailed understanding of its internal design. A
function block relies on the support of its containing resource to provide facilities to schedule
algorithms and map requests to communications and process interfaces. The standard states
that a resource may optionally provide additional features to allow the internals of a function
block to be accessed. So there may be “backdoor” methods to access function block internals;
however, from the IEC 61499 architecture view point, control variables and events are only
passed by the external exposed interfaces.

An another important concept in IEC 61499 is the ability to define a function block type that de-
fines the behaviour and interfaces of function block instances that can be created from the type.
This is synonymous with the way in object oriented (OO) software that the behaviour of object
instances is defined by the associated object’s class definition. A function block type is defined
by a type name, formal definitions for the block’s input and output events, and definitions for
the input and output variables. The type definition also includes the internal behaviour of the
block but this is defined in different ways for different forms of block.

The behaviour of a basic function block is defined in terms of algorithms that are invoked in
response to input events. As algorithms execute they trigger output events to signal that cer-
tain state changes have occurred within the block. The mapping of events on to algorithms is
expressed using a special state transition notation called an Execution Control Chart (ECC). The
internal behaviour of composite function block and subapplication types is defined by a net-
work of function block instances. The definition therefore includes data and event connections
that need to exist between the internal function block instances. To a complete guide to defini-
tion of different function block type and to a complete description of IEC 61499 the interesting
reader reader is referred to [46], [47] and [60].

2.4 Object Oriented

One of the most important goal of software engineering is to reduce the system complexity.
Object-oriented programming (OOP) is a programming paradigm that uses “objects” (data
structures) consisting of data fields and methods together with their interactions to design
applications and computer programs. Programming techniques may include features such
as data abstraction, encapsulation, modularity, polymorphism, and inheritance. It was not
commonly used in mainstream software application development until the early 1990s. Many
modern programming languages now support OOP.

An object is actually a discrete bundle of functions and procedures, all relating to a particular
real-world concept such as a bank account holder or hockey player in a computer game. Other
pieces of software can access the object only by calling its functions and procedures that have
been allowed to be called by outsiders. A large number of software engineers agree that iso-
lating objects in this way makes their software easier to manage and keep track of. However,
a not-insignificant number of engineers feel the reverse may be true: that software becomes
more complex to maintain and document, or even to engineer from the start. Object-oriented

2.4. Object Oriented 51

programming has roots that can be traced to the 1960s. As hardware and software became
increasingly complex, manageability often became a concern. Researchers studied ways to
maintain software quality and developed object-oriented programming in part to address com-
mon problems by strongly emphasizing discrete, reusable units of programming logic[citation
needed]. The technology focuses on data rather than processes, with programs composed of
self-sufficient modules (“classes”), each instance of which (“objects”) contains all the infor-
mation needed to manipulate its own data structure (“members”). This is in contrast to the
existing modular programming which had been dominant for many years that focused on the
function of a module, rather than specifically the data, but equally provided for code reuse,
and self-sufficient reusable units of programming logic, enabling collaboration through the use
of linked modules (subroutines). This more conventional approach, which still persists, tends
to consider data and behavior separately. An object-oriented program may thus be viewed as
a collection of interacting objects, as opposed to the conventional model, in which a program
is seen as a list of tasks (subroutines) to perform. In OOP, each object is capable of receiving
messages, processing data, and sending messages to other objects and can be viewed as an in-
dependent ‘machine” with a distinct role or responsibility. The actions (or “methods”) on these
objects are closely associated with the object. The use of OOP and standardized languages,
such C++ and java, is well-estabilished in the domain of business software and is constantly
growing in the programming of real-time embedded systems. In next section we will see the
UMI language borns in software engineering filed and apply in industrial automation

24.1 UML - Unified Modeling Language

In last years there was an increase of methods and notations within the paradigm of OO soft-
ware engineering have had the result of confusing users and software developers. In order
to supply to the absence of standardize graphical symbols to model OO specification, a con-
sortium of the major software companies and analyst, the Object Management Group (OMG,
see [66] and UML2), defined a standard set of unified notations, covering all the aspects of
analysis and design of OO software systems, which is called Unified Modeling Language (UML)
(to a complete description of the language see [77]. It is important to note that it does not
underline any specific methodology, but gives only the modeling language that may help in
the development of OO analysis and design activities. In particular, it defines the syntax of
eight different diagrammatic notations and explains with informal description and examples
their meaning with respect to the OO paradigm. These notations are called: Use Case Diagrams,
Class Diagrams, Collaboration Diagrams, Sequence Diagrams, State Diagrams, Activity Diagrams,
Component Diagrams and Deployment Diagrams. A Use Case Diagram specifies the functional
requirements of the global system or of one of its sub-systems, similarly to a Context Diagram
as used in State Activity and state Diagram: the boundaries of the system are denoted by a
square box in which the required functionalities, called “use cases” are drawn as ovals. Ex-
ternal entities, called “actors” are in general depicted with stick human figures, which recalls
the fact that a typical software system interacts with a human user. However, in real-time
and control systems, physical devices and controlled processes can be considered as external
actors. Use cases can be hierarchically reined or related to each other, by meal’s of “Relation-
ship arrows” for which the UML standard gives some specialized stereotypes: <<extend>>
<<use>> and <<include>>. Some examples are reported in figure 2.9(a) and figure 2.9(b),
taken from (union), show, respectively, art example of Use Case Diagram and an example of
use case relationships. When applying Use Case Diagrams to model functional requirements
for real-time systems it may be useful to associate with links between actors and the system

52 State of the art of software engineering in industrial automated systems

Search For
ltems
”’fﬂ S

b <<
i i Place Order Payment Processor

Release 1

Customer
Obtain Help —

Release 2| Cystomer Support

e

Time Release 3 Tax Authority

(a) An example of UML Use case diagram.

Enroll in
Seminar

s<includes=»

Enroll Student

<<gxtends>
L Il Famil
e) nroll Family
International
Interhiational
Student

(b) An example of UML Use case relationship.

Figure 2.9: Example of UML diagram.

a list of events which may stimulate system responses. Moreover behavioral aspects related
to a particular use case may be specified with the help of Sequence Diagrams or Statecharts.
However, it should be noted that use case modeling does not imply any object identification
strategy, but the behaviour is intended with respect to the system in its entirety. For teh de-
scription of the other class diagram the reader is referred to [77]

The aim of UML language is to model a system with a graphical approach, for systems it means
not only a “physical system” but also a software, a communication protocol etc. UML born in
software engineering and two important extension to help the designer to model real time sys-
tems and physical systems. The benefits of object-orientation are nowadays more and more rec-
ognized also by real-time software developers, with the consequence that an increasing number
of engineering methods for the analysis and design of real-time and control systems, based on
UML and successfully applied to practical cases thanks to the help of specifically designed
CASE tools and extensions to the basic UML notation. With regard to the extensions of UML,
these are in general introduced because several critical aspects of real-time systems have been
recognized to require explicit arid peculiar support by the specification language. In fact, the
analysis of objects and their interactions within a real-time system lead to the definition of very
different models compared to those designed in the business domain.

2.5. Conclusions 53

The UML standard explicitly refers to active objects in the description of Collaboration and
Sequence Diagrams and to events in the description of diagrams for the behavioral specifica-
tions, mainly Statecharts and Sequence Diagrams, it does not define how to specify the details
of inter-task communications, signal /event-based interfaces and so on. UMI provides a power-
ful extension mechanism, based on the fact that the language is defined in terms of meta-model.
Thanks to the meta-model, it is possible to introduce and integrate in the modeling framework
domain-specific concepts otherwise difficult to specify. In particular a new class of the UML
meta-model can be beaned as sub-class of one of its modeling elements. The new class, called
stereotype, may have: (i) constraints, expressed in the Object Constraint Language that de-
fine well-formedness rules that should be satisfied by correct models in which the stereotype
is used. (ii) Tagged values, that represents properties and information that an instance of the
stereotype may have, but are not possible to define in the basic element of the meta-model. An
interesting UML profile for real-time systems is the one that have beefs derived by the notation
defined in the Real Time bedtime Object-Oriented Methodology (ROOM) (see [83] and [82]). The
major extension of UML-RT are related to the introduction of constructs to specie highly encap-
sulated concurrent and event-driven modules togher with their well-defined signal interface.
To have a better modeling of physical system it borns SysML (see [1] for more details), an
open source specification project founded by the “SysML Partners” in 2003, that satisfies the
requirements of the UML for Systems Engineering RFP (Request For Proposal). It allows to
model systems which are composed by software and hardware components. More precisely,
SysML is a strict profile of UML 2.0 which is developed to deal with the systems issues. SysML
introduces the Block Definition Diagram (BDD): in this diagram blocks are the basic structural
elements in SysML; they can be used to represent hardware, software, facilities, personnel, or
any other system element. BDD is a static diagram which describes the blocks in a system and
the different static relationships between them. The latter elements can represent dependence,
generalization, association, aggregation and composition.

2.5 Conclusions

In this chapter a brief overview on control design in industrial automated systems and how the
modern software engineering tecquiniques, like object orienting programming, are applied to
modern industrial automated systems is reported. The first step of this chapter is define what
is a “design pattern”in industrial automation. The design patterns in automation have been
adopted from the object-oriented programming patterns, this reflects the generic and reusable
nature of the original object-oriented patterns. In general, the context of automation seem to af-
fect only on more detailed, or more context-specific levels, to the architecture of object-oriented
software. Two example of design pattern used in industrial automation are the standard ISA-88
(see [15], [49] and [50]) and GEMMA (see [65] and [19]).

The approach of standard ISA-88 is applied to production process, and this standard wants
to help the designer to separating the design of control systems in a hierarchical approach.
This hierarchical approach is implemented defining two level, an high level where there is a
sequence of actions (recipes) and the low level where this actions are implemented (product
equipment capability). This standard do not help the designer to choose how to divide the sys-
tems, this part is left to the ability of single designer without define a standard path. In the low
level of this architecture is implemented also the part of control logic devoted to check safety
condition, this means the low level has to know the condition of high level and the condition
of the other part of the low level. With this “distributed information” in the low level there is

54 State of the art of software engineering in industrial automated systems

Feature Function Blocks Objects Comments

Object may contain data that is

Encapsulatated data \/ \/ also instance of the other objects.
Function blocks may contain

instances of other function blocks.

In IEC 61499 function blocks,
External interface \/ \/ there is not distinction between

private and public interface.

Function blocks use Objects have methods
Invocation input and output with arguments and
variables and events. returned values.

With function blocks, data can
be synchronised with an event.

Currently in IEC 61499 there is no

Inheritage mechanism for a function block
\/ x to inhert behaviour.

IEC 61499 introduce a new adaptor
Polymorphism \/ \/ concept that allows function blocks
to share common interface.

Function blocks Objects have methods

Instantiated from instances are defined .
. with arguments and
a class from functions block
type returned values.

Figure 2.10: Comparison between objects and function blocks.

no information encapsulation and this involves a low modularity. Another important point is
S88 do not define not establish a formal standard states but only a set of possible set, leaving to
single designer the choice of the set and the command operation. GEMMA is another design
pattern applied usually in manufacturing systems. It is based on the allocation of the function-
ality of the entire machine on standard state operation. With this allocation GEMMA wants
to help the designer to build in a structured design approach the control logic. This allocation
helps also the designer in check all the condition working and fault condition, but it is not clear
how allocate the different part of control logic in the state, and how to divide the different part
of control logic.

In industrial automated systems the preferred options to programming are the language de-
fined in the standards IEC 61131-3, and IEC 61499. from a first comparison the function blocks
of IEC 61499 are n many way similar to objects, a complete comparison between objects and
function blocks are depicted in figure 2.10. The polymorphism and inheritance are very strongly
related to object oriented programming. They provide the means to dynamically create, destroy
and bind objects at run-time. The IEC 61499 does not include full power to create dynamic be-
havior of object-oriented software. However, in IEC 61499 it is possible to find some patterns
for distributed control logic, in fact the standard helps the designer to allocate the task on the
distributed resources.

The software to design control logic for automated systems shows low characteristics of reusabil-
ity and modularity. These characteristics are strongly emphasized and realized in the so-called
object-oriented methodologies introduced in computer-science area since a long time. Recently,
this approach is fruitfully pervading the industrial automation world too in order to become
one of the means to reduce the complexity and to introduce standardization in software de-
sign. Industrial informatics is aimed at helping the designer introducing standardization giv-
ing some methodologies able to guide the designer towards the modular and reusable software.
In this field, IEC 61131-3 identifies standard programming languages for PLC systems ([59] and

2.5. Conclusions 55

[45]), mainly focusing on centralized computing platforms. Differently, the IEC 61499 standard
(see [60], [46], [47] and [92]) enriches the Function Block framework of IEC 61131-3 consider-
ing explicitly a distributed network of computing elements (usually organized using peer-to-
peer paradigm). This allows a simpler decomposition of the whole automation logic control
in many smaller objects (even for centralized implementation). Among the different strategies
for logic control proposed in literature, in [93] the IEC 61499 framework is exploited to define
a formal modeling suitable for verification, while in [10] and [8] the Mechatronic Object has
been introduced to deal with mechanical and electronic issues involved in the automation of
industrial plant. Another class of methodologies that is important to cite is the so called MDA
(Model Driven Approach) (see [66] and [54]) where general modeling languages (such as UML)
are exploited to model systems independently of their implementation platforms, to introduce
agent-based approaches in control design and to generate platform-specific software code au-
tomatically from high level models (see [4], [26] and [25]).

In the next chapter will show a new approach to define an hierarchical architecture based on
the new concept of the Generalized Actuator

56

State of the art of software engineering in industrial automated systems

Chapter

Architecture in industrial automation:
The Generalized Actuator approach

In this chapter an effective design approach to the design of control logic
in industrial automated systems using hierarchical control architectures
is presented. The main characteristic of the solution is the clear and struc-
tural separation between “policies” and “actions” deriving from the use
of a novel abstract entity in modelling automation plants: the Generalized
Actuator. Particular attention is paid to illustrate how to define gener-
alized actuators starting from a “bare plant”. The potentialities and ad-
vantages deriving from this methods of this method are emphasized by
means of some illustrative case study.

3.1 Introduction

In nowadays manufacturing applications, high complexity automatic machineries are employed
to accomplish production tasks; designing, coding and testing logic control software for such
machineries is a challenging task, especially considering that such software embed different
functionalities as: logic control in nominal conditions, diagnostics, fault reconfigurations, safety
functions, quality control etc. In chapter 2 it was presented a state of the art on industrial
automation software engineering, concepts as modularity, encapsulation, composability and
reusability and are strongly emphasized and profitably realized in the so-called object-oriented
methodologies. These methodologies are fruitfully pervading the industrial automation world
too, as testified not only by current availability of commercial products conforming, at least
to a certain extent, to the standards defined for this specific domain by International Organ-
isms, such as IEC and OMG, but also by some interesting proposal about generally applicable
modelling and design frameworks recently published in the scientific and technical literature.
A promising approach to reduce complexity and introduce standardization is to exploit classi-
cal concepts used in software engineering as object oriented programming. Basically the focus
should be posed on the identification of design patterns to guide the control engineer in the

57

58 Architecture in industrial automation: The Generalized Actuator approach

control software design procedure; such design patterns should be obtained by a right mixing
of software engineering machineries (UML, encapsulation...), automation standards (e.g. IEC
61131, IEC 61499) and theoretical machineries (DES theory). The current trend in industrial
automation, as testified also by the available commercial products, is therefore to exploit the
so-called object oriented methodologies, which are well known in software engineering field. From
the latter point of view, in [94], [93] and [92], the framework of IEC61499 is exploited to define
a formal modelling suitable for verification. In [11], [12] the Mechatronic Object has been intro-
duced to deal with mechanical and electronic issues involved in the automation of industrial
plant. This approach has been further extended in [13], [8] and [9] where a solid unification of
dynamic systems and industrial control software modelling is proposed. In [86], [87] and [88]
a model integrated paradigm is introduced to represent mechatronic systems. Differently, in
([31]) the Control Module is introduced following the agent paradigm to achieve a modular rep-
resentation of automation functions for flexible manufacturing systems. The interested reader
can find exhaustive information on the cited methodologies in [82], [45] and [17] and references
therein, while their exploitation in industrial automation is described.

As a matter of fact, a key element for the effectiveness of a proposed modelling framework is
the correlation with a clear procedure to deal with it. Taking inspiration from this basic consid-
eration, the main focus of this paper is to present a modelling framework and a design procedure to
realize automation functions exploiting a clear and structural separation between Policies and
Actions. Toward this purpose, a novel entity is introduced for modeling industrial automa-
tion systems: the Generalized Actuator (GA). The main characteristics of the proposed modelling
framework and design procedure are the following;:

e Introduce a straightforward way to encapsulate “actuation mechanisms”, using GA;
e Effectively support hardware virtualization, component interoperability and reusability;

o Allow hierarchical management of a plant, separating control policies from actuation
mechanisms;

o Allow detection of anomalous situations following a distributed hierarchical approach.

3.2 Classic design procedure

To introduce the design procedure, let us start presenting a simple example: a drilling machine
in a manufacturing system. This example is an adaptation of the drilling machine in process-
ing station of FESTO manufacturing systems explained in appendix B. We will deal with the
different functionalities desired for the system in different steps; namely these functionalities
are:

1. To drill a workpiece using a presence sensor;
2. Control duration of drillin according to a suitable policy;
3. Diagnostic sensors faults;

The system is schematically depicted in figure figure 3.1; it is composed by a rotary table that
feeds some workpiece to a drilling station that perform the drill operation over the work-
piece. The rotary table is actuated through the command signal Rot ar yTabl e; the system is
equipped with a sensor that indicates when a workpiece is in the correct position to be drilled

3.2. Classic design procedure 59

UpLimit

RotaryTable

1T
\l TR
)

5. DownLimit

WorkPieceSensor WorkTypePiece

Figure 3.1: Drilling module of Festo FMS.

(signal Wor kPi eceSensor). The electric motor that vertically moves the drilling unit has two
direction of movement, decidable through command signalsDri | | i ngUPand Dri | | i ngDOWN;
the combination Dri | | i ngUP=1 Dri | | i ngDown=0 causes the upward direction while the
combination Dri | I i ngUO=0Dri I | i ngDOWN=0 causes the downward direction. Two sensors
indicate the up limit stop (signal Li m t UP) and the down limit stop (signal Li m t Down) of
the drilling unit. The drilling unit is equipped with a drilling tool mounted into a spindle
moved by an electric motor; the spindle has two different direction of movement, decidable
through command signals Dri | | i ngRot at i onONand Spi ndl eMbt or Di r ect i on, namely
clockwise movement can be issued through the combination of Dri | | i ngRot at i onON=1 and
Spi ndl eMbt or Di r ect i on=1, while the anticlockwise movement can be issued through the
combination of Spi ndl eMbt or ON=1 and Spi ndl eMot or Di r ect i on=0. When a new work-
piece arrives under the drilling unit, this must reach its downward position and the spindle
must turn clockwise to perform the drilling operation to the workpiece. The drilling operation
must continue for five seconds. After this time interval, the drilling unit must reach its upward
limit while the load is expelled; during this operation the spindle must turn anticlockwise to
allow the correct extraction of the drilling tool from the load. The overall process must start
when the command St ar t Pr ocess is active and should stop when St ar t Pr ocess becomes
false. In table 3.1 a description of signals used in the example is given.

To solve the considered problem the workpiece presence sensor is assumed to be ideal con-
sidering that the signal Wor kPi eceSensor immediately rise only when the load is in the cor-
rect drilling position and all the workpiece are drilled for the same time. In figure 3.2 the
“common”SFC solution is reported and it reflects the usual approach adopted in industrial au-
tomation design. The SFC diagram perform all the action described before but the functioning
logic behind the overall process is hidden in the graph and it is impossible to distinguish be-
tween the implementation of the main functions of the system. As a matter of fact, despite the
use of a graphical language, the designed solution lacks of separation between logic policies

60 Architecture in industrial automation: The Generalized Actuator approach

Step1

—StartProcess

Step2 'IN RotaryTable
—WorkPieceSensor
Step3 MS DrillingUp
R DrillingDOWN
S DrillingRotationOn
S RotationClockWise

—LimitDown

Step4 -

——Stepat>=T#5s

Step5 MR DrillingUP Step6 -IN RotaryTable
S DrillingDOWN
S DrillingRotationOn
R RotationClockWise
—NOTWorkPieceSensor
—LimitUP
Step8 —
Step? Hr [RotationClockWise |

—StartProcess NOT StartProcess
-D Step2 Step1

Figure 3.2: “Common” SFC solution for the case in example

and actuation mechanisms, reflecting into a lack of reusability and modularity; this directly
affect the readability of the software but also (and especially) the possibility to make some
changes quickly and easily as it can be noted considering the following modifications to the
plant and policies.

1. Suppose that the considered system is equipped with a presence sensor which cannot be
considered as ideal: signal Wor kPi eceSensor becomes true as soon as the workpiece
reaches the sensor but this position is not correctly centered below the drilling unit; the
belt must therefore move for a given time interval that depends on its actual speed and
the load dimensions in order to bring the load in the correct position.

2. Suppose that the system can manage two different types of workpiece and, depending
by the kind of workpiece (indicated by signal Wor kPi eceTypeSensor) the drilling op-
eration must be three or five seconds long (i.e. the reference for the temperature control
changes according to the actual product).

The control logic for this more involved situation is decipted in figure 3.3; it’s possible to note
that the new solution is slightly different from the starting one depicted in figure figure 3.2.
But it is more interesting noting that the modification (1) is related to an action sensor (gener-
ally to an actuation mechanism) while modification (2) is referred to a policy change but this
characteristics are not clearly distinguishable in the SFC diagram (see figure figure 3.3 with
the highlighted changes). This example testifies that in the classical design approach there is a

3.2. Classic design procedure 61

Stept
—StartProcess
Step2 ﬂN RotaryTable
——WorkPieceSensor
Step2_2 ﬂN RotaryTable |
——Step2_2>=T#0.5S M
Step3 S DrillingUp
R DrillingDOWN
S DrillingRotationOn
S RotationClockWise
—LimitDown
Step4 —
—— NOT WorkPieceTypeSensor —I—WorkPieceTypeSensor
Step4_1 » Step4_2 =
—-Step4_1.>=T#3s ——Step4_2.t>=T#5s (2)
Step5 Hr DrillingUP Step6 HN RotaryTable
S DrillingDOWN
S DrillingRotationOn
R RotationClockWise
—NOT WorkPieceSensor
——LimitUP
Step8 —
Step7 HR RotationClockWise
—StartProcess NOT StartProcess
> step2 Step1

Figure 3.3: “Common” SFC solution for the case in example with new specification.

62 Architecture in industrial automation: The Generalized Actuator approach

Signal Meaning Type
StartProcess Operator command to start the process Digital
RotaryTable Command signal to move the rotary table Digital

WorkPieceSensor Workpiece presence sensor readings Digital
WorkPieceTypeSensor || Workpiece type sensor readings Digital
DrillingDown Command signal to move the drilling unit down Digital
DrillingUp Command signal to move the drilling unit upt Digital
LimitUP Drilling upward limit signal Digital
LimitDOWN Drilling downward limit signal Digital
DrillingRotationON Command signal to move the spindle Digital
SpindleMotorDirection || Command signal to motion direction for the spindle || Digital

Table 3.1: List of signals used in the drilling example

—tStartProcess

Step2 PN [RotaryTable

—WorkPieceSensor NOT WorkPieceSensor AND Step2.t>=T#8S
Step3 [—

TNOT LimitDown AND Step3.t>=T#10S ~fLimitDown

T

{-Stepdt>=T#5s

]

F-LimitUP

Step8
FR [RotationClockWise |

[DrillingUp
[PrilingDOWN
[DrillingRotationOn
[RotationClockWise

GEEIE

Bl

[DrillingUP’
DrillingDOWN

Driling on
[RotationClockwise |

Steps FN RotaryTable

—-NOTWorkPieceSensor NOT WorkPieceSensor AND Step2.t>=T#3S

I[a[o

{-StartProcess NOT StartProcess

L[> step2 Stept

Figure 3.4: “Common” SFC solution for the case in example with fault.

mixing between mechanisms and policies and testifies also how this mixing minimize both the
modularity and the reusability of the control software. The lack of reusability can be explained
in this way: in the case in the drilling station of the example must be used in another system
but in a different mode, it is clear that the software designed shown in figure figure 3.2 or fig-
ure 3.3 cannot be reused (typically) without some modifications. Generally, all the control logic
are designed for each machine because the adaptation of parts of existing software is difficult
in industrial automated systems.

Another worthy remark concerning the solution of figures figure 3.2 and figure 3.3 is to note
that the diagnostic phase has been completely disregarded. Even diagnosis of anomalous situ-
ations can be considered at two different levels: detection of mechanisms failures (e.g. sensor
or actuator faults, components malfunctioning, etc.) and functional anomalies (e.g. forbidden
control sequences that occur due to external influences). If we consider possible faults on sen-
sors or actuators on case of the drill unit we can define a control logic as in figure 3.4, while if we
consider the faults on drill unit with the modification (1) and (2) we can define a control logic
as in figure 3.5. If we compare the starting solution (see fig. 3.2) and the solution with faults

3.3. Generalized Actuator approach 63

~tStartProcess

Step2 N [RotaryTable

-WorkPieceSensor

NOT WorkPieceSensor AND Step2.t>=T#8S

Step2_2 N [RotaryTable

Step2_2>=T#0.58)

NOT LimitDown AND Step3.t>=T#10S ~fLimitDown

[DrilingUp
[DrilingDOWN
[DrilingRotationOn
[RotationClockWise

GEEIE

Stepd

NOT WorkPieceTypeSensor WorkPieceTypeSensor
Stepd_t

Stepd_1.t>=T#3s Stepd_2.>=T#5s @

Steps [— Steps FN RotaryTable

—-NOTWorkPieceSensor NOT WorkPieceSensor AND Step2.t>=T#3S
—-LimituP

Step8
Step7 FR [RotationClockWise |

~StartProcess NOT StartProcess

L[> step2 Stept

Bl

DrilingUP
[DrilingDOWN

Driling On
RotationClockWise

I[a[o

Figure 3.5: “Common” SFC solution for the case in example with new specification and fault.

(see fig. 3.2) it is important to note how add some simple specification the control logic has an
explosion of complexity. Another note is regarding that a control logic as the one presented
in figure figure 3.2 and figure 3.3 prevents from obtaining a separation between mechanisms
diagnostics and policies diagnostics; then also for diagnostic software are preferable character-
istics of modularity and reusability especially when it is required the system to be tolerant to
faults having to distinguish between mechanisms reliability (e.g. considering redundancy) and
policies reconfigurability (e.g. switching between different control logic).

3.3 Generalized Actuator approach

The novel approach proposed in this thesis starts from the idea of considering logic control as
a recipe mainly composed by two ingredients: (i) a set of basic actions, (ii) one or more de-
sired sequences to coordinate actions execution. The first ingredient represents mechanisms of
functionality implementation, while the second represents the control policy. As enlightened
previously the needs for reusable, modular control software require the two to be completely
independent. First of all, all the action/mechanisms are defined, using the GA entity; after-
wards the overall control policy is considered.

The first step for mechanism definition is to identify basic actions that cannot be reasonably
furthermore decomposed. For the considered system the basic actions to perform are (1) move
the workpiece in drilling position, indicated as Posi t i oni ng; (2) expel the drilled workpiece,

64 Architecture in industrial automation: The Generalized Actuator approach

indicated as Expul si on; (3) move the drill unit upward, indicated as Dri | | GoUp; (4) move

the ram downward, indicated as Dr i | | GoDown; (5) control the spindle rotation, indicated as

Spi ndl eControl .

Each basic action is then associated with a set of actuators and sensors that physically perform

the action. As depicted in figure 3.6, action Positioning and Expul si on both involve sensor

Wor kPi eceSensor and actuator Rot ar yTabl e. Actions Dri | | GoUp and Dri | | GoDown in-

volve sensors Li m t UPand Li mi t DOWN, respectively, and actuators Dri | | UPand Dri | | DO,
both of them. Finally action Spi ndl eCont r ol involves actuators Dri | | i ngRot at i onON
and Spi ndl eMot or Di r ect i on. At this point, the proposed subsequent step is the effective

Actions Sensors Actuators

Positioning WorkPieceSensor, WorkPieceTypeSensor RotaryTable
DrillGoUP LimitUP DrillUP, DrillDOWN
DrillGoDOWN LimitDown DrillUP, Dril DOWN

Expulsion WorkPieceSensor RotaryTable

SpindleControl DrillingRotationON, SpindleMotorDirection

Actions Sensors Actuators
Positioning (lVorkPieceS@/orkPieceTypeSensor RotaryTable
DrillGoUP LimitUP DrillUP, DrillDOWN
DrillGoDOWN LimitDown DrillUP, Dril DOWN
Expulsion @rkPieceSensor p J @aryTa‘bITj

SpindleControl

DrillingRotationON, SpindleMotorDirection

Actions Sensors Actuators
Positioning WorkPieceSensor, WorkPieceTypeSensor RotaryTable
DrillGoUP LimitUP : DrillUP, DrillDOWN ;
DrillGoDOWN LimitDown DrillUP, Dril DOWN
Expulsion WorkPieceSensor RotaryTable

SpindleControl

DrillingRotationON, SpindleMotorDirection

Actions Sensors Actuators
Positioning WorkPieceSensor, WorkPieceTypeSensor RotaryTable
DrillGoUP LimitUP DrillUP, DrillDOWN
DrillGoDOWN LimitDown DrillUP, Dril DOWN
Expulsion WorkPieceSensor RotaryTable

——
|

SpindleControl

QﬂlingRotationON, SpindleMotorDirection

definition of GAs following this basic concept (which is a sort of definition of a GA): every GA

Figure 3.6: Actions, sensors and actuators of the systems.

is a “virtual”actuator with the following characteristics:

- it is in charge of the execution of a small subset of the basic actions identified in previous

3.4. Generalized actuator definition and design procedure formalization 65

steps (hence it handles actuators and sensor associated to them);

- itis always “alive” during the operations of the automation plant, even if no specific action
is required to it.

In order to give effective “guide-lines”for this phase, the following rules are introduced:

- the union of the actuators associated with the set of GAs must be equal to the whole ac-
tuators set of the system (for what concern the sensors usually the same condition should
be satisfied but it is not mandatory);

- pursuing a non interference idea, sets of sensors and actuators belonging to different GAs
must be disjointed.

In the considered example, the situation depicted in lower part of figure 3.6 is obtained. Look-
ing for common equipment used in different actions, leads to group them in three GAs re-
spectively devoted to the drilling workpiece, move the drill unit and control spindle rotation
control.

From the considered example, it is immediate to note that there exist two different kinds of
actions and, consequently, of GAs; there are actions which structurally terminate after a fi-
nite time (e.g. action Posi ti oni ng implies moving the belt until the workpiece reaches the
drilling position), while there are others which, in principle, could continue for an infinite time
and whose termination has to be decided “externally”(e.g. action Spi ndl eCont r ol).

The GAs associated to the first kind of actions are denominated Do-Done GA. They are charac-
terized by a input signal Do used to command the starting of an action, an input signal DoWat
to specify what kind of action has to be performed (if more than one is available) and an output
signal Done to signal when the action has terminated successfully.

Differently, the GAs associated to the second kind of actions are denominated Start-Stop GA.
Their characteristic I/O signals are the input St art to command the beginning of an action,
defined by the input St ar t What , and the input command St op to stop the action.

For the presented example, the following GAs can be defined:

e Wr kPi eceMbt i on,a Do-Done GA that is devoted to workpiece positioning;
e Drill Motion,aDo-Done GA that is aimed at moving the drill unit;
e Spi ndl e, a Start-Stop GA that is aimed at controlling the spindle rotation of drilling.

These three GAs are described and realized using the Function Block (FB) formalism defined
in IEC61131-3 (see appendix B to see the code). It is worth noting that the FB are not used by
chance, in fact they represent Program Organization Units (POUs) which have to be always
active during overall control execution.

3.4 Generalized actuator definition and design procedure formaliza-
tion

We are now ready to define the structure of a GA specializing its input/output interface and its
basic dynamics by means of a state diagram; after that, generalizing the procedure proposed in
section 3.3 to solve the benchmark example, we furnish some guidelines to design the control
logic using the GA approach.

66 Architecture in industrial automation: The Generalized Actuator approach

In Figure 3.7 the interface section of both Do-Done GA (Figure 3.7(a)) and Start-Stop GA
(Figure 3.7(b)) are depicted; in both cases the interface can be mainly divided in two sections in
the following described.

1. Interface to policy: this section represents the input/output section between the GA and
the supervision policy. It can be further decomposed in two subsections separating the
standard communications between the GA and the policy and all the case dependent
communications.

Standard interface: embeds all command inputs for the GA and the outputs that com-
municate the actual state of the GA and the task that it is accomplishing. More in
details the Do-Done GA will receive as command the Do signal to start operations
and the DoWhat signal to specify the desired action, while the Start-Stop GA will be
commanded through inputs St art to start operations and St op to conclude oper-
ations, and through signal St ar t What to define the required action. In both cases
input signals Al ar m Al ar niType can be used to communicate to the GA the oc-
currence of an external anomalous situation. The outputs of this section are, for the
Do-Done GA, the Done signal by which the GA communicate that the task has been
performed and the DoneWhat signal by which the terminated task is specified; the
Start-Stop GA outputs are the signal Doi ngWhat representing the task that the GA
is performing. In both kind of GAs, a St at e signal communicate the actual state in
which the GA is evolving.

Communications: represents all the non standard communications between the policy
and the GA, as the results of sensor readings filtering (e.g. the Wor kPi eceTypeSensor
signals in Wor kPi eceMbt or GA, that distinguish between two different kind of
worpiece filtering the sensor readings Wor KPi eceTypeSensor .

2. Low level interface: this section contain all the interfaces with the low level world; even
this section can be further decomposed in two sub sections considering the constant pa-
rameters used by the GA separated from the physical interconnection with the plant.

Constant parameters: contains all the inputs by which it is possible to give a constant
value to characteristic parameters of the GA (e.g. in Wor kPi eceMdt i on GA the in-
put Posi ti oni ngDel ayTi me by which define the time interval between the acti-
vating instant for sensor Wor KPi eceSensor and the instant in which the workpiece
reaches the drilliing position.

Plant I/O link: is the real interface with the plant and contains as inputs all the links to
sensors and as outputs the links to actuators. In this way the physical connection
between the GA and the plant is completely hidden to the high level control policy.

The GA should then be designed considering as Reference Model the event driven evolution in
figure 3.7(c). In the depicted automaton it is possible to distinguish the states in the following
described.

I ni t: this state is the initial one and becomes active as soon as the GA is activated (usually
at the beginning of operations). It represents the state in which initialization actions are
performed; the GA moves out from this state when a signal Endl ni t communicates that
the initialization operations are concluded forcing the GA to move in Ready state.

Ready: in this state the GA is ready to perform the desired operation and is waiting for the Do
or St art command to move to Busy state.

3.4. Generalized actuator definition and design procedure formalization 67

Interface to policy

—Do Dohne — Interface to policy

I DoneWhat |—— Start _
DoWhat State Stop DoingWhat
Standard Interface StartWhat State

Standard Interface

Communication il
Communication —

Low level interface Low level interface

Constant Parameters Constant Parameters
Plant I/O link Plant I/O link S
(a) Do-Done GA interface. (b) Start-Stop GA interface.

Do/Start

Start
Process

EndInit

Done/Stop

Fault

EndFault

(c) GA evolution model.

Figure 3.7: Interfaces of GAs.

Busy: after the command issued by the policy the GA starts performing its required task com-
municating with the high level policy information on the accomplishment of the function
(e.g. information on the quality of the operations). The GA remains into this state until
the task is finished and the signal Done is raised (Do-Done GA) or until the St op signal
(Start-Stop GA) is issued by the policy. In these cases the GA moves back to state Ready.

Faul t : from any state a signal Faul t (used to communicate some anomalies) can force the
GA to move into a Faul t state in which some counteractions are taken. Note that the
Faul t signal can be both due to external commands (e.g. an alarm issued by an external
operator), to internal diagnostics or to wrong logic operations. When the alarm situation
is concluded (signal EndFaul t) the GA returns in the | ni t state to be reinitialized.

It is important to stress that each of the states just described represent a set of states; in this
sense the automaton in figure 3.7(c) plays the role of a logic design pattern similarly to GEMMA
diagram (see [65]).

To conclude this Section we briefly summarize the design procedure based on GAs and
introduced in section before:

1. Identify basic actions of the process;
2. Define Do-Done actions;
3. Define Start-Stop actions;

4. Identify the GAs by grouping actions with overlapping sets of sensors or actuators;

68 Architecture in industrial automation: The Generalized Actuator approach

5. Design each GA by:

- Defining its interfaces;
- Designing the actuation logics according to reference model in figure 3.7(c);

- Designing the internal diagnostics and quality assessment procedures (not consid-
ered in this work);

6. Design the high-level policies

3.4.1 Types of actions

DO DONE
Action is started — Action is in execution — Action is completed

(@)

START STOP

Action is started — Action is in execution------ - Action is stopped

(b)

Figure 3.8: Characteristics of Do/Done actions (a) and Start/Stop actions (b)

In section before a procedure to define GA and its characterization was presented, in this
section there are some remark on types on GA link on types of actions. Typically, actions
performed by an automatic machine can be subdivided in two macro families depending by
it’s duration: it’s possible to recognize Do/Done actions and Start/Stop actions. In order to clear
up the distinction, consider, for example, a system dedicated to the filling of a bottle with a
liquid at the temperature of 50°C. Two different type of actions are necessary: actions which
structurally terminates after a finite time as filling the bottle until the desired level is reached
and actions that could continue for an infinite time and whose termination has to be decided
“externally”. Referring to the mentioned example, it’s possible to analyze the two actions “fill
the bottle”until a determinate level and “control the temperature”of the liquid.

o Fill the bottle: when this action is started, the filling of the bottle must continue until
the desired level is reached. The action cannot remains active for an infinite time but
has a predefined duration decided by the state of the bottle. Actions of this type are
called Do/Done actions to emphasize that when the action is required (Do) it remains in
execution until its accomplishment (Done).

e Control the temperature: when required, the liquid must have a determinate tempera-
ture. The action starts and remains in execution until it is required that the liquid must
have the desired temperature; there isn’t an intrinsic duration. Actions of this type are
called Start/Stop actions to emphasize that when the action is required (Start) it remains
in execution until it is no longer required (Stop).

In figure 3.8 is highlighted the difference in duration between the two types of actions. In
addition, in the figure 3.9 is depicted the different synchronizations of the two type of actions.

3.5. GA in rapid prototyping 69

DO START
DONE \ °ToP 7 /' \
Action Performed/' Action in execution K‘ 34 /

(a) Do-Done GA actions. (b) Start-Stop GA actions.

Figure 3.9: Characteristic of GAs action.

3.5 GA in rapid prototyping

Time-to-market is a crucial issue in developing any industrial product and, consequently, the
request of reducing development time in realizing automated industrial plants is getting more
and more stringent. Toward this purpose, many tools have been developed to speed-up the
testing phase of logic control in the typical development life-cycle. These items are basically
simulation tools and rapid prototyping tools. The latter have been recently introduced to speed
up the testing of the final SW or HW /SW implementing the control algorithms, following the
software-in-the-loop or the hardware-in-the-loop approaches, respectively (see, beside others,
[16], [23] and [63]). In particular, the integration between simulation frameworks and rapid
prototyping platforms based on automatic code generation tools has relevantly increased the
speed and reliability of the translation from abstract definition of control algorithms to the cor-
responding implementing software. In this section we’ll see how GAs help the designer in
rapid prototyping of control logic in complex industrial automated systems.

With the term rapid prototyping we refer to a set of methods and tools to solve and verify control
problems fast and efficiently resulting in a functioning controller prototype; such techniques
include theoretical methods of control engineering from designing a system model and sys-
tem analysis to the design of a control strategy, test and optimization of the control strategy
in a simulation environment, automatic code generation for a real-time system operating a test
stand and verification and optimization of the controller with the target object on the test stand.
When dealing with complex systems, an efficient strategy is to decompose (usually following
functional reasoning) the system and verifying each of these parts, leaving the testing of the
integration of the whole system as a final step. The challenge in this task is to choose the right
way to decompose the system in order to obtain reasonably simple sub-systems while guaran-
teeing a certain degree of modularity. To this aim, GA can can play a key role; the idea is to
follow the same reasoning used to design the control logic to verify its correctness, dividing the
actuation mechanisms from the desired policies while leaning on the concepts used to define
GAs in order to have a suitable decomposition of the system. This strategy helps in defining
a set of simple and verified actuation bricks pursuing the idea of modular, reusable and easily
maintainable control software: changing actuation mechanisms or changing coordination pol-
icy can be treated separately.

In order to better enlighten the advantages of this technique, we apply the GA concept to a big-
ger part, than the part presented in section 3.2 ,of FESTO manufacturing system. In figure 3.10
is presented the proccessing station of the system, The station allows three parallel operations
thanks to a six position rotary table and three working modules: testing module, drilling mod-
ule and pushing out device. For an exhaustive description of the processing station the reader
is referred to B; in the following the desired sequence of operation for this station is described.

70 Architecture in industrial automation: The Generalized Actuator approach

When a workpiece is loaded from the distribution station to the rotary table (signal AvAlI-
BLELOADFORWORKINGSTATION becomes active), the table must rotate to move the workpiece
to the first working unit. To this aim the table is actuated through the command signal ROTA-
RYTABLEMOTOR and is equipped with a sensor that indicates when the rotary table is aligned
(signal ALIGNMENTROTARYTABLEWITHPOSITIONINGS).

DRILLING
MODULE
TESTING
MODULE

“WORKPIECE FROM ~ ~

—— A:‘. PREVIOUS STATION - -
f PUSHING-OUT

MODUL

Figure 3.10: Processing station.

When a workpiece is detected in the rotary table, this last makes a 60° rotation (correspond-
ing to the shift of the six working positions) to move the workpiece to the first module of the
processing station: the testing module. This module must control if the actual workpiece (its
presence is communicated by signal AVAIBLELOADINCONTROLPOSITIONING) has a correct
orientation or is upside-down. To do this, the module is equipped by a cylinder actuated
through signal TOLOWERCYLINDERTOINSPECTLOAD, which moves downward and checks
whether the workpiece is inserted with the opening facing upwards. If the workpiece is in the
right position (signal INCONTROLLOADINWRONGPOSITIONTOBEDRILLED is active) it can be
drilled, otherwise it must be expelled from the system.

After this testing module, the workpiece is moved to the drilling module by a table rotation;

3.5. GA in rapid prototyping 71

when the actual piece is under the drilling machine (signal AVAILABLELOADINDRILLINGPOSI-
TIONING is active), the clamping device clamps the workpiece (actuation signal BLOCKINGCY-
LINDERFORWARDINDRILLINGPOSITIONING) and the drilling operation can start. The drilling
machine is activated (actuation signal DRILLINGUNITACTIVE) with a clockwise rotation (ac-
tuation signal DRILLINGUNITCLOCKWISE) and is moved downward (actuation signal TOLO-
WERDRILLINGUNIT) until it reaches its lower limit (signal DRILLINGUNITDOWN). When this
position is reached, the driller machine should continue its operation for 2 seconds and, after
this time period, it is moved upward (actuation signal TOLIFTDRILLINGUNIT) with a counter-
clockwise rotation (actuation signal DRILLINGUNITUNCLOCKWISE) until it reaches its higher
limit position (signal DRILLINGUNITUP). At this point the drilling operation is concluded and
the drilling machine can be stopped deactivating signal DRILLINGUNITACTIVE, while retract-
ing the clamping device (deactivation of signal BLOCKINGCYLINDERFORWARDINDRILLING-
POSITIONING).

With one more 60° rotation of the rotating table the workpiece arrives to the last module: the
pushing-out module. When a workpiece is within this module (this situation is not recorded
by any sensor), a mechanical link actuated by signal EXPELLINGLEVERACTIVE expels it to the
assembly station. If the piece was recognized to be upside-down, an alarm light (actuated by
signal LIGHTUPSIDEDOWNLOADINEXPELLING) communicates this situation and the system
is stopped waiting for a manual removal of the piece. In table B.3, in appendix B, signals used
in the testbed are listed as well as their activation meaning.

The first step to define Ga as explained in section 3.3 is to identify basic actions required to
the plant; these can be described as follows.

1. RotaryTableActive: move the rotary table.

2. ToLowerCylinderTolnspectLoadActive: move downward the testing device.

3. ToLiftCylinderTolnspectLoad Active: move upward the testing device.

4. BlockingCylinderForwardInDrillingPositioningActive: clamp the workpiece for drilling.

5. BlockingCylinderBehindInDrillingPositioningActive: disable the clamp to unlock the work-
piece after drilling.

6. ToLowerDrillingUnitActive: move downward the drilling device.

7. ToLiftDrillingUnitActive: move upward the drillling device.

8. DrillingUnitClockWiseActive: rotate the drilling device clockwise.

9. DrillingUnitUnClockWiseActive: rotate the drilling device counterclockwise.
10. ExpellingLeverForwardActive: move the arm that expels the workpiece.
11. ExpellingLeverBehindActive: release the arm that expels the workpiece.

It is important to note that, when defining basic actions, we introduce some redundancy. For
example for clamping device, we only command its closure (activation of signal BLOCKINGCY-
LINDERFORWARDINDRILLINGPOSITIONING), while the release action is implicit in the deacti-
vation of command signal (in this case a spring mechanism allow the release action); however,
we list also the clamp unlock action. This is mainly due to the effort of completely decouple

72 Architecture in industrial automation: The Generalized Actuator approach

‘ Act. H Sensors H Actuators ‘
1 ALIGNEMENTROTARYTABLEWITHPOSITIONING ROTARYTABLEMOTOR
2 INCONTROLLOADINWRONGPOSITIONTOBEDRILLED TOLOWERCYLINDERTOINSPECTLOAD
AVAILABLELOADINCONTROLPOSITIONING
3 TOLOWERCYLINDERTOINSPECTLOAD
4 AVAILABLELOADINDRILLINGPOSITIONING BLOCKINGCYLINDERFORWARDINDRILLINGPOSITIONING
5 BLOCKINGCYLINDERFORWARDINDRILLINGPOSITIONING
6 DRILLINGUNITDOWN TOLOWERDRILLINGUNIT
DRILLINGUNITUP TOLIFTDRILLINGUNITUP
7 DRILLINGUNITDOWN TOLOWERDRILLINGUNIT
DRILLINGUNITUP TOLIFTDRILLINGUNITUP
8 DRILLINGUNITCLOCKWISE
DRILLINGUNITACTIVE
9 DRILLINGUNITUNCLOCKWISE
DRILLINGUNITACTIVE
10 UPSIDEDOWNLOADREMOVEDINEXPELLING EXPELLINGLEVERACTIVE
LIGHTUPSIDEDOWNLOADINEXPELLING
11 EXPELLINGLEVERACTIVE

Table 3.2: List of sensors and actuators associated to actions.

policy from mechanisms: the policy is interested in issuing the unlock command, while com-
pletely disregarding the physical mechanism that allow the action. Role of the GAs devoted to
accomplish such actions will be to map the actions into correct signal sequences.

Once we have defined basic actions, the second step is to associate to each action the set of
sensors and actuators that are involved (see Table 3.2.

At this point, following the procedure presented in 3.3, it is possible to define the following
GAs':

¢ RotaryTable (DD): implements action 1;

ControlUnit (DD): implements actions 2-3;

BlockingCylinderInWorkingStation (DD): implements actions 4-5;

DrillingUnit (DD): implements actions 6-7;

DrillControl (SS): implements actions 8-9;
e ExpellingUnit (DD): implements actions 10-11;

Logic control of the drilling module deserves a further explanation; three GAs are devoted to
such task (namely BlockingCylinderInWorkingStation, DrillingUnit and DrillingControl).
In fact, the drilling operation issued by the policy can be further decomposed in sub-operations:
(i) lock workpiece, (ii) drill the workpiece, (iii) extract the drilling unit and (iv) unlock the work-
piece. Moreover drill the workpiece action can be decomposed in (a) activate the drilling unit
with a clockwise rotation, (b) move downward the drilling unit until its lower limit is reached
and (c) wait for 2 seconds in this position while the extract the drilling unit action means (a)
lifting the drilling unit while (b) rotating counterclockwise. Such sequences of actions reflect in

Label SS stands for Start-Stop GA, while label DD stands for DoDone GA.

3.6. Conclusions 73

WaitingDoCommand ‘

—-Do.
POLICY ‘ — —
%]
‘ —+EndOperation10
‘ ‘ DrillingUnitClockWiseActive_Step N N
.
ControlUnit DrillingUnitTotal ExpellingUnit .
.
—+TRUE
‘ ‘ ‘ * STARTWHAT=CLOCKWISE
‘ ! ! SSTART Zo oL oo,
| | ! ToLowerDrillingUnitActive_Step .
| | |
A}
| LS = -
: po| ' |pone | . STARTWHAT=COUNTER-CLOCKWISE
—+EndOperation11 A) T
. DrillingControl
DrillingUnitClockWiseNotActive_Sts N DrillControlFB
rillingUnitClockWiseNotActive_Step \start DoneWhat|—
DrillingUnitTotal T“ STOP. -5 o
DrillingUnitTotalFB X illingUnitActi il
-{pe. Doner— EndOperation12 I
—DoWhat itCl
AvaibleL il i il itioning State|—
Positioning il i . Step
STOP
—+TRUE
) ToLiftDrillingUnit_Step ?}:::!:‘:3:12:
_ Done [—
bo I DoWhat DoneWhat|—
; Dri State|—
/ \ —-EndOperation13 cencorbrillingUni CommandToLoweeDrlingUnHl—ToL
‘CommandToLiftDrillingUnit —ToLiftDrillingUnit
DONE Dri

—+TRUE

~-EndOperation16

WaitingDoReset "

~NOT DO.

L{>WaitingDoCommand

Figure 3.11: Hierarchical GA DrillingUnitTotal.

a hierarchical organization of the involved GAs, as depicted in figure 3.11. More in details an
high level GA can be introduced (named DrillingUnitTotal) which is directly interfaced with the
policy; this GA embeds a sub-policy to correctly coordinate low level GAs BlockingCylinder-
InWorkingStation, DrillingUnit and DrillingControl. Doing this, the policy is aware just of
the existence of a drilling macro-action, the sequence of actions that corresponds to this macro-
action is hided in the DrillingUnitTotal GA, while physical implementation of each action is
considered in low-level GAs. For further details on the implementation of GAs and of the pol-
icy for the testbed the reader can see appendix B

The first step of rapid prototyping procedure has been the validation of the simulation model;
to this aim each single GA must be tested both in simulation and on real plant to check consis-
tency. Note that, at this stage, just the actuation mechanisms that correspond to basic actions
matter; in fact the policy, i.e. the coordination of actions, is useless when testing the model.
Because of this fact, at this stage a very simple policy has been considered, corresponding to
the workflow of a single workpiece.

74 Architecture in industrial automation: The Generalized Actuator approach

\

MASTER POLICY ,/ m ‘\

i i i | [eaz]

-7 ~ | |

RN Yo | e e 1 [eas] |

! ’Gi\z‘ ’GAs‘ ’GM‘ | i—¢ﬂ T%—l \\ GA4 /,’
\\ + / GA GA 2 GA3 GA4 \\ //

Figure 3.12: An example of policy manager with GA approach.

3.6 Conclusions

In chapter 2 and in section 3.1 it was presented different approach to design control logic in in-
dustrial automated systems and their limitation. In this chapter it was present an architecture
for industrial automated systems based on the novel concept of the Generalized Actuator.

The design procedure to realize automation functions exploiting a clear and structural sepa-
ration between policies and actions has been introduced To this aim a novel entity denoted as
Generalized Actuator (GA) is defined in order to (i) encapsulate actuation mechanisms separating
them from high level control policies in order to hierarchically manage the plant, (ii) support
hardware virtualization, component interoperability and reusability and (iii) make easier the
design of diagnostics, reconfiguration and quality check functionalities exploiting a distributed
and hierarchical approach. Usually in automated systems the machine has different operation
mode, like initialization mode, test mode, etc. These different operation modes have different
“sub policies”which interact with the same actuators and sensors but with a different coordina-
tion, like it’s possible to see in figure 3.12. From this point of view is clear as GA approach help
the designer in the design of the entire control logic, in fact the different policies use the same
GA but only in a different order or coordination, but actuation mechanism defined by GA are
the same, we can image a GA like a musician and the policy like the conductor, the musician is
always the same but the conductor “drive”the musician in a different way.

Actually the emphases has been put on the improvements obtained in terms of modularity and
reusability, but it is also important to stress that the proposed procedure, that reflects into a hi-
erarchical architecture, is the starting step towards a hierarchical diagnostics systems, in which
mechanisms fault diagnosis is separated from policy safety verification, and especially towards
a hierarchical reconfiguration system in which fault counteractions can be taken separately at
mechanisms level and/or at policy level.

In chapter 2 is shown the standard ISA S88 which define a hierarchical approach with the con-
cept of recipe. The main difference in GA approach is the policy is completing separate from
the actuation mechanism. In S88 the equipment phase, a sort of low level, implements a part of
logic to know if this operation is safe for the process. In this way the low level have to know a
part of policy, and this part of policy is dependent from application this means the equipment
phase can not be reusable in a different process because the part of logic inside change from ap-

3.6. Conclusions 75

plication to another. Another point is, with the S88 the policy is distributed on all the systems
and this cause a difficult to test its correctness.

76

Architecture in industrial automation: The Generalized Actuator approach

Chapter

The Generalized Device concept

This chapter introduces and analyzes a novel entity called Generalized
Device (GD) for logic control and diagnosis of field devices in industrial
automation. The emphasis has been particularly put on the diagnostic
functionalities embedded within the GD entity. In addition, it has been
shown that, following an inheritance principle, starting from the basic
GD, other typologies can be easily derived. The case study enlightens
how to implement GDs for the control of field devices typically used in
automated manufacturing systems.

4.1 Actuation mechanism

In chapter 3 it was presented the novel concept of the Generalized Actuator, and it was ex-
plained as GA can help the designer to develop the control logic in a modular way. One lim-
itation of GA approach is that that GA has a standard interface but a specific GA component
could be reused only if the plant part it handles is reused. In this chapter we’ll see how it
is possible to define a new layer in architecture independent from hardware of a industrial
automated systems, this new entity is defined Generalized Device (GD). Analyzing the typical
sensorial/actuation equipment in a industrial automated systems it’s possible to find different
kind of actuators and sensors coming from different fields, so to define an entity independent
from hardware implementation we have to answer to this questions: “Do different field devices
really need different control logic?”

The term actuator is used for the device which transforms a signal (usually an electrical signal)
into some more powerful action which then results in the control of the process, it is possible
to characterized the actuator in this fields:

e compressed air (pneumatics);
e hydraulics;

e electric motors.

77

78 The Generalized Device concept

A sensor is a device that measures a physical quantity and converts it into a signal which
can be read by an observer or by an instrument. Sensors are designed and built to address a
very different kind of task and can be so different, some sensors are very simple, like position
sensors, and there are sensors with a complicate structure, like vision sensor. Usually on a
industrial automated system we can find a numerous simple sensors and perhaps a single
vision implementation at best. In this section we’ll see the main characteristic of sensors, a first
classification can be made respect of information generates by the sensor: (i) a discrete binary
(on/off) situation, (ii) a continuous value.

An example of discrete sensor it is a sensor used to determinate if a box had been propelled
into a limit switch mounted on a movable stop. The information generates from the sensor is if
there is the box or it is not. It cannot tell if the box is getting close, or what speed or force the
box has when it hits. A continuous sensor can tell you some value that is likely to change quite
quickly, for example a pressure sensor can measures the pressure of a gas or a liquid.

A discrete sensor’s output is most likely digital, actuating a switch that completes a circuit or
disconnects it. Continuous sensor’s output can be either digital or analog. It depends on the
technology and circuitry being used. Many times it is an analog value that is converted to a
digital signal. An example would be the capacitance sensor used for left turn lanes at traffic
lights. Many times a sensor wire that connects with the sensor controller is embedded into the
pavement. A car with its significant metal mass changes the capacitance field, and the sensor
circuit takes the analog signal and determines the presence of a car, or not presence of the car.
Then it tells the traffic light processor to take the option of giving a green left turn arrow or
not. This sensor has some threshold value for a car, and will often not reach this threshold for
a smaller motor cycle. And one will never trigger the sensor with a bicycle. In the traffic light
example, the sensor has its own dedicated circuitry or processor, so the traffic light control
could be a simple set of relays, if it is an older model. One of the issues to investigate for
one’s automation machine is where the analog signal gets processed. And even if the main
controller is capable of performing such processing, will it be a burden and drag down the
overall machine performance. Sensors with built in processors have become quite popular for
this reason, as well as having a system that best matches the sensor to the processor. Proper
implementation is easier. If a sensor has analog output, it will most likely need to be converted
to digital for the controller to process the information. Almost all controllers work on digital
signals internally for the decision process. Some controllers have built-in analog inputs where
the signal is converted internally, but smaller and less expensive controllers often do not have
this capability and need external conversion.

Another sensor type distinction is that of how the sensor determines its value. Some sensors
have a direct physical contact other sensors determine the measurement from a distance. In this
sense we can divide sensors in (i) contact and (ii) noncontact. Contact sensors have two major
concerns, The first is that contact means that there is usually something physically moving,
and that moving closes a switch. The second concern is that by contact sensing, the pressure or
drag on the item being sensed may change the process. If one is winding a thin film of plastic,
and a contact sensor can occasionally poke a hole in the plastic, the information of the sensor
will not correctly. In general, contact sensors can be significantly cheaper than the noncontact
equivalent. Some noncontact sensors also require significant knowledge of how to implement
and adjust them, while a contact sensor’s mode of operation is usually obvious.

Pressure sensor : pneumatic line checking device. It is important to know that the compressed
air is on and up to system requirements before assuming that air cylinders will function
satisfactorily.

4.1. Actuation mechanism 79

Pressure sensor : hydraulic overload. Excessive pressure could blow out the lines and fittings
and be potentially dangerous.

Vacuum sensor : suction cup use. Detect whether a box has been successfully picked up by a
robot suction cup gripper.

Temperature : hot glue melt. Many packaging machines will not allow for operation if the hot
melt glue is too cold, which would have produced poor box sealing.

Weight : scale. A check to see if a package has received the proper amount of product.

Force : strain gage. Used to detect excessive forces on key members during motion. Good for
testing machines.

Metal detecting : safety check. Capacitance sensors used to detect metal filings.

Metal position : distance verification. Capacitance sensors used to obtain distance with non-
contact. Also known as proximity sensor.

Human presence : motion detection. Microwave transmission and reception can determine
motion and/or distances.

Human presence : thermal detection. Infrared detection of humans vs. machine signatures.

Distances : laser range finding. Send a laser beam in the direction and interpret return signal
to obtain very accurate measurement.

Distances : ultrasonic detectors. Send out a sound wave and determine distance with reason-
able accuracy at less cost than a laser.

Package tracking : radio frequency. Use radio frequency (RF) tags on boxes or products. Can
be queried even if on boxes stacked several deep.

Color detection : optical sensor. Use of smarter detectors to interpret reflected light to obtain
color information.

Actuators

Sensors

s

Sensors
Information

Actuators
Command

Figure 4.1: Device in industrial automation

This different sensors and actuator can be used to implement an action on a automatic machine.
In chapter 3 the procedure to define a GA starts from definition of basic actions. This actions
are basic action that manage actuators and sensors link to the actuators to manage the actions.
To perform an action an actuator need information from sensors, for example in chapter 3 the

80 The Generalized Device concept

operation of movement of drill unit up and down need information of two position sensors.
We can define a device (see fig. 4.1) like a set of actuator and of sensors need to actuator to
perform an action. From control logic point of view it is not important to know if the actuator
is electric or pneumatic or if the sensor is an inductor sensor or of other kind. The idea of the
Generalized Device is based on the concept that different device that perform the same action
do not need different control logic, but the control logic will be dependent only by the number
of control actions and the number of sensors. This idea will be explained in the next section.

4.2 Devices classification

Taking inspiration from the pneumatic world, it’s possible to define the different kind of actu-
ation mechanisms that composes a industrial automated system. Generally, plant is composed
of pre-actuators, actuators and sensors. The pre-actuators transform the controller commands
into power that is transformed by the actuators into actions performed by the effectors. Sen-
sors are used to inform the controller about the effectors state. Pre-actuators can be classified

Pls PrefI:O

Activation command—>[/| AVAVAN

P1,Q1 P2,Q2

P1 Al
Piston Rod

Deactive Active

Figure 4.2: Single acting device using a double acting cylinder

in three different types: electrics, pneumatics or hydraulics. Typical electrics pre-actuators are
the switch contacts while typical pneumatics or hydraulic pre-actuators are the valves. The
valves are the mechanical (or electrical) to fluid interface and the most widely used valve is the
sliding one employing spool type construction. Spool valve are classified (see [64]) by (i) the
number of “ways”flow can enter and leave the valve, (ii) the number of lands, and (iii) the type
of center when the valve spool is in neutral position. A more commonly used classification
(the most known) of valve is made by the number of ways and the number of position that
the valve takes. Each valve requires a supply, a return and at least one line to the load. Ac-
tuators are divided in three different families: electrics actuators (such as motor), pneumatics
and hydraulics actuators. The most used pneumatics actuators are pneumatics cylinders; they
consist of a piston that moves through a smooth round cylinder or tube. This cylindrical tube
must be sealed at both ends with end plates. The end plates are also called end caps or cylin-
der heads. The volumes between the piston and the cylinder heads are called chambers. The
piston is firmly connected to a shaft called a piston rod that exits the cylinder through a hole
in one end cap. There are two different type of pneumatic cylinder: single acting and double
acting cylinder. In the single acting cylinders, only one chamber can be supplied by the fluid,
with a valve is possible to move the cylinder only in one direction. The opposite movement

4.2. Devices classification 81

is performed by a spring. In the double acting cylinders, instead, both the chambers of the
cylinder can be supplied and by two valve is possible to move the cylinder in two direction.
A sensor is a device that measures a physical quantity and converts it into a signal which can
be read by an observer or by an instrument. It’s possible to classify the sensors respect to the
physical quantity that they measures: for example there are sensors of force, current, position,
etc.. Sensors differs also by the type of technology that it uses; there are for example switch
sensors, inductive or capacitive sensors etc.. After this brief discussion it’s possible to show the
different type of actuation mechanisms that is possible to find in a manufacturing systems.

Single acting devices

Single acting devices have only one actuation command that force the actuator to move in a
defined direction; the opposite movement can be performed by the actuator itself (think to a
single acting cylinder) by, for example, a return spring. The opposite movement can also be
performed by the pre-actuator when the actuation command is removed. This second case
is depicted in figure figure 4.2. A double acting cylinder is managed by a 4-way/2-position
valve electrically actuated by a single command: when the Activation command is raised, the
valve move to a position so the left chamber is connected to the pressure supply (Ps) while
the second chamber is connected to the return (Pref) and this cause the extraction of the piston
rod. When the Activation command is removed, the valve automatically switch to it’s stable
position in which the connection of the chambers of the cylinder is opposite respect to the case
just described; this cause the retraction of the piston rod. In this way it’s possible to obtain a
single acting device using a double acting cylinder. To signal to controller about the position
of the piston rod, an arbitrary number of sensor can be used: however, typically a maximum
of two sensors are used to inform the controller about the completely retracted and completely
extracted positions. In the figure one is depicted the case in which are present two different
sensors (that furnish signals Active and Deactive) to indicate both the ends position of the pis-
ton rod.

Double acting devices

Double acting devices have two actuation command that force the actuator to move in two
direction. In this case, the device can be blocked in any position by simply deactivating both
the actuation commands while single acting devices can stay (in a stable way) only in two
positions. A double acting device is depicted in figure figure 4.3.

Ps PrefI:O

MA 4

Activation command—| v T T | «—Deactivation command

P1,Q1 P2,Q2

P1 Al

Piston Rod

Deactive Active

Figure 4.3: Double acting device using a double acting cylinder

A double acting cylinder is managed by a 4-way/3-position valve electrically actuated by

82 The Generalized Device concept

two different commands: when the Activation command is raised, the valve moves to a po-
sition so that the left chamber is connected to the pressure supply while the right chamber is
connected to the return and this cause the extraction of the piston rod. When the Deactivation
command is raised, the valve moves to a position so that the right chamber is connected to
the pressure supply while the left chamber is connected to the return and this cause the re-
traction of the piston rod. When both the actuation command are removed, the valve moves
to a position so that both the cylinder chambers are insulated and the piston rod stay in its
actual position. Also in this case are present two sensors. It has been mentioned that typically
a maximum of two sensor are used to inform about the device state because more than two
sensors will introduce complexity without an improvement in terms of performance or safety.
Depending by the number of sensors that are present it’s possible to give another classification
of devices: there are the single feedback devices (if only one sensor is present), double feedback
devices (if two sensors are present) and no feedback devices if no sensor is present.
Summarizing all the aspects just presented it is possible to tell that are present the following
type of devices:

e Single acting devices (SA)

— With double feedback (DF)
— With single feedback (SF)
— Without feedback (INF)

e Double acting devices (DA)

— With double feedback (DF)
— With single feedback (SF)
— Without feedback (INF)

The different devices topologies are depicted in figure 4.4.

Actuation_1 Sensor, 1 Sensor,1

é Actuation device[—> || Actuation1 |Actuation device——>

Actuation 2 DADF Sensor 2 > ADF Sensor2
() > (SADF)

—> —>
1) 1)
W‘» Actuation device|S 1 || A Actuation devi
ctuation device|Sensor, ctuation 1 [Actuation aevice| Sensor,1
pcwtiong | (DASH) [> || 2| asH [>
2) 2)
Actuation,1
DTNy | Actuation device Actuation 1 |Actuation device
Actuation 2 (DANF)) (SANF)
—>
3) 3)
(a) (b)

Figure 4.4: Different type of devices: single acting devices (a) and double acting devices (b)

4.3 A hierarchical multi-layer architecture

The role of the control logic in an AMS consists, essentially, on proper management of all field
devices so that the overall system behavior fulfils some assigned target requirements. For this

4.3. A hierarchical multi-layer architecture 83

GENERAL Supervision Policy
Master Policy
Slave Policy e o Slave Policy

Ireq/ack Ireq/ack
' Generalized Actuator (GA) | l|Generalized Actuator (GA)|!
| [|
|
| GA-specific control logic I 1| GA-specific control logic ||
I A A I I A I
req/ack reg/ack |I | reg/ack [
| v v | L4 |
I| (Generalized| (Generalized) |, | Generalized |
I Device Device | Device |
A		A					
\4 A4		Y					
Sensor Actuator Sensor Actuator	Sensor Actuator						
Virtual Plug		Virtual Plug		Virtual PIugJVirtuaI Plug I	Virtual Plug		Virtual Plug
A A	A						
I v v		v					
[l						
[

Figure 4.5: The proposed hierarchical multi-layer architecture.

purpose, it has to perform the following three basic tasks: (i) select the system operational
mode on the basis of both the commands coming from the user and the controlled plant con-
ditions; (ii) handle the correct sequence of actions involved by the selected operational mode;
(iii) drive the field devices to accomplish the desired actions

A schematic overview of the hierarchical multi-layer architecture that we envision to keep
cleanly distinct control logic’s policies from mechanisms is depicted in figure 4.5. Policies,
dealing with “what to do”and “when to do”issues, are handled, at different abstraction levels,
within the upper layers of the architecture. Mechanisms, dealing with “how to do”issues, are
confined to the lowest layer of the architecture. The new layer comprising the GDs is explicitly
enlightened in figure 4.5 to emphasize the substantial difference with respect to the architecture
considered in previous chapter, where the functionalities now assigned to GDs were generically
encapsulated within the Generalized Actuators (GAs).
The General Supervision Policy (GSP) is devoted to the management of different operational
modes and to the realization of the sequences of actions they imply. The GSP may be suitably
further divided in a Master Policy (MP) and a set of Slave Policies (SPs). The selection of the
desired operational mode (e.g. initialization mode, manual mode, automatic mode, etc.) is
performed by the MP, whereas its accomplishment by the delegated SP. The MP could be stan-
dardized following an approach similar to GEMMA (see [65], [19]), while the SPs, differently,
are strongly application-dependent.
In chapter 3 it was introduced the concept of the Generalized Actuators (GAs) and it was ex-
plained that GAs are devoted to the concrete realization of the actions requested by the GSP,
directly acting on the plant (or parts of it), but hiding all plant-related features (e.g., involved
tield devices, typology of actuators and sensors, dynamics, faults diagnosis) to the GSP. Here
we just recall that it exhibits a standardized “general behavior”at the GSP interface, giving

84 The Generalized Device concept

Statio

Expulsion Cylinder

Figure 4.6: The miniaturized AMS used as test bed.

a sort of virtualized image of the specific plant part it handles. Hence, in principle, the ar-
chitecture, the detailed behavior and the implementation of such entity could be completely
application-dependent. This means that the GA interface can be reused, but a specific GA com-
ponent could be reused only if the plant part it handles is reused. Actually, it is possible to
recognize that some basic patterns often recur within GAs to realize actions, particularly when
they have to deal with field devices involving only digital control and feedback signals (e.g.,
single-acting or double-acting pneumatic valves, hydraulic pistons, etc.). Taking the cue from
this simple observation, we define GDs as entities abstractly modeling the behavior of the most
commonly used digital field devices, regardless their nature, intrinsic features and specific ac-
tuation/sensing mechanisms. GDs, as generally-applicable and reusable components imple-
menting basic control/diagnosis schemes, may be profitably embedded within GAs. From this
point of view, it is worth noting that, for the sake of generality, a residual GA-specific control
logic is associated to each GA in figure 4.5. As a matter of fact, it may be necessary for complex
GAs only, to deal with peculiar, yet usually very light, functionalities. As regards the connec-
tion of a GD on the plant side, a suitable Sensor/Actuator virtual plug of signals are used. The
kind of services that a GD exposes at the interface with the GA-specific control logic, as well as
the protocol envisaged for their interaction, will be described in the next section.

To show an example of application of the proposed control architecture of figure 4.5 we con-
sider as testbed a part of a micro flexible manufacturing system produced by FESTO didactic.
For a complete explanation of the entire system the reader is refer to see B, in this example only
the first two stations (depicted in fig. 4.6) are analyzed. The stations depicted in figure 4.6 are
the distribution station and the testing station. The distribution station is composed by a ware-

4.4. The Generalized Devices 85

house that contains up to eight raw bases. One base at a time is expelled from the warehouse
by means of an Extraction Cylinder. The unique actuation command of the device causes the
extraction of the cylinder (setting the actuation command to 0 cause the retraction of the cylin-
der); two limit switch sensors indicates the end positions of the cylinder. The extracted base is
transferred to the testing station by means of a Changer Module that can be commanded using
two different commands (one for each direction). The end positions of the changer module are
signalized by two electric microswitch. To the extremity of the module there is a suction cup
necessary to hold the raw pieces during the transportation. The purpose of the testing station is
to check the colour and the height of a base; if the characteristics of the base are compliant with
the user’s requirements the base has to be transferred to the downstream station, otherwise the
base must be discarded. When a base arrives in the station, a sensor reads its presence. At this
point, a colour sensor is used to check the colour of the piece. If the base must be processed,
a Lifting Module moves it to an height tester to check if the height is correct. Two actuation
commands are used to move the Lifting module while its two end-stroke positions are signaled
by two sensors. If all the measurements are correct, the raw piece is moved to the downstream
station by means of an Expulsion Cylinder. If the base has not to be processed it is discarded
by means of the same expulsion cylinder. One actuation command drives the extraction of the
cylinder while, only one sensor, indicates when it is completely retracted. It is possible to clas-
sify the different devices that composes the two analyzed stations: the Extraction Cylinder is
a SADF device, the Changer Module is a DADF device, the Lifting Module is a DADF device
and the Expulsion Cylinder is a SASF device.

The architecture of the hierarchical control software realized for the proposed example is de-
picted in figure 4.7 it reflects the general one depicted figure 4.5. For the sake of brevity, only
the Main slave policy is completely expanded; it is clear that for all the slave policies, the same
structure is implemented. For the purpose of this paper we will focus only on the extraction
cylinder device. The control software is composed by both the GAs and the GDs entities. The
GD is the responsible of the management of the field device and, as above described, it also
performs the first level of diagnosis; when a fault is detected, the GA moves into the Alarm
state where some counteractions are taken (for example a SADF device, after the detection of a
sensor fault, can be reconfigured to work as a SASF device as explained in the previous section).
The GA is then the responsible of a first level of reconfiguration.

4.4 The Generalized Devices

In the following will be explore and analyze the SA devices, starting from the more general
and widely used SADF type, then extending our considerations to the SASF and SANF types.
Figure 4.8 shows the structure of the SADF GD and its interfaces. The interface on the plant
side involves the digital output A (Activation) controlling the field device actuator and the two
digital inputs a (Activated), d (Deactivated) coming from the field device sensors. On the GA-
specific control logic side, the GD exposes a standard interface for requesting /notifying the ex-
ecution of the two elementary services it provides. More in detail, the GD accepts as commands
RA (Activation Request) to activate the device and RD (Deactivation Request) to deactivate the
device. Service completion is notified by the GD via AA (Activation Ack) and AD (Deactiva-
tion Ack), respectively. The device Activation Time (TA) and Deactivation Time (TD), reflecting
respectively the maximum amount of time estimated for its activation and deactivation, as well
as the desired initial Activation value, are configurable via the configuration/communication
interface. The same interface permits to communicate all detectable device faults.

86 The Generalized Device concept

MASTER POLICY
N A
1req/ack] req/ack] reg/ack
A 7
Slave 1 Slave 2 Slave n
Init Main Alarm
lDo/Done Do/Done Do/Done lDo/Done
A1 GA 2 GA1
Extraction Cylinder|| Changer Module Lifting Module ||Expulsion Cylinder
GA Logic | GA Logic | | GA Logic | | GA Logic |
A A 'y A
‘tRA/RD 1R/R, j'RA/RD LR/R,
GD1 GD 2 GD 3 GD 4
SADF DADF DADF SASF
iA/a/d iA/D/a/d iA/D/a/d iA/d
| Virtual Plug | | Virtual Plug | | Virtual Plug | | Virtual Plug |

Figure 4.7: The hierarchical multi layer architecture envisaged for the control of the AMS used
as test bed.

GA-s.c.l. Interface

RA —Activation Request Activation Ack [— AA
RlA ?A RlD ?D R, —Deactivation Request Deactivation Ack[— AD
~ GD Configuration/Communication

Field Device Inteface
ale—
Sensors Actuators A d—fDeactivated Activationf—A
dle a —Activated

(a) SADF model. (b) SADF interface.

A

Figure 4.8: The SADF GD and its interfaces.

4.4. The Generalized Devices 87

statel N

Device
deactivated

[state2 N

Device
in activation

Activation=1
Z
W

Activation Request=1

Deactivation Request=0,
Activation=0

Deactivated=1 [

[stated N

Device
in deactivation | ¢«—— —

Figure 4.9: FMS modeling the behavior of the SADF GD.

The behavior of the SADF device in nominal operating conditions (i.e., following initializa-
tion) is modeled by the FSM depicted figure 4.9. Three relevant aspects have to be pointed
out. (i) A positive polarity is assumed for all GD inputs/outputs, meaning that the logical
name assigned to each of them unambiguously identifies, in positive logic, the role it plays.
(ii) A very simple, yet effective, handshaking protocol is here envisioned to guarantee proper
coordination between the GA-specific logic and the GD. The former requests the execution of
a service by asserting either RA or RD, the latter notifies service completion by de-asserting
the request.! (iii) The GA may request the GD to abort the execution of a service by simply
asserting the opposite request.

The interface shown in figure 4.8(b) has the following structure:

1. GA - interface: this section represents the input/output section between the GD and the
GA. It can be further decomposed in two subsections separating the standard interface
between the GD and the GA and the interface for the configuration parameter of the
GD and its communications with the GA. In this pat GD embeds all command inputs
for the GD an the outputs that communicate the actual state of the GD. More in detalil,
the single acting GD will receive as command the Activation request signal to activate
the device and the Deactivation request signal to deactivate the device. Fore a major
clearness think to a single acting cylinder: this type of device is normally in a specific
position (i.e. retracted) and it will move into the opposite position (i.e. extracted) as
soon as the actuation command is raised that is the device is activated by the Activation
request. The Deactivation request signal cause the device to return in its initial position.
The double acting GD will receive as command the Activation request signal to activate
the device, the Deactivation request signal to deactivate the device and the Stop signal
to stop the device operations. The Activation request and Deactivation request signal
have the same function as for the single acting GD, the difference with single acting GD
is the presence of the Stop signal: single acting devices have only two stable position
while double acting devices have the possibility to be blocked in any position. When the
double acting GD receive the Stop signal it block the field device in the current position.
For both devices the unique output of this section is the State signal used to communicate
the actual state in which GD is evolving.

!Referring to an TEC61131-3 FB implementation of the GD, this is possible defining

88

The Generalized Device concept

RA,RD=x, 1,0 RA,RD, 1,0

RA,RD, 1,0

0, 'Deactive’ 1, ’In activation’

RA, RD X, X
RA,RD, 1,0 RA RD,0,1

RA,RD, 0, 1 RA, RD, X, X RA=x,RD, 0, 1

RA,RD,0, 1 ‘/‘>

Legend: In the figure is represented a Moore automaton.

The outputs are expressed as <Activation Command, State>.

The transitions are expressed as <RA, RD, Dective, Active,> where:
RA=Activation Request

RD=Deactivation Request

0, 'In deactivation’

Figure 4.10: State diagram for the single acting GD with double feedback

Configuration/Communications: represents all the signals that can be used to configure
some parameters of the GD such as the number of feedback, the diagnostic timers, the
initial state etc. and all the signal that can be used by the GD to communicate with the
GA such as alarm signals or a sensor state.

. Field device interface: this section contains as inputs all the links to sensors and as out-

puts the links to actuators of the device that manages. More in detail, for both single
and double acting GD, the inputs of this section are the signal Activated and the signal
DeActivated which are the link to the sensors that indicates when the device is active or
deactivated (e.g. the position of the actuation mechanisms). For the single acting GD the
output of this section is the signal Activation command which is the link to the unique
actuation command of the single acting actuation mechanisms. When this signal is high
the device is activated while when this signal is low the device is deactivated. For double
acting GD the outputs of this section are the Activation Request signal and the Deactiva-
tion Request signal. With the combination Act i vati on Request =1, Deactivation
Request =0 the device is activated, with the combination Activation Request=0, Deactiva-
tion Request=1 the device is deactivated while with the combination Activation Request=0,
Deactivation Request=0 the device is blocked in its actual position. The combination with
both request high is not permitted.

A more detailed structure of the single acting GD is shown in figure figure 4.4. The automaton
of figure figure 4.10 is the automaton for the nominal operation of the GD; for simplicity it is
supposed that an initialization procedure is performed before starting the nominal operation.
This is necessary for bring the device in a known configuration; the nominal automata can then
start from the initial state (St at el of figure) which corresponds to the initial known configu-
ration of the device. In the state St at el the GD is deActivated with the Activation Request
at a low logic level and then can receive only the Activation request command; the Activation
request cause the GD to evolve in the state St at e2 where the Activation Request is raised.

4.4. The Generalized Devices 89

RA,RD=x, 1,0 RA,RD, 1,0

RA,RD, 1,0

o——> 0, '‘Deactive’ 1, ’In activation’

RA,RD, 1,0
RA,RD,0,0

0, 'In deactivation’

RA,RD, 0,0

RA,RD, 0,0

RA,RD, 0,0

1, ’In activation’
RA,RD, 0,0

RA,RD, 0, OI RA RD,0,1

RA.RD, 0,1 RA=x,RD, 0, 1

RA,RD,0, 1 ‘/D

Legend: In the figure is represented a Moore automaton.

The outputs are expressed as <Activation Command, State>.

The transitions are expressed as <RA, RD, Dective, Active,> where:
RA=Activation Request

RD=Deactivation Request

RA,RD, 0, 1

0, 'In deactivation| ¢——

Figure 4.11: State diagram for the single acting GD with double feedback

The device is then in activation; before the completely activation of the device it is expected
that the sensors combination changes from Activated=0, Deactivated=1 to Activated=1, Deac-
tivated=0 (St at €3) when active. At this point the device can only be deactivated by rising
the Deactivation request signal. If during the activation of the device (state St at e2) the Deac-
tivation request signal is raised (and contemporary the Activation request signal is removed)
the GD passes in the deactivation states (St at e4). When the device is in deactivation there is
the same behavior.For the control modeling this description is complete but in order to sim-
plify the diagnostic it is necessary to introduce an automaton with 6 states instead of 4: this
model is said to be Di agnosti ¢ Ori ent ed and is depicted in figure figure 4.4. Before the
completely activation of the device it is expected that the sensors combination changes from
Activated=0, Deactivated=1 to Activated=0, Deactivated=0 (St at €3) and then to Activated=1,
Deactivated=0 (St at e4) when active. At this point the device can only be deactivated by ris-
ing the Deactivation request signal; also for the deactivation sequence it is expected the same
changes in the sensors combination as for the activation sequence (states St at €5 and St at €6).
It must be taken into account that the device activation (or deactivation) could require a lot of
time and this time is then necessary for the fault signal. With the 6 states model the introduc-
tion of a complete diagnostic function is simplified respect to the 4 states model. The double
acting GD can be implemented through an event-driven automaton which states generally
evolve like depicted in figure 4.12. In this case it is directly represented only the Diagnostic

90 The Generalized Device concept

RA, RD=x, Stop=x, 1,0 RA, RD, Stop, 1,0

. o RA, RD, Stop, 1,0 R AD,
@—>»| A, D, Deactive 7| In activation’
RA, RD, Stop, 1,0
___Or
. RA, RD, Stop, 1,0 RD,
R, R, 5105, 1.0 L P, RA, RD, Stop, 0, 0
RA, RD, Stop=x, 0, 0
A, RD,5105,0,0 RA, RD, Stop, 0, 0

RA, RD, Stop, 0, 0
OR

RA, RD, Stop, 0, 0 RA, RD, Stop, 0,0
—_— —_—

AD,
<«—— | ’Inactivation’
RA, RD, 5top, 0, 0
OR
RA,RD, Stop, 0,0

RA, RD, Stop, 0, 1
RA, RD, Stop, 0, 1

OR —
RA. RD, Stop, 0, 1 RA=x, RD, Stop=x, 0, 1

A.D,
‘In deactivation’

RA, RD, Stop, 0, OT
RA, RD, Stop, 0, 1
A, D,
‘In deactivation’

RA,RD, 0,0

RA, RD, Stop, 0, 1

A

Legend: In the figure is represented a Moore automaton.

The outputs are expressed as <A, D, Stop, State> where:
A=Activation command

D=Deactivation command

The transitions are expressed as <RA, RD, Dective, Active,> where:
RA=Activation Request

RD=Deactivation Request

Figure 4.12: State diagram for the double acting GD with double feedback

Oriented model. For the double acting GD is possible to make the same considerations as for
the single acting GD but with some modifications. Instead only one actuation command in
this case there are both the Activation Request signal and the Deactivation Request signal and
in addition to the Activation request and Deactivation request signals there is also the Stop
signal. In the figure figure 4.12 is depicted the response of the GD to the different requests.
The two automaton are almost identical, the unique practical difference is the presence of the
state St at €7 in the automaton of double acting GD. The GD is in this state when the actuation
mechanisms is stopped between the two active and deactivated positions by rising the Stop
signal. In this state the device passes also during the direct changes between activation and
deactivation procedures to avoid the possible Activation Request=1, Deactivation Request=1
combination during the transitions.

The two presented automatons represents the GD behavior in the double feedback case: these
models remains the same also in the case of single feedback or no feedback simply modifying
the conditions of transition. The sensors that are not present must be substituted by a timer
which drive the automaton evolution at the same way as the sensor signal. However it is not
necessary to design a GD for each feedback typology but only two GD must be designed that
are the single acting and the double acting GDs: using the configuration signals introduced
early, is possible to configure the GD for the operation as single, double or without feedback.

4.5. Fault diagnosis functionalities 91

LEGEND
TD TA
|| : fA Actuator Fault
0 1 i
A—Is MUX ":a Sensor Activated Fault
z fd Sensor Deactivated Fault

| S.A.T. Stuck AtTrue

A—| Derivative l— LD U/D 0
TIMER S.A.F. Stuck At False

Clock > zero E O:I OK Correct final state
Timeout
4
En o r—f saF
D O—OK
A—I I E o, fA SAT.
T I
! a5 of—f sam
Ad‘a+Ada’ LD TIMER uD—o 2 D o,— fa SAF.
Clock > zero E o:I d—l, E Os— fA SAF.
R O7 _ OK
A4
Timeout) fd SAT.

(@) A simple and common ap-(b) A refined approach to fault diagnosis with activation deactivation
proach to fault diagnosis. timers.

Figure 4.13: Fault diagnosis approach.

4.5 Fault diagnosis functionalities

The presented approach gives the possibility of easily embedding within the GD also diagnos-
tic functionalities. Clearly the diagnosis cannot be effectively performed unless considering
the dynamic of the controlled device. A conceptual scheme of a simple and commonly used
approach, envisaging a similar time for device activation and deactivation (TA = TD =T), is de-
picted in figure 4.13(a). A timer is exploited to deal with the device dynamics. When the field
device is operating as expected in steady state conditions, that is when the inputs from sensors
coherently reflect the condition established by the actuator, the Load input of the timer prevents
the assertion of output (Timeout) devoted to signaling a (really generic) faulty behavior of the
device. Upon activation or deactivation of the device, the timer starts its countdown. When the
timer expires (the zero output becomes true), and the generic fault message is asserted. This
approach, completely ignoring the cause-effect relationship existing between A and a, d, has
two drawbacks: a faulty behavior of either sensor is reported with a T delay; an unexpected
bouncing of either sensor at a frequency less than 1/T is undetectable; unexpected, yet persist-
ing, temporary configurations of either a or d, each lasting less than T, are undetectable. An
improvement may be addressed by considering the conceptual scheme of figure 4.13(b). The
cause-effect relationship between A (cause) and a, d (effects) must be taken into account. The
Load input of the timer is driven by the derivative of A; at any slight variation of A the timer
starts its countdown. The decoder has been introduced to allow the detection of the faulty
sensor/actuator. When the timer expires (zero output becomes true), the decoder is enabled
and the correct diagnostic information is generated. A MUX, driven by A, is used to select the
correct time: if A=1 the device is activated and then, the activation timer TA must be selected,
otherwise, if A=0, the device is deactivated and the deactivation timer TD must be used. The
last proposed method, allow to solve all the drawbacks of the method of figure 4.13(a). It is im-
portant to emphasize that the use of timers is exploited also to deal with the problem of image

92 The Generalized Device concept

State d=1,a=1|d=1,a=0|d=0, a=0|d=0, a=1 | d=1, a=1|d=1, a=0| d=0, a=0| d=0, a=1 @.,@
Device
deactivated —
(A=0) [L— @ d=1 a=0
= A=0—1 The actuation command is raised.
Device The device starts its movement
in activation D> D 4 i
(A=1) e T
Device @
activated \> OK
(A=1)
Devi d=0 a=0
evice . Lo
in deactivation A=1 The device continue its movement
(A=1)
Timeout =0 Timeout =1 4 >0K
LEGEND
O Initial stable state Instable state d=0 a=1
O Stable state OK Correct final stable state A=1 The device has reached the active
state before the timer expiration

Figure 4.14: The SADF GD state space: state evolution during an activation cycle in absence of
faults.

persistence: any decision must be performed just if the sensors configuration is a stable one
and not just a spurious transient configuration, an exhaustive discussion of this problem can
be find in [55]. Below, we consider a Structured Text (ST) implementation of the approach of
tigure 4.13(b); obviously, the methodology is independent of the programming language used.
Suppose that the Timeout variable is generated as Timeout:=(DeviceTimer=0). The variable
DeviceTimer is initialized at the correct value consistently with the value of A and is decreased
at regular time intervals (a Clock variable, synchronized with the system time, can be used to
this purpose). When the countdown ends, the Timeout variable becomes true.

Note that the diagnosis is not performed for the whole duration of the activation/deactivation
cycle. These cycles have a duration approximated by the activation/deactivation times which
may be long time intervals. Therefore it may take a long time before a fault is detected. To
improve the method, two different timers can be used: the first to monitor the duration of the
total cycle whilst, the latter, to check if the device has started the action. The diagnostic func-
tion is active if the device is into a stable state (Device activated or Device deactivated) or if
the timer expires during an activation/deactivation cycle. To enable the diagnosis when the
device reaches a stable state, the DeviceTimer variable will be set to 0 (and the Timeout vari-
able rises to 1) as soon as the device has complete an activation/deactivation cycle. In this way,
it is possible to recognize both the so called “static faults” and the “dynamic faults”. Static
faults are faults that appear when the device is in a stable state, while dynamic faults are faults
that appear when the device is in a non-stable state (i.e. Device in activation or Device in de-
activation). To explain the dynamic of the fault signals generation we will consider a SADF
device that implements the control of a pneumatic piston. In figure 4.14 is depicted the acti-
vation cycle of the device without faults. Initially, the device is deactivated i.e., the pneumatic
piston is completely retracted. The activation request forces the GD to move to the Device in
activation state; the activation command A is raised, DeviceTimer is set to TA and the Timeout
variable becomes false. The piston starts moving toward the extracted position. Contemporary,
the DeviceTimer is decremented to scan the execution time of the activation cycle. As soon as
the piston reaches the active position (a=1), the DeviceTimer variable is set to 0, the Timeout
variable becomes true and the diagnosis is enabled. In the situation of figure 4.14 the device

4.5. Fault diagnosis functionalities 93

State d=1,a=1|d=1,a=0|d=0, a=0|d=0, a=1| d=1,a=1|d=1, a=0|d=0, a=0 | d=0, a=1
Device

deactivated -
(A=0) P 020

. <
_ Device ACTUATOR e avo
in activation FAULT - -
(A=1) A=0—1 The actuation command is raised

but the device is blocked.

Device
activated
—
FAULT
Device
in deactivation
(A=1) d=1 a=0
The timer expires before the
completely activation of the device.
The correct fault signal is generated.

Timeout=0 Timeout=1

LEGEND

---» Timeout

Figure 4.15: Dynamic fault detection in the SADF GD state space.

State d=1,a=1|d=1,a=0|d=0, a=0|d=0, a=1 | d=1, a=1|d=1, a=0| d=0, a=0 | d=0, a=1

Device d
deactivated A -
4 O->A
Device
in activation

(A=1) d=1 a=0—1
Device
activated
(A=1)
Device Sensor Activated
in deactivation switch to high level
(A=1)
Timeout=0 Timeout=1

Figure 4.16: Static fault detection in the SADF GD state space.

correctly reaches the extracted position, the sensors coherently reflect the condition established
by the actuator and therefore, no faults have affected the device. In figure 4.15 is depicted the
situation in which the piston is blocked in the retracted position. At the activation request, A
is raised, the DeviceTimer variable is set to TA and Timeout becomes false. The piston, how-
ever, is blocked in the retracted position. DeviceTimer is continuously decremented to scan
the execution time of the activation cycle. When the DeviceTimer variable becomes 0 (Timeout
becomes true) before the activation of the device, the diagnosis is enabled allowing to generate
the correct fault signal. The above presented fault belongs to the dynamic fault class. Such as
explained before, also static faults must be considered; an example of static fault is depicted in
figure 4.16. The pneumatic cylinder is retracted, the GD is in the Device deactivated state and
Timeout is true. The diagnosis is therefore enabled. By means of a fault, the a signal becomes
(wrongly) true; the correct fault signal is then instantaneously generated. In figure 4.17 are de-
picted all the diagnostic information that is possible to generate using the proposed procedure,
both for dynamic and static faults. It’s important to note that the configuration d=1, a=1 both
for the Device in activation and the Device in deactivation states is depicted as unreachable
state. This is because the evolution toward the activated/deactivated state, is performed as
soon as the a/d signal becomes true. Suppose that the piston of figure 4.17 is moving toward
the extracted position; suppose also that, during the movement, the sensor d get stuck to the

94 The Generalized Device concept

State d=1,a=1|d=1,a=0|d=0, a=0|d=0, a=1

Device f

f f
deactivated a O d A
“neo || saT K

S.AF SAT.
Device f f
in activation ® A a ®
(A=1) S.AF S.AF

=
v || T [81 L lOK

(A=1) S.AT S.AF S.A.F.
Device
in deactivation ® ® fd fA
(A=0) S.AF SAT
Timeout =1
LEGEND

® Unreachable state

Figure 4.17: Summary of diagnostic signals.

high level. When the piston reaches the extracted position, the sensor a becomes true and the
GD instantly evolves in the Device activated state. The diagnosis functionality is enabled and
the fault signal is generated. In conclusion, the d=1, a=1 configuration associated to the Device
activated and Device deactivated states, is representative for both dynamic and static faults.
The diagnostic information is generated with a simple Boolean expression. For example, the
reporting of a generic fault of the sensor a, is asserted as follows:

Faul t Sensor Devi ceActi vat ed: =((NOT Activati on AND Deactivated AND Acti vat ed)
OR (Activation AND NOT Deactivated AND NOT Activated)) AND Ti nmeout;

Starting from the analysis just performed, it’s possible to easily derive some considerations
about the diagnosis for single feedback devices. A single feedback device is equipped with a
unique sensor; the missing one is generated by means of a pre-elaboration. For example, if only
the d sensor is available, the active device information can be derived as:

Acti vat ed: =NOT(Deact i vat ed) AND
(Devi ceActivated OR Devicel nActivation AND Ti neout) ;

while, if only the a sensor is available, the inactive device information can be derived as:

Deacti vat ed: =NOT(Act i vat ed) AND
(Devi ceDeacti vat ed OR Devi cel nDeactivati on AND Ti neout) ;

It is possible to derive the model of the new device by means of inheritance: the FSM behind
the SASF device is the same as figure 4.9 where the lacking information is replaced by the
generated one. By a detailed analysis of the presented codes, it’s easy to understand that the
missing information is calculated as false at the appearance of each fault. Following the idea
to inherit also the diagnostic function, it is possible to apply the same reasoning, using the
mechanism described in figure 4.13(b) referring to figure 4.17, the diagnostic information that

4.5. Fault diagnosis functionalities 95

is possible to give are the same as for the SADF device but, only the columns corresponding
to the lacking information identical to false must be considered. More in detail, the proposed
strategy allow the detection of the “stuck at false”condition for the available sensor (it does
not change its reading from 0 to 1 in a given amount of time when trying to move the device
to the stable condition it monitors). For the same reason even the actuator faults cannot be
completely isolated: if the available sensor is the active-device sensor it is possible to detect the
“stuck active”condition (signal a do not fall to 0 in time), if the available sensor is the inactive-
device sensor it is possible to detect only the “stuck inactive”condition (signal d do not fall to 0
in time). It is trivial to prove that for no feedback devices (where both sensors are replaced by
a derived information), no diagnosis is possible because of the complete lack of information.
Part of the ST code that implements the extraction cylinder GD is the following (in appendix B
is reported the entire code):

CASE (Devi ceState) OF
Devi ceDeacti vat ed:
Deacti vati onRequet : =FALSE;
I F (ActivationRequest) THEN
Activati on: =TRUE;
Devi ceTi mer: =Acti vati onTi ne;
Devi ceSt at e: =Devi cel nActi vati on;
END_| F;
Devi cel nActi vati on:
| F (Deactivati onRequest) THEN
Acti vati onRequest : =FALSE;
Acti vati on: =FALSE;
Devi ceTi mer : =Deact i vati onTi ne;
Devi ceSt at e: =Devi cel nDeacti vati on;
ELSI F (Activated) THEN
Acti vati onRequest : =FALSE;
Devi ceTi ner : =0;
Devi ceSt at e: =Devi ceAct i vat ed;
END | F;
Devi ceAct i vat ed:
Acti vati onRequest : =FALSE;
| F (Deactivati onRequest) THEN
Act i vati on: =FALSE;
Devi ceTi ner : =Deact i vati onTi ne;
Devi ceSt at e: =Devi cel nDeacti vati on;
END | F;
Devi cel nDeacti vati on:

END_CASE;

The ST code just presented simply implements the behavior modeled by the first three states
of the FSM of figure 4.9. It is possible to observe the implementations of the handshaking pro-
tocol and the management of the DeviceTimer variable to allow the diagnosis of the anomalous
conditions.

96 The Generalized Device concept

Vacuum Rotar
y Arm
sensor T~y “ Presence
Load to sensor in testing
transport sta'ion
Distribution O Testing

Figure 4.18: An example of high level fault.

4.6 Conclusions

In this chapter has been shown how it is possible to virtualize the hardware using the concept
of Generalized Device. This concept is based on the idea that the device a further categorization
of the devices can be performed on the basis of the number of feedback signals and actuation
signal command. The GDs represent therefore the standardization of an actuation mechanism
accomplished through the combination of an actuator, one or more sensors and basic control
logic. Starting from GDs concepts a hierarchical multilayer architecture for the control of au-
tomated manufacturing systems has been presented. The emphasis has been particularly put
on the diagnostic functionalities embedded within the GD entity. It has also been shown that,
following an inheritance principle, starting from the SADF GD, the other typologies of GDs
can be derived by means of simple extensions. The validity of the proposed approach has been
experimentally ascertained by a case study derived from the automation field. The case study
enlightens how to implement GDs for the control of field devices typically used in automated
manufacturing system. The major improvements due to the introduction of the GD compo-
nents are twofold: (i) standardize logic control policies for basic field devices; (ii) introduce
standard diagnostics functions for basic faults in field. Using this architecture we can divide
the fault in two level: low level fault and high level fault. A low level fault are faults on sen-
sors or actuator and can be directly detects from the GD component. An high level fault are
fault where two or more device are involving. An example of high level fault is the following:
during the transport of a base from one station to the other, the load could fall down from the
rotary arm or the load can be efficaciously transported. In testing station there is a presence
sensor, so when the load should arrives in testing station and presence sensor is FALSE it is not
possible to know if a fault on sensor presence occurs or the load fall down during transporta-
tion. The situation is depicted in figure 4.18. The rotary arm is equipped with a vacuum sensor
that is been activated when a base is attached to the arm. Therefore, if the base is efficaciously
transported, both the vacuum and the presence sensors must be at high logic level. A different
configuration of these sensors is an indication of fault. To detect this kind of fault it is neces-
sary use information from different GD, but in this ways there is an architecture also for faults
diagnosis.

Chapter

A discrete event approach to fault
diagnosis in automated system

An important target for control systems, is the correct fault detection and
diagnosis and fault tolerant control. For this reason the concepts and
techniques of discrete event system theory are receiving increasing at-
tention in industrial automation for control logic synthesis. Specifically,
techniques from supervisory control, fault diagnosis, and fault-tolerant
control of discrete event systems can be employed to study properties
such as controllability, observability, and diagnosability, and to assist in
the synthesis of the monitoring and control logic. This chapter presents
a general and versatile approach for building structured formal models
of complex automated systems in order to facilitate their control and di-
agnosis, and it takes in consideration active fault tolerant control using
techniques from discrete-event system theory.

5.1 Formal verification in industrial automation

Verification and validation (V&V)is the process of checking that a product, service, or system
meets specifications and that it fulfills its intended purpose. Verification is a quality control
process that is used to evaluate whether or not a product, service, or system complies with reg-
ulations, specifications, or conditions imposed at the start of a development phase. Verification
can be in development, scale-up, or production. This is often an internal process. Validation
is quality assurance process of establishing evidence that provides a high degree of assurance
that a product, service, or system accomplishes its intended requirements. This often involves
acceptance of fitness for purpose with end users and other product stakeholders.

In software engineering, software testing, and software engineering, Verification and Valida-
tion is the process of checking that a software system meets specifications and that it fulfils its
intended purpose. It is normally part of the software testing process of a project. With regard
to the application of software engineering methods to control problems, an important role is

97

98 A discrete event approach to fault diagnosis in automated system

played by those methods that have as the major goal the construction of correct and reliable
systems, by means of analytical and mathematical-based languages, reasoning techniques and
formal tools for the specification and verification of software systems. This notations and tech-
niques are called formal methods, since both their syntax and semantics are supported by precise
definitions, in contrast to those methods that puts more emphasis on the syntactical aspects of
the description language, but define the semantics in an informal way. This notations and tech-
niques are called semi-formal method. Formal methods represents therefore a way to eliminate
ambiguities in the description of a computational system, like a control logic in an industrial
automated system. and its desired properties, by means of a formal specification and then to
apply reasoning procedure to reveal inconsistencies, incorrect behavior and flaws in the speci-
fication of the system by means of formal verification procedures.

The formal specification of an industrial system include the description of behavioral prop-
erties, but also non-behavioral aspects like requirements real-time constraints or architectural
design. Specification methods that put particular emphasis on behavior are, for example, those
based on tools and notations derived from DES theory, like automata, Petri Nets and State-
charts. Statecharts is a notation develop to describe state diagram to describe the behavior of
systems. State diagrams require that the system described is composed of a finite number of
states; sometimes, this is indeed the case, while at other times this is a reasonable abstraction
(see [41] and [42]). In fact, the main field for the application of formal methods is that of reac-
tive systems, where safety and real-time constraints are the major requirements, and the most
proper way to specify the behavioral properties of a reactive system is in terms of its compu-
tational states and its response to events. Other formal methods, adopting a wide variety of
notations and mathematical frameworks (i.e. sets, relations, functions, etc.) are: Z ([84]), VDM
([53]), Temporal Logic ([75]).

Model checking is a method to verify that a desired property holds for a finite state model of a
systems performing an exhaustive states space search, which is guaranteed to terminate since
the space is finite. Of course, the major problem in model checking is to define algorithms and
data structures that can manage efficiently large state spaces. In the just case, properties to
check are expressed in a certain kind of temporal logic (Linear Temporal Logic or LTL, Compu-
tation Tree Logic or CTL) while the system is modeled as a finite state transition system. The
search procedure then checks if the given state transition system is a model for the specification.
Modal and temporal logics, which are formalisms to state requirements or safety relevant prop-
erties of systems, although they are usually not considered as specification languages. Most of
the presented languages are designed less with the authoring or communication aspect, and
more with the algorithm or tool aspect in mind: concrete syntax for temporal logic is often
simplistic, tailored to some particular tool (like a model checker), and lacks the high concen-
tration of syntactic sugar found in specification languages. Because there is a huge number
of temporal logic dialects, we only present the main families and common principles. This has
the practical advantage that many properties (like satisfiability or the model checking problem)
are decidable and can be checked automatically by tools. At the same time, temporal logics are
often sufficient to express many interesting requirements that can be imposed on a system. The
two main applications of temporal logics in software or system development are the generation
of runtime assertions (in this context often called runtime monitors) and static verification by
means of model checking. The main characteristic of both modal and temporal logics are the
built-in notions of states (or worlds) and transitions between states. The decision whether a
modal formula is true is always made in the context of a particular active state. Temporal lan-
guages provide larger varieties of modal operators, for instance to talk about states reachable
in more than one step from the current state.

5.2. A DES approach for formal verification 99

Linear Temporal Logic (LTL, see [75])has been proposed in the late 1970s for the verification of
computer programs. It treats the “future” as a linear computation path consisting of discrete
states. This means that propositions in LTL are always interpreted over individual paths. In
case of non-determinism, in which the space of possible program executions has the form of a
tree rather than a single linear path, an LTL formula is considered true if and only if it holds on
all possible execution paths of the program: paths are implicitly universally quantified. This
is the main difference between LTL and the alternative Computational Tree Logic, in which
explicit universal and existential path quantifiers exist.

Computational Tree Logic (CTL, see [75]) and CTL model checking were invented in the early
1980s (see). CTL is a branching-time logic and considers the “future” of program executions
as a tree (in contrast to LTL), thus making non-determinism directly observable by formulae.
Such computation trees can be derived, e.g., from automata or Kripke structures by designating
some state as the initial state and unfolding the structure into a (possibly infinite) tree with the
designated state at the root. This tree shows all of possible executions starting from the initial
state.

5.2 A DES approach for formal verification

Designing control logic that provably satisfies given specifications is a problem of formal ver-
ification. Industrial automated systems are very complex systems so for these systems is a
challenging task. In chapter 3, chapter 4 and recent work in industrial automation has fo-
cused on the concepts of modularity and reusability of the control logic; see, e.g., [11, 27, 94].
To achieve all these objectives, the concepts and techniques of discrete-event system theory
are receiving increasing attention in industrial automation for control logic synthesis. Specif-
ically, techniques from supervisory control, fault diagnosis, and fault-tolerant control of dis-
crete event systems (see [17], [79], [97] and [70]) can be employed to study properties such
as controllability, observability, and diagnosability, and to assist in the synthesis of the mon-
itoring and control logic; see, e.g., [43, 76, 62]. One of the earliest and most useful methods
is modular control (see [21]), this method involves designing multiple supervisors as opposed
to centralized supervisor. Each supervisor implementing a portion of he control specification.
All of these techniques however presume the availability of a complete formal model of the
system; building such a model is a difficult task due to its dependence on deep knowledge of
the system components and their physical coupling. To tackle the complexity of modeling the
overall system in a monolithic manner, researchers have considered decentralized approaches
[81] or decomposition methods [29]. In [74] and [81] is proposed a model to fault diagnosis on
manufacturing systems. These works exploit the modularity of the model to avoid state explo-
sion, nevertheless the complexity is avoided also using a fault-free-model. On the contrary the
modularity should be exploited to deal with simpler models in which it is possible to define
post-fault behavior so that the precision of the FDI is improved and the strategy to counteract
the faults or to safely react can be formally defined. In the next sections will show a method-
ology to develop a general and versatile approach for building structured formal models of
complex automated systems in order to facilitate their control and diagnosis using techniques
from discrete-event system theory. For this purpose, we present a methodology for building in
a modular manner the complete model of a complex automated system starting from individ-
ual components and their physical coupling. We employ finite-state automata as our modeling
formalism. We propose a hierarchical decomposition that separates the control logic into high-
level control actions (i.e., what to do) and low-level control actions (i.e., how to do it), coupled

100 A discrete event approach to fault diagnosis in automated system

through an interface. This hierarchical decomposition enables reusability of generic models
for low-level components. The low-level models incorporate low-level control actions as well
as fault detection logic for component faults. This fault detection logic requires modeling the
faulty behavior of the components in addition to their fault-free behavior.

The focus of this work is on model-building at the lower level of the proposed hierarchy.
We start from generic fault-free models of low-level components such as actuators and sen-
sors. In order to capture physical constraints among these low-level components in a given
automated system, we propose the notion of physical constraint automaton, which is then cou-
pled with the generic component automata by parallel composition. This approach achieves
the desired characteristics of modularity, composability, and reusability. We show how faulty
behavior can be gradually incorporated into the model in a modular manner by enhancing the
generic component models to include faults and by adjusting the associated physical constraint
automata in a manner that captures the effects of these faults on the physical coupling. As a
consequence, the entire faulty behavior is obtained by parallel composition of the individual
faulty models.

5.2.1 Architecture for supervisory control in industrial automation

In complex automated systems such as manufacturing systems, it is imperative to design the
supervisory controller and hence the control logic to achieve modularity and reusability. As
discussed in chapter 3 and chapter 4 a crucial point in this regard is the separation of actua-
tion mechanisms from control policies, in order to hierarchically manage the plant. In other
words, control should be viewed as the composition of: (i) a set of basic actions; and (ii) a set of
coordination policies for the execution of these actions. This is the approach adopted and fur-
ther elaborated in chapter 3. Designing the control logic using a hierarchical strategy supports
component interoperability and reusability and facilitates diagnostic and reconfiguration. Our
proposed hierarchical architecture is based on this approach and it is depicted in figure 5.1.
This architecture consists of three levels:

e High level: This level embeds the control policy of the system; this policy is structured
as sequences of activation and deactivation commands for the lower levels. Note that
there are no direct actuation commands and that only coordination sensors can appear as
physical signals.

o Interface: This level contains all the information necessary to let the high level commu-
nicate with the low level.

e Low level: This level contains the basic control loops for single devices which implement
the actuation mechanisms.

A related hierarchical architecture is proposed in [58] [56] [57], where the focus is on the mod-
ular verification of safety and nonblocking properties using local components and their inter-
face, in the context of supervisory control problems. In this architecture (called Hierarchical
Interface-based Supervisory Control) a system is decomposed into one high level subsystem
and multiple low level subsystem which communicate between a well-defined interface. If
each subsystems and its interfaces satisfies certain local condition, then the global controllable
and nonblocking properties can be guaranteed. The focus of this work is on the modeling
methodology rather than on the efficient verification of safety and nonblocking properties.
We aim for generic low-level component models that are reusable, leaving to the high level
model application-dependent issues regarding “what to do” and “ when to do it”. Actuation

5.2. A DES approach for formal verification 101
High level
(G, Zm)

Interface 1 Interface 2 Interface 1

(Gn, Zn) (Glz, Zn) (Gln, i)

L]

Low level 1 Low level 2 Low level 1

(GLI, Eu) (GLZ, ZLZ) (GLn, ELn)

Figure 5.1: Hierarchical architecture.

mechanisms used to implement the desired high-level actions deal with “how to do it” issues,
which are dependent on the low-level physical constraints. In this approach, the models of the
low-level components are application-independent and thereby reusable. Analyzing common
classes of sensors and actuators that equip an automated manufacturing system, we can define
general categories of low level devices on the basis of the number of actuation mechanisms,
e.g., single or double acting, and on the basis of the number of feedback signals, e.g., double,
single, or no feedback; this characterization is presented in chapter 4. To ensure reusability of
the low level components, we require that they have a a standard structure and also a standard
set of input/output commands. This is where the interface, the middle level of the architec-
ture, comes in. Its role is to map the high level commands into the low level commands. All
the components of the architecture can be modeled as finite-state automata (indicated by the
symbol G in figure 5.1) over given event sets (indicated by the symbol ¥ in Fig. 5.1). In order to
ensure the desired properties of modularity and reusability for the architecture, the following
assumptions are made:

g1 N X, =0 (5.1)
X1 N X # 0 (5.2)
Yin N Xpn #0; (5.3)
Y N XY= 0; (5.4)
Gri ~ G (5.5)

Equations (5.1), (5.2) and (5.3) ensure the separation between the control policy and the actu-
ation mechanisms, while equation (5.4) guarantees the modularity and reusability of the low
level control/diagnosis logic. Controlled devices are modeled as isomorphic automata (with
symbol ~ in 5.5 we indicate same structure) and hence their control and monitoring software
can be reused.

102 A discrete event approach to fault diagnosis in automated system

fo, £
DA DA DA
Lllo 00 Oli ﬂ

RACO<«——

fo, fu fo, fa

Figure 5.2: Illustrative example: Single acting device.

5.2.2 Model building methodology

To describe the architecture of figure 5.1 we start from the low level. This level associates
several low levels and their interfaces with the high level, according to the physical devices
comprising the system. In the next section will describe an approach to building automata
models for a generic low-level device. The desired model is the composition of automata mod-
els of hardware components (actuator and sensors) and models of logic components (control
logic, monitoring logic, and logic constraints as timers). The objective of this approach is to
embed in the low level not only the low-level supervisory logic, but also the diagnostic logic in
order to (i) achieve reusable software as the low level devices are application-independent; and
(ii) send to the high level the smallest amount of diagnostic information possible as explained
in chapter 4. Starting form a single acting cylinder example shown in figure 5.2 it will clarify
these crucial. This device has two end-of-stroke: sensors: sensor A signals when the device is
in the activated position and sensor D signals when the device is in the deactivated position.
Initially, the device is deactivated, that is, the pneumatic piston is completely retracted. The
device is driven by the actuation command AC. When AC is observed to be high, the device
moves from left to right unless it was already in the rightmost position (activated). Likewise,
when AC is observed to be low the device moves from right to left, again unless it was already
at the leftmost position (deactivated). Even this simple device can be affected by six different
fault scenarios, each sensor and the actuator can be stuck high, symbols fal, fdl, f1, or stuck
low, symbols fa0, fdO, f0, respectively for sensor A, sensor D, and the actuator. On the device
can be occur multiple faults, but on each sensors or actuator only one fault at time, this mean
we can have 8 possible combinations of three faults in the worst case: {fa0, fd0, f0}, {fal, fdO,
f0}, {fa0, fd1, fO}, {fa0, fdO, f1}, {fal, fd1, fO}, {fal, fdO, f1}, {fal, fd1, f1}, {faO, fd1, f1}.
When we consider fault on sensor or actuator we consider a physical fault on the component,
or a fault on the wire connection between sensor and hardware control logic like PLC or mi-
crocontroller, because from control logic point of view it’s not possible to distinguish if a fault
occurs on the component or if a fault occurs on line connection, for example if on a sensor there
is an hardware fault to stuck low the logic out of the sensor, or there is a line disconnection of
sensor out on the control logic there is the same effect, it is not possible to distinguish the cause
of the fault; With the notation fa0, for example, we do not distinguish if fault involves sensor
component or sensor connection line to control logic.

5.2. A DES approach for formal verification 103

Control + Diagnosis

RAO, RAI RDO, RD1 ACu, ACd | Physical Plant

RACO, RAC1

Physical Constraints

Figure 5.3: Physical and logic components of the low level of the architecture.

5.2.3 Low level

Starting from a single acting cylinder example shown in figure 5.2 it will see the methodology
for building the model in nominal condition and fault condition. Low-level component models
can be constructed by the interconnection of physical components (actuators and sensors) and
logical components (control logic, diagnostic logic and timing logic) as shown in figure 5.3. We
start constructing a low-level component by first introducing nominal models for the physi-
cal components as shown in figure 5.4. Sensor A has two steady states A0 and Al; in these
states we can have two observable events RA0 and RA1 indicate if the sensor is read to be
low or high respectively, while unobservable events Au and Ad indicate that the sensor output
changed from low to high, or high to low, respectively. Sensor D is modeled in an analogous
manner (we can define the same events only change label A with label D). The actuator also
has two steady states Act0 (retracted) and Actl (extended); unobservable events RACO and
RAC1 correspond to the movement of the device in one direction or the other. From the point
of view of the controller these events are unobservable because the controller cannot observe
the movement of the device, it can only read sensor states. Events ACu and ACd are the com-
mands used by the control logic to switch the position of the actuator and hence are observable
and controllable, these events can be associate to command send from control logic, for exam-
ple command Act : =1 and Act : =0

If the beginning the actuator is in state Act0 to move the actuator the control logic send the

RAO RA1 RDO RD1 RACO RACI
(a) No fault model G, any. (b) No fault model G pny. (c) No fault model G, actny.

Figure 5.4: Nominal models of the sensors and actuator.

command Act : =1 that generates event AC'u and actuator will evolve in state Actl and from
this state control logic can send a command Act : =0 that generates event ACd to move actu-
ator in the opposite direction. It is possible to not have the alternate sequence of command
Act : =0, Act : =1, this because can happens that after control logic send command Act : =1

104 A discrete event approach to fault diagnosis in automated system

in consequence to another task, control logic send again command Act : =1, for example after
a fault, a reconfiguration control strategy can activate or deactivate all actuators. In this way
we can have sequences of commands Act : =1 or sequences of a commands Act : =0, to model
this sequences of command we insert self loop on states Act0 and Actl. From point of view of
actuator if control logic send two times the same command, there are no problems because the
movement of actuator is always the same. The self loop in each state of actuator model means
in each states, we can read information about the last command send from control logic, is like
control logic can read the last command it sent.

It is important to remark that the observable events are control commands ACu, ACd and sen-
sors readings RAO0, RA1, RDO, RD1, while the movement of the device (modeled by events
RACO and RAC1) and the rising and falling edges of the sensor readings (events Au, Ad, Du,
Dd) are not observable, we can summarize this with the notation of architecture of figure 5.1 in
table 5.1: Furthermore, each of the observable events are controllable and each of the unobserv-

SENSORA Y4, = {RA0, RA1} S Ao = {Au, Ad, fa0, fal}
SENSORD Xp,={RD0,RD1} Sbao = {Du, Dd, £d0, fd1}
ACTUATOR S, = {ACu, ACd} S actuo = {RACO, RACT, f0, f1}

Table 5.1: Observables and unobservables components events.

able events are uncontrollable. The controllable sensor events indicate that the time at which a
sensor is read can be controlled.

The models in figure 5.4 consider the actuator and sensors as acting alone, when they are inter-
connected into the device as in figure 5.2, they interact following a set of physical constraints
based on the physical structure of the device (a similar idea is presented in [89]). The physical
constraints are the interaction between components and it derives from physical structure of
the device. For example after a control command to actuator device starts to move, in a no fault
situation the sensors value change with a well define sequence depending from the mechanical
connection of the components. To have a complete model of the device we have to model also
this physical constraint, it can be modeled by analyzing the behavior of the device shown in
figure 5.5. When the device is in the deactivated position sensor D and sensor A read 10. After

DA DA DA
RAC1_10 Dd 00 Au_ 01

RACO<
DA DA DA
10 Du 00 Ad 01

Figure 5.5: Illustrative example: Single acting device.

a control command AC'u the device starts to move towards the activated position (event RAC1
occurs). As the device leaves its initial position the sensors read 00 until the device reaches the
activated position where the sensors read 01. During this movement the device can be in three
different states (namely C'1, C2 and C3) reflected by the different readings of the sensors. From

5.2. A DES approach for formal verification 105

each states the device can change the movement direction, for this reason are presented states
C0, C4 U5, in these states the sensors value in the device have the same respective readings as
in C3, C2 and C'1. In figure 5.6 is shown the Physical Constraint Automaton (PCA) that models
these constraints. The initial state C0 corresponds to device in deactivate position and RACO
movement. During an activation sequence (from state C'0 to state C'3) sensors DA evolve in
with a well define sequence depending from its structure, sensors evolve from reading 10 to
reading 01. From state C'1 to state C'2 sensor D evolves from a value 1 to value 0 in according
with an event Dd, and from state C2 to state C3 sensor A evolves from value 0 to value 1 in
according with Au.

The PCA automaton captures all the physical connection between the components, it is impor-

c1 Di___ 4 Au (03

RAC1 RACO RAC1 RACO RAC1 RACO

Du Ad

CO J« C5 J« C4

Figure 5.6: Physical Constraint Automaton (PCA) G, pca

tant to remark events RAC0 and RAC'1 are not control command, but they are the movement
of the device, this model is complete independent from control logic. All events in this model
are unobservable events, these events interact with sensors and actuator model that generate
observable events, as it is shown figure 5.3. Control logic can observe control commands ACu,
ACd, and events of sensors value (RA0, RD1 etc.), but control logic can not see movement of
the device, i.e. events RAC0 and RAC1 are unobservable for control logic. Events Au, Du, etc.
are not observable because control logic can only acquire sensor value. The PCA automaton
of figure 5.6, is like a component that receive as input the events of the device movement from
actuator model, and generate the correct events to change sensors states. In section 5.2.4 this
approach to encapsulate unobservable events will help to model the components fault model.

Composing the automata of sensors and actuator in figure 5.4 and PCA automaton in figure 5.6
we obtain the automaton in figure 5.7 (12 states 62 transitions).

Remark The automata models of figure 5.7 do not includes any control logic, but the nominal
activation and deactivation sequence of the device that could be implemented by a controller
is shown in blue (path from 1 to 8). Of course the automaton can perform other sequence de-
pending on the actual control logic employed, or as will be possible see in next sections (see),
in the case due to the occurrence of faults.

Remark The operation of the device is characterized by three sources of information, readings
from the two sensors and commands to the actuator. This information indicates the state of the
device. The state of the device can be changed by a new control command (events ACu, ACd)
that forces a change in the states of the sensors (events Au, Ad, Du, Dd) through the constraint
automaton PCA. The self loops of the automata in figure 5.7 and can be thought of as “outputs”
emitted from a given state in much the same manner as a Moore automaton.

The state of the device can be change after a new control command, for example in figure 5.8,
transition 1 is a transition generates after a new control command ACu from control logic, this
transition let’s evolve the state from [RD0 RA1 ACd] to [RD0O RA1 ACu]. Also if the device do
not change its sensors configuration, the device is in a new state because is changed the control
command. This changes will force the actuator to move (event RAC1 is generated). This event

106 A discrete event approach to fault diagnosis in automated system

Activation and deactivation sequence
<_———

RAC1

RACO
Ao,c1,D1,Ac1

6
ACu
3
AO,C1,D1,ACO ACd AO,CZ,DO,AC1 ACu

Dd
- ’
AO,CZ,DO,ACO ACd 5 A1,c3,Do,Ac1 ACu

WG

AC
—
A ,C3,D0,ACO ACd

Figure 5.7: Composition of nominal sensors, actuator and PCA. G'1.compNom

\

will force a new change of the state, because the automata connection constrain will generate
a Dd event, transition 3, this event generate a sensor change state, so the state of the device
evolves form [RD1 RA1 ACu] to [RD0O RA1 ACu).

5.2.4 Modeling fault at low level

If the process of designing the automaton in figure 5.7 can be considered relatively straight-
forward, the task becomes significantly more difficult when trying to embed in the model the
effect of faults. When happens a fault on a components it is an hard task to know the system
behavior after the fault, and a more complicate case is with the occurrence of multiple faults.
Following the approach presented here, modeling a fault in a physical component can be ac-
complished by simply modifying the physical models and the constraint models according to
the local effect of the fault.

Consider for example the case in which the activation sensor A, of the device of figure 5.2 can
be stuck at low level; we model this fault with with unobservable event f,o. We can model the
sensor with fault f,o with automata of figure 5.9(a), if sensor A is stuck low, sensor value will
not be able high value, to model this effect from state A0, A1 when an event f,o happens, the
automaton evolves to state AF'0 where it can no longer change its state. The automata in fig-
ure 5.10 is the result of parallel composition of automata of figure 5.9, this automata has in each

5.2. A DES approach for formal verification 107

e
A0,C0,D1,ACO -@
2N
1

ACu

acd) STATE

ACu

A0,C2,D0,AC1

Figure 5.8: States model of the system.

c1 DI ,(05) A (03
RDO Du RDI
Q@.@’ RAC1 RACO RAC1 RACO RACI RACO
RAO Dd — C0)« Du \C_5/1 Ad C4
(a) Fault model of sensor A, (b) No fault model of sensor (c) PCA) Gr,pca.

Gr1,Afa0- D, Gr pny-

Figure 5.9: Composition of PCA automata, sensor D and sensor A fault model.

state only two self loop because in this composition we not consider actuator, but only sensors
on the parallel composition. The automaton of figure 5.10 is the model of the device without
model of actuator, the sequence of state in blue is the sequence of activation and deactivation
sequence, in green is depicted the sequence of activation and deactivation when fault f,o hap-
pens. It’s possible to see that from each state fault f,o can occurred and the system evolves
from nominal cycle of activation and deactivation sequence, to faulty cycle of activation and
deactivation. In the model there is a livelock, but this livelock is not a physical behavior of the
system. When the fault f,o occurs the device can move in the two directions, but sensor A has
always low value and sensor D work in normal condition. The livelock is generated because
in our model we not considered that when a fault occurs, we do not have only a consequence
on the model of sensor, but the fault change the physical interaction between the component.
When a sensor is stuck low from a physical point of view is like the device do not have the
sensor. In this case if sensor A is stuck low, we can remodeling the device with only sensor D,
and the device becomes the device of figure 5.11. The model of this device is composed by an
automata of 4 states, because now we can have only two sensors configuration, 10 configura-
tion and 00 configuration, this model can be obtained, as it shown in figure 5.11(b), from model
of PCA automaton. If sensor A is stuck low the model has not to generate events Au and Ad,
for this reason the model on sensor A when occurs fault f,o evolves and remains in state AFO0.

108 A discrete event approach to fault diagnosis in automated system

-]

Activation and
deactivation sequence

Fault fa0
sequence \

RA1

Figure 5.10: Nominal and faulty model with livelock.

The PCA automaton do not reach states C'3 and C'4 but evolves only in states C0, C'1, C2 and
C5. If the fault occurs when the system is in states C'3 or C'4 the model has a livelock. This
livelock is generated, as it is possible to see in figure 5.10, because now event Ad is not generate
from sensor model, we have to considerate in the physical constraint automaton the new in-
teraction between component. This new model is depicted in figure 5.12(c). This event (OutA)
must be considered also in the model of the sensor, for this reason sensor A it is the automata of
tigure 5.12(a), the parallel composition of automata of figure 5.12 is shown in figure 5.13. The
model presented in figure 5.13 is the model of the device in no fault condition and fault condi-
tion, the powerful of this approach is that the complete model of the system is generate from
parallel composition of simples automata. The effect of the fault can be considered as a local
effect on the component when fault happens, in this example the local effect of the fault is the
self loop RAO on the sensor model and the event Out A on the sensor model and on connection
constrain model it’s the effect of the fault on the interaction of the component, the complete
behavior of the system is generate by parallel composition of the model, and don’t be model,
this is the powerful of this approach.

Remark The fault has two consequences, a local consequence on the sensor modeled by the au-
tomaton figure 5.12(a) getting stuck in state AF0 and a global consequence on the whole device
modeled by PCA in figure 5.12(c)

A sensor can fault in stuck high, in this case the device change its physical configuration as
depicted in figure 5.14. This case is similar with the case when sensor is stuck low. The phys-
ical constraints are the same because there in no a different relation between the sensors, the
different condition fault is on sensor (now is stuck high) and also in this case the model has
not to generate events Au and Ad, for this reason the model on sensor A when occurs fault f,;
evolves and remains in state AF'1 from state A0 or evolves in state AF'1 with event OutA. The
PCA automaton do not reach states C'3 and C4 but evolves only in states C0, C'1, C2 and C5.
With a stuck high fault on sensor A the PCA automaton has the same evolution of sensor stuck
low, this because in PCA is captured the information of a sensor fault, and in sensor model is

5.2. A DES approach for formal verification 109

DA DA
10 Du 00
RACO <
DA DA
10 Dd 00
RAC1 >
DA DA
10 00
RACO
RAC1

fa0
(a) Mechanical configuration fault foo. (b) New configuration of (PCA) with fault fqo.

Figure 5.11: Models of fault f,.

c1 Dd___(c)) Au
RACI RACO RACI RACO RACI RACO
RDO Du RDI
o e
Dd

(a) Fault model of sensor A, (b) No fault model of sensor (c) Physical Constraint Automaton with fault fao,
Gr,Afq0- D,Gr.pny- Gr,pcaA,-

Figure 5.12: Composition of automata connection with sensor A fault model.

captured the information if sensor is stuck low or stuck high. In figure 5.15(a) is shown the
complete model of sensor A it is possible to note the symmetry structure of the model.

In figure 5.15(b) is depicted the model of sensor D. The model has the same structure of model
of sensor A, in this model there is event OutD which the dual means of event OutA. The model
of how changes physical constraints is reported in figure C.6, and figure C.7 in appendix C.
When a fault on sensor D occurred, also the PCA automaton has been model with a new event
(OutD), the new PCA automaton is depicted in figure 5.16. When sensor D is stuck low (or
stuck high), the model of this device is composed by an automata of 4 states, because now we
can have only two sensors configuration, 00 configuration and 01 configuration, this model can
be obtained, as it shown in figure C.6(b), from model of PCA automaton. If sensor D is stuck
low the model has not to generate events Au and Ad, for this reason the model on sensor D
when occurs fault f;y evolves and remains in state DF0. The PCA automaton do not reach
states C0 and C'1 but evolves only in states C2, C'3, C4 and C5
. In the model presented it is considerate only one fault, but on a device can occur multiple
fault, sensor A and sensor D can be fault at the same time. The model building methodology
is complete modular and the same model of the components can be applied. The physical
constraint automaton has to change because when two fault are possible we introduce a new

110 A discrete event approach to fault diagnosis in automated system

Activation and deactivation sequence

Fault fa0, activation and deactivation sequence

Figure 5.13: Nominal and faulty model for the single acting device, G1, compfa0

physical constraint on the device. In figure 5.17 and figure 5.18 are shown how device change
after two faults. When on the device two faults occur the sensor configuration is always stuck
at the same value, (11 or 00 or 01 or 10) depending how the sensor are stuck. In this condition
the state of the device is depending only from the actuation command and it can evolves only
between states C2 and C5. The new Physical Constraint Automaton that capture this condition
is depicted in figure 5.19.

To model a fault on actuator let considerate the actuator is stuck low. When the actuator is
stuck low means that the device can moves only in one direction, the control logic can send
different command but he device do not correct answer. In figure 5.20(a) is depicted the model
of actuator when a fault f occurs, this fault means that the device is stuck to move only in
the direction with event RAC0. When a fault happens the model of actuator evolves in state
ActF0 and from this state the actuator can see the different control command but not evolves
in new state. In figure 5.20(b) the complete model of actuator is depicted. In B are reported
how physical constraints on the device evolves after a fault occurs on actuator. It is easy to
understand how a fault on actuator is for the device a constant command from control logic.

5.2.5 Control and monitoring of low level devices

The role of supervisory control logic consists of properly managing the whole system by forc-
ing the desired sequence of actions (at the high level) and by controlling the basic devices to
accomplish the desired actions (at the low level). This architecture where the high-level su-
pervisor sends events to the low level in order to force basic actions is depicted in figure 5.21
for the case of a single acting device like the one shown in figure 5.2. More specifically, the
event Ra is used to request an activation of the device, while the event Rde is employed to
request a deactivation of the device. Note that we use two request events even if the device is
single acting, in this way the policy is independent from the device implementation which is

5.2. A DES approach for formal verification 111

DA DA
11 Du 01
RACO <
DA DA
11 Dd 01
RAC1 >
DA DA
11 01
RACO
> C3
RAC1 .
RACO
D
|
A ©

(a) Mechanical configuration fault fo1. (b) New configuration of (PCA) with fault fqo.

Figure 5.14: Models of fault f,;.

hidden in the low-level control logic. When the device has accomplished the high-level request
it notifies the high level using event Aa (activation accomplished) and event Ade (deactivation
accomplished). The desired behavior for the controlled device is depicted by the automaton
Er,conNom shown in Fig. 5.22; this automaton is the low-level specification. The device is ini-
tially inactive, when the high level asks for an activation it sends the event Ra which causes the
command ACu to be sent to the actuator. After a given amount of time event RDO signals that
the device is not inactive anymore. After an additional amount of time event RA1 indicates
that the device is activated. This fact causes event Aa that acknowledges the accomplishment
of the request to the high level. At this point the low-level control waits for a deactivation re-
quest (event Rde). When this request arrives it starts the deactivation cycle which is dual to the
activation cycle. When the device is deactivated it generates the event Ade. The observability
and controllability of the low level events are as defined previously, while the high level re-
quest and answer events { Ra, Aa, Rde, Ade} are observable and controllable.

Summarize the controllable and uncontrollable events set are: ¥4, = {RA0, RAl}, ¥p,. =

{RDO, RD1}, S uct.c = {ACu, ACd} Scionc = {Ra, Aa, Rde, Ade, RA0, RA1, RD0, RD1, ACu, ACd}

and the following uncontrollable event sets ¥4, = {Au, Ad, fa0, }, ¥p 4. = {Du, Dd} and
Y actue = {RACO, RAC1}

Composing the low-level specification in figure 5.22 with the nominal sensors, actuator and
PCA models of figure 5.4 and figure 5.6, we obtain the controlled device model G, pevNom
shown in figure 5.23(a). It is possible to note that figure 5.23(a) the automaton doesn’t have self
loop in the states, instead model without control in each states has self loop. From a physical
point of view the model without control is the model of the device, in each states the device has
a sensors configuration, and the last command sends to actuator, the control logic can acquire
the information on the sensors, and information on the last command send to actuator in each
time. Let’s considered this part of code of control logic:

CASE Devi ceState OF

Deacti ve:

I F (Ractive) THAN

Act uat or : =TRUE;

Devi ceSt at e: =l nActi vati on;
END | F;

112 A discrete event approach to fault diagnosis in automated system

(a) Fault Model of sensor A, (b) Fault Model of sensor D,
Gr,Afa- GL,pfd-

Figure 5.15: Models of sensor A and sensor D.

OutD

Au

» C3

RACO RAC1 RACO

Ad

C4

Figure 5.16: Physical Constraint Automaton with fault f4 or fault f41, G pca,-

| F (SensorA) THAN
Aacti ve: =TRUE;

Devi ceSt at e: =Act i vat ed;
END | F;

END

The construct CASE implements the automata, the variable DeviceState is the state of control
automata, when it executes parallel composition between control and model of device is like
the physical operation that control acquire for example a sensor value, the control can read in
any time a sensor value, this feature is implemented in the model by self loop with sensor con-
figuration in each state. For example when control executes instruction | F (Sensor A) Then
the control loops on acquire sensor A value, and when it’s value is high the control executes
the code in THANinstruction, from a point of view of model this is equivalent to model control

5.2. A DES approach for formal verification 113

RACO <

RAC1

00
RACO

RAC1
fd()/\/ D

(a) Mechanical configuration fault fqo (b) New configuration of (PCA) with faults fqo
and fa0. and fao0.

Figure 5.17: Models of fault fjo and fq0.

RACO

RAC1

11
RACO

RAC1

fil— D_\/\fdl
A

(a) Mechanical configuration fault fq1 (b) New configuration of (PCA) with faults fq1
and fa1. and fa1.

Figure 5.18: Models of faults fy; and f,;.

is in a state that generate event RA1 and device model evolves in a state with a self loop event
RA1, when control and device model are both in a state with RA1 events, parallel composition
generates event RA1 in complete model, and this event in complete model corresponding to
sensor A value is high and control executes the THAN.

The process of determining whether the control desired by Er, connom is actually achievable
tirst requires defining the automaton Gl]fféf;fnp Nom 38 GL.CompNom With self-loops added for

events in the set Xz, ... vor \XG1L compnom = 1120, Aa, Rde, Ade}. The language generated by

Gr.DevNom, L(G1, De‘vNom) - ﬁ(G%fcg@OEfﬂp Nom)s €an be shown to be controllable and observable
Glzfted

with respect to L(G ', n0m)- Therefore, there exists a supervisor S such that S/ Gﬁféi‘inp Nom =
G1,DevNom- ErL,conNom 18 an automaton realization of supervisor S.

If we consider the models for the single acting device with fault fa0 (see fig. 5.12) composed
with the nominal controller in fig. 5.22, we obtain the controlled device model G, peyfao in
fig. 5.23(b) from the parallel composition of models G, afa0, Gr,Dnf> G Actnf GL,pcA_a and
Er,conNom- Note that the automaton G, pey fq0 in figure 5.23(b) has a deadlock due to the oc-
currence of the fault fa0. Since sensor A cannot rise to true, this deadlock arises due to the fact
that the controller will never know when the device has been activated. To avoid this dead-
lock we consider a new logical model that considers also timing constraints. When the device

114 A discrete event approach to fault diagnosis in automated system

OutD

RACO0, ACu, ACd RACO, ACu, ACd RAC1, ACu, ACd

(a) Fault Model of actuator G actso- (b) Fault Model of actuator G, act-

Figure 5.20: Models of actuator faults.

is moving from one steady state position to the other, supposing that we have some estimate
of the transient timing, we can detect the occurrence of a fault and take some remedial actions
when the operation is not finished within the expected time. The aim of this strategy is twofold:
(i) embed basic fault diagnosis in the low-level control, leaving to the high level only the diag-
nostic task of detecting complex faults that involve multiple devices; and (ii) avoid deadlock
due to faults. Following this idea, we want to introduce into the model of the device the fol-
lowing temporal rule: having in mind the desired behavior of the controlled device depicted
in figure 5.22, we suppose that the amount of time needed to activate the device (to evolve
from state SO to state S5 in figure 5.22) and the amount of time needed to deactivate the de-
vice (to evolve from state S5 to state S0) is bounded by some known amount when the device
is operating correctly. The diagnostic logic will check the consistency of this rule during the
evolution of the device to determine whether or not a fault has occurred. Such a diagnostics
algorithm will not require the introduction of timed automata as the necessary timing infor-
mation can be captured by a timeout event T'0O that signals the violation of the deadline. With
this in mind we consider the timer model in figure 5.24. Event SC is used to start the timer,
while event RT'O is used to reset the timer. Note that the timeout event 70O can only occur
after the occurrence of the fault fa0 because this is supposed to be the only case in which the
temporal rule is violated. Note that SC, RT'O and T'O are observable and controllable events.
In order to avoid deadlock in the controlled faulty device, we substitute the nominal super-

5.2. A DES approach for formal verification 115

—Ra Aal-
—Rde Low level FAde B
ault |-
D control AC
A A
Physical Plant
Sensors Actuator

Figure 5.21: Single actuator device control.

Figure 5.22: Specification automaton E7, connom for low level control of a single acting device.

visor Er, conNom shown in figure 5.22 with the supervisor Er, conpiag depicted in figure 5.25.
Er conDiag is generated by designer understanding of the system and not by formal synthe-
sis, but the properties of observability and controllability were verified formally in the same
manner as before for Er, connom- The new supervisor embeds not only control like E7, connom
did, but also fault detection. We further consider notions of Dynamic fault detection and Static
fault detection. If the device is in the activated position waiting for a request of deactivation
(state S7) and the sensor A spontaneously changes its output to low, the fault fa0 has occurred
and it is detected when event RAO occurs taking the supervisor to state S15. When a fault is
detected without a movement of the system we classify it as static fault detection, shown by
point-dashed lines in figure 5.25. If the fault fa0 occurs when the sensor value of A is low, the
fault can only be detected when a movement of the device occurs which should force the value
A to high. For this reason when the supervisor receives a request of activation (event Ra), this
causes not only the event AC'u but also the event SC' that starts the timer. In fact in this case
the device never reaches the activated position because the event RA1 never occurs and so the
control does not reset the timer (event RT'O). The fault is then detected in state S14 by the event
TO that signals the violation of the time deadline. We classify this as dynamic fault detection
indicated by dashed lines in figure 5.25.

Composing the new low-level supervisor in figure 5.25 and the timer model in figure 5.24
with the sensors, actuator and PCA model, we obtain the controlled device model G'1, 7ot fa0

116

A discrete event approach to fault diagnosis in automated system

A0,C1,D1,AC1,52

A0,C2,D0,AC1,S3

_ CroapmesD

A1,C3,D0,AC1,S3 /
RAT Activation sequence \
" Deactivation sequence
A1C300ACHSH D a
Fault fad .
Carcapnactss D
Aa e
- @ w0 }
A1.C3,00.AC1.85 —— —
Caicsponciss > | Croocsoonciss
)
Rd w0 o | IS
T \ ™S
Roocavorciss S \ Rooca0Act st
A|,C3Du® Q[?/ \ <’\ —
ses \
Acd) 057 ~
A1,C3,00,A00,57 / I/ l
Gasmons> Cavmas> (o
Deactivation sequence RACO RACT T T \
aaco o | om w |)
" N = ~ |
A1.04.00,AC0.57 Canormneos > Carooornss > Cracsomross > Crocaorast |
Ad > N N
Cornssorcoss > Carocaoracnsy > Crocaoracnss
o [w [ror w0
TArocooracosi D (A00o01Ac0s D
Corocooracoss > Cpocooracoss
1
w1 o
CJ - '
Hroco01ac05
R
Ade / <
w0
@ Troobrcia CocamacisD
—— T~ ./
- . B
Activation sequence @ Carncesorciss > 50015

— R0 0

Crancanonciss >

D J

Deadlock o Z

(a) Controlled nominal single act- (b) Controlled faulty single acting device
ing device model, G1, pevNom.- model, G, pevfa0-

Figure 5.23: Controlled single acting device models.

from parallel composition of models: G, Atq0, G1,pnf, GL, Actnf> GL,pcA_As ErL,ConDiag and G117 fa0;
the resulting automaton has 57 states and 94 transitions; it is not shown here. Note that now,
even after a fault, the controlled device does not deadlock. At this point it is possible to use the
automaton G, 7 fq0 to build a diagnoser and check the diagnosability properties of the con-
trolled device with the proposed supervisor. The diagnoser is shown in figure 5.26; as it does
not contain any indeterminate cycles, the fault fao is diagnosable. Examining the diagnoser in
figure 5.26 and the supervisor in figure 5.25, we can see that we can use the supervisor to detect
faults based on its entry into state S14 or state S15. The meaning of state S15 is clear: event 7’0
has occurred before the activation request was carried out. State S14 is entered when sensor A
changes its reading from high to low without a deactivation request. We can confirm using the
diagnoser in figure 5.26 that whenever the supervisor enters 514 or 515, the diagnoser is indeed
in a fault-certain state. Moreover, all cycles of certain states in the diagnoser visit either S14 or
S15. Therefore, the low-level supervisor we have constructed can be employed for both control
and diagnostic purposes and the actual diagnoser does not need to be stored in memory. The

5.2. A DES approach for formal verification 117

ResetTO

Figure 5.24: Timer model for fault fa0, G, 740

Dynamic fault detection — — — — — —
Static fault detection —-—-—-—-—

Figure 5.25: Supervisor G, conDiag for the single acting device considering fault fa0.

complete state concatenation of diagnoser is reported in C.2. On the base of teh Algorithm:
Definition set of diagnosis controller state SD, in the example SD={S14, S15}

Procedure to proof embed control diagnosis detect fault.

Step 1: Build complete faulty model: G

Step 2: Test diagnosability, if Diag(G) is diagnosable go to step 3.1
Step 3: Examination Diag(QG)

Step 3.1: Controller component of G is SD — Diag(G) is in F-certain state.

Step 3.2: Diag(QG) is in F-uncertain state or normal state — controller component G is not
in SD.
zq € Diag(G) is so called on DG state (diagnoser controller state. If Va € z4, the
controller component of x is in SD.)

Step 3.3: V FEC in Diag(G)7 arbitrary long suffix that does not visit a DG-state.

118 A discrete event approach to fault diagnosis in automated system

5.3 Conclusions on DES approach for formal verification

In this chapter it was presented a general approach to discrete-event modeling of physical be-
havior and control logic in industrial automaton. The key features of the proposed approach
are its modularity, exploiting parallel composition to obtain the complete system model from
that of individual components, and the reusability of the generic component models. The
reusability of component models is made possible by the construction of a so-called “physical
constraint automaton” that captures the physical coupling of generic components in a given
automated system. We first build fault-free models then show how to extend them to include
faulty behavior, preserving modularity. We employ a hierarchical decomposition that separates
the control logic into low-level control actions and high-level control actions, coupled through
an interface. With this methodology it is possible to formal verify the algorithm of fault detec-
tion proposed in chapter 4 on the architecture of Generalized Device

In this work was proposed an example based on a single acting cylinder, it is possible to extend
the procedure to a double acting cylinder changing only the physical constraint automaton as
it is possible to see in figure 5.27. The new event RAC'S it is the event when the device is
stopped, but all other events are the same an interact with sensor A and sensor D in the same
manner. With the same criteria it is possible to do an extension to modeling of electric motor
like the rotary table of FESTO (see B). In this case an electric motor used to do a positioning
operation has one sensors, for example sensor D. In this case the motor can move in clockwise
or unclockwise and this movement are events RAC0 and RAC'1. When an event RAC'S occurs
the motor is stopped. The high level of the proposed architecture is the sequence of actions
proposed in chapter 3 and chapter 4 and the interface, speaking roughly is the link between the
high level action and the activation and deactivation request of low level. An important point,
it will development in future work it analyze the diagnosability of the entire systems (the entire
machine) as compositon of the diagnosability information of the components. In this work was
development fault detection on sensors and actuator fault, but it is not take in consideration
mechanical fault on the systems. The idea is a mechanical system has the same “effect 7, from
a point of view of the control system, of a fault on sensor or actuator or a combination of twice.
it should be interesting find a partition with different kind of fault, mechanical faults, sensor
faults etc. with the same partition of symptoms.

5.3. Conclusions on DES approach for formal verification 119

S14: 6,34, 37
S15: 8, 15, 38 @
Aa
* First Certain 12U
State
Rd RAO
(o) (s
ACd Rd R:
@y (o) | (9
RAO ACd ACu RDO
@) @& | @
RD1 RAO RTO SC
() (9 (=59
Ade RD1 RDO
(= (9
Ade Ra TO
@) @ (o
Ra ACu
@19 ()
ACu SC

RD1 @

Rd \ Ra

Figure 5.26: Diagnoser of the closed loop model G, 7t fao-

120 A discrete event approach to fault diagnosis in automated system

Figure 5.27: Physical Constraint Automaton for a double acting cylinder.

Sensor D

Figure 5.28: Physical Constraint Automaton for a electric motor.

5.4. Active fault tolerant control online diagnostics 121

5.4 Active fault tolerant control online diagnostics

In this section is reported some research result on the problem of Fault Tolerant Control in the
framework of Discrete Event Systems modeled as automata. A fault tolerant controller is a con-
troller able to satisfy control specifications both in nominal operation and after the occurrence
of a fault. This task is solved by means of a parameterized controller which is suitably updated
on the basis of the information provided by on-line diagnostics: the supervisor actively reacts
to the detection of a malfunctioning component in order to eventually meet degraded control
specifications. Starting from an appropriate model of the system, we recall the notion of safe
diagnosability as a necessary step in order to achieve fault tolerant control. We then introduce
two new notions: (i) “safe controllability”, which represents the capability, after the occurrence
of a fault, of steering the system away from forbidden zones and (ii) “active fault tolerant sys-
tem”, which is the property of safely continuing operation after faults. Finally, we show how
the problem can be solved using a general control architecture based on the use of special kind
of diagnoser, called “diagnosing-controller”, which is used to safely detect faults and to switch
between the nominal control policy and a bank of reconfigured control policies.

5.4.1 Fault tolerant control

Complex technological systems are vulnerable to unpredictable events that can cause unde-
sired reactions and as a consequence damage to technical parts of the plant, to personnel, or to
the environment. The main objective of the Fault Detection and Isolation (FDI) research area
(see, e.g., [73]) is to study methodologies for identifying and exactly characterizing possible
incipient faults arising in predetermined parts of the plant. This is usually achieved by design-
ing a dynamical system which, by processing input/output data, is able to detect the presence
of an incipient fault and eventually to precisely isolate it. Once a fault has been detected and
isolated, the next natural step is to reconfigure the control law in order to tolerate the fault,
namely, to guarantee pre-specified (eventually degraded) performance objectives for the faulty
system. In this framework, the FDI phase is usually followed by the design of a Fault Tolerant
Control (FTC) system, namely, by the design of a reconfiguring unit that, on the basis of the
information provided by the FDI filter, adjusts the controller in order to achieve the prescribed
performance for the faulty system (see [6]).

The FTC problem can be tackled using either a passive approach or an active one. The
passive approach deals with the problem of finding a general controller able to satisfy control
specifications both in nominal operation and after the occurrence of a fault. Passive fault toler-
ance uses robust control techniques to ensure that the closed loop system remains insensitive to
certain failures so that the impaired system continues to operate with the same controller and
system structure. The effectiveness of the scheme depends upon the robustness of the nominal
fault-free closed loop system. Hence, a unique controller, designed off-line, can be used and
on-line fault information is not required. In contrast, active fault tolerance aims at achieving the
control objectives by adapting the control law to the faulty system behavior. In general, the
latter phase is carried out by means of a parameterized controller which is suitably updated
by a supervisory unit, on the basis of the information provided by the FDI filter. This approach
relies upon a “certainty equivalence”idea extensively used in the context of adaptive control,
since it is based on the explicit estimation of faults by the FDI filter and subsequent explicit
reconfiguration of the controller in presence of faults.

In this paper we consider the FTC problem for systems that are governed by operational
rules that can be modeled by Discrete Event Systems (DES), i.e., dynamical systems with dis-

122 A discrete event approach to fault diagnosis in automated system

crete state spaces and event-driven transitions. Several methodologies have been developed to
solve the FDI problem for systems modeled as DES; see [20], [38], [52], [61], [69], [78], [80], for a
sample of this work including references to successful industrial applications. Less effort how-
ever has been spent to solve the FTC problem in the DES framework; this problem has recently
been studied in [24], [95], [96] and [97]. In [24] the problem of managing a set of real-time peri-
odic tasks into a set of processors upon the occurrence of a fault (considered as observable) on
one or more processors is solved using optimal discrete controller synthesis techniques. In [48]
the supervisory control technique for Petri nets based on place invariants is adapted to achieve
robustness properties for systems in which faults and reconfigurations are modeled as changes
in marking. In [97], the authors propose a definition of fault tolerance based on the DES no-
tions of language equivalence and convergence by means of control. Roughly speaking, a DES
is said to be fault-tolerant if every post-fault behavior is equivalent to a non-faulty behavior in
a bounded number of steps; moreover a supervisor is said to be a “fault-tolerant controller ”if
it is able to force fault tolerant behavior for the supervised DES. The authors provide a neces-
sary and sufficient condition for the existence of a fault-tolerant supervisor able to enforce a
specification for the non-faulty plant and a wider specification for the overall plant. Such an
approach can be therefore cast in the framework of passive approaches. We study the active
approach to FTC for DES modeled as automata. Specifically, we want to design an architec-
ture in which the supervisor actively reacts to the detection of a malfunctioning component in
order to meet eventually degraded control specifications. To this aim we describe a modeling
procedure that results in a structured model of the controlled system containing a nominal part
and a set of faulty parts. Starting from this suitable model, we recall the notion of safe diag-
nosability (see [68]) as a necessary step in order to achieve fault tolerant supervision of DES.
We then introduce the new notion of safe controllability, which represents the capability, after
the occurrence of a fault, of steering the system away from forbidden zones. We also define the
new notion of active fault tolerant system with respect to post-fault specifications as the property
of safely continuing operation after faults. We then present a general control architecture to
deal with the FTC problem. This architecture is based on the use of special kind of diagnoser,
called “diagnosing-controller,”which is used to safely detect faults and to switch between the
nominal control policy and a bank of reconfigured control policies. In this sense, the exploited
paradigm is that of switching control in which a high-level logic is used to switch between a
bank of different controllers (see[39] and [100]).
The main contributions of this work are:

1. the exploitation of a multiple supervisor architecture to actively counteract the effect of
faults;

2. the evaluation of the effect of the diagnostics algorithm on the performance of the archi-
tecture;

3. the definition of new diagnoser called diagnosing-controller which realizes in a unique
entity the switching architecture.

5.4.2 Supervisory control of DES with faults

Following the theory of supervisory control of DES (see, e.g., A.1 and [17]), the system is mod-
eled by automaton G = (X, E,d,zp) where X is the state space, E is the set of the events, ¢
is the partial transition function and z is the initial state of the system. The behavior of the
system is described by the prefix-closed language £(G) generated by G. The event set E is

5.4. Active fault tolerant control online diagnostics 123

(EU{fh)’

L (th+f)

sup

Figure 5.29: Supervised DES with faults.

partitioned as F = E, U E,, where E, represents the set of observable events (their occurrence
can be observed) and E,, represents the set of unobservable events. We associate with E, the
(natural) projection F,, P, : E* — EJ. Moreover, some of the events are controllable (it is pos-
sible to prevent their occurrence) while the rest are uncontrollable. Thus the event set can also
be partitioned as £ = E. U Ey..

We start with the model of the uncontrolled system, denoted by G"°™ and given in the
form of an automaton, and a set of specifications on the controlled behavior. In general G"*™ is
expressed as the interconnection, via parallel composition, of a set of interacting components
whose models are denoted by (G7°™,...,Gp™). The behavior of G"*™, captured by the lan-
guage L£(G"™), must be restricted by control in order to satisfy the set of specifications. For
this purpose, we design a supervisor, whose realization as an automaton is denoted by S"°™,
and connect it with G"*™ thereby obtaining the controlled system Ggoft := G"°™ || S"™ with
its associated language L(Go5") satisfying the set of language specifications 2 "™,

Potential faults of the system components are usually considered at this point. In this re-
gard, the G}°™ component models are enhanced to include most likely faults and subsequent
faulty behavior (see, e.g., [78]). Therefore, instead of the nominal model G"*™, we now have
model G**f that embeds the (potential) faulty behavior of the respective components. In the
following, for the sake of simplicity, we consider a single fault event f; we denote its asso-
ciated fault type by “F”. It follows that £(G"*f) D L£(G"™) with corresponding event sets

B = BEU{f}, where f € EXf 0 EMF, ie., f is unobservable and uncontollable. This means

uc 7/
that the actual controlled behavior of the system is described by ng;f = GvH|| gnom, This
situation is depicted in Fig. 5.29: the structure of G;j;)f contains the “nominal part”’and a set

of “faulty parts”. Since we are considering persistent faults, after any occurrence of fault f,
the supervised system continues evolving according to well-defined post-fault models that are
completely disjoint from the nominal supervised model.

By construction of S"°™, there are no undesired actions in the nominal part. However,
undesired sequences of actions can arise in post-fault models due to the effective control actions
of the nominal supervisor on faulty components, as captured in G&}!. Consequently, we must
avoid that after fault f occurs, the system executes a forbidden substring from a given finite set

124 A discrete event approach to fault diagnosis in automated system

(EU{f})”

Figure 5.30: Fault Tolerance specifications for a supervised DES.

¢, where ® C E*. In essence, the elements of the set ¢ capture sequences of events that become
illegal after the occurrence of fault f. This situation can be formalized by defining the “illegal
language” ¢} as in [68]:

Hy = {u € ﬁ(G;};f) s.t. [u = st] [s € U(f)] [Fv € ® s.t. v is a substring of t]} . (5.6)

The language of system G+ is divided in two parts: the “nominal part” (corresponding to
G"°™) and the “faulty part”. The faulty part includes the illegal language .#; which contains
all the possible continuations after fault f that have a forbidden string from set ® as substring.
Under the supervision of S"™, the resulting system behavior £(G%/}) will contain the nominal
controlled behavior £(Ggp'), which coincides with the nominal specifications 2™, and in
addition post-fault behavior that may include strings that are in the illegal language.

The design objectives of a fault tolerant supervision system can therefore be enumerated as

follows:

A) Diagnose the occurrence of event f before the system executes some illegal sequence in
the set ¢;

B) Force the system to stop its evolution before the execution of forbidden sequences;

C) Steer the faulty system behavior in order to meet new (eventually degraded) post-fault
specifications that are assumed to be expressed in the form of language .7 9.

Figure 5.30 depicts the described scenario from a language specification point of view.

Note that objective A is achieved if the property of safe diagnosability described in [68] is
satisfied by the system. In the following, objective B will be studied in terms of a new property
called safe-controllability, while objective C will be linked with the new property of active fault
tolerance. 1t is important to emphasize that the post-fault specifications .# ¢ are in general
disjoint from £(G§J§) ; therefore, in order to satisfy them, it is necessary to switch from the
nominal supervisor S™™ to a new supervisor denoted by S, thereby following an active
approach to fault tolerance in the sense of [6].

5.4. Active fault tolerant control online diagnostics 125

5.4.3 Safe controllability of DES

This section is concerned with the definition and testing of the property of safe controllability
for the purpose of the fault tolerance objectives described in the preceding section. First, we
recall the definition of diagnosability, introduced in [78], which states that a language L is
diagnosable if it is possible to detect within a finite delay occurrences of faults using the record
of observed events.

Definition 5.1 [Diagnosable DES] A prefix-closed language L that is live and does not contain loops
of unobservable events is said to be diagnosable with bound n with respect to projection P, and fault
event f if the following holds: (In € N) (Vs € ¥(f)) (Vt € L/s) (||t|| > n = D) where the
diagnosability condition D is: w € Py [Py(st)| N L = f € w.

Objective A of the preceding section requires that after a fault f occurs, the system should
not execute a forbidden substring from a given finite set . This objective is captured by the
property of safe diagnosability introduced in [68] and now recalled.

Definition 5.2 [Safe Diagnosable DES] A prefix-closed language L that is live and does not contain
loops of unobservable events is said to be safe diagnosable with respect to projection P,, fault event f and
forbidden language ¢} if the following conditions hold:

SC1) Diagnosability condition: L is diagnosable with bound n, with respect to P, and f;

SC2) Safety condition: (Vs € V(f))(Vt € L/s) such that |[t|| = n, let t., ||t.|| = ne., be the shortest
prefix of t such that D holds, then st. N % = 0.

In words, this definition says that a language is safe diagnosable if it is diagnosable and if after
a fault, the shortest continuation that assures the detection of the fault does not contain any
illegal substring from the set ®.

We make use of the Diagnoser Approach described in [78] to test diagnosability and safe
diagnosability. The diagnoser, denoted by G422, is an automaton built from the system model
G;j;f. This automaton is used to perform diagnosis when it observes on-line the behavior of
G;;;f. The construction procedure of the diagnoser can be found in [78]. We recall here a
theorem from [78] for testing (off-line) the diagnosability of a system using its diagnoser; the

reader is referred to [78] for undefined terminology.

Theorem 5.1 (see [78] for details.) A language L is diagnosable with respect to the projection P,
and fault event f if and only if the diagnoser G428 built starting from any generator of L has no F-
indeterminate cycles.

By slightly modifying the diagnoser as explained in [68], we obtain the so-called safe-diagnoser,
denoted by G285 in which some states are labeled as bad states since they are reachable by
executing strings in #}. As explained in [68], the safe-diagnoser can be used to test (off-line)
the property of safe diagnosability; we recall the following theorem.

Theorem 5.2 (see [68] for details.) Consider a diagnosable language L. L is safe diagnosable with
respect to projection P, fault event f, and forbidden language Xy if and only if in the safe-diagnoser
GYa&:S built from any generator of L:

1. There does not exist a state q that is F-uncertain with a component of the form (xz,¢) such that
f € Land x is a bad state;

126 A discrete event approach to fault diagnosis in automated system

2. There does not exist a pair of states q, q' such that: (i) q is F-certain with a component of the form
(x,0) such that f € { and x is a bad state; (ii) ¢’ is F-uncertain; and (iii) q is reachable from ¢
through an event e € E,.

We have argued previously that safe diagnosability is a first necessary step in order to
achieve fault tolerant supervision of DES. If the system is safe diagnosable, reconfiguration
actions should be forced upon the detection of faults prior to the execution of unsafe behavior,
thereby achieving the objective of fault tolerant supervision. The first step to reconfigure the
system is to disable the nominal supervisor and prevent the system from executing a forbidden
substring. For this purpose, it is useful to introduce the following property.

Definition 5.3 [Safe Controllable DES] A prefix-closed language L that is live and does not contain
loops of unobservable events is said to be safe controllable with respect to the projection P,, fault event
f, and forbidden language % if the following conditions hold:

1. Safe diagnosability condition: L is safe diagnosable with respect to Py, f, and 7,

2. Safe controllability condition: consider any string s € L suchthat f € sand s = vo witho € E,.
Suppose that D does not hold for v while it holds for s. Then (Nt € L/s) such that t = u§ with
¢ € ®,dz € E. such that z € u.

In words, a language is safe controllable if for any string that contains a fault and a forbidden
substring, there exists (i) an observable event that assures the detection of the fault before the
system executes the forbidden substring and (ii) a controllable event after the observable event
but before the forbidden substring. In this way, after the detection of the fault, it is always
possible to disable the controllable event and avoid unsafe behavior.

Consider an automaton G generating language L and assume that L is safe diagnosable
with respect to the projection F,, fault event f, and forbidden language .#;. Denote with FC
the set of first-entered certain states in the safe-diagnoser GYiag:s byilt from G; namely, FC is the
set of all safe-diagnoser states ¢ such that ¢ is F-certain and there exists a safe-diagnoser state
¢ which is F-uncertain and such that ¢ is reachable from ¢’ through an event o, € E,. The set
FC contains a finite number of elements:

FC={g}, i=1...m). (.7)

For any ¢; = {(=j, F); (2, F) ..., (21, F)} € FC (i = 1...m) we build a new post-fault uncon-
trolled model, Gideg, by taking the accessible part of G**! from all the distinct states zj, 7y . .. 7
of G that appear in the i-th safe-diagnoser state; see Fig. 5.31. To make the model determin-
istic, we add a new initial state x; and connect it with new events called “init;, inity, init;” to
the distinct states of G"*f that appear in the safe-diagnoser state ¢;. The index of init is used
to make these events distinct. Note that init is uncontrollable and unobservable. In practice,
this accessible part will be within the faulty part of G**f, since the occurrence of the fault has
forced the system outside its original nominal behavior G"°™.

Using the above terminology, we can now present a procedure to test the property of safe
controllability.

Proposition 5.1 Consider automaton G generating language L and assume that L is safe diagnosable
with respect to the projection P,, fault event f, and forbidden language #;. Consider the set FC of
first-entered certain states in the safe-diagnoser GU%& built from G. Language L is safe controllable

if and only if Vg; € FC, language {e}*“, computed with respect to the post-fault uncontrolled model
G°8, does not contain any element of ® as a substring.

5.4. Active fault tolerant control online diagnostics 127

Gdiag,s l

Figure 5.31: Post-fault uncontrolled model.

Proof. By construction, {e}¥@ computed with respect to Gideg contains all the shortest contin-
uations in £(G"*Y) after detecting the occurrence of fault f (in the i-th state in FC), in which
the system can be controlled, i.e., the possible evolutions in G?eg after disabling all the events
that can be feasibly disabled. Suppose that some string in this controllable language contains
an element of ® as a substring; this means that there is no way to prevent the system from
executing a forbidden sequence after the detection of fault f in the i-th state in 7C. This is a
violation of safe controllability.

Next, suppose that the safe controllability condition does not hold for language £(G"*f), i.e.,
for at least one string s € £(G"*f) such that f € sand s = vo with ¢ € E, and such that D does
not hold for v while it holds for s, there exists at least one continuation ¢ € £(G™*!)/s such that
t = u& with £ € @ for which #z € E, such that z € u. Language {¢}*“ computed with respect
to G?eg contains all the concatenations of uncontrollable events feasible in E(G?eg) ; since by
hypothesis there does not exist any controllable event in between the detection of the fault and
before executing the forbidden sequence in @, there exists at least a string in {e}*“ that contains
an element of ® as a substring. <

Remark 5.1 Standard techniques to remove illegal substrings from a language can be used to test
Proposition; see, e.g., Section 3.3 in [17].

5.4.4 Active fault tolerance of DES

If language E(G;ﬁg) is safe controllable then it is always possible to detect any occurrence of
event f in a bounded number of observable events and without executing any forbidden action;
moreover, in any continuation after the detection of fault f that contains a forbidden action
in @, there always exists at least one controllable event z that can be disabled to prevent the
system from executing unsafe actions. Entering certain state ¢; € FC should therefore trigger an
interrupt signal INT; that disables the controllable event z. Moreover, the same interrupt signal
can be used to disable the nominal supervisor "™ and enable a new supervisor Sideg to be
designed in order to meet post-fault specifications %, deg, Starting from post-fault uncontrolled
model Gfeg, a set of requirements on the controlled behavior can be designed resulting in post-
fault degraded specifications %, ¢ which in general are sublanguages of the language marked

by GI*8. Note that .%"*® need not be prefix-closed if the requirements include the ability to

128 A discrete event approach to fault diagnosis in automated system

S"M [P (0)]

Sl’lol’l’l

R LW ,,,,,,,,]
R Gdiag | PO(.)

,,,

Figure 5.32: Fault tolerant supevision architecture for DES.

reach one of the so-called recovery states that are included and marked in G**!. In simpler cases,
%% will be a prefix-closed sublanguage of the language generated by G, In practice %
can be designed as the language generated or marked by an automaton H, ideg built by removing
from Gideg illegal states in G**! and all strings that contain some undesired substring that may
be specificto each ¢ = 1...m. In some cases, it might be desirable to specify a minimal required
behavior %, deg:min 4 he satisfied after the detection of the fault event f. Considering this set of

degraded post-fault specifications %, d (i =1...m), we present the following definition.

Definition 5.4 [Active Fault Tolerant DES] Language £(G™*) is said to be active fault tolerant if
forall i = 1...m, there exists a sublanguage of ji{deg that is controllable and observable with respect
to L(G®).

In order to test Definition 5.4 for prefix-closed specifications % 2 we can compute {6}¢C
with respect to £(G°¢) and test if the result is contained within .98, Of course, this solution
is likely to be impractical because it may be too restrictive. Another possibility is to compute
the supremal controllable and normal sublanguage of .%; 48 with respect to ﬁ(Gideg). This so-
lution may also be too restrictive since the normality condition is stronger than the required
observability condition. In this case, one could use existing algorithms for calculating max-
imal controllable and observable sublanguages of %, d°8. for instance, the VLP-PO algorithm
presented in [40] can be used for this purpose.

For cases where Ji/ideg is not prefix-closed, the test for active fault tolerance is more com-
plicated, since the | C operation deals with prefix-closed languages. One could still compute
the supremal controllable and normal sublanguage of (marked language) %, 8. however, if
this approach returns the empty set, we will not know if active fault tolerance is violated, as
Jifideg could still possess a controllable and observable sublanguage. In this case, the recent
results in [99] could be used to test the existence or not of such a language. However, a positive
test may still yield a solution that is deemed too restrictive. More research is required regard-
ing the development of algorithms for computing controllable and observable sublanguages of
non-prefix-closed languages.

5.4. Active fault tolerant control online diagnostics 129

C;diag,supl

INT;
lexk}- -0 -
Enabled unobservable Enabled observable

events events

Figure 5.33: The diagnosing-controller for the example in Fig. 5.31.

In Fig. 5.32 a possible architecture for active fault tolerant control of DES is presented. Dur-
ing nominal functioning, the partial observation loop is closed on the nominal supervisor S™°™
which, recording the observation P,(¢), issues the control action S"°™ [P, (¢)] that encodes the
enabled events after the system G"*! executes the string ¢. In parallel to the control loop, the
diagnoser! G418 uses the same observations to detect occurrences of the fault event f. If the
system is safe diagnosable, after any occurrence of event f, the diagnoser detects the fault in
a bounded number of events and before the system executes any forbidden string in . When
the diagnoser becomes F-certain entering state ¢; € 7C (mapped from the safe-diagnoser), the
interrupt signal INT; is issued. If the system is safe controllable, we know that it is possible
to stop the evolution of G** before it executes forbidden substrings in ®. The same interrupt
signal is used to switch from the nominal supervisor S™™ to the post-fault supervisor S that
issues the control actions S [P, (£)].

The existence of this supervisor is assured if the active fault tolerance property holds; in
this case, the behavior of G"*/ can be controlled in order to satisfy the specification %, dog As
depicted in Fig. 5.32, it is possible to embed both the diagnoser G4%¢ and the bank of post-fault
supervisors Sid ¢ in a unique unit called the diagnosing-controller, whose structure is shown in
Fig. 5.33.

The diagnosing-controller is an automaton built from the diagnoser G4%¢ and considering
the model G™*. If G;ﬁg is safe diagnosable, then after any occurrence of fault event f the diag-
noser enters, in a bounded number of events, a first-entered certain state ¢; =
{(xj, F); (2, F) ..., (21, F)} € FC (again, mapped from the safe-diagnoser) and, after that mo-
ment, all the other reachable states in G422 are certain states. When G428 enters ¢;, the signal
INT; is generated and used to disable the controllable event z to avoid any occurrence of for-
bidden substrings; moreover the same event is used to disable the nominal supervisor S"°™.
Considering these facts, when GY28 enters ¢;, we are sure that event f has occurred and the
actual state in G**f is one of the states in the list of qi, i.e. xj;xx ... 7. Note that if the system
is safe diagnosable, none of the states zj; i . . . 2; will be reached by the execution of forbidden
substrings (see [68]). As previously stated, j; 7y . . . 71 can be considered as initial states for the
uncontrolled i-th post-fault model of the system. Moreover, the post-fault evolution can be re-
constructed considering the connectivity in Gt starting from states xj; xy . .. 71. At this point,

!The standard diagnoser is used here as it is suffices for the present purpose. Relevant mapping of states is done
from the safe-diagnoser to the diagnoser regarding the set 7C.

130 A discrete event approach to fault diagnosis in automated system

if £(G™*) is active fault tolerant with respect to post-fault specification .#; deg it is possible to
design a post-fault supervisor Sideg. As depicted in Fig. 5.33, the realization of the post-fault
supervisor Sid “ can be considered as directly connected to first-entered F-certain state ¢; in the
diagnoser.

In view of the preceding discussion, we present an algorithmic procedure to build the
diagnosing-controller.

Procedure to build the diagnosing-controller.

Step 1: Build the diagnoser G498 from Gt

sup /
Step 2: For any ¢ = {(xj, F); (2, F) ..., (21, F)} € FC;

Step 2.1: Stop the evolution of G422 after ¢; and enable signal INT; when entering ¢;
Step 2.2: Build the post-fault model G°¢;

Step 2.3: Compose G{°® with a realization H.*® of specification language .%"*. Define
Rdeg _ H.deg % Gfieg.
1 1/

Step 2.4: Starting from R9°¢, build the post-fault supervisor realization Sideg using tech-
niques from supervisory control theory;

Step 2.5: Overlap the initial state of Sid ¢ with state ¢; of G4i28;
Step 3: Call the resulting automaton G4i#8=sup,

We discuss the computational complexity of the above procedure. We know from [78] that
the complexity of Step 1 is in the worst case exponential in the cardinality of the state set of
automaton ng;f. Hence the cardinality of the set of first entered certain states FC is worst-
case exponential as well, although this upper bound is very unlikely to be reached in practical
applications. Experience with applications of the Diagnoser Approach has shown that due to
the structure of real systems, their diagnosers usually have a state space whose cardinality is of
the same order as that of the original system. Moreover, the cardinality of the set FC is expected
to be much smaller than that of the state set of the diagnoser.

For any diagnoser state ¢; = {(zj, F); (zx, F') ..., (21, F)} € FC, Steps 2.1 to 2.3 build the
post-faults models using reachability analysis techniques and thereby have polynomial com-
plexity in the state set of G**!. Finally, the complexity of Step 2.4 depends on the technique
used to design the post-fault supervisor realization Sideg. Recall the discussion following Def-
inition 5.4. Supervisor synthesis in the case of partial observation has in the worst-case expo-
nential complexity in the state space of the given initial condition (here, R9°®), since it involves
a determinization step due the presence of unobservable events. This determinization step is
needed to ensure that a deterministic realization of the control law is obtained. An alternative
to complete off-line syntehsis is to adopt on-line control techniques for Step 2.4 (such as those
in [40]), which typically have polynomial complexity at each observable event along a system
trajectory.

5.4.5 An illustrative example

Consider the hydraulic system of Fig. 5.34 (a); the system is composed of a tank T, a pump P, a
set of valves (V1, V2, and Vr), and associated pipes. The pump P is used to move fluid from the
tank through the pipe and must be coordinated with the set of redundant valves. The system

5.4. Active fault tolerant control online diagnostics 131

nom 0, ,A,OL 1 ,A,B
Gsup op
—>
ol start
stop
1,A8 1,By 02

Figure 5.34: The hydraulic system example: (a) the system; (b) nominal model G7°™ for the
set of valves; (c) nominal pump model G5°™; (d) global nominal model G™™; (e) nominal

specification H"™; (f) nominal supervised system G

132 A discrete event approach to fault diagnosis in automated system

Ap

/\ F,A,a E
<op,PP>
“(x1)
<cl,PP> <start,PP>
@)

(c)

Figure 5.35: The hydraulic system example: (a) model of valves with fault f, G**; (b) complete

model G™* = G}11(|G3°™; (d) complete supervised model GIff.

is equipped with a pressure sensor. The automaton modeling the set of valves is denoted by
G1°™ and is shown in Fig. 5.34 (b): events op and cl are used to open and close valve V1, events
opl and cl1 are used to open and close valve V2, event rec is used to open safety valve Vr. All
these events are observable and controllable. In Fig. 5.34 (c) the model G5°™ of the pump P is
shown; events start and stop, observable and controllable, are used to switch on and off the
pump, respectively. In Fig. 5.34 (d) the nominal model of the system G"™ = G}™|G5°™ is
depicted; this model must be controlled according to the specification defined by automaton
H"™ shown in Fig. 5.34 (e). It is easy to see that L(H"°™) is controllable and observable with
respect to £(G"°™) and the supervised behavior GZ% is drawn in Fig. 5.34 (f).

sup

Due to a malfunction, valve V1 may get stuck closed; this fact is modeled using unobserv-
able and uncontrollable event f and the model of the valves G2t is depicted in Fig. 5.35 (a).
According to this refined model, the automaton G**f = G* || G3°™ modeling the uncontrolled
system is depicted in Fig. 5.35 (b). In Fig. 5.35 (c) the effect of the nominal supervision policy on
G"* is denoted by G;j;f. In Fig. 5.35 (c) pressure sensor readings are attached to events; note
that if valves are closed, the sensor reads an over pressure in the pipe (PP), while, if valves are
open, the sensor reads no over-pressure in the pipe (/VP). The situation in which the pump is
working with closed valves has to be avoided because it is unsafe: ® = {start}. Note that this

situation is feasible in G;ﬂg where state 28 is labeled as bad (see [68]).

In Fig. 5.36 (a), the safe-diagnoser of G2 is shown. Since the bad state z8 is not present

5.4. Active fault tolerant control online diagnostics 133

(x1,N) S (x2,N) (x4,N) (x3,N)

<start, NP> <stop, NP>

<op,PP>
v Bad

<start,PP> stop, <cl,PP:
(x6,F) (x8,F) |25 07 F) [(x5,F)

<op,PP>

(a)

(b)

Figure 5.36: The hydraulic system example: (a) safe diagnoser G4#5; (b) post-fault model Gfeg ;
(c) post-fault specification H{®,

in any of the uncertain states or in a first-entered certain state, the system is safe diagnosable;
in this case the set of first-entered certain states is C = {(26, F')}. Figure 5.36 (b) shows the
feasible evolution G(feg after detection; here, no new initial state and init event is needed since
G{°8 is deterministic.

It is easy to prove that {e}C computed with respect to £(G8) is equal to {¢}, therefore

deg

G;};f turns out to be safe controllable. Starting from G, the post-fault specification generated

by automaton H- f ¢ in Fig. 5.36 (c) can be designed; note the use of the event rec by which the
safety valve is opened letting the system continue performing its operation using the redundant
valve V2. Since this specification turns out to be controllable and observable with respect to
G{8, the system is active fault tolerant.

Finally, the diagnosing-controller G485 for this example is shown in Fig. 5.37. Since
in this example the safe-diagnoser and the standard diagnoser are the same automaton, the
diagnosing-controller can be obtained from the safe-diagnoser in Fig. 5.36 (a) by stopping its
construction at the first-entered certain state (26, /') and suitably overlapping to this state the
post-fault supervisor realization S{°.

It is important to stress how, entering state (z6, F'), signal INT is enabled, by which the
nominal supervisor is disabled and the forbidden action start is temporarily disabled.

5.4.6 Conclusions on active fault tolerant control using online diagnostic

The main contributions of this work can be summarized as follows.

1. It has investigated an active approach to FTC of DES that makes use of a multiple-
supervisor architecture to actively counteract the effect of faults. The control algorithm

134

A discrete event approach to fault diagnosis in automated system

L .
(LN) |~ 2N) | [t N) sl (3 N) |

<start, NP>

<op,PP>

(x6,F) | = INT

stop

Figure 5.37: The hydraulic system example: the diagnosing-controller Gdiagsup

employs online diagnosics to actively react to the detection of a malfunctioning compo-
nent in order to eventually meet degraded control specifications.

It has evaluated the effect of the diagnostics algorithm on the FTC architecture, based on
the idea that “fast”fault-detection is needed to promptly react and reconfigure the system
before it executes some unsafe action. To this aim, starting from an appropriate model of
the system, we have shown how the notion of safe diagnosability is a necessary step in
order to achieve fault tolerant supervision of DES.

It has introduced the new notions of “safe controllability”and “active fault tolerant sys-
tem”to characterize the conditions that must be satisfied when solving the FTC problem
using the active approach. Computational tests for these properties were presented.

It has proposed a procedure to design an automaton called “diagnosing-controller “which,
embedding the diagnoser as well as the set of reconfigured controllers, is able, if the sys-
tem satisfies the properties introduced, to solve the fault tolerant supervision problem.

Future research in this area could include the introduction of temporal behavior in the sys-

tem model and the consideration of a decentralized/distributed FTC architecture. This last
point is of particular interest as it paves the way to the definition of meaningful reconfigura-
tion strategies in which small faults are counteracted at the node level, whereas severe faults
are managed at a higher level involving a set of nodes.

Conclusions and future works

The main aim of this thesis, conclusive work of a three years research period focused on indus-
trial automation software architectures, is the development of a design pattern for control logic
in industrial automated systems. As explained in this work, in last years the industrial automa-
tion processes have acquired an ever increasing degree of automation, this trend derives by the
higher requirement of systems in term of quality, productivity, efficiency. This increasing make
complex the design of an industrial automated systems and in particular of its control system.
This works starts with a survey chapter on automated industrial a systems, with a particu-
lar mention to automated manufacturing systems, which illustrates the main characteristic of
this system and some definition. Starting from this, and analyzing the state of the art of soft-
ware engineering in industrial automation and the usually specification in an AMS we arrived
to define an architecture based on the new concept of the Generalized Device (GA). The main
concept is the separation between the policy as a sequence of actions, and the actuation mech-
anisms which perform the actions. This entity is defined in order to (i) encapsulate actuation
mechanisms separating them from high level control policies in order to hierarchically manage
the plant, (ii) support hardware virtualization, component interoperability and reusability and
(iii) make easier the design of diagnostics, reconfiguration and quality check functionalities ex-
ploiting a distributed and hierarchical approach. Inside the work some examples show how
this architecture has characteristic of modularity and composability. A lack in this approach is
the low reusability of the software, because is dependent from the particular hardware of the
AMS. Starting from this point it was take under consideration this question “Do different field
devices really need different control logic ?”

In the GA approach an actuation mechanism was a set of an actuators and sensors to perform
an action. In AMS it is possible to find different devices from different fields (electric, pneu-
matic, etc.) but analyzing the kind of signals that sensors and actuators need to exchange to
perform an action, we can define a new entity called Generalize Device. In this way GD is “com-
ponent”independent from the hardware, and so it is reusability. The main characteristic of this
architecture is the standardization of set of devices and a division of the diagnostic in two level:
a low level and a high level diagnostic. The low level diagnostic is embedded inside the GD
component, in this level are presented algorithms of fault detection on sensors and actuators
faults (i.e. stuck low, stuck high) this kind of fault are independent from hardware and the
specific application of the AMS. High level faults means faults which are dependent from the
application and to detect this faults it need use information generates from two or more de-
vices.

AMS are vulnerable systems so the diagnosis problem is an important topic. The faults isola-
tion in a generic dynamical system consists in the design of an elaboration unit that, appropri-

135

136 Conclusions and future works

ately processing the inputs and outputs of the dynamical system, is also capable of detecting
incipient faults on the plant devices, reconfiguring the control system so as to guarantee sat-
isfactory performance. In the Gd component are embedded fault detection and fault isolation
algorithms but to guarantee the effectiveness of the diagnosis system, it should also keep into
account an appropriate plant model, that describes its behaviour starting from the knowledge
of some inputs and outputs. In the last part of this work, it was presented a general and ver-
satile approach for building structured formal models in order to facilitate their control and
diagnosis using techniques from discrete events system theory. For this purpose, it was pre-
sented a methodology for building in a modular manner the complete model of a complex
automated system starting from individual components and their physical coupling. Using
this approach it is possible to have the faulty model of the entire system and using this have
a formal proof that the fault detection algorithm are correct. Finally, also the topic of the fault
tolerant control was explained.

Future development of this work will be the study and the implementation of tools which are
able to support the fulfillment of concepts of the Generalized Actuator and Generalized Device,
in particular an important point should be a definition of formal methods for control code gen-
eration to bridge the obtained results with the field of industrial informatics in order to obtain
(semi)automatic code generation with respect to standard programming languages.

Another very interesting research problem is the definition of a modeling framework able to
describe functionalities as well as the effect of their allocation and implementation over phys-
ical resources. This modeling tool will be used to model architectures and components for
computer-based distributed control systems with a clear distinction between functional and
implementative layer. This architecture should be modular and hierarchical in order to repre-
sent, at different abstraction levels, the distributed nature of the system.

All this effort will go in the direction to the definition of formal methods for the design and
verification of the functional architecture; this point is devoted to the study of new supervisory
control architectures that, exploiting the distributed nature of the systems (decentralized con-
trol, modular control etc.) and considering the effect of the integration with the implementation
layer, allow the compliance of key specifications such as safety and fault tolerance.

Appendixes

137

Appendix

Introduction to discrete event systems
theory

In this appendix some notions about discrete event dynamical systems
(DEDS) are reported, including basic definitions about discrete event sys-
tems (DES), theory of automata and languages and some important re-
sults about feedback supervision. The interested reader is referred for
a more complete and formal treatment of these topics to [17], [98] and
references therein.

A.1 Discrete event systems

A Discrete event system (DES) is a dynamical system in which the state space is naturally de-
scribed by a discrete set, and the state transitions are only observed at discrete points in time.
We associate the state transitions with “events”; an event can be identified with a specific action
taken. This action can be spontaneous (dictated by nature) or it may be the result of several con-
ditions which are suddenly met. The symbol e denotes an event; considering a system affected
by different types of events, we will assume we can define an event set £, whose elements are
all these events.

Discrete event systems satisfy the following two properties:

1. The state space is a discrete set.

2. The state transition mechanism is event drive.

Definition A.1 A discrete event system is a discrete-state, event-driven system, i.e. its state depends
entirely on the occurrence of asynchronous discrete events over time.

With this in mind, the behavior of a DES can be described in terms of event sequences of the
form ey, ez, -, e,. A more formal way to study the logical behavior of DES is based on the
theories of languages and automata.

139

140 Introduction to discrete event systems theory

The starting point is the fact that any DES has an underlying event set E associated with
it. The set E is thought of as the alphabet of a language and event sequences are thought of as
strings (words) in that language. A string consisting of no events is called empty string and is
denoted by e. The length of a string s, denoted with |s|, is the number of events contained in it,
counting multiple occurrences of the same event.

Definition A.2 A language defined over a set E is a set of finite-length strings from events in E.

The key operation involved in building strings and thus languages from a set of events £ is
concatenation: the string abb is the concatenation of the string ab and the event b. The empty
string € is the identity element of concatenation. Let E* denote the set of all finite strings
of elements of E, including the empty string ¢; the (-)* operation is called Kleene-closure. A

language over an event set E is a subset of £*.
If tuv = s, the following nomenclature can be defined:

e tis called a prefix of s,
e u is called a substring of s,
e v is called a suffix of s.

Observe that both € and s are prefixes, substrings and suffixes of s.

A.2 Operations on Languages
The usual set operations, such as union, intersection, difference and complement with respect
to E* are applicable to languages, since languages are sets. In addition it is possible to introduce
the following operations:

e Concatenation: Let L,, Ly, C E*, then

LoLy:={s € E*:(s=s45)and (s, € L,) and (s € Lp)} .

A string is in L, Ly if it can be written as the concatenation of a string in L, with a string
in Lb.

o Prefix-closure: Let L C E*, then
L:={scE*:3tc E*(stc L)} .

The prefix closure of L is the language L consisting of all the prefixes of all the strings in
L. In general L C L.

o Kleene-closure: Let L C E*, then:
L*:={eULULLULLLU--- .

An element of L* is formed by the concatenation of a finite number of elements of L.

A.3. Representation of languages: automata 141

A.3 Representation of languages: automata

An automaton is a device that is capable of representing a language according to well-defined
rules.

Definition A.3 A deterministic automaton, denoted by G, is a six-tuple
G = (X7E7 f7F7mO7Xm)
where

o X is the set of states

E is the finite set of events associated with transitions in G

[+ X x E — X is the transition function: f(xz,e) = y means that there is a transition labelled
by event e from state x to state y; in general f is a partial function on its domain

o I': X — 2% is the active event function: T'(x) is the set of all the events e for which f(z,e)is
defined

xq is the initial state
o X C X is the set of marked states.

The automaton is said to be deterministic because f is a function over X x E. In contrast
the transition function of a nondeterministic automaton is defined by means of a relation over
X x Ex X"

An automaton generates a language defined in the following way.

Definition A.4 The language generated by G = (X, E, f,T', 9, X)) is

L(G):={s € E*: f(xo,s) is defined} . (A1)
The language marked by G = (X, E, f,T', zo, X;,) is

L(G):={s€ E": f(xo,5) € Xpn} . (A.2)

In other words a string s is in £(G) if and only if it corresponds to an admissible path in the
state transition diagram. Note that in the above definitions we work with an extension of the
transition function defined over X x E* as:

flxye) = =z
f(z,se) = f(f(x,s),e)forse€ E*ande€ E .

Two automata are said to be equivalent if they generate and mark the same languages, i.e.
Definition A.5 Automata G| and G5 are said to be equivalent if

E(Gl) = E(GQ) and Em(Gl) = Em(GQ) .

!Or equivalently a function from X x E to 2.

142 Introduction to discrete event systems theory

In general the following property holds:

Ly (G) € L(G) C L(G) .
It can happen that an automaton G could reach a state where I'(z) = 0, but ¢ X,,,. This is
said a deadlock, because no further event can be executed. If deadlock happens, then necessarily
L,,(G) will be a proper subset of L(G), since any string in £(G) that ends at state 2 cannot be a
prefix of a string in £,,,(G).

Consider now the case when there is set of unmarked states in GG that forms a strongly
connected component, but with no transitions going out of the set. If the system enters this set,
then we get a so-called livelock. If livelock is possible then again £,,(G) will be a proper subset
of L(G).

Definition A.6 An automaton G is said to be blocking if

Lo(G) C L(C)

and nonblocking when
Ln(G)=L(G) .

In other words if an automaton is blocking either deadlock and/or livelock can happen.

Suppose now that an event e at state may cause transitions to more than one state. In this
case f(x, e) is represented by a set of states. In addition we may want that to allow the label € in
the state transition diagram, i.e. we allow transitions between distinct states to have the empty
string as label®. These two changes lead to the definition of a nondeterministic automaton.

Definition A.7 A nondeterministic automaton, denoted by G4, is a six-tuple
Gna = (X, EU{e}, fuas T, 20, Xin)
where
o fnaisafunction foq: X x EU{e} — 2%, that is f,q(z,e) C X whenever it is defined

o The initial state may be itself a set of states: xo C X.

A.3.1 Operations on automata

o Accessible part: From the definition of £(G) and £,,(G), we can delete from G all states
that are not accessible or reachable from z(by some string in £(G) without affecting the
languages generated and marked by G. When we delete a state we also delete all the
transitions that are attached to that state. We will denote this operation by Ac(G) (taking
the accessible part).

AC(G) = (Xa&Ea fOLCa:UOaXac,m)

Xae = {reX:3se€ E*(f(xo,s) =x)}
Xac,m = XN Xee

Jac = flXpxBEoXae -

*These transitions may represent events that cause a change in the internal state but are not observable by an
outside observer.

A.3. Representation of languages: automata 143

o Coaccessible part: A state x of G is said to be coaccessible to X, if there is a string in £,,,(G)
that goes through z; i.e. there is a path in the state transition diagram of G’ from state x
to a marked state. We denote the operation of deleting all the states of G that are not
coaccessible by CoAc(G):

COAC(G) = (Xcoac, E, feoac Z0,coacs Xm)

Xeoac = {zeX:3Is€ E*(f(x,s) € Xpn)}

0 _ { T if 20 € Xeoqe
coac undefined otherwise

feoac = X euex B X oo -

The CoAc operation may shrink £(G), but does not affect £,,,(G).

o Trim operation: An automaton that is both accessible and coaccessible is said to be trim.
We define the T'rim operation as:

Trim(G) = CoAc[Ac(G)] = Ac[CoAc(Q)].

e Complement: Consider a trim automaton G = (X, E, f,T", x¢, X,,,) that marks the language
L C E*, we can define a complement automaton G*’"*? that will mark the language £*\ L.

e Product: consider the two automata
G1 = (X1, By, f1,T1, 201, Xon1) and Ga = (Xo, Ea, f2,T9, o2, Xin2)
the product of G; and G is the automaton
G1 x Gy = Ac (X1 x Xo, E1 N Es, f,T1x2, (o1, 202)s Xm1 X Xm2)
where

undefined otherwise

f((:ﬂl,xz),e) = { (fl(xl’e)’f2($2,€)) if e Fl(xl) ﬂrz(gﬂz)

and thus
Dixo(xr,z2) =Ti(x1) x Ta(x2) .

This means that in the product the transitions of the two automata must always be syn-
chronized on common events (in E; N E»). It is easy to verify that:

L(G1 x G2) = L(G1) N L(G2) L (G x G2) = L, (G1) N L, (Ga2)
e Parallel composition: consider the two automata
G1 = (X1, By, f1,T1, 201, Xom1) and Ga = (X, Ea, f2,T9, o2, Xin2)
the parallel composition of G; and G is the automaton

G1 || G2 = Ac(Xy x Xo, E1 U B, £, T2, (To1,202), Xim1 X Xim2)

wher
o (fi(z1,€), fa(m2,€)) if e € T'y(21) NTa(z2)
f((l'l .%'2) 6) _ (fl(l'l,e),.%'g) ifee Fl(m'l)\EQ
Y (z1, fa(w2,¢€)) if e € I'a(z2)\ 1

undefined otherwise .

144 Introduction to discrete event systems theory

In the parallel composition a common event can only be executed if the two automata
both execute it simultaneously. The two automata are synchronized on common events.
To characterized the language generated, we define the projection

P, : (B UEy)* — Ef fori=1,2

as follows:
P(e) = ¢
e ifeec E;
Pl(e) - € ife ¢ Ez
Pi(se) = Pi(s)P;(e)fors e (E1UE2)*, e € (E1U E»).

In other words given two event sets where one is a subset of the other, this kind of pro-
jection (called natural projection) erases events in a string formed from the larger set, that
do not belong to the smaller one. We can also introduce the corresponding inverse maps
(inverse projection)
~1 E1UE)*
Pl Er o 2(B1UE)

defined as:
Pl ={sec (B UEy*: Pi(s) =t} .

In other words given a string in the smaller event set, the inverse projection returns the
set of all strings in the larger event set that project to the given string. The projections
and their inverses are extended to languages, simply by applying them to all the strings
in the language. Note that

but in general
Lc P R(L) .

Returning to the parallel composition between automata, it easy now to prove that

L(Gy || G2) = P L(G)INP M [L(Ga)] Lin(Gy || G2) = Py [Lan(G)INPy ! [Lm(Ga)]

A.3.2 Observer automata

It is always possible transform a nondeterministic automaton G4 into an equivalent deter-
ministic one. We will call the resulting equivalent deterministic automaton the observer G s
corresponding to the nondeterministic automaton. The procedure to build the automaton can
be found in [17]. It is important just to recall the properties of the observer:

1. G is a deterministic automaton.
2. L(Gops) = L(Gnq)
3. £m(Gobs) — £m(Gnd)

We motivated previously the use of e-transitions in a nondeterministic automaton as events
that occur in the system modelled by the automaton, but cannot be observed from outside.
Those events are considered as unobservable events, in other words the event set is partitioned
into two disjoints parts:

E =FE,UEy,

A.4. Regular languages 145

where FE, is the set of observable events and E,, is the set of unobservable events. Treating
unobservable events as e-transitions and building the observer corresponding to the nondeter-
ministic automaton obtained, it is easy to prove that the observer satisfy the following proper-
ties:

o L(Guwps) = P[L(G)]
4 Em(Gobs) = P[Em(G)]

o The state of G, that is reached after a string ¢t € P [£(G)] will contain all the states of G
that can be reached after any strings in

PYt)nL(@G) .

Where P denotes the natural projection from E to E, defined as follows:

Ple) = ¢
e ifeeE,
Ple) = { e ife¢FE,
P(se) = P(s)P(e)forsec E*,ec E.

In other words, the state of G is the union of all the states of G that are consistent with the
observable events that have occurred so far. In this sense the state of G, is an estimate of the
current state of G.

A4 Regular languages

Any language can be marked by an automaton: simply build the automaton as a possibly
infinite tree whose root is the initial state and where the nodes at layer n of the tree are entered
bye the strings of length n or the prefixes of length n of the longer strings. The state space is
the set of nodes of the tree and a state is marked if and only if the string that reaches it from
the root is an element of the language. Such tree automaton will have an infinite state space
if the cardinality of the language is infinite. Of course there exist infinite languages that can
be represented by finite-state automaton?, but there exist also infinite languages that cannot be
represented by finite-state automata. A classical example is the language L = {a™b" : n > 0};
see [17] for more details.

Definition A.8 A language is said to be reqular if it can be marked by a finite-state automaton. We
will denote the class of reqular languages by R.

It is easy to prove the following theorems:

Theorem A.1 The class of languages representable by nondeterministic finite-state automata is exactly
the same as the class of languages representable by deterministic finite-state automata: R.

Theorem A.2 If Ly and Lo are in R, then the following languages are also in R:
1. Ly
2. Ly

3The simplest case is the language L = E* that can be represented by a single state automaton.

146 Introduction to discrete event systems theory

3. L°:=FE*\ I,
4. L1UL,

5 LiNL,

6. Ly,

Theorem A.3 A language is reqular if and only if it can be represented by a reqular expression i.e. by
means of the operations of kleene-closure, union and concatenation.

A.5 Supervisory control

The situation considered in this section is that of a given DES whose behavior must be modified
by feedback control in order to achieve a given set of specifications. Consider an automaton
G that models the uncontrolled behavior of the DES; this behavior is not satisfactory and must
be modified by control in the sense that its behavior must be restricted to a subset of £(G).
In this framework, we consider sublanguages of £(G) that represent the legal behavior for the
controlled system. In this paradigm, the supervisor S observes some of all the events that G
executes and tells G which events in its current active set are allowed next. In other words, S
has the capability of disabling some feasible events of G, exerting in this way a feedback control
action on G.

Consider a DES modelled by the language generated L and the language marked L,,. L
and L,, are defined over the event set £. Consider the case of a prefix-closed L. These two
languages are generated and marked by an automaton

G: (X7E7f7P7x07Xm) .

We want to design a supervisor S that interacts with G in a feedback manner as explained
previously. Let E be partitioned into two disjoint subsets:

E=FE.UFE,.
where

o [is the set of controllable events, i.e. those events that can be prevented from happening
(disabled) by supervisor S;

o E,. is the set of uncontrollable events, i.e. those events that cannot be prevented from
happening by supervisor S.

Assume for the moment that all the events in £ executed by G are observed by S. A supervisor
S is a function
S:L(G) —2F

such that for each s € £(G),
S(s) VT (f (o, s))

is the set of enabled events that G can execute at its current state f(z, s). In view of this we will
say that supervisor S is admissible if for all s € L(G)

Eue N (f(wo,5)) € S(s)

i.e. S is not allowed to ever disable a feasible uncontrollable event.

A.5. Supervisory control 147

Definition A.9 The language generated by S/G is defined recursively as follows

1. e€ L(S/G)

2. [((s € L(S/Q)) and (so € L(G)) and (o € S(s))] <= [(so € L(S/G))].
The language marked by S/G is defined as follows:

Ly (S/G) = L(S/G) N L (G).
Definition A.10 The DES S/G is blocking if
L(S/G) # Lm(S/G)

and nonblocking if

L(S/G) = Lm(S]G).

Consider now the situation where the supervisor does not observe all the events that G exe-
cutes, i.e. the event set F is partitioned into two disjoint subsets:

E=FE,UEFE,,
where

o F, is the set of observable events, i.e. those events that can be seen by supervisor S;

o F,, is the set of unobservable events, i.e. those events that cannot be seen by supervisor S.

In this case the feedback loop includes a natural projection P between G and the supervisor S
in the sense that the supervisor cannot distinguish between two strings s; and s, that have the
same projection and will issue the same control action: Sp [P(s1)] = Sp [P(s2)]. We define a
partial-observation supervisor a function

Sp: P[L(G)] — 2F.

This means that the control action can change only after the occurrence of an observable events,
i.e. when P(s) changes.

Let us take the string t = t'o (with 0 € E,). Sp(t) is the control action that applies to
all strings in £(G) that belong to P~1(#){c} and to the unobservable continuations of these
strings. However Sp(t) may disable unobservable events and thus prevent some of these un-
observable continuations. We define

Ly = P~Y(t") {0} (Sp(t) N Euw)* N L(G).

In words, L; contains all the strings in £(G) that are subject to the control action Sp(t). Now
remember that a supervisor is admissible if it does not disable uncontrollable events. Hence
Sp is admissible if for all ¢t = t'o € P[L(G)],

Ey,.N

U F(f(xoas))] € Sp(t).

sely
Definition A.11 The language generated by Sp/G is defined recursively as follows
1. e€ L(Sp/G)
2. [(s € L(Sp/Q)) and (so € L(G)) and (0 € Sp[P(s)])] <= [(so € L(Sp/Q))].
The language marked by S/G is defined as follows:
Ln(Sp/G) = L(Sp/G) N Ln(G) .

148 Introduction to discrete event systems theory

A.6 Uncontrollability problem

A.6.1 Dealing with uncontrollable events

In the following is presented the existence result for supervisors in presence of uncontrollable
events.

Theorem A.4 (Controllability theorem) Consider a DES G = (X, E, f,I', z¢) where E,,. C E is
the set of uncontrollable events. Let K C L(G), where K # () is the admissible language. Then there
exists a supervisor S such that L(S/G) = K if and only if the controllability condition does hold, i.e.:

KE, . NL(G)CK .
Proof. See [17]. <

Remark A.1 The controllability condition in controllability theorem is intuitive and can be paraphrased
as: “if you cannot prevent it, then it should be legal”.

Definition A.12 (controllability) Let K and M = M be languages over set E. Let E,. be a subset
of E. K is said to be controllable with respect to M and E.,. if and only if

KE,, NnMCK .

Theorem A.5 (Nonblocking Controllability theorem) Consider the DES G = (X, E, f,T',x0)
where E,. C E is the set of uncontrollable events. Consider the language K C L,,(G), where K # () is

the admissible language. Then there exists a nonblocking supervisor S for G such that L,,(S/G) = K
and L(S/G) = K if and only if:

1. K is controllable with respect to L(G) and E, i.e.:

KE,.NLG)CK,

2. K is L,,(G)-closed, i.e.
K=KnCL,G).

Proof. See [17]. <

A.6.2 Realization of supervisors

Let us assume that language K C £(G) is controllable, then from controllability theorem we
know that supervisor S defined by

S5(s) = [Bue NT(f(z0,8)U{oc € E, : sc e K}

results in
L(S/G) = K.

We need now to build a convenient representation of the function S. Consider now an automa-
ton R that marks the language K:

R= (YaEvger7y07Y)

A.7. Unobservability problem 149

where R is trim and o
Ln(R)=L(R) =K.

If we connect R to G by the product operation, the result R x G is exactly the behavior we desire
for S/G:

LIRxG) = LER)NLG)
= KNLG)
= K=L(5/G)
Lan(RXxG) = Ln(R)NLn(G)
= KNL,G)

= L(S/G) N Ln(G) = L(S/G) .

Note that R is defined to have the same event set as G, then R || G = R x G. We will call R the
standard realization of S.

A.7 Unobservability problem

Consider now the feedback loop in the case of partial event observation. In other words we
have to deal with the presence of unobservable events in addition to the presence of uncon-
trollable events. Clearly unobservable events impose further limitations on the controlled be-
haviors that can be achieved with P-supervisors. As we did for controllability, we need to
introduce the concept of observability. Intuitively observability means “if you cannot differentiate
between two strings, then these strings should require the same control action”, or equivalently “if you
must disable an event after observing a string, then by doing so you should not disable any string that
appears in the desired behavior”. This idea can be formalized as follows:

Definition A.13 (observability) Let K and M = M be languages over set E. Let E, be a subset of
E. Let E, be another subset of E/ with P as the corresponding natural projection from E* to E}. K is
said to be observable with respect to M, P and E, if for all s € K and for all o € E,,

(so ¢ K)and (so € M) = P ' [P(s)]oNK =10 .

Theorem A.6 (Controllability and observability theorem) Consider DES G = (X, E, f,T',x0)
where E,. C E is the set of uncontrollable events and E, C E is the set of observable events. Let P
be the natural projection from E* to EX. Consider the language K C L,,(G), where K # () is the
admissible language. Then there exists a nonblocking P-supervisor Sp for G such that L,,,(Sp/G) = K
and L(Sp/G) = K if and only if:

1. K is controllable with respect to L(G) and Ey.
2. K is observable with respect to L(G), P and E,..

3. K is L,,,(G)-closed.

Proof. See [17]. «

The reader interested in further results regarding supervision of uncontrollable and unob-
servable languages is referred to [17] and references therein.

150 Introduction to discrete event systems theory

Appendix

The demonstrator

This appendix describes the FESTO Flexible Manufacturing System
(FMS), a didactic setup used to test the architecture proposed in this the-
sis.

B.1 Testbed description

The control architecture based on the Generalized Actuator and Generalize Device was validated
on the testbed of the Laboratory of Automation of University of Bologna (see fig. B.1).

I

-

i

s
e

(a) Distribution, testing and processing stations. (b) Assembly station.

Figure B.1: Micro flexible manufacturing system.

The testbed is a miniaturized flexible manufacturing system (FMS) produced by FESTO-
DIDACTIC (see fig. B.3); the plant is devote to produce short-stroke cylinders each of them
composed by a basic body, a piston, a spring and a cap. In particular the system starts from
raw pieces which are worked to realize the bodies and assemblies them with the other parts

151

152 The demonstrator

SPRING
- =_D

PISTON) l
BASIC BODY .
—_—

(a) Short-stroke cylin- (b) PLC.
ders.

Figure B.2: Control hardware and short-stroke cylinders.

to obtain the desired cylinder (see fig. B.2(a)). Thanks to the use of different basic bodies it
is possible to realize different diameter cylinders. In the following cylinders” bodies will be
referred as workpieces.

The FMS is composed by four stations (see fig. B.3): the first station is the distribution

station, where the workpiece is picked from the raw materials warehouse and moved to the
second station, the testing station. In testing station the workpiece is measured and its color
and height is identified. According to this measurements the workpiece is discarded or moved
to the processing station; in this station the workpiece is tested to verify if it can be worked or
not. If the workpiece positively passes the test, it is drilled and then moved to the last station,
the assembly station, where workpieces are assembled by a robotic manipulator to realize the
cylinder. The control of the FMS is implemented on a ABB PLC, AC500 family equipped with
CPU PM581-ETH with four input/output modules DC523 (see fig. B.2(b)).
Exhaustive informations on the FESTO FMS can be find in [33], [35], [34] and [32]. The control
software has been developed using the software suite CoDeSys (Controller Development Sys-
tem) [2], a CACSD tool that allows a completely IEC 61131-3 compliance. For more information
on the Laboratory of Automation of University of Bologna see [18].

B.1.1 Distribution station

The distribution station (see fig. B.4) fetches the bases of cylinders from an apposite warehouse
and moves them to the testing station with the aid of a rotary arm. This station is composed by
the following devices:

e Raw pieces warehouse: is a FIFO warehouse with the maximum capability of eight
pieces: a fiber optic presence sensor furnish an high logic level signal when there are
no pieces in the warehouse.

e Extraction cylinder: is a single acting pneumatic cylinder whose function is to extract a
load from the warehouse. The device is equipped with two inductive sensors sensible to
the magnetic field of the piston head. These two limit switch sensors indicates the end
positions of the cylinder.

B.1. Testbed description 153

N

Assembly
station

Figure B.3: Micro flexible manufacturing system.

¢ Rotary arm: is a pneumatic rotary manipulator whose movement amplitude can be con-
trolled by mechanical stops. The rotary arm transfers the raw pieces extracted from ware-
house to the testing station. The arm is a double acting pneumatic device and its extreme
positions are signaled by two electric microswitch activated directly by the arm. To an ex-
tremity of the rotary arm there is a suction cup necessary to the capture of the raw pieces
by the device. A vacuum sensor indicates when the load is correctly captured.

The usually sequence of operations are:

1. Therotary drive swivels to the position “downstream station” if workpieces are identified
in the magazine and the START button is pressed.

2. The ejecting cylinder retracts and pushes a workpieces out of the magazine.
3. The rotary drive swivels to the position “magazine”.

4. The vacuum is switched on. When the workpiece is securely held, a vacuum switch
switches.

5. The ejecting cylinder advances and releases the workpiece.
6. The rotary drive swivels to the position “downstream station”.

7. The vacuum is switched off.

154 The demonstrator

Rotary arm

Raw pieces warehouse:

~~

Extraction cylinder

~~

Figure B.4: Distribution Station layout

Signals H Meaning when active H Type ‘
EMPTYWAREHOUSE warehouse is empty IN
CYLINDEREXTRACTSLOADFROMWAREHOUSE extract workpiece from warehouse ouT
CYLINDEREXTRACTIONLOADINEXTENSIVEPOSITION extraction link extended position IN
CYLINDEREXTRACTIONLOADINRETROACTIVEPOSITION extraction link retracted position IN
LIGHTEMPTYWAREHOUSE empty warehouse alarm OouT
ROTARYMAKERVSWAREHOUSE Rotary link moving to warehouse OouT
ROTARYMAKERVSVERIFICATION Rotary link moving to verification station ouT
ROTARYMAKERINPOSITIONWAREHOUSE Rotary link reaches warehouse IN
ROTARYMAKERINPOSITION VERIFICATION Rotary link reaches verification station IN
VACUUMGENERATOR Vacuum generation ouT
VACUUMGENERATOROK Vacuum generator grasp workpiece IN
EXPULSIONAIRVACUUM Expelled workpiece from vacuum generator OouT

Table B.1: List of signals used in distribution station.

8. The rotary drive swivels to the position “magazine”.

B.1.2 Testing station

The testing station (see fig. B.5) is devoted to checks the colour and the height of a base and,
according to the user requests (by the control panel), it decides to send or not the base to the
processing station. This station is composed by the following devices.

o Testing module: its purpose is to recognize the kind of raw pieces. It includes a capacitive
sensor that furnish an high level logic signal if a load is present and a colour sensor to

B.1. Testbed description 155

Measurament module

Lifting module

vy

{éﬁa’éﬁ@

=5

\ 7""

Figure B.5: Testing station layout

sense the colour of the piece. This is a diffuse light sensor which generate an infrared
radiation and change it’s state when this radiation returns to the sensor meaning that the
load present in the testing station is not black.

e Lifting module: depending by the raw pieces colour and by the user’s specification, the
module must lift the raw pieces to the measurement module or stay in the low position to
allow the piece expulsion. It is a rodless linear pneumatic drive utilizing magnetic force
transmission without mechanical connection. Two inductive sensor are used to indicate
the ends position of the lifting module. A retro-reflective sensor is used to sense the
presence of the rotary arm into the trajectory of the lifting module in order to avoid a
mechanical interference. A single acting pneumatic cylinder mounted on the elevator
platform perform the expulsion of the load from the testing station, an inductive sensor
indicates its retract end-position. The expulsion of the load toward the processing station
is possible thanks to an air guide that reduce the friction of the load along the exit ramp.

e Measurement module: the purpose of this module is to recognize the height of the raw
pieces presents in the station. This measurement must respects that of colour otherwise
the piece cannot proceed to the processing station and must be removed from the produc-
tive line. This module consists of an analogue displacement sensor that is a conductive
plastic potentiometer which furnish, as output, an analogue voltage which is sent to a
analogue comparator. The comparator has three digital output which are at high logic
level depending by the value of two threshold voltage set by the user. In this way it’s
possible to have a digital signal that inform on the presence of a Red /Silver (which have
the same height) piece or Black piece.

156 The demonstrator

‘ Signal H Meaning when active H Type ‘
READYLOADFORVERIFICATION Workpiece in verification station IN
COLOURMEASUREMENT Red or silver workpiece IN
TOLIFTCYLINDERTOMEASURELOAD Move the lift upward OuT
TOLOWERCYLINDERTOMEASURELOAD Move the lift downward OuT
CYLINDERUPTOMEASURELOAD The lift is in upward position IN
CYLINDERDOWNTOMEASURELOAD The lift is in upward position IN
TOEXTENDCYLINDEROFEXTRACTIONVSGUIDE Extraction cylinder expel a workpiece OuT
CYLINDEROFEXTRACTIONINRETROACTIVEPOSITION || Extraction cylinder in retractive position IN
AIRCUSHION Activate air cushion ouT
MEASUREMENTNOTOK Bad workpiece IN

Table B.2: List of signals used in testing station.

The usually sequence of operations are:
1. Determine the colour and material of the workpiece.
2. Lifting cylinder to be raised.
3. Measurement of the workpiece height
If testing result is OK the sequence of operation are:
1. Switch on the air cushioned slide.
2. Ejecting cylinder to advance.
3. Ejecting cylinder to retract.
4. Switch off the air cushioned slide.
5. Lifting cylinder to be lowered.
6. Initial position.
If testing result is not OK the usually sequence of operation are:
1. Lifting cylinder to be lowered.
2. Ejecting cylinder to be advanced.
3. Ejecting cylinder to retract.

4. Initial position.

B.1.3 Processing Station

The processing station (see fig. B.6) function is to perform a processing simulation on the raw
pieces: a rotary table is used to move the raw pieces into three different working module. First
the piece is tested to verify if it can be worked or not: a raw piece can be worked only if it is
correct oriented. If the base successfully passes the test, it is drilled to create the hole for the
spring and the piston. After this operation the load is moved toward the expelling module for
being transfered at the assembly station. This station is only electrically actuated; no pneumatic
devices are present.

B.1. Testbed description 157

The drilling

Figure B.6: Processing station layout

¢ Rotary table: the rotary table allow the movement of the raw pieces toward the different
working module. The table is actuated by a 24 Volts DC-motor and has six different places
for the containment of the pieces. The six positions are then 60 degrees spaced; below the
table there is an inductive sensor that changes its state when the table is aligned. Three
capacitive proximity sensors are used to sense the presence of a load in the first three
position of the table (initial position, control module and drilling module).

e Control module: this module check the orientation of the pieces (remember that the
pieces are just worked because the system does not perform any real operation). It con-
sists of an electrically actuated single acting cylinder; when the actuation command is
high, an electromagnet force the cylinder to move down while when the actuation com-
mand is low, a return spring force the cylinder to stay in up position. An inductive sensor
give an high logic level signal when the cylinder is completely descended. This means
that the load is correct oriented (with the hole facing up).

e The drilling module: the drilling module is used to simulate the polishing of the hole of
the workpiece. An electrical clamping device retains the workpiece. The feed and return
actions of the drilling machine are effected by means of a linear axis with toothed belt
drive. An electrical gear motor drives the linear axis and a relay circuit is used to activate
the motor. The motor of the drilling machine is operated via 24 Volts DC and the speed is
not adjustable. The end position sensing is effected by means of electrical limit switches.
Approaching of the limit switches causes a reversal of the direction of movement of the
linear axis. The drilling machine is equipped with a drilling tool moved by a 24 Volts
DC-motor.

e Ejector module: after the polishing of the pieces, the table must turn so that the load can

158

The demonstrator

Signal H Meaning when active H Type ‘
ALIGNEMENTROTARYTABLEWITHPOSITIONING Rotary table is aligned IN
ROTARYTABLEMOTOR Move the rotary table OuT
INCONTROLLOADINWRONGPOSITIONTOBEDRILLED The workpiece is upside-down IN
AVAILABLELOADINCONTROLPOSITIONING The workpiece is in the testing module IN
TOLOWERCYLINDERTOINSPECTLOAD Test the workpiece in testing unit OuT
AVAILABLELOADINDRILLINGPOSITIONING The workpiece is in the drilling module IN
BLOCKINGCYLINDERFORWARDINDRILLINGPOSITIONING Lock the workpiece in the drilling module OuT
DRILLINGUNITDOWN Drilling machine has reached the downward limit IN
DRILLINGUNITUP Drilling machine has reached the upward limit IN
TOLOWERDRILLINGUNIT Move downward the drilling machine OuT
TOLIFTDRILLINGUNIT Move upward the drilling machine OuT
DRILLINGUNITCLOCKWISE Select clockwise rotation OuT
DRILLINGUNITUNCLOCKWISE Select counter-clockwise rotation OuT
DRILLINGUNITACTIVE Activate rotation of drilling machine OuT
EXPELLINGLEVERACTIVE Expel the workpiece in pushing-out module OuT
LIGHTUPSIDEDOWNLOADINEXPELLING Activate alarm of upside-down workpiece OuT

Table B.3: List of signals used in processing station.

be sent into the assembly station by the ejector module. The module is an electrically
actuated lever; when the actuation command is high the lever expels the load while re-
moving the command the lever returns on its initial position. As mentione before, in this
position there is no a presence sensor for the load.

The usually sequence of operations are:

1.

The rotary indexing table is rotated by 60°, if a workpiece is detected in the workpiece
retainer 1 and the START pushbutton is pressed.

2. The solenoid plunger moves downwards and checks whether the workpiece is inserted
with the opening facing upwards. The rotary indexing table is rotated by 60j if the result
of the check is OK.

3. The clamping device clamps the workpiece. The motor of the drilling machine is switched
on. The linear axis moves the drilling machine downwards.

4. When the drilling machine has reached its lower position, it is moved to its upper stop
again by the linear axis.

5. The motor of the drilling machine is switched off and the clamping device is retracted.
The rotary indexing table is rotated by 60°.

6. The electrical sorting gate passes on the workpiece to a subsequent station.

B.14 Assembly station

This station (see fig. B.7) supplies the components of the cylinder for the assembly process. The
assembly is performed by a five degrees of freedom manipulator.

B.1. Testbed description 159

Figure B.7: Assembly station layout

e Robot: the robot perform all the assembly operation to obtain the desired final object.
Its function is to take the different pieces by the different magazines and to mount this
pieces in the correct order into the basic body. The robot is a Mitsubishi RV-M1 five
degrees of freedom manipulator which have a proper control module for the planning
of its movements and to power its motors. Thanks to the use of different basic bodies,
it is possible to produce short-stroke cylinders of different piston diameters. During the
assembly operation the piece is blocked thanks to a pneumatic single acting piston which
is retracted if the actuation command is high.

e Spring magazine module: a single acting cylinder pushes the springs out of a slim mag-
azine which can contain up to 8 springs. The cylinder is normally extracted, when the
actuation command is high the cylinder retracts so a spring can go into the dedicated
place. When the actuation command is then removed, the spring is available for being
captured by the manipulator. The extreme end-positions of the cylinder are signalized by
two inductive sensors.

o Piston magazine module: two slim magazines (with capacity of up to 4 pistons) contains
the two different type of pistons. The extraction of the correct piston is performed by
a double acting cylinder which moves a semicircular platform; at the both ends of the
structure there is a circular hole, when this hole is aligned with the respective magazine, a

160

The demonstrator

piston from the warehouse falls into the hole. This piston can be expelled by a subsequent
rotation of the platform. The extreme end-positions of the platform are indicated by two
inductive sensors.

Cover magazine module: a single acting cylinder pushes the springs out of the cover
magazine which can contain up to 8 covers. The device is equipped with two inductive
sensors which indicates the end positions of the cylinder. A fiber optic presence sensor
furnish an high logic signal when there are no covers in the warehouse.

The usually sequence of operation are:

1.

3.
4.

If a workpiece “body” is detected in the retainer and the START pushbutton at the robot
controller is actuated the body is picked up by the robot.

The body is transported to the Assembly retainer module and placed at the “change grip-
per” position.

The colour of the body is determined.

The body is picked up and the orientation is checked.

If there is a black workpiece the operation are:

—_

6.

The body is placed in the correct orientation in the “assembly” position.
A metallic piston is picked up at the pallet. The piston is inserted in the body.

The robot checks whether a spring is available. If it is, the spring is picked up and placed
on the piston.

The robot checks whether a cap is available. If it is, the cap is picked up and placed on
the bolt of the Assembly retainer module. The orientation of the cap is checked.

The cap is placed in the correct orientation on the body. The cap is fixed by means of
rotation.

The finished pneumatic cylinder is placed on the slide.

If there is a red or silver workpiece the operation are:

1

2.
3.

The body is placed in the correct orientation in the “assembly” position.
A black piston is picked up at the pallet. The piston is inserted in the body.

The robot checks whether a spring is available or not. If it is, the spring is picked up and
placed on the piston.

The robot checks whether a cap is available or not. If it is, the cap is picked up and placed
on the bolt of the Assembly retainer module. The orientation of the cap is checked.

The cap is placed in the correct orientation on the body. The cap is fixed by means of
rotation.

The finished pneumatic cylinder is placed on the slide.

B.2. Part of code of FESTO 161
‘ Signal Meaning when active H Type ‘
TOEXTRACTSPRINGINASSEMBLYSTATION Spring extraction ouT
TOEXTRACTSPRINGINASSEMBLYSTATIONINEXTENSIVEPOSITION Spring extraction link extended IN
TOEXTRACTSPRINGINASSEMBLYSTATIONINRETROACTIVEPOSITION Spring extraction link retroactive IN
PISTONSELECTORGOONTHERIGHT Piston warehouse rotates to the right ouT
PISTONSELECTORGOONTHELEFT Piston warehouse rotates to the left ouT
PISTONSELECTORISONTHERIGHT Piston warehouse in right position IN
PISTONSELECTORISONTHELEFT Piston warehouse in left position IN
TOEXTRACTCOVERINASSEMBLYSTATIONFORWARD Cap extraction from warehouse ouT
TOEXTRACTCOVERINASSEMBLYSTATIONINRETROACTIVEPOSITION || Link cap extraction in retroactive position IN
TOEXTRACTCOVERINASSEMBLYSTATIONINEXTENSIVEPOSITION Link cap extraction in extensive position IN
EMPTYCOVERHOUSEINASSEMBLY STATION Cap warehouse is empty IN
BLOCKINGCYLINDERFORWARDINASSEMBLYSTATION Unlock workpiece ouT
ROBOTINPISTONWAREHOSE Robot in piston warehouse position IN
ROBOTINSPRINGWAREHOUSE Robot in spring warehouse position IN
ROBOTINCOVERWAREHOUSE Robot in cap warehouse position IN
ROBOTINASSEMBLYUNIT Robot in assembly position IN
ROBOTTAKECURRENTLOADTOASSEMBLYINASSEMBLYUNIT Workpiece assembly ouT
RoOBOTGOTOPISTONHOUSE Robot grasp piston ouT
ROBOTGOTOSPRINGHOUSE Robot grasp spring ouT
RoBOTGOTOCOVERHOUSE Robot grasp cap ouT
ROBOTGOTOINITIALHOUSE Robot move in initial position ouT

Table B.4: List of signals used in assembly station.

B.2 Part of code of FESTO

In figure B.8 and figure B.9 are reported a little part of code of FESTO with GA approach. Fol-

lowing is reported the code of the GD:

CASE GD Init OF
1: IF Activated THEN

Devi ceSt at e: =Devi ceAct i vat ed;

END | F;
| F Deacti vated THEN

Devi ceSt at e: =Devi ceDeact i vat ed;

END | F;

I F (NOT Activated AND NOT Deactivated) THEN
Devi ceSt at e: =Devi ceSt opped;

END | F;
0: CASE Devi ceState OF

Devi ceDeact i vat ed:
Deact i vati onRequest : =FALSE;
I F (ActivationRequest) THEN
Activati on: =TRUE;

162 The demonstrator

Deacti vati on: =FALSE;

Devi ceTi me: =Acti vati onTi ne;

Devi ceSt at e: =Devi cel nActi vati on;
END_| F;

Devi cel nActi vati on:
| F (Deactivati onRequest) THEN
Acti vati onRequest : =FALSE;
Acti vati on: =FALSE;
Deacti vati on: =TRUE;
Devi ceTi ne: =Deact i vati onTi ne;
Devi ceSt at e: =Devi cel nDeacti vati on;
ELSI F (NOT Activati onRequest) THEN
Acti vati on: =FALSE;
Deacti vati on: =FALSE;
Devi ceTi ne: =0;
Devi ceSt at e: =Devi ceSt opped,;
ELSI F (Activated) THEN
Act i vati on: =FALSE;
Deacti vati on: =FALSE;
Acti vati onRequest : =FALSE;
Devi ceTi ne: =0;
Devi ceSt at e: =Devi ceAct i vat ed;
END | F;

Devi ceAct i vat ed:
Acti vati onRequest : =FALSE;
| F (Deactivati onRequest) THEN
Acti vati on: =FALSE;
Deacti vati on: =TRUE;
Devi ceTi ne: =Deacti vati onTi ne;
Devi ceSt at e: =Devi cel nDeacti vati on;
END_| F;

Devi cel nDeacti vati on:

| F (ActivationRequest) THEN
Deacti vat i onRequest : =FALSE;
Acti vati on: =TRUE;
Deacti vati on: =FALSE;
Devi ceTi me: =Acti vati onTi ne;
Devi ceSt at e: =Devi cel nActi vati on;

ELSI F (NOT Deacti vati onRequest) THEN
Acti vati on: =FALSE;
Deacti vati on: =FALSE;
Devi ceTi nme: =0;
Devi ceSt at e: =Devi ceSt opped,;

ELSI F (Deacti vated) THEN

Acti vati on: =FALSE;

B.2. Part of code of FESTO 163

Deacti vati on: =FALSE;

Deacti vat i onRequest : =FALSE;

Devi ceTi ne: =0;

Devi ceSt at e: =Devi ceDeact i vat ed;
END | F;

Devi ceSt opped:

| F (Activati onRequest AND NOT Deacti vati onRequest) THEN
Acti vati on: =TRUE;
Deacti vati on: =FALSE;
Devi ceTi me: =Acti vati onTi ne;
Devi ceSt at e: =Devi cel nActi vati on;

END_| F;

| F (Deactivati onRequest AND NOT Activati onRequest) THEN
Acti vati on: =FALSE;
Deacti vati on: =TRUE;
Devi ceTi ne: =Deact i vati onTi ne;
Devi ceSt at e: =Devi cel nDeact i vati on;

END | F;

END_CASE;
END_CASE;
(*Gestione Tenporizzazi one GD*)
IF (O ockT AND (DeviceTi me>0)) THEN
Devi ceTi ne: =Devi ceTi nme- 1;
END | F;
Ti meout : =(Devi ceTi ne=0) ;
(**xx SEGNALAZI ONI DI AGNOSTI CAx * *)
Faul t Sensor Devi ceAct i vat ed: =((Devi ceSt at e=Devi ceDeact i vat ed
AND Deactivated AND Activated) OR
(Activation AND NOT Deactivation AND NOT Deactivated AND NOT Acti vat ed)
OR (Devi ceSt at e=Devi ceActi vated AND NOT Deactivated AND NOT Acti vated))
AND Ti nmeout ;
Faul t Sensor Devi ceDeacti vat ed: =((Devi ceSt at e=Devi ceDeact i vat ed AND
NOT Deactivated AND NOT Activated) OR
(NOT Activation AND Deactivati on AND NOT Deacti vated AND NOT Acti vat ed)
OR (Devi ceSt at e=Devi ceActivated AND Deactivated AND Activated))
AND Ti meout ;
Faul t Act uat or: =((Devi ceSt at e=Devi ceDeacti vat ed AND (NOT Deacti vat ed
AND Activated)) OR (DeviceState=DeviceActivated AND
(Deactivated AND NOT Activated)) OR
(Activation AND NOT Deactivation AND Deactivated AND NOT Activated) OR
(NOT Activation AND Deactivati on AND NOT Deactivated AND Activated))
AND Ti nmeout ;

Devi ceFaul t : = Faul t Sensor Devi ceActi vat ed OR
Faul t Sensor Devi ceDeacti vat ed OR Faul t Act uat or;

164 The demonstrator

DoneWhat:="EndInit’;
END_IF;

Init3: IF (NOT DO_) THEN (*Resetto il DONE quando la politica resetta il DO *)
StateGaExtractionCylinderST:=Ready;
State:='Ready’;
Statelnit:=Init1;
Done:=FALSE;
END_IF;
END_CASE;

Ready: IF (DO_) THEN (*Aspetto il comando di inizio operazioni
dalla politica *)
StateGaExtractionCylinderST:=Busy;
StateBusy:=Busy1;
State:='Busy’;
END_IF;

(*In Busy ho 5 sottostati Busyl (Controllo tipo di comando 'do’ e lo
eseguo) *)
Busy: CASE StateBusy OF
Busyl: IF (DoWhat="ExtractionCylinderOut’) AND SensorEmptyWarehouse = FALSE THEN
CommandCylinderExtractsLoadFromWarehouse:=TRUE;
StateBusy:=Busy2;

* estraggo un pezzo dal magazzino

END_IF;
IF (DoWhat="ExtractionCylinderIn) THEN (* disattivo l'attuatore per far tornare il
cilindro di estrazione in posizione retratta *)

CommandCylinderExtractsLoadFromWarehouse:=FALSE;
StateBusy:=Busy3;
END_IF;
IF (DoWhat="ExtractionCylinderOut’) AND SensorEmptyWarehouse = TRUE THEN (* accendo la
luce magazzino vuoto *)
CommandLightEmptyWarehouse:=TRUE;
Done:=TRUE;
DoneWhat:='None’;
StateBusy:=Busy4;
END_IF;
IF (DoWhat="ControlLoadPresence’) THEN (% accendo la lucemagazzino vuoto *)
CommandLightEmptyWarehouse:=TRUE;
StateBusy:=Busy5;

END_IF;
Busy2: IF SensorCylinderExtractionLoadInExtensivePosition =TRUE THEN (*Busy2: aspetto che
il cilindro di estrazione sia in posizione estesa *)

StateBusy:=Busy4;
CommandCylinderExtractsLoadFromWarehouse:=TRUE;

Done:=TRUE;
DoneWhat:='ExtractionCylinderOut’;
END_IF;
Busy3: IF SensorCylinderExtractionLoadInRetroactivePosition = TRUE THEN (* Busy3: aspetto che
il cilindro di estrazione sia in posizione retratta *)

StateBusy:=Busy4;
CommandCylinderExtractsLoadFromWarehouse:=FALSE;
DoneWhat:='ExtractionCylinderIn’;
Done:=TRUE;

END_IF;

Busy4: IF (NOT DO_) THEN (*Busy4: fine operazioni GA *)
Done:=FALSE;
StateGaExtractionCylinderST:=Ready;
State:='Ready’;
StateBusy:=Busy1;
END_IF;

Busy5: IF PushButtonFullWarehouse = TRUE THEN (*Busy5: Vedo se stato riempito il magazzino pezzi *)
CommandLightEmptywarehouse:=FALSE;
DoneWhat:='"WareHouseFull’;
StateBusy:=Busy4;
Done:=TRUE;

END_IF;
END_CASE;
END_CASE;

ROTARY MAKER

CASE StateGaRotaryMakerST OF

(*Nello stato di Idle apsetto di ricevere il comando per iniziare

Figure B.8: Example of GA code on FESTO

B.2. Part of code of FESTO

Rataryhaher
RataryhahkerF B
—DOo_ Done
~ Dtilihat Donelivhat —
RuotaryhBhkerinposition®enification 4 SensorRotaryhikerin Position e fication State|—

Rotaryhghkerin Positioniarehouse 4 SensorRotaryhalkerin Positioniiarehouse

CommandTimerFRotaryhiaker—

I'inizializzazione *)
Idle: IF (Do_ AND DoWhat='InitRotaryMaker1’)THEN
StateGaRotaryMakerST:=Init;
END_IF;
IF (Do_ AND DoWhat='InitRotaryMaker2’) THEN
StateGaRotaryMakerST:=Init;
END_IF;

(*Nello stato di Init eseguo le operazioni di inizializzazione, ho 3
sottostati Init, Init2, Init3 (Fine inizializzazione)
Init: CASE Statelnit OF

Init1: IF SensorRotaryMakerInPositionWarehouse THEN (

in posizione verifica *)
Statelnit:=Init3;
Done:=TRUE;
END_IF;

IF NOT SensorRotaryMakerInPositionWarehouse) THEN (

in posizione verifica *)
Statelnit:=Init2;
CommandRotaryMakerVsWarehouse:=TRUE; (
END_IF;

Init2: IF SensorRotaryMakerInPositionWarehouse THEN (
in posizione verifica *)
Statelnit:=Init3;
CommandRotaryMakerVsWarehouse:=FALSE;
Done:=TRUE;
END_IF;

Init3: IF (NOT DO_) THEN (
StateGaRotaryMakerST:=Idle;

* controllo che il rotary maker sia

* nello stato init il rotary maker portato

* il rotary maker viene portato in posizione verifica

* aspetto che il rotary maker sia arrivato

*Resetto il DONE quando la politica resetta il DO *)

State:='ldle’;
Statelnit:=Init4;
DoneWhat:="EndInit1’;
Done:=FALSE;
END_IF;
Init4: IF SensorRotaryMakerInPositionVerification THEN (% controllo che il rotary maker sia
in posizione verifica *)
Statelnit:=Init6;
Done:=TRUE;
END_IF;
IF (NOT SensorRotaryMakerIinPositionVerification) THEN (* nello stato init il rotary maker
portato in posizione verifica *)

Statelnit:=Init5;
CommandRotaryMakerVsVerification:=TRUE; (
END_IF;

Init5: IF SensorRotaryMakerInPositionVerification THEN (
in posizione verifica *)
Statelnit:=Init6;
CommandRotaryMakerVsVerification:=FALSE;
Done:=TRUE;
END_IF;

Inité: IF (NOT DO_) THEN (
Statelnit:=Init1;
StateGaRotaryMakerST:=Ready;
State:="Ready’;
DoneWhat:="EndInit’;
Done:=FALSE;

END_IF;
END_CASE;

* il rotary maker viene portato in posizione verifica

* aspetto che il rotary maker sia arrivato

*Resetto il DONE quando la politica resetta il DO *)

Figure B.9: Example of GA code on FESTO

Command RotaryhBhkersiarehouse —Rotaryhakersiiarehouse
CommandRaotaryhikers\erfication —Rotaryhiaher's erification

166 The demonstrator

Appendix

Components models of DES approach

In This appendix the components model deriving from the methodology
presented in chapter 5 are reported.

C.1 Examples of model composition

The automaton in figure C.2 is the result of the parallel composition of the automata in fig-
ure C.1 (6 states 22 transitions), in this figure are shown the models of sensors and connection
constrain. The automata generates from parallel composition have the same number of states
of automata which modeling the connection constrain, but for each states there are self loops
with value of the sensors. In blue is reported starting from initial state an activation and deac-
tivation sequence, the initial state corresponding to device in deactivate position.

RACI RACO RACIQRAC() RACI RACO
Dd o —D)2

Ad Ad

—> 5 C4

(a) No fault model G, anf- (b) No fault model G, pny- (c) Physical Constraint Automaton
(PCA) Gr,pca.

Figure C.1: Nominal models of the sensors, actuator and Physical Constraint Automaton (PCA)
Gr,pca-

In figure C.3 the nominal and faulty model of device with faults f,; and fqo.

In figure C.4 the nominal and faulty model of device with faults on sensor A and sensor D.

In figure C.5 the nominal and faulty model of device with faults on actuator, f; and fo.

In figure C.6 and figure C.7 are depicted the change of physical constraints when a fault
on sensor D occurred. Figure C.6 is the case of sensor D stuck low and Figure C.7 is the case
of sensor D stuck high. When a sensor is stuck low from a physical point of view is like the
device do not have the sensor. In this case if sensor D is stuck low, we can remodeling the

167

168 Components models of DES approach

RACO

Dd

Activation and
deactivation sequence

(a) Fault model of sensor A, (b) fault model of sensor D, (c) Physical Constraint Automaton with faults,
Gr,Afa1. GrL,Dfdo- GrL,pcAp.

device with only sensor A, and the device becomes the device of figure C.6. The model of this
device is composed by an automata of 4 states, because now we can have only two sensors
configuration, 00 configuration and 01 configuration, this model can be obtained, as it shown
in figure C.6(b), from model of PCA automaton. If sensor D is stuck low the model has not to
generate events Au and Ad, for this reason the model on sensor D when occurs fault f4y evolves
and remains in state DF'0. The PCA automaton do not reach states C0 and C1 but evolves only
in states C2, C3, C4 and C5.

In figure C.8(a) and figure C.8(b) are reported how the physical constraints of the device
evolves when a fault on actuator occur. It is easy to see that when a fault on actuator occurs the
device following the movement of the fault.

C.1. Examples of model composition

169

Dd

A0,C2,00 '»m RAO
=

1do

A1,C4,0F0 m RA1

fa1

OutA

Figure C.3: Composition of nominal and faulty model (faults f,; and fq).

fal

RAC1

fdo

A0,C1,D1 1D RA(
0.C1D1 =2 RDY) RAO

RACO

RAC1

AF1,00,060 m RAT

Activation and deactivation sequence

Events OutA, OutD

Fault fa1, activation and deactivation sequence
Fault fd0, activation and deactivation sequence
Fault fd and fa, activation and deactivation

fat

170 Components models of DES approach

RA1 RD1

(a) Fault model of sensor A, (b) Fault model of sensor D, (c) Physical Constraint Automaton with faults,
Gr,Afa- GrL,pfd. GrL,pcAp.

C.1. Examples of model composition 171

fd1 fao

fd1 fal sequence

a

,fd1fa0

fdo fa1

d

Activation Deactivation sequence

Fault fal sequence
Fault fa0 sequence
Fault fd0 sequence
Fault fd0 fa0

Figure C.4: Composition of nominal and faulty model with faults on sensor D and sensor A.

172 Components models of DES approach

D
Ad Dd RACO, ACu, ACd RAC1, ACu, ACd

(a) No fault model G, ans. (b) No fault model Gz, pny. (c) Fault model on actuator G',, Act.

OO
RACO RAC1 . RACO RAC1 .
O O .

(d) Physical Constraint Automaton
(PCA) G, pca.

RAC1 RACO

C.1. Examples of model composition 173

Figure C.5: Composition of nominal and faulty model with faults on actuator.

174 Components models of DES approach

Ad 01
RACO <
DA DA
00 Au 01
RAC1 >

(a) Mechanical configuration fault fqo. (b) New configuration of (PCA) with fault fqo.

Figure C.6: Models of fault fg.

(a) Mechanical configuration fault fq1. (b) New configuration of (PCA) with fault fq;.

Figure C.7: Models of fault fg;.

c1 Di___,(co) Au c3 c1 Dd___ () Au c3
RA RACO RA RACO RA RACO RAC1 ACO RAC1 ACO RACI 'ACO
¥ Du Ad Du Ad
)7 (c5)« ca)7 c5 c4

(a) New configuration of (PCA) with fault fo. (b) New configuration of (PCA) with fault f;.

Figure C.8: Models of actuator faults.

C.2. Control and monitoring of low level devices

175

C.2 Control and monitoring of low level devices

AGO,C3,D0,AC1,T3,57F1,A1,C3,00,AC1,T0,S7N

AGO,C4,D0,AC0,T3,S9F1,AF0,C5,D0,AC0,T3,S9F 1,AF0,C0,D1,ACO, T3,59F1,A0,C0,D1,AC0,T0,S9N, AGO,C3,D0,AC0,T3,S9F1,A0,C5,00,AC0,T0, S9N, A1,C4,00,AC0,T0,S9N, A1,C3,00,AC0,T0, S9N

AGO0,C3,D0,AC0,T3,511F1,AG0,C4,00,AC0,T3,S11F1,AF0,C0,D1,AC0,T3,S11F1,A0,C0,D1,AC0,T0,811N,AF0,C5,00,AC0,T3,§11F1,A0,C5,D0,AC0,T0,S 11N

RD1

AF0,C0,D1,ACO0,T3,812F1,A0,C0,01,AC0,T0,S12N

Ade

A0,C0,D1,AC0,T0,SON,AF0,C0,D1,AC0,T3,SOFT

Aa

AF0,C1,D1,AC1,T3,S2F1,AF0,C2,D0,AC1,T3,S2F1,A0,C1,01,AC1,T0,S2N,A0,C2,D0,AC1,T0,S2N,AF0,C0,D1,AC1,T3,S2F1,A0,C0,D1,AC1,T0,52N,A1,C3,D0,AC1,T0,S2N,AG0,C3,00,AC1,T3,S2F 1

sc

AF0,C1,D1,AC1,T2,S3F1,AG0,C3,D0,AC1,T2,S3F1,A0,C1,01,AC1,T1,S3N,A1,C3,D0,AC1,T1,S3N,AF0,C0,D1,AC1,T2,S3F1,AF0,C2,D0,AC1,T2,S3F1,A0,C0,01,AC1,T1,S3N,A0,C2,D0,AC1,T1,S3N

AGO,C3,D0,AC1,T4,814F1,AF0,C2,D0,AC1,T4,814F1

AGO,C3,D0,AC1,T2,84F1,AF0,C2,D0,AC1,T2,84F1

Figure C.9: State concatenation of diagnoser of figure 5.26.

176 Components models of DES approach

RAO
AGO,C3,00,AC1,T3,S15F1

Rd Ra

AG0,C3,00,AC1 T3 S1F1
AG0,C3,D0,AC1,T3,S8F1 Acu
Acd AGD,C3,00,AC1,T3,52F1

RTO s

AGO,C4,00,AC0,T3,S9F1,AF0,C5,D0,AC0,T3,S9F1,AF0,C0,D1,AC0,T3,S9F1,AGO,C3,00,AC0,T3,S9F 1

RAO AG0,C3,00,AC1,T2,53F1

AGO,C3,00,AC0,T3,511F1,AG0,C4,D0,AC0,T3,11F1,AF0,C0,D1,AC0,T3 $11F1 AF0,C5,DOACO. T3 S11F1 RDO
AGO,C3,00,AC1,T2,S4F1
RD1 10

AGO,C3,00,AC1,T4,S14F1

AF0,C5,00,AC0,T3,89F1,AF0,C0,D1,ACO,T3,S9F1,AF0,C2,00,AC0,T3,S9F 1

AGO,C4,00,AC0,T3,89F1,AF0,C5,00,AC0,T3,89F1,AF0,C0,D1,AC0,T3,S9F1,AF0,C2,00,ACO,T3,S9F1,AG0,C3,D0,ACO, T3 SIFT

AGO,C3,00,AC0,T3,§11F1,AG0,C4,00,AC0,T3,§11F1,AF0,C0,01,AC0,T3,811F1,AF0,C2,00,AC0,T3,§11F1,AF0,C5,00,AC0,T3,11F1

.

Acu

sc
Z
sC

AF0,C2,00,AC1,T2,S3F1

Figure C.10: State concatenation of diagnoser of figure 5.26.

C.2. Control and monitoring of low level devices

177

Total Diagnoser States = 44

Id=1
AQ,C0,D1,AC0,T0O,SO N
AF0@,C0,D1,AC0,T3,S0 F1
Total pairs = 2
Uncertain: F1

Ra -> 2

Id=2
AQ,C0,D1,AC0,T0O,S1 N
AFQ,C0,D1,AC0,T3,S1 F1
Total pairs = 2
Uncertain: F1

ACu -> 3

Id =3
AF@,C1,D1,AC1,T3,S2 F1
AFQ,C2,D0,AC1,T3,S2 F1
A@,C1,D1,AC1,70,52 N
A@,C2,D0,AC1,70,52 N
AFQ,C0,D1,AC1,T3,52 F1
A@,C0,D1,AC1,T70,52 N
A1,C3,D0,AC1,T0,S2 N
AGO,C3,D0,AC1,T3,S2 F1
Total pairs = 8
Uncertain: F1

SC > 4

Id =4
AFQ,C1,D1,AC1,T2,S3 F1
AGO,C3,D0,AC1,T2,S3 F1
AQ,C1,D1,AC1,T1,S3 N
A1,C3,D0,AC1,T1,S3 N
AFQ,C0,D1,AC1,T2,S3 F1
AFQ,C2,D0,AC1,T2,S3 F1
AQ,C0,D1,AC1,T1,S3 N
AQ,C2,D0,AC1,T1,S3 N
Total pairs = 8
Uncertain: F1

RDO -> 5

Id=5
AGO,C3,D0,AC1,T2,54 F1
A1,C3,D0,AC1,T1,54 N
AQ,C2,D0,AC1,T1,54 N
AFQ,C2,D0,AC1,T2,54 F1
Total pairs = 4
Uncertain: F1

T0 -> 6
RAL -> 7
Id =6

AGO,C3,D0,AC1,T4,S14 F1
AFQ,C2,D0,AC1,T4,514 F1
Total pairs = 2
Certain: F1

RTO -> 8

Id=7
AGO,C3,D0,AC1,T2,S5 F1
A1,C3,D0,AC1,T1,S5 N
Total pairs = 2
Uncertain: F1

RTO -> 9

Id =28
AGO,C3,D0,AC1,T3,S15 F1
AFQ,C2,D0,AC1,T3,S15 F1
Total pairs = 2
Certain: F1

Ra -> 10

Rd -> 11

Id=9
AGO,C3,D0,AC1,T3,S6 F1
A1,C3,D0,AC1,T0,S6 N
Total pairs = 2
Uncertain: F1

Aa -> 12

Id = 10
AGO,C3,D0,AC1,T3,S1 F1
AFQ,C2,D0,AC1,T3,S1 F1
Total pairs = 2
Certain: F1

ACu -> 13

Id = 11
AGO,C3,D0,AC1,T3,S8 F1
AFQ,C2,D0,AC1,T3,S8 F1
Total pairs = 2
Certain: F1

ACd -> 14

Id = 12
AGO,C3,D0,AC1,T3,S7 F1
A1,C3,D0,AC1,T0,S7 N
Total pairs = 2
Uncertain: F1

RAQ -> 15
Rd -> 16
Id = 13

AFQ,C2,D0,AC1,T3,S2 F1
AGO,C3,D0,AC1,T3,S2 F1
Total pairs = 2
Certain: F1

SC > 17

Id = 14
AGO,C4,D0,AC0,T3,S9 F1
AF@,C5,D0,AC0,T3,S9 F1
AF0,C0,D1,AC0,T3,S9 F1
AF0,C2,D0,AC0,T3,S9 F1
AGO,C3,D0,AC0,T3,S9 F1
Total pairs = 5
Certain: F1

RAQ -> 18

Id = 15
AGO,C3,D0,AC1,T3,S15 F1
Total pairs = 1
Certain: F1

Ra -> 19

Rd -> 20

Id = 16
AGO,C3,D0,AC1,T3,S8 F1
A1,C3,D0,AC1,T0,S8 N
Total pairs = 2
Uncertain: F1

ACd -> 21

Id = 17
AGO,C3,D0,AC1,T2,S3 F1
AF0Q,C2,D0,AC1,T2,S3 F1
Total pairs = 2
Certain: F1

RDO -> 22

Id = 18
AGO,C3,D0,AC0,T3,S11 F1
AGO,C4,D0,AC0,T3,511 F1
AFQ,C0,D1,AC0,T3,511 F1
AFQ,C2,D0,AC0,T3,S11 F1
AFQ,C5,D0,AC0,T3,511 F1
Total pairs = 5
Certain: F1

RD1 -> 23

Id = 19
AGO,C3,D0,AC1,T3,S1 F1
Total pairs = 1
Certain: F1

ACu -> 24

Id = 20
AGO,C3,D0,AC1,T3,S8 F1
Total pairs = 1
Certain: F1

ACd -> 25

Id =21
AGO,C4,D0,AC0,T3,S9 F1
AF@,C5,D0,AC0,T3,S9 F1
AF0,C0,D1,AC0,T3,S9 F1
Ao,C0,D1,AC0,T0,S9 N
AGO,(C3,D0,AC0,T3,S9 F1
AQ,C5,D0,AC0,T0,S9 N
A1,C4,D0,AC0,T0,S9 N
A1,C3,D0,AC0,T0,S9 N
Total pairs = 8
Uncertain: F1

RAQ® -> 26

Figure C.11: List of state concatenation of diagnoser of figure 5.26.

178 Components models of DES approach

Total Diagnoser States = 44

Id = 22
AGO,(C3,D0,AC1,T2,S4 F1
AF0Q,C2,D0,AC1,72,54 F1
Total pairs = 2
Certain: F1

T0 -> 6

Id = 23
AFQ,C0,D1,AC0,T3,S12 F1
Total pairs =1
Certain: F1

Ade -> 27

Id = 24
AGO,(3,D0,AC1,T3,S2 F1
Total pairs = 1
Certain: F1

SC > 28

Id = 25
AGO,(C4,D0,AC0,T3,S9 F1
AF0@,C5,D0,AC0,T3,S9 F1
AF0Q,C0,D1,AC0,T3,S9 F1
AGO,(C3,D0,AC0,T3,S9 F1
Total pairs = 4
Certain: F1

RAQ -> 29

Id = 26
AGO,(C3,D0,AC0,T3,S11 F1
AGO,C4,D0,AC0,T3,S11 F1
AF0,C0,D1,AC0,T3,S11 F1
AQ,C0,D1,AC0,TO,S11 N
AFQ,(C5,D0,AC0,T3,S11 F1
AQ,C5,D0,AC0,T0,S11 N
Total pairs = 6
Uncertain: F1

RD1 -> 30

Id = 27
AF0Q,C0,D1,AC0,T3,S0 F1
Total pairs =1
Certain: F1

Ra -> 31

Id = 28
AGO,(3,D0,AC1,T2,S3 F1
Total pairs = 1
Certain: F1

RDO -> 32

Id = 29
AGO,(C3,D0,AC0,T3,S11 F1
AGO,C4,D0,AC0,T3,S11 F1
AF0,C0,D1,AC0,T3,S11 F1
AF0Q,C5,D0,AC0,T3,S11 F1
Total pairs = 4
Certain: F1

RD1 -> 23

Id = 30
AF0,(C0,D1,AC0,T3,512 F1
AQ,C0,D1,AC0,T0,S12 N
Total pairs = 2
Uncertain: F1

Ade -> 1

Id = 31
AFQ,C0,D1,AC0,T3,S1 F1
Total pairs = 1
Certain: F1

ACu -> 33

Id = 32
AGO,(C3,D0,AC1,T2,54 F1
Total pairs = 1
Certain: F1

TO -> 34

Id = 33
AF0,C1,D1,AC1,T3,S2 F1
AF0,(C2,D0,AC1,T3,S2 F1
AFQ,C0,D1,AC1,T3,S2 F1
Total pairs = 3
Certain: F1

SC -> 35

Id = 34
AGO,(C3,D0,AC1,T4,S14 F1
Total pairs =1
Certain: F1

RTO -> 15

Id = 35
AFQ,C1,D1,AC1,T2,S3 F1
AF0,CQ,D1,AC1,T2,S3 F1
AFQ,C2,D0,AC1,T2,S3 F1
Total pairs = 3
Certain: F1

RDO -> 36

Id = 36
AFQ,C2,D0,AC1,T2,54 F1
Total pairs =1
Certain: F1

T0 -> 37

Id = 37
AFQ,C2,D0,AC1,T4,514 F1
Total pairs =1
Certain: F1

RTO -> 38

Id = 38
AF0Q,C2,D0,AC1,T3,S15 F1
Total pairs = 1
Certain: F1

Ra -> 39

Rd -> 40

Id = 39
AFQ,C2,D0,AC1,T3,S1 F1
Total pairs = 1
Certain: F1

ACu -> 41

Id = 40
AFQ,C2,D0,AC1,T3,58 F1
Total pairs =1
Certain: F1

ACd -> 42

Id = 41
AF0Q,(C2,D0,AC1,T3,S2 F1
Total pairs =1
Certain: F1

SC -> 43

Id = 42
AF0@,C5,D0,AC0,T3,S9 F1
AF0,C0,D1,AC0,T3,S9 F1
AF0@,C2,D0,AC0,T3,S9 F1
Total pairs = 3
Certain: F1

RAQ -> 44

Id = 43
AF0Q,(C2,D0,AC1,T2,S3 F1
Total pairs =1
Certain: F1

RDO -> 36

Id = 44
AF0,CQ,D1,AC0,T3,S11 F1
AF0Q,C2,D0,AC0,T3,S11 F1
AF0Q,(C5,D0,AC0,T3,S11 F1
Total pairs = 3
Certain: F1

RD1 -> 23

Figure C.12: List of state concatenation of diagnoser of figure 5.26.

C.2. Control and monitoring of low level devices

‘ Name H Means ‘ observable ‘ controllable ‘
Du Rising signal on sensor D uo uc
Dd Falling signal on sensor D uo uc
RDO Signal value on sensor D is low 0
RD1 Signal value on sensor D is high 0
fdo Fault on sensor D, stuck low uo uc
fdl Fault on sensor D, stuck high uo uc
Au Rising signal on sensor A uo uc
Ad Falling signal on sensor A uo uc
RAO Signal value on sensor A is low 0
RA1 Signal value on sensor A is high 0
fal Fault on sensor A, stuck low uo uc
fal Fault on sensor A, stuck high uo uc
ACu Rising signal on actuator 0
ACd Falling signal on actuator 0
RACO Movement of actuator to deactivation state uo uc
RAC1 Movement of actuator to activation state uo uc
f0 Fault on actuator, blocked low uo uc
f1 Fault on actuator, blocked high uo uc
Ra Request of activation 0 c
Rde Request of deactivation o) C
Aa Answer of activation o) C
Ade Answer of deactivation o) C
SC Command to start count of the timer 0 C
RTO Command to reset the timer 0 C
TO Timeout of the timer 0 C
GrL,Anf Nominal model of sensor A
GL.Dnf Nominal model of sensor D
G, Actnf Nominal model of actuator
Gr.pca Model of the Physical Constraint Automaton (PCA)
GrL,Afa0 Model of sensor A with fault fa0
Gr.pca_A Model of the Physical Constraint Automaton (PCA) with fault fa0
GL.Tfa0 Model of timer
GrL.conNom || Specification of nominal control for the device
GrL,conDiag | Specification of the control with diagnosis for the device
GrL.CompNom || Composition of nominal sensors, actuator and PCA
Gr.compfao || Composition of nominal and fa0 faulty model for the device
Gr.DevNom || Composition controlled nominal single acting device
Gr,Devfad Composition controlled faulty single acting device
GL.Totfa0 Composition controlled and diagnosis faulty single acting device

Table C.1: List of events and automata models.

179

180 Components models of DES approach

Bibliography

[1]
(2]
3]

[4]

[5]

[6]

[7]
8]

[9]

[10]

[11]

[12]

[13]

Sysml. http://www.sysml.org.
3s Software. 3s-software.

C. Alexander. A pattern language: Towns, Buildings, Construction. Oxford university Press,
1997.

B. Vogel-Heuser, D. Friedrich, U. Katzke, D. Witsch. Usability and benefits of uml for
plant automation - some research results. atp International No. 1, 3 (2005).

K. Beck and W. Cunningham. OOPSLA-87 Technical Report No. CR-87-43 Using Pattern
Languages for Object-Oriented Programs. 1987.

M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki. Diagnosis and fault-tolerant control.
Springer-Verlag, 2003.

W. Bolton. Programmable Logic Controllers. Elsevier, 2006.

M. Bonfe and C. Fantuzzi. Mechatronic objects encapsulation in iec 1131-3 norm. IEEE
International conference on Control Applications, pages 598 — 603, 2000.

M. Bonfe and C. Fantuzzi. Object-oriented approach to plc software design for a man-
ufacture machinery using iec 61131-3 norm languages. IEEE International conference on
Control Application, 2:850 — 852, 2001.

M. Bonfe and C. Fantuzzi. Design and verification of mechatronic object-oriented models
for industrial control systems. IEEE International conference on Emerging Technologies and
Factory Automation, 2:253 — 260, 2003.

M. Bonfe and C. Fantuzzi. Application of object-oriented modeling tools to design the
logic control system of a packaging machine. IEEE International conference on Control
application Industrial Informatics, pages 506 — 574, 2004.

M. Bonfe and C. Fantuzzi. A practical approach to object-oriented modeling of logic
control system for industrial applications. IEEE International conference on Decision and
Control, 1:980 — 985, 2004.

M. Bonfe, C. Fantuzzi, and C. Secchi. Behavioural inheritance in object-oriented models
for mechatronic systems. International Journal of Manufacturing Research, 1(4):421 — 441,
2006.

181

182 Bibliography

[14] C. Bonivento, A. Paoli, and M. Sartini. Parameters optimization in a production line us-
ing genetic algorithms. International Conference on Computational Intelligence for Modelling,
Control and Automation,, 2008.

[15] D. Brandl. Design patterns for flexible manufacturing. ISA, 2006.

[16] E.Carpanzano, A. Cataldo, and M. Dond. Rapid prototyping test-bed of logic control so-
lution for reconfigurable manufacturing systems. IEEE International conference on Emerg-
ing Technologies and Factory Automation, 2:621 — 628, 2005.

[17] C.G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems - Second Edition.
Springer, 2007.

[18] CASY-DEIS. Auomation engineering laboratory.

[19] G. Cloutier and J.]. Paques. Gemma, the complementary tool of the grafcet. IEEE Inter-
national conference on Programmable Control and Automation Technology, pages 1-10, 1988.

[20] M.O. Cordier and L. Rozé. Diagnosing discrete-event systems : extending the “diagnoser
approach” to deal with telecommunication networks. Journal on Discrete Event Dynamic
Systems, 12(2):43 — 81, 2002.

[21] M. Courvoisier, M.Combacau, and A. de Bonneval. Control and monitoring of large
discrete event systems: a generic approach. In Proc. of ISIE 93, pages 571-576, 1993.

[22] G. Davis. Introduction to Packaging Machines. Arlington, 1997.
[23] dSPACE GmbH. dspace prototyping systems. http:/ /www.dspaceinc.com.

[24] E. Dumitrescu, A. Girault, H. Marchand, and E. Rutten. Optimal discrete controller syn-
thesis for modeling fault-tolerant distributed systems. Proceedings of the 1st IFAC Workshop
on Dependable Control of Discrete Systems, 2007.

[25] D. Orive E. Estévez, M. Marcos. Automatic generation of plc automation projects from
component-based models. Int | Adv Manuf Technol, pages 527-540, 2007 .

[26] M. Marcos E. Estévez. An approach to use model driven design in industrial automation.
13 th IEEE International Conference on Emerging Technologies and Factory Automation, pages
62-69, 2008.

[27] E. Faldella, A. Paoli, M. Sartini, and A. Tilli. Hierarchical supervision systems in indus-
trial automation: a design procedure based on the generalized actuator concept. Proceed-
ings of 17th IFAC WC, pages 69-76, 2008.

[28] E. Faldella, A. Paoli, A. Tilli, M. Sartini, and D. Guidi. Architectural design patterns
for logic control of manufacturing systems: the generalized device. XXII International
Symposium on Information, Communication and Automation Technologies, 2009.

[29] L. Ferrarini, R. Brusa, and C. Veber. A pragmatic approach to fault diagnosis in hydraulic
circuits for automated machining: a case study. 4th IEEE Conference on Automation Science
and Engineering, 2008.

[30] L. Ferrarini, C. Veber, and G. Fogliazza. lec 61499 implementation of a modular control
model for manufacturing system. IEEE International conference on Emerging Technologies
and Factory Automation, 1:7 — 13, 2005.

Bibliography 183

[31] L. Ferrarini, C. Veber, and V. Schird. A modular modelling and implementation of au-
tomation functions for flexible manufacturing systems. ANIPLA international Congress
50; Anniversary 1956-2006, Methodologies for Emerging Technologies in Auotomation, 2006.

[32] FESTO-Didactic. Assembly station manual, 2003.
[33] FESTO-Didactic. Distribution station manual, 2003.
[34] FESTO-Didactic. Processing station manual, 2003.
[35] FESTO-Didactic. Testing station manual, 2003.

[36] E.Gamma. Design Patterns. Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[37] GAMP. Good automated manufacturing practice. www.ispe.org/gamp/.

[38] S. Genc and S. Lafortune. Distributed diagnosis of place-bordered petri nets. IEEE Trans-
actions on Automation Science and Engineering, 4(2):206 —T 219, 2007.

[39] A.L. Buczak H. Darabi, M.A. Jafari. A control switching theory for supervisory control
of discrete event systems. IEEE Transactions on Robotics and Automation, 19(1):131 — 137,
2003.

[40] N. Ben Hadj-Alouane, S. Lafortune, and F. Lin. Centralized and distributed algorithms
for on-line synthesis of maximal control policies under partial observation. Discrete Event
Dynamic Systems: Theory and Applications, 6(4):379 — 427, 1996.

[41] D. Harel. Statecharts: a visual formalism for complex systems. Science of computer pro-
gramming, pages 231-274, 1987.

[42] D. Harel. Modeling Reactive Systems With Statecharts : The Statemate Approach. McGraw-
Hill, 1998.

[43] A. Hellgren, B. Lennartson, and M. Fabian. Modelling and plc-based implementation of
modular supervisory control discrete event systems. Proceedings of 6th Int. Workshop on
Discrete Event Systems, 2002.

[44] Standard IEC. IEC 60848 Grafcet specification language for sequential function charts. The
Institution of Electrical Engineering, 2002.

[45] Standard IEC. Programable controllers - Part 3: Programming language. The Institution of
Electrical Engineering, 2003.

[46] Standard IEC. 61499-1 Function blocks - Part 1: Architecture. The Institution of Electrical
Engineering, 2005.

[47] Standard IEC. 61499-2 Function blocks D Part 2: Software tools requirements. The Institution
of Electrical Engineering, 2005.

[48] M. V. Iordache and P. J. Antsaklis. Resilience to failure and reconfigurations in the su-
pervision based on place invariants. Proceedings of the 2004 American Control Conference,
2004.

[49] ISA. Batch Control Part 1: Models and Terminology. ISA, 1995.

184 Bibliography

[50] ISA. Batch Control Part 2: Data Structures and Guidelines for Languages. ISA, 2001.
[51] ISPE. International society of pharmaceutical engineering. http://www.ispe.org.

[52] S. Jiang and R. Kumar. Diagnosis of repeated failures for discrete event systems with
linear-time temporal logic specifications. IEEE Transactions on Automation Science and En-
gineering, 3(1):47 — 59, 2006.

[53] C. B.Jones. Systematic software development using VDM. Prentice-Hall International, 1986.

[54] Kleanthis C. Thramboulidis. Using uml in control and automation: A model driven
approach. INDIN 04. 2nd IEEE International Conference, pages 587-593, 24-26 June 2004.

[65] H. Koepetz. Real-time systems: design principles for distributed embedded applications. Real-
time systems. Kluwer academic publishers, London, 1997.

[56] R. Leduc, B. Brandin, M. Lawford, and W. M. Wonham. Hierarchical interface-based
supervisory control, part i: Serial case. IEEE Transactions on Automatic Control, 50(9):1322
-1335, 2005.

[57] R. Leduc, M. Lawford, B. Brandin, and W. M. Wonham. Hierarchical interface-based
supervisory control, partii: Parale case. IEEE Transactions on Automatic Control, 50(9):1336
-1348, 2005.

[58] R. Leduc, M. Lawford, and P. Dai. Hierarchical interface-based supervisory control of a
flexible manufacturing system. IEEE Transactions on Control Systems Technology, 14(4):654
—668, 2006.

[59] R. W. Lewis. Programming Industrial Control Systems Using IEC 1131-3. 1EE Control Engi-
neering Series, 1998.

[60] R. W. Lewis. Modelling control system using IEC 61499. The Institution of Electrical Engi-
neering, 2001.

[61]]J. Lunze. State observation and diagnosis of discrete-event systems described by stochas-
tic automata. Journal on Discrete Event Dynamic Systems, 11(4):319 — 369, 2001.

[62] J. M. Machado, B. Denis, J.]. Lesage,].M. Faure, and C. L. Ferreira da Silva. Logic con-
trollers dependability verification using a plant model. Proceedings of 3th IFAC Workshop
on Discrete-Event System Design, 2006.

[63] MathWork. Real time workshop. http:/ /www.mathworks.com/products/rtw.

[64] H.E.Merrit. Hydraulic control systems. John Wiley & Sons, Inc. New York-London-Sydney,
1967.

[65] S. Moreno and E. Peulot. Le GEMMA: modes de marches et d’arrest, Grafcet de coordination
des taches, Conceptions des Systemes Automatises de Production surs. Editions Casteillal, 2002.

[66] OM.G. Uml, v. 1.4, omg specification, 2001. Document N. formal/2001-09-67, 2001,
www.omg.org/uml.

[67] O.M.G. Uml, v. 2.0, omg request for proposal, 2003. Document N. ad/2003-03-02, 2003,
www.omg.org/uml.

Bibliography 185

[68] A. Paoli and S. Lafortune. Safe diagnosability for fault tolerant supervision of discrete
event systems. Automatica, 41(8):1335 — 1347, 2005.

[69] A. Paoli and S. Lafortune. Diagnosability analysis of a class of hierarchical state ma-
chines. Discrete Event Dynamic Systems: Theory and Applications, 18(3):385-413, 2008.

[70] A.Paoli, M. Sartini, and S. Lafortune. A fault tolerant architecture for supervisory control
of discrete event systems. Proceedings of 17th IFAC WC, pages 6542-6547, 2008.

[71] A. Paoli, M. Sartini, E. Morganti, and C. Bonivento. Genetic algorithm for the optimiza-
tion of packiing line. ACD Workshop on Advanced Control and Diagnosis, 2007.

[72] A.Paoli, M. Sartini, and A. Tilli. Rapid prototyping of logic control in industrial automa-
tion exploiting the generalized actuator concept. 13 th IEEE International Conference on
Emerging Technologies and Factory Automation, pages 82-89, 2008.

[73] R.J. Patton, PM. Frank, and R.N. Clark. Issues of fault diagnosis for dynamical systems.
Springer-Verlag, 2000.

[74] A. Philippot, M. Sayed-Mouchaweh, and V. Carre-Menetrier. Distributed modeling ap-
proach of discrete manufacturing systems by parts of plant. Proceedings of the 10th Euro-
pean Control Conference, 2009.

[75] A.Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symposium on Foundations
of Computer Science, pages 46-57, 1977.

[76]]J.M. Roussel and A. Giua. Designing dependable logic controllers using the supervisory
control theory. Proceedings of the 16th IFAC World Congress, 2005.

[77] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Reference Manual.
Addison-Wesley, 2004.

[78] M. Sampath, R. Sangupta, and S. Lafortune. Diagnosability of discrete event systems.
IEEE Transactions on Automatic Control, 40(9):1555 — 1575, 1995.

[79] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.C. Teneketzis. Failure
diagnosis using discrete-event models. IEEE Transactions on Control Systems Technology,
4(2):105 - 124, 1996.

[80] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.C. Teneketzis. Failure
diagnosis using discrete-event models. IEEE Transactions on Control Systems Technology,
4(2):105 - 124, 1996.

[81] M. Sayed-Mouchaweh, A. Philippot, V. Carre-Menetrier, and B. Riera. Fault diagnosis
of discrete event systems using components fault-free models. Proceedings of the 20th
International Workshop on Principles of Diagnosis, 2009.

[82] B. Selic. The real-time uml standard: definition and application. IEEE International con-
ference on Design. Automation and Test, pages 770 — 772, 2002.

[83] B. Selic, G. Gullekson, and P. Ward. Real-tim object -oriented modeling. John Willey & Sons,
1994.

186 Bibliography

[84] J.M. Spivey. Introducing Z: a specification language and its Formal semantics. Statecharts: a
visual formalism for complex systems. Cambridge university press, 1988.

[85] J. Sifakis T. A. Henzinger. The discipline of embedded systems design. IEEE Computer,
40(10):32 —40, 2007.

[86] K. C.Thramboulidis. Towards an engineering tool for implementing reusable distributed
control system. ACM SIGSOFT Software Engineering Notes, 28(5), 2003.

[87] K. C. Thramboulidis. Model integrated mechatronics-towards a new paradigm in the
development of manufacturing systems. IEEE Transaction on Industrial Informatics, 1:54 —
61, 2005.

[88] K. C. Thramboulidis and C. S. Tranoris. Developing a case tool for distributed control
application. The Int. Journal of Advanced manufacturing, 28(1-2), 2004.

[89] A. Tilli and A. Paoli. Rule-based composable modelling of industrial automation au-
tomata under nominal and faulty conditions. Proceedings of the 7th IFAC Symposium on
Fault Detection, Supervision and Safety of Technical Processes, 2009.

[90] A. Tilli, A. Paoli, M. Sartini, C. Bonivento, and D. Guidi. Hierarchical and cooperative
approaches to logic control design in industrial automation. 14th IEEE International Con-
ference on Emerging Technologies and Factory Automation, pages 82-89, 2009.

[91] T. Tolio. Design of flexible production system. Springer, 2009.

[92] V. Vyatkin. IEC 61499 Function Blocks for Embedded and Distributed Control Systems Design.
Instrumentation Society of America, USA, July 2006.

[93] V. Vyatkin and X. Cai. Design and implementation of a prototype control system ac-
cording to iec 61499. IEEE International conference on Emerging Technologies and Factory
Automation, 2(269-276), 2003.

[94] V. Vyatkin and H. M. Hanisch. Formal modeling and verification in the software en-
gineering framework of iec 61499: a way to self-verifying systems. IEEE International
conference on Emerging Technologies and Factory Automation, 2(113-118), 2001.

[95] Q. Wen, R. Kumar,]J. Huang, and H. Liu. Fault-tolerant supervisory control of discrete
event systems: formalisation and existence results. Proceedings of the 1st IFAC Workshop
on Dependable Control of Discrete Systems, 2007.

[96] Q. Wen, R. Kumar, J. Huang, and H. Liu. Weakly fault-tolerant supervisory control of
discrete event systems. Proceedings of the 2007 American Control Conference, 2007.

[97] Q. Wen, R. Kumar, J. Huang, and H. Liu. A framework for fault-tolerant control of dis-
crete event systems. IEEE Transactions on Automatic Control, 53(8):1839 — 1849, 2008.

[98] W. M. Wonham. Notes on control of discrete event systems. ECE 1636F/1637S
2002-2003. Systems Control Group, Dept. of ECE, University of Toronto, URL:
www.control.utoronto.ca/people/profs/wonham/wonham.html.

[99] T--S. Yoo and S. Lafortune. Solvability of centralized supervisory control under partial
observation. Discrete Event Dynamic Systems: Theory and Applications, 16(4):527 — 553,
2006.

Bibliography 187

[100] Y. Zhang and]. Jiang. Integrated active fault-tolerant control using imm approach. IEEE
Transactions on Aerospace. and Electronic Systems, 37(4):1221 — 1235, 2001.

Index

61131-3, 43 deadlock, 142

61131-3 Languages, 45 Deployment Diagrams, 51
design pattern, 35

61499, 47 deterministic automaton, 141

Diagnosable DES, 125

Ac?esmble part, 142 diagnosing-controller, 121
actlyg ever}t function, 141 Discrete event system, 139
ACtlYltY Diagrams, 51 Discrete Processes, 30
admissible, 146 Distribution station, 152
alphabet, 140 . double acting cylinder, 81
Assembly mac‘hlnes, 26 Dynamic fault detection, 115
Assembly station, 158
automated manufactory system, 33 empty string, 140
Automated Manufacturing Systems, 23 equipment hierarchy, 37
Automated mode, 42 equipment phase, 74
equivalent, 141
Batch Processes, 29 event, 139

Block Definition Diagram, 53

} event set, 139
blocking, 142, 147

Execution Control, 50
Execution Control Chart, 50

Class Diagrams, 51

Coaccessible part, 143 Fault Detection and Isolation, 121
CoDeSys, 1-52) Fault Tolerant Control, 121
Collaboration Diagrams, 51 Fault tolerant control, 121
Complement, 143 FB networks, 48

Component Diagrams, 51 FESTO FMS, 152

Computational Tree Logic, 99
Computer numerical control machines, 28
Concatenation, 140

formal methods, 98
formal specification, 98
X Formal verification, 97
concatenation, 140 function block, 47

Continuos ‘Processes, 30 function block diagram, 46
control recipes, 37

controllability, 148 GEMMA, 39

Controllability and observability theorem, 149 Generalized Actuator, 58
controllability condition, 148 Generalized Actuator approach, 63
Controllability theorem, 148 GRAFCET, 40, 42

controllable, 148

controllable events, 146 high level fault, 96

188

Index

189

industrial manufacturing automation, 16
Inspection machines, 27

instruction lists, 45

inverse projection, 144

ISPE, 37

Kleene-closure, 140

ladder diagram, 45
language, 140

language generated, 141
language marked, 141
large scale systems, 15
legal behavior, 146

Linear Temporal Logic, 99
livelock, 142

low level fault, 96

Manual mode, 42
marked states, 141
master recipes, 37

mode of operation, 39
Model checking, 98

natural projection, 144

Non stop production, 39

nonblocking, 142, 147

Nonblocking Controllability theorem, 148
nondeterministic automaton, 142

NS88, 39

Object-Oriented, 36
Object-oriented programming, 50
observability, 149

observable, 149

observable events, 147

observer, 144

Operation models, 42

Packaging machines, 28

Parallel composition, 143
partial-observation supervisor, 147
Physical Constraint Automaton, 105
prefix, 140

Prefix-closure, 140

procedure’s state, 37

Processing Station, 156

Product, 143

production equipment capability, 37
Production Processes, 29

Program organization Units, 44
Programmable logic controller, 33
projection, 144

rapid prototyping, 69
recipes, 37

regular, 145

regular expression, 146
resource, 44

S88, 36

Safe controllability of DES, 125
Safe Diagnosable DES], 125
Security module, 42
semi-formal method, 98
sensor, 78

Sequence Diagrams, 51
sequential function chart, 46
SFC, 39

SFC elements, 44

Single acting devices, 81
Software Engineering, 42
standard realization, 149
State Diagrams, 51

Static fault detection, 115
strings, 140

Structured text, 46

substring, 140

suffix, 140

supervisory control logic, 110

Test machines, 27
Testing station, 154

the pattern language, 35
transition function, 141
Trim operation, 143

UML, 36

uncontrollable events, 146
Unified Modeling Language, 51
unobservable events, 144, 147
Use Case Diagrams, 51

variables, 44
Verification and validation, 97

190 Index

Curriculum vitae

Matteo Sartini was born in Rimini (Italy) on 15 December 1978.
He got his diploma degree at Istituto Tecnico Industriale Statale
Leonardo Da Vinci in Rimini with the mark of 60/60. He took
his master degree in Computer Science Engineeering at Univer-
sity of Bologna in March 2005 with a master thesis titled "Mod-
ellistica mediante sistemi ibridi: applicazione al sistema frizione
driveline in ambiente automotive - Hybrid systems modeling:
application to clutch driveline in automotive systems". On Jan-
uary 2006 he obtained his professional engeneering degree.

In July 2005 he won a research grant supported by the University of Bologna and Emilia-
Romagna regional Council for the project titled "Diagnosis and control for fault tolerant au-
tomation systems" under the supervision of Prof. Claudio Bonivento.

On January 2006 he began his PhD (XXII cycle) and his research activity within D.E.L.S. (Di-
partimento di elettronica, Informatica e Sistemistica - Department of Electronics, Computer
Science and Systems) under the supervision of Prof. Claudio Bonivento.

In January 2010 he won a research grant supported European Artemis Joint Undertaking
funded project CESAR: Cost-Efficient methods and processes for SAfety Relevant embedded systems
under the supervision of Dr. Andrea Paoli.

His main research interests are: Industrial automation software architectures, Discrete Event
Systems, and fault tolerant control architectures in order to obtain safety and tolerance to faults.

191

