
Microsoft
Builds
Software

Teams of programmers and testers frequently synchronize
and periodically stabilize the changes they make to products
in progress, yielding Excel, Office, Publisher, Windows 95,

Windows NT, Word, Works, and more.

Since the mid-1980s, Microsoft and other PC software companies have grad-

ually reorganized the way they build software products in response to quality

problems and delayed deliveries [10]. Many have also found it necessary to

organize larger teams in order to build up-to-date PC software products that

now consist of hundreds of thousands or even millions of lines of source code

and require hundreds of people to build and test over periods of one or more

Michae l A . Cusumano and R ichard W. Se lby

How

COMMUNICATIONS OF THE ACM June 1997/Vol. 40, No. 6 53

years. As the world’s largest producer of PC software,
with approximately 20,500 employees, 250 products,
and annual revenues of $8.7 billion (fiscal year ending
June 1996), Microsoft has probably tackled more PC
software projects than any other company in the
industry. The complexity of some of its products, such
as Windows 95 (which contains more than 11 million
lines of code and required a development team of
more than 200 programmers and testers), rivals that
of many systems for mainframe computers and
telecommunication systems.

Microsoft’s philosophy for product development
has been to cultivate its roots as a highly flexible,
entrepreneurial company and not to adopt too many
of the structured software-engineering practices
commonly promoted by such organizations as the
Software Engineering
Institute and the
International Stan-
dards Organization
[6]. Rather, Microsoft
has tried to “scale up”
a loosely structured
small-team (some
might say hacker)
style of product devel-
opment. The objective
is to get many small
parallel teams (three
to eight developers
each) or individual
programmers to work
together as a single
relatively large team
in order to build large
products relatively
quickly while still
allowing individual
programmers and teams freedom to evolve their
designs and operate nearly autonomously. These
small parallel teams evolve features and whole prod-
ucts incrementally while occasionally introducing
new concepts and technologies. However, because
developers are free to innovate as they go along, they
must synchronize their changes frequently so prod-
uct components all work together.

We will summarize how Microsoft uses various
techniques and melds them into an overall approach
that balances flexibility and structure in software
product development. We are not suggesting that
the Microsoft-style development approach is appro-
priate for all types of software development or that
Microsoft “invented” these development ideas. Nor
do we suggest Microsoft’s software development

methods by themselves have caused the company’s
great financial success. We are saying there are sev-
eral lessons to be learned from how Microsoft builds
software products, some of which apply to other
organizations, some of which do not. Software devel-
opers and managers from other organizations can
decide which ideas may apply to them after consid-
ering such factors as their company’s goals, market-
ing strategies, resource constraints, software
reliability requirements, and development culture.1

Frequent Synchronizations and
Periodic Stabilizations
We label Microsoft’s style of product development
the “synch-and-stabilize” approach. The essence is
simple: Continually synchronize what people are

doing as individuals
and as members of
parallel teams, and
periodically stabilize
the product in incre-
ments as a project pro-
ceeds, rather than once
at the end of a project.
Microsoft people refer
to their techniques
variously as the “mile-
stone,” “daily build,”
“nightly build,” or
“zero-defect” process.
(The term build refers
to the act of putting
together partially
completed or finished
pieces of a software
product during the
development process
to see what functions

work and what problems exist, usually by com-
pletely recompiling the source code and executing
automated regression tests.) Whatever the label,
these techniques address a problem common to
many firms in highly competitive, rapidly changing
industries: Two or three people can no longer build
many of the new, highly complex products; such
products require much larger teams that must
invent and innovate as they develop the product.
Team members need to create components that are
interdependent, but such components are difficult to
define accurately in the early stages of the develop-
ment cycle. In these situations, projects must pro-

54 June 1997/Vol. 40, No. 6 COMMUNICATIONS OF THE ACM

1This article is based on the authors’ Microsoft Secrets: How the World’s Most Powerful
Software Company Creates Technology, Shapes Markets, and Manages People, The Free
Press/Simon & Schuster, New York, 1995.

Without
its synch-and-stabilize
structured approach,

Microsoft would
probably never have
been able to design,
build, and ship the

products it offers now
and plans to offer

in the future.

ceed by
finding
ways that
structure
and coordinate what the
individual members do
while allowing them
enough flexibility to be
creative and evolve the
product’s details in
stages. The development
approach must also have
a mechanism that allows
developers to test the product with cus-
tomers and refine their designs during the
development process.

In a variety of industries, many compa-
nies now use prototyping as well as multiple
cycles of concurrent design, build, and test activities
to control iterations as well as to make incremental
changes in product development [12]. In the soft-
ware community, researchers and managers have
talked about “iterative enhancement,” a “spiral
model” for iteration among the phases in project
development, and “concurrent development” of mul-
tiple phases and activities for the past 20 years [1, 2,
3]. However, many companies have been slow to for-
mally adopt these recommendations. Nonetheless,
the basic idea shared by these approaches is that
users’ needs for many types of software are so difficult
to understand and that changes in hardware and soft-
ware technologies are so continuous and rapid, it is
unwise to attempt to design a software system com-
pletely in advance. Instead, projects may need to iter-
ate while concurrently managing many design,
build, and testing cycles to move forward toward
completing a product.

This iterative as well as incremental and concur-
rent-engineering style contrasts with a more sequen-
tial, or “waterfall,” approach to product
development. In the waterfall approach, projects

seek to “freeze” a product specification, create a
design, build components, and then merge the com-
ponents—primarily at the end of the project in one
large integration and testing phase (see Figure 1). This
approach to software development was common in the
1970s and 1980s [8]. It also remains a basic model for
project planning in many industries [11]. The water-
fall model has gradually lost favor, however, because
companies usually build better products if they can
change specifications and designs, get feedback from
customers, and continually test components as the
products are evolving. As a result, a growing number
of companies in software and other industries—
including Microsoft—now follow a process that iter-
ates among design, building components, and testing,
and also overlaps these phases and contains more inter-
actions with customers during development. Many
companies also ship preliminary versions of their prod-
ucts, incrementally adding features or functionality
over time in various product releases. In addition,
many companies frequently integrate pieces of their

COMMUNICATIONS OF THE ACM June 1997/Vol. 40, No. 6 55

Document No. 1
Software

Requirements

Document No. 2
Preliminary

Design (Spec)

Document No. 4
Final

Design (Spec)

Document No. 6
Final

Design (Spec)

Document No. 6
Operating

Instructions

Document No. 3
Test Plan

Design (Spec)

Document No. 4
Final Design
(As Built)

Document No. 5
Test Plan (Spec)

Test Results

Document No. 3
Interface

Design (Spec)

Preliminary
Program
Design

Software
Requirements

System
Requirements

Analysis

Program
Design

Coding

Testing

Operations. . .

usumano – Figure 1

Figure 1. Waterfall development process model

products together
(usually not daily, but
often on a biweekly or
monthly basis). Fre-
quent integrations
help determine what
does and does not work
without waiting until
the end of the pro-
ject—which may be
several years away.

Strategies and
Principles
We observed Micro-
soft over a two-and-a-half year
period ending mid-1995, con-
ducted in-depth interviews with
38 key people (including chair-
man and CEO Bill Gates), and
reviewed thousands of pages of
confidential project documenta-
tion and postmortem reports.
Through this research, we identi-
fied two strategies for defining
products as well as development
processes and sets of principles
that seem critical to making the synch-and-
stabilize style of product development.

Microsoft teams begin the process of prod-
uct development by creating a “vision state-
ment” defining the goals for a new product
and orders the user activities that need to be
supported by the product features (see Figure
2). Product managers (marketing specialists)
take charge of this task while consulting pro-
gram managers who specialize in writing up
functional specifications of the product. The
program managers, in consultation with devel-
opers, then write a functional specification out-
lining the product features in sufficient depth to organize
schedules and staffing allocations. But the initial speci-
fication document does not try to cover all the details
of each feature or lock the project into the original set
of features. During product development, the team
members revise the feature set and feature details as
they learn more about what should be in the product.
Experience at Microsoft suggests that the feature set
in a specification document may change by 30% or
more.

The project managers then divide the product and
the project into parts (features and small feature
teams) and divide the project schedule into three or
four milestone junctures (sequential subprojects)

representing completion
points for major por-
tions of the product (see
Figure 3). All the fea-
ture teams go through a
complete cycle of devel-
opment, feature integra-
tion, testing, and fixing
problems in each mile-
stone subproject. More-
over, throughout an
entire project, the fea-
ture teams synchronize
their work by building

the product
and by finding
and fixing
errors on a
daily and
weekly basis.
At the end of a
milestone sub-
project, the
developers fix
almost all the
errors detected

in the evolving product. These error corrections sta-
bilize the product and enable the team to have a
clear understanding of which portions of the product
have been completed. The development team may
then proceed to the next milestone and, eventually,
to the ship date.

Defining Products and
Development Processes
To define products and organize the development
process, leading Microsoft product groups follow a

56 June 1997/Vol. 40, No. 6 COMMUNICATIONS OF THE ACM

• Vision Statement Product and program management
use extensive customer input to identify and priority-order
product features.

• Specification Document Based on vision statement,
program management and development group define
feature functionality, architectural issues, and component
interdependencies.

• Schedule and Feature Team Formation Based on
specification document, program management coordinates
schedule and arranges feature teams that each contain
approximately 1 program manager, 3–8 developers, and
3–8 testers (who work in parallel 1:1 with developers).

Planning Phase Define product vision, specification,
and schedule

Program managers coordinate evolution of specification.
Developers design, code, and debug. Testers pair with
developers for continuous testing.

• Subproject I First 1/3 of features (Most critical features
and shared components)

• Subproject II Second 1/3 of features

• Subproject III Final 1/3 of features (Least critical
features)

Development Phase Feature development in 3 or 4
sequential subprojects that each results in a milestone release

Program managers coordinate OEMs and ISVs and monitor
customer feedback. Developers perform final debugging and
code stabilization. Testers recreate and isolate errors.

• Internal Testing Thorough testing of complete product
within the company

• External Testing Thotough testing of complete product
outside the company by "beta" sites, such as OEMs, ISVs,
and end users

• Release preparation Prepare final release of "golden
master" disks and documentation for manufacturing

Stabilization Phase Comprehensive internal and
external testing, final product stabilization, and ship

Cusumano – Figure 2

Figure 2. Overview of the synch-and-stabilize
development approach

strategy we describe as
“focus creativity by evolv-
ing features and ‘fixing’
resources.” Teams imple-
ment this strategy
through five specific prin-
ciples:

• Divide large projects
into multiple milestone
cycles with buffer time
(20%–50% of total project
time) and no separate product
maintenance group.

• Use a “vision statement” and
outline feature specifications
to guide projects.

• Base feature selection and
priority order on user activi-
ties and data.

• Evolve a modular and horizontal
design architecture, mirroring the
product structure in the project
structure.

• Control by individual commitments
to small tasks and “fixed” project
resources.

These principles are significant for
several reasons. Employing creative
people in high-tech companies is cer-
tainly important, but directing their
creativity is often more important.
Managers can do this by getting devel-
opment personnel to think about the
features large numbers of customers
will pay money for and by pressuring
projects by limiting the resources, such as staffing
and schedule, the company will invest in their devel-
opment. Otherwise, software developers risk never
shipping anything to market. This risk is especially
troublesome in fast-moving industries in which
individuals or teams have unfocused or highly
volatile user requirements, frequently change inter-
dependent components during a project, or fail to
synchronize their work.

Microsoft gets around these problems by structur-
ing projects into sequential subprojects containing
priority-ordered features; buffer time within each
subproject gives people time to respond to changes
and to unexpected difficulties or delays. Microsoft
projects use vision statements and outline specifica-
tions rather than detailed designs and complete prod-
uct specifications before coding, because teams realize

they cannot determine in advance every-
thing developers need to do to build a
good product. This approach leaves
developers and program managers room
to innovate or adapt to changed or
unforeseen competitive opportunities and
threats. Particularly for applications
products, because development teams try

to come up with features that map
directly to activities typical cus-
tomers perform, the teams need to
carry out continual observation and
testing with users during develop-
ment.

Most product designs have
modular architectures allowing
teams to incrementally add or com-
bine features in a straightforward,

predictable manner. In addi-
tion, managers allow team
members to set their own
schedules, but only after the
developers have analyzed
tasks in detail (for example,
half-day to three-day chunks)
and have been asked to per-
sonally commit to the sched-
ules they set. Managers then
“fix” project resources by
limiting the number of peo-
ple they allocate to each pro-
ject. They also try to limit
the time spent on projects,

especially for applications like
Office and multimedia prod-
ucts, so teams can delete fea-
tures if they fall too far

behind. (However, cutting features to save schedule
time is not always possible with operating systems pro-
jects in which reliability is more important than fea-
tures and in which many features are closely coupled
and cannot easily be deleted individually.)

Developing and Shipping Products
To manage the process of developing and shipping
products, Microsoft follows another strategy we
describe as “do everything in parallel with frequent
synchronization.” Teams implement this strategy by
following another set of five principles:

• Work in parallel teams but “synch up” and debug
daily.

• Always have a product you can ship, with ver-
sions for every major platform and market.

COMMUNICATIONS OF THE ACM June 1997/Vol. 40, No. 6 57

Development (design, coding, prototyping)

Usability Lab
Private Release Testing

Daily Builds
Feature Debugging
Feature Integration

Code Stabilization (no severe bugs)
Buffer time (20%–50%)

Milestone 1 (first 1/3 features)

Milestone 2 (next1/3)
 Development
Usability Lab

Private Release Testing
Daily Builds

Feature Debugging
Feature Intergration
Code Stabilization

Buffer Time

Milestone 3 (last set)
Development
Usability Lab

Private Release Testing
Daily Builds

Feature Debugging
Feature Intergration
Feature Complete
Code Complete

Code Stabilization
Buffer Time

Zero Bug Release
Release to Manufacturing

Cusumano – Figure 3

Figure 3. Milestones in
the synch-and-stabilize approach (each

taking two to four months)

• Speak a “common language” on a single develop-
ment site.

• Continuously test the product as you build it.
• Use metric data to determine milestone comple-

tion and product release.

These principles bring considerable discipline to
the development process without the need to control
every moment of every developer’s day. For example,
managers in many different companies talk about
making their companies less bureaucratic, more
innovative, and faster to react through organization
and process “re-engineering” and “restructuring” to
speed product development. But complex products
often require large teams of hundreds of people, not
small teams of a dozen or fewer engineers; and large
teams can make communication and coordination
extremely difficult and slow. Large-scale projects are
simpler to schedule and manage if they proceed with
clearly defined functional groups, sequential phases,
and precise rules and controls. This approach, how-
ever, may restrain innovation and undervalue the
importance of frequently synchronizing work. Com-
munication and coordination difficulties across the
functions and phases may also result in a project’s
taking more time and people to complete than pro-
jects that overlap tasks and require that people share

responsibilities and work in small, nimble teams.
What Microsoft tries to do is allow many small

teams and individuals enough freedom to work in
parallel yet still function as a single large team, so
they can build large-scale products relatively quickly
and cheaply. The teams also adhere to a few rigid
rules that enforce a high degree of coordination and
communication.

For example, one of the few rules developers must
follow is that, on whatever day they decide to “check
in,” or enter their pieces of code into the product
database, they must do so by a particular time, say, 2
p.m. or 5 p.m. This rule allows the project team to
assemble available components, completely recom-
pile the product source code, and create a new
“build” of the evolving product by the end of the day
or by the next morning and then start testing and
debugging immediately. (This rule is analogous to
telling children that they can do whatever they want
all day, but they must be in bed at 9 p.m.) Another
rule is that if developers check in code that “breaks”
the build by preventing it from completing the
recompilation, they must fix the defect immediately.
(This rule resembles Toyota’s famous production sys-
tem, in which factory workers are encouraged to stop
the manufacturing lines whenever they notice a
defect in a car they are assembling [4].)

58 June 1997/Vol. 40, No. 6 COMMUNICATIONS OF THE ACM

Opened/
Resolved

Bugs

1/18 2/1
Source: Microsoft internal document

Opened

Resolved

Fixed

Active

19 20 21 22 23 24 25 26 27 28 29 30 31 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 4. Milestone 2: Bug data and daily builds from Excel/Graph

Microsoft’s daily build process has several steps.
First, in order to develop a feature for a product,
developers can check out private copies of source
code files from a centralized master version of the
source code. They implement their features by mak-
ing changes to their private copies of the source code
files. The developers then create a private build of
the product containing the new feature and test it.
They then check in the changes from their private
copies of the source code files to the master version of
the source code. The check-in process includes an
automated regression test to help ensure that their
changes to the source code files do not cause errors
elsewhere in the product. Developers usually check
in their code back to the master copy at least twice a
week but may check it in daily.

Regardless of how often individual developers
check in their changes
to the source code, a
designated developer,
called the project build
master, generates a
complete build of the
product on a daily basis
using the master ver-
sion of the source code.
Generating a build for a
product consists of exe-
cuting an automated
sequence of commands
called a “build script.”
This daily build creates
a new internal release of
the product and
includes many steps
that compile source
code. The build process
also automatically
translates the source
code for a product into
one or more executable files and may create various
library files, allowing end users to customize the
product. The new internal release of the product built
each day is the daily build. Daily builds are generated
for each platform, such as Windows and Macintosh,
and for each market, such as the U.S., and for the
major international versions.

Product teams also test features as they build them
from multiple perspectives, including bringing in
customers “off the street” to try prototypes in a
Microsoft usability lab. In addition, nearly all
Microsoft teams work at a single physical site with
common development languages (primarily C and
C++), common coding styles, and standardized

development tools. A common site and common lan-
guage and tools help teams communicate, debate
design ideas, and resolve problems face to face. Pro-
ject teams also use a small set of quantitative metrics
to guide decisions, such as when to move forward in
a project and when to ship a product to market. For
example, managers rigorously track progress of the
daily builds by monitoring how many bugs are newly
opened, resolved (such as by eliminating duplicates or
deferring fixes), fixed, and active (see Figure 4).

The Hacker Approach
Some people may argue that Microsoft’s key practices
in product development—daily synchronization
through product builds, periodic milestone stabiliza-
tions, and continual testing—are no more than
process and technical fixes for a hacker software orga-

nization now building
huge software systems.
We do not really dis-
agree, but we also think
that Microsoft has some
insightful ideas on how
to combine structure
with flexibility in prod-
uct development. It is
worthwhile to note that
the term hacker is not
necessarily a bad word in
the PC industry. It goes
back to the early days of
computer programming
in the 1960s, when long-
haired, unkempt techni-
cal wizards would work
at their computers with
no formal plans, designs,
or processes, and just
“bang on a keyboard”
and “hack away” at cod-

ing [7]. This approach worked for relatively small
computer programs that one person or several people
could write, such as the earliest versions of DOS,
Lotus 1-2-3, WordPerfect, Word, and Excel. It
became unworkable as PC software programs grew
into hundreds of thousands and then millions of lines
of code.

Formal plans and processes were first used in the
mainframe computer industry where software systems
had grown to the million-line-plus size by the end of the
1960s [5]. PC software companies have been unwilling
to completely give up their traditions and cultures. Nor
would it be wise for them to do so, given the rapid pace
of change in PC hardware and software technologies

COMMUNICATIONS OF THE ACM June 1997/Vol. 40, No. 6 59

No PC software
company has done a
better job of keeping
some basic elements
of the hacker culture

while adding just
enough structure to
build today’s, and

probably tomorrow’s,
PC software products.

and the need for continual innovation.
No company has taken advantage of the exploding

demand for PC software better than Microsoft. Simi-
larly, no PC software company has done a better job of
keeping some basic elements of the hacker culture
while adding just enough structure to build today’s,
and probably tomorrow’s, PC software products. It
continues to be a challenge
for Microsoft to make
products reliable enough
for companies to buy, pow-
erful enough so the prod-
ucts’ features solve
real-world problems, and
simple enough for novice
consumers to understand.
To achieve these somewhat
conflicting goals for a vari-
ety of markets, Microsoft
still encourages some
teams to experiment and
make lots of changes with-
out much up-front plan-
ning. Projects generally
remain under control
because teams of program-
mers and testers frequently
synchronize and periodi-
cally stabilize their
changes.

Since the late 1980s,
Microsoft has used varia-
tions of the synch-and-sta-
bilize approach to build
Excel, Office, Publisher, Windows 95, Windows NT,
Word, Works, and other products. However, the
synch-and-stabilize process does not guarantee on-
time or bug-free products. Creating new, large-scale
software products on a precisely predicted schedule
and with no major defects is an extremely difficult
goal in the PC industry. Microsoft and other PC soft-
ware companies also try to replace products quickly
and usually announce overly ambitious deadlines,
contributing to the appearance of being chronically
late. Nonetheless, without its synch-and-stabilize
structured approach, Microsoft would probably never
have been able to design, build, and ship the products
it offers now and plans to offer in the future.

Microsoft resembles companies from many industries
that do incremental or iterative product development as
well as concurrent engineering. It has also adapted soft-
ware-engineering practices introduced earlier by other
companies (such as various testing techniques) and rein-
vented the wheel on many occasions (such as concluding

that accumulating historical metric data is useful for
analyzing bug trends and establishing realistic project
schedules [9]). Microsoft is distinctive, however, in the
degree to which it has introduced a structured hacker-
like approach to software product development that
works reasonably well for both small- and large-scale
products. Furthermore, Microsoft is a fascinating exam-

ple of how culture and competitive strategy can drive
product development and the innovation process. The
Microsoft culture centers around fervently antibureau-
cratic PC programmers who do not like a lot of rules,
structure, or planning. Its competitive strategy revolves
around identifying mass markets quickly, introducing
products that are “good enough” (rather than waiting
until something is “perfect”), improving these products
by incrementally evolving their features, and then sell-
ing multiple product versions and upgrades to cus-
tomers around the world.

A Semblance of Order
The principles behind the synch-and-stabilize phi-
losophy add a semblance of order to the fast-moving,
often chaotic world of PC software development.
There are no silver bullets here that solve major
problems with a single simple solution. Rather,
there are specific approaches, tools, and techniques;
a few rigid rules; and highly skilled people whose

60 June 1997/Vol. 40, No. 6 COMMUNICATIONS OF THE ACM

Product development and testing
done in parallel

Vision statement and evolving
specification

Features prioritized and built in
3 or 4 milestone subprojects

Frequent synchronizations (daily
builds) and intermediate
stabilizations (milestones)

"Fixed" release and ship dates and
multiple release cycles

Customer feedback continuous in
the development process

Product and process design so large
teams work like small teams

Separate phases done in sequence

Complete "frozen" specification and
detailed design before building the
product

Trying to build all pieces of a product
simultaneously

One late and large integration and
system test phase at the project's
end

Aiming for feature and product
"perfection" in each project cycle

Feedback primarily after development
as inputs for future projects

Working primarily as a large group
of individuals in a separate functional
department

Synch-and-Stablize Sequential Development

Table 1. Synch-and-stabilize vs. sequential development

culture aligns with this approach. As we have sug-
gested, several elements distinguish synch-and-sta-
bilize from older, more traditional sequential and
rigid styles of product development (see Table 1).

Microsoft also has weaknesses. The company now
needs to pay more attention to, for example, product
architectures, defect prevention mechanisms, and
some more conventional engineering practices, such
as more formal design and code reviews. New prod-
uct areas also pose new challenges for its develop-
ment methods. For example, some new areas, such as
video on demand, have many tightly linked compo-
nents with real-time constraints that require precise
mathematical models of when video/audio/user data
can be delivered reliably and on time. Many existing
and new products have an extremely large or even
infinite number of potential user conditions or sce-
narios to test based on what hardware and applica-
tions each customer is using. These new products can
benefit from some incremental changes in the devel-
opment process. They also require more advance
planning and product architectural design than
Microsoft usually does to minimize problems in
development, testing, and operation.

Nonetheless, the synch-and-stabilize process
described here provides several benefits for product
developers:

• It breaks down large products into manageable
pieces (a priority-ordered set of product features
that small feature teams can create in a few
months).

• It enables projects to proceed systematically even
when they cannot determine a complete and sta-
ble product design at the project’s beginning.

• It allows large teams to work like small teams by
dividing work into pieces, proceeding in parallel
but synchronizing continuously, stabilizing in
increments, and continuously finding and fixing
problems.

• It facilitates competition on customer input,
product features, and short development times by
providing a mechanism for incorporating cus-
tomer inputs, setting priorities, completing the
most important parts first, and changing or cut-
ting less important features.

• It allows a product team to be very responsive to
events in the marketplace by “always” having a
product ready to ship, having an accurate assess-
ment of which features are completed, and pre-
serving process-product flexibility and
opportunism throughout the development
process.
These ideas and examples provide useful lessons

for organizations and managers in many industries.
The synch-and-stabilize approach used at Microsoft
is especially suited to fast-paced markets with com-
plex systems products, short lifecycles, and competi-
tion based around evolving product features and de
facto technical standards. In particular, coordinating
the work of a large team building many interdepen-
dent components that are continually changing
requires a constant and high level of communication
and coordination. It is difficult to ensure that such
communication and coordination take place while
still allowing designers, engineers, and marketing
people the freedom to be creative. Achieving this
balance is perhaps the central dilemma that man-
agers of product development face—in PC software
as well as in many other industries.

References

1. Aoyama, M. Concurrent-development process model. IEEE Software 10,
4 (July 1993).

2. Basili, V.R., and Turner, A.J. Iterative enhancement: A practical tech-
nique for software development. IEEE Trans. Software Eng. SEI-1, 4
(Dec. 1975), 390–396.

3. Boehm, B.W. A spiral model of software development and enhance-
ment. IEEE Comput. 5 (May 1988), 61–72.

4. Cusumano, M.A. The Japanese Automobile Industry: Technology and Man-
agement at Nissan and Toyota. Harvard University Press, Cambridge,
Mass., 1985.

5. Cusumano, M.A. Japan's Software Factories: A Challenge to U.S. Manage-
ment. Oxford University Press, New York, 1991.

6. Humphrey, W.S. Managing the Software Process, Addison-Wesley, New
York, 1989.

7. Levy, S. Hackers: Heroes of the Computer Revolution. Anchor/Doubleday,
New York, 1984.

8. Royce, W.W. Managing the development of large software systems. In
Proceedings of IEEE WESCON (Los Angeles, 1970), pp. 1–9.

9. Selby, R.W. Empirically based analysis of failures in software systems.
IEEE Trans. Reliab. 39, 4 (Oct. 1990), 444–454.

10. Smith, S.A., and Cusumano, M.A. Beyond the Software Factory: A com-
parison of “classic” and “PC” software developers. Working Paper 3607-
93/BPS, Sloan School, Massachusetts Institute of Technology, Cam-
bridge, Mass., 1993).

11. Urban, G.L., and Hauser, J.R. Design and Marketing of New Products.
Prentice-Hall, Englewood Cliffs, N.J., 1993.

12. Wheelwright, S.C., and Clark, K.B. Revolutionizing Product Development.
Free Press, New York, 1992.

Michael A. Cusumano (cusumano@mit.edu) is a professor of
strategy and technology management in the Sloan School of Man-
agement at the Massachusetts Institute of Technology, Cambridge,
Mass.
Richard W. Selby (selby@ics.uci.edu) is an associate professor
of computer science in the Department of Information and Com-
puter Science at the University of California, Irvine.

Permission to make digital/hard copy of part or all of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior spe-
cific permission and/or a fee.

© ACM 0002-0782/97/0600 $3.50

c

COMMUNICATIONS OF THE ACM June 1997/Vol. 40, No. 6 61

