
Softw Syst Model (2004) 3: 4–8 / Digital Object Identifier (DOI) 10.1007/s10270-004-0051-4

Expert’s voice

UML3.0 and the future ofmodeling

Cris Kobryn

CEO, PivotPoint Technology Corp., P.O. Box 2320, Fallbrook, CA 92088, USA

Received: 1 May 2003/Accepted: 13 December 2003

Published online: 24 February 2004 – Springer-Verlag 2004

Themajor revision work for UML 2.0 is complete, and it is
now an OMG Final Adopted Specification. This is a good
time to reflect on UML’s future, and the future of model-
driven development.
In April 2003 the U2 Partners submission team com-

pleted the final editing changes to the third revision of its
Unified Modeling Language (UML) 2.0 Superstructure
proposal, and submitted it to the Object Management
Group (OMG) for consideration [1]. Since the Superstruc-
ture final submission specified the high-level constructs
and diagrams that users commonly identify with UML,
this was the last and most important submission of the
four UML 2.0 revision processes.1 The OMGAnalysis and
Design Task Force (ADTF) unanimously recommended
that the OMG adopt the Superstructure final submis-
sion in June 2003, and the OMG classified it as a Final
Adopted Specification in August 2003 [2].
The adoption of the UML 2.0 Superstructure final

submission marked the culmination of 3 1/2 years of ma-
jor revision process, which started with the drafting of
UML 2.0 Requests for Proposals in early 2000. It also
marked the fruition of 2 3/4 years of intensive proposal
and specification writing by the largest submission team
in the history of the OMG. By the time that we had fin-
ished, the U2 Partners submission team consisted of over
fifty companies and organizations that were either sub-
mitters or supporters. Given the heated politicking that
occurred throughout the UML 2.0 revision process, the
Task Force’s unanimous vote to recommend the Super-
structure for adoption was anticlimactic.
From a personal perspective, the recommended adop-

tion of the UML 2.0 Superstructure submission occurred
after more than six years of leading, and more than seven
years of participating in, UML standardization efforts.

1 The OMG issued four UML 2.0 Request for Proposals in 2000:
Superstructure, Infrastructure, OCL and Diagram Interchange.

Starting in 1996, I collaborated with Mary Loomis, Jim
Odell, and a small team of modeling experts to draft the
OMG’s first Request for Proposal for a standard mod-
eling language [3]. During that same year, I also began
working closely with the three Rational methodologists
(Booch, Jacobson, and Rumbaugh, a.k.a. the Amigos)
who originated UML, and a team of “UML Partners”
representing major modeling tool vendors and users, to
specify and propose UML 1.0 as an initial submission to
the OMG [4].
In January 1997, when it became evident that the

UML 1.0 specification was imprecise and the Amigos were
encountering difficulties collaborating with each other,2

the Amigos asked me to organize and chair a UML Se-
mantic Task Force in order to complete the specification.
I accepted and the work of the Semantic Task Force re-
sulted in the UML 1.1 specification, which the OMG
adopted in November 1997 [5].
After the successful completion of the UML 1.1 spe-

cification, Guus Ramackers and I co-chaired several revi-
sion task forces for the UML 1.2, 1.3, and 1.4 minor revi-
sions before severalmajor UML vendors askedme to chair
the U2 Partners submission team to propose UML 2.0.
Figure 1 summarizes the evolution of UML 1.0 through
UML 2.0, and suggests relative improvements in semantic
expressiblity through the various revisions.3

Now that the UML 2.0 technical work is completed,
this is an opportune time to reflect on the major revision
and the future of model-driven development.

2 As the Amigos note in the Acknowledgements section of their
UML Reference Manual : “[Cris] managed to achieve a consensus
among an extremely strong willed group of persons (and the three
of us were not the least of his problems)” [7].
3 The relative differences in semantic expressiveness are only
offered as rough approximations, and are not based on readily
quantifiable metrics.

C. Kobryn: UML 3.0 and the future of modeling 5

Fig. 1. Evolution of UML 1.0 through UML 2.0

UML 2.0: The good, bad, and ugly

Although I am an avid fan of UML and model-driven de-
velopment, I also strive to be a fair critic. In this section,
I will describe the major improvements and shortcomings
of UML 2.0.
First, let’s discuss themajor improvements inUML2.0:

– Support for component-based development via
composite structures. Structured classifiers (both
Classes and Components) can be decomposed and
assembled (“wired”) via Parts, Ports, and Connec-
tors. In addition, UML 2.0 supports both black-box
and white-box views of structured classifiers. Figure 2
shows the black-box and white box-views of an Auto-
mobile class.
– Hierarchical decomposition of structure and
behavior. In addition to Classes and Components,
which are structural constructs, UML 2.0 supports the
hierarchical decomposition of the major behavioral
constructs, such as Interactions, State Machines, and
Activities.
– Cross integration of structure and behavior.
The decomposed constructs described above can be
flexibly integrated with each other. For example, the
same Parts that are used in a composite structure di-
agram of a Class to show its internal structure, can
also be used in a sequence diagram to show how the
internal structures communicate with each other.

– Integration of action semantics with behavioral
constructs. UML actions are now defined in as much
detail as a programming languages’s actions (or state-
ments), so that you can define executable models for
simulations and code generation.
– Layered architecture to facilitate incremen-
tal implementation and compliance testing.
UML 1.x was a large language, and UML 2.0 is larger
still. Taking a lesson from other large languages (e.g.,
SQL), UML 2.0 packages are organized into three lev-
els (Basic, Intermediate, and Complete) in order to
make it easier for vendors to implement and more ef-
ficient for standards organizations to test compliance.

Cumulatively these improvements mark a significant evo-
lution of the language, increasing its precision and ex-
pressiveness so that it can be effectively used to model
large, complex architectures. You can find more detailed
examples that show how UML 2.0 accomplishes this in an
article that I co-authored with Morgan Björkander about
Architecting Systems with UML 2.0 [6].
While these improvements are substantive, there are

several areas where UML 2.0 falls short:

– Use cases, which are commonly used for specifying
user requirements, are not well integrated with the
rest of the language. Since this was also the case with
UML 1.x, UML 2.0 has not worsened the problem, but
neither has it fixed it.

6 C. Kobryn: UML 3.0 and the future of modeling

Fig. 2. Structural decomposition of an Automobile class using parts, ports and connectors

– There is significant syntactic and semantic overlap be-
tween Classes and Components with internal struc-
tures (i.e., using Parts, Ports, and Connectors). A fu-
ture revision of UML 2.0, with the benefit of ven-
dor and user feedback, should consider synthesizing
Classes and Components into a unified “Clomponent”
construct.4

– Many of the constructs in the Complete level of
UML 2.0 are not as well proven or integrated as con-
structs in the lower levels. For example, Information
Flows and the updated Templates are relatively new
and untested. Consequently, much additional work
will be required to eliminate bugs and reduce semantic
overlap.
– The infrastucture of UML is gratuitously complex and
difficult to maintain. The UML 2.0 specifications in-
clude an Infrastructure Library, which is intended to
be strictly reused by other OMG modeling standards
(e.g., the Meta Object Facility or MOF) as well as the
UML 2.0 Superstructure. The class inheritance hier-
archies of the Infrastructure Library are fine grained,
which frequently makes them difficult to understand

4 As is often the case when too many methodologists are in-
volved, naming box and lines frequently proves more challenging
than defining their detailed syntax and semantics.

and manage.5 Since any changes to the Infrastructure
Library need to be correctly propagated to the Super-
structure and MOF which use them, library mainte-
nance will continue to be a challenge for Finalization
and Revision Task Forces that need to maintain these
specifications.

As all of these technical problems are well understood,
they should be straightforward to fix. Unfortunately, this
brings us to the ugly part of UML 2.0: the complex and
slow process for finalizing and revising the language.
Since I last described the OMG revision process in

UML 2001: A Standardization Odyssey it has increased in
complexity and decreased in speed [8]. To begin with, the
OMG has added a Finalization Task Force (FTF) stage
to the revision process, which is intended to expedite bug
fixing and architectural alignment of specifications. How-
ever, consider that there are already five UML 2.0 and
MOF 2.0 FTFs chartered,6 and several more MOF FTFs

5 An adtf@omg.org email discussion pointed out that it required
the traversal of 18 ancestors (via direct or indirect generalizations)
to fully understand the semantics of a particular Infrastructure
construct.
6 The following FTFs are already chartered: UML 2.0 Super-
structure FTF, UML 2.0 Diagram Interchange FTF, UML 2.0 OCL
FTF, a joint UML 2.0 Infrastructure + MOF 2.0 Core FTF, and
a MOF 2.0 XMI FTF.

C. Kobryn: UML 3.0 and the future of modeling 7

planned, all of which need to be architecturally aligned
with each other. To makes things more challenging, ar-
chitectural alignment at the OMG tends to be subjective,
rather than objective. There is no clear definition about
what architectural alignment means, nor any lucid guide-
lines for achieving it.
Further consider that the schedules for these FTFs are

not short, as they should be. The Superstructure FTF is
scheduled to be completed in April 2004, approximately
ten months after it was chartered. This hardly seems like
an aggressive schedule to polish a major revision that
was originally scheduled to be completed in 16 months
before it succumbed to scope creep and excessive poli-
ticking. Given that the original schedule for the UML 2.0
Superstructure nearly doubled, there is no reason to ex-
pect that its finalization will fare differently.
An underlying techno-political problems here is that

the OMG is intent upon architecturally aligning the
UML 2.0 Infrastructure submission with non-UML speci-
fications that are not nearly as mature or market proven,
such as MOF 2.0. Given that the MOF 2.0 specification
is less than half complete (only two MOF 2.0 submissions
have been adopted, and several others are in process or
planned), the OMG risks market credibility by slowing
down the UML 2.0 process for technology that is largely
unknown and unproven. Let’s keep in mind that OMG is
a standards organization, not an R&D organization!

Proliferation of UML 2.0 dialects

Given this state of the standardization process, it seems
likely that vendors will release UML 2.0 tools that sup-
port a wide variety of UML 2.0 dialects. These dialects
will be loosely based on subsets of the UML 2.0 spe-
cification. They will be subsets because the UML 2.0
specification is too large for any vendor to implement
completely in one product release. Consequently, vendors
will probably implement it incrementally, cherry picking
those constructs that most interest their customers. For
example, a tool vendor that focuses on enterprise systems
might implement complete activity diagrams for specify-
ing business process workflows, but only implement basic
state machines, since many enterprise modelers do not
often use the latter. In contrast, a tool vendor that fo-
cuses on real-time and embedded systems might imple-
ment complete state machine diagrams for defining time
critical mechanisms, while only implementing basic activ-
ity diagrams.
It is also predictable that the various implementations

of UML 2.0 dialects will only be loosely based on the spe-
cifications because, as was the case with the UML 1.x
implementations, the OMG lacks a reference implemen-
tation and a test suite to enforce compliance, and has no
plans to provide them in the foreseeable future. Compli-
ance that cannot be reliably measured is of questionable
value to users.

In addition, while the UML 2.0 Diagram Interchange
is an important advance towards providing complete
model interchange, including diagrams as well as seman-
tics, much detailed work remains to be done in a Final-
ization Task Force to make this elusive goal a practical
reality. Experience makes me skeptical that this can be
accomplished in a timely manner, and I challenge the
UML vendors to show that my concerns are misplaced.

Language evolution and natural selection

Although the software development community would be
better served by a more concise and precise UML 2.0 that
didn’t suffer from the various problems described above,
I remain optimistic about the important improvements
offered by this major revision.
We need to keep in mind that all living languages,

both natural and synthetic, must evolve or perish. Con-
sequently, we should look forward to natural selection
taking its course in the marketplace, choosing among the
various UML 2.0 dialects. Eventually, the most pragmatic
concepts will survive and thrive, and those that are im-
practical will be garbage collected. I am hopeful that at
least one of the UML 2.0 dialects that survive will be
a UML2++−− in the same sense that Java is sometimes
considered to be a C++−− (i.e., C++ with some of its un-
desirable aspects removed, such as direct memory point-
ers, operator overloading, and multiple inheritance).
We will likely need some benignmutations in the mod-

eling language gene pool to make this occur. The muta-
tion may occur from a UML 2.0 profile or from a com-
pletely new language. Profiles, of course, are intended
to customize the language and foster new dialects. It is
important to note that UML 2.0 profiles allow users to
subtract features from the language as well as add them.
Consequently, language designers customizing UML 2.0
can liposuction the language, as well as extend it.
In this regard, I am encouraged by the modeling lan-

guage design work of the SysML Partners, who are collab-
orating to define a modeling language for systems engin-
eering applications, called Systems Modeling Language
(SysML; www.sysml.org). The SysML Partners plan to
customize and extend UML 2.0 so that it can support the
specification, analysis, design, verification and validation
of complex systems that include hardware and software
components.
In order to achieve their ambitious goals the SysML

Partners will likely need to both add and removeUML 2.0
features. For example, they will need to add new fea-
tures to specify hardware components, requirements tax-
onomies, parametric relationships, and continuous time
varying attributes. They will also need to remove or dep-
recate features fromUML 2.0 if they don’t want their new
language to implode under its own weight. For example,
they should consider removing or deprecating one of the
flavors of structured classifiers (either Classes or Compo-

8 C. Kobryn: UML 3.0 and the future of modeling

nents), and any content in the Complete level that isn’t
required.
We should also expect significant modeling language

innovations from the academic and industrial research
communities. While UML 2.0 has made significant ad-
vances towards qualifying as a bona fide Architecture
Description Language (ADL), much work remains before
UML can efficiently specify environments that support
multiple paradigms and frameworks that support mul-
tiple views. As an example of the former, we need to
be able to model declarative rules in addition to object
and components. As an example of the latter, we need
to model architectural frameworks such as J2EE, .NET
and C4ISR/DoDAF. Although this important work may
be accomplished via extensions or modifications to UML,
it may be more straightforward to design new modeling
languages that include these capabilities in their kernels.

Conclusions and futures

It is inevitable that the software industry will eventu-
ally mature, and catch up with other industries based
on engineering and automation, such as the computer
hardware industry. At some point during this maturation
process, it will become common practice for software en-
gineers to specify their products using an architectural
blueprint language. UML 1.x has already played an im-
portant role in moving us towards that goal, and given
the many improvements that UML 2.0 offers, we should
expect that the major revision will advance us further.
What modeling language will software and systems

modelers be using a decade from now?Will it be UML 3.x,
UML 4.y, SysML, or some completely new modeling
language?
The answer, of course, depends upon us. If we step up

to fixing the various known problems with UML 2.0 in
a responsible and timely manner, and ensure that vendors
implement the standard correctly and efficiently, the odds
will dramatically increase that future modelers will use
a direct descendant of UML 2.0. However, if we sidestep
the challenge, the modeling language of choice a decade
from now might have a different name, syntax, and se-
mantics. However it turns out, I am confident that UML’s
amino acids will be somewhere in that future modeling

language’s genetic makeup, even if it takes some DNA an-
alysis to decipher it.

References

1. Object Management Group (2003) U2 Partners, UML 2.0 Su-
perstructure, 3rd Revision. OMG document ad/03-04-01

2. Object Management Group (2003) UML 2.0 Superstructure,
Final Adopted Specification. OMG document ptc/03-08-02

3. Object Management Group (1996) Object Analysis & Design
RFP-1. OMG document ad/96-05-01

4. Object Management Group (1997) UML Partners, Part I:
UML Definition v. 1.0. OMG documents ad/97-01-01 through
ad/97-01-13

5. Object Management Group (1997) UML Partners, UML Se-
mantics v. 1.1. OMG document ad/97-08-04

6. Björkander M, Kobryn C (2003) Architecting Systems with
UML 2.0. IEEE Software, July/August

7. Rumbaugh J, et al. (1999) The UML Reference Manual,
Addison-Wesley

8. Kobryn C (1999) UML 2001: A Standardization Odyssey.
Communications of the ACM 42(10)

Cris Kobryn is the Chief Exec-
utive Officer of PivotPoint Tech-
nology, a company that special-
izes in model-driven engineer-
ing solutions for tough business
and engineering problems. Cris
is an internationally recognized
expert in software and systems
modeling, and has successfully
applied advanced technologies to
diverse industries ranging from
financial services and healthcare

to telecom and aerospace. He has broad international experi-
ence leading high-performance software development teams,
and has architected custom applications and commercial
products. Cris formerly held senior technical positions at Tele-
logic, EDS, MCI Systemhouse, and SAIC.
As an Object Management Group representative, Cris has

been a major contributor to the Unified Modeling Language
(UML) specification, which is the industry standard for spec-
ifying software architectures. He chaired large international
standardization teams to specify UML 1.1 and UML 2.0, and
serves as the co-chair of the OMG’s Analysis and Design Task
Force. Cris is a member of the IEEE, ACM, INCOSE and
AAAI. Contact him via email at ck@pivotpoint-tech.com.

