
Architectural styles of
adaptive systems

Dott. Francesco Poggi - fpoggi@cs.unibo.it

Corso di Architettura del Software

CdL M Informatica

Università di Bologna

Agenda

• Self adaptive systems

• Autonomic computing

• Architectural styles for adaptive systems

• Reasoning on adaptive systems

Based on a presentation by P. Ciancarini, S.Guinea and L.Baresi

2

Self-adaptive software

1997: defined by Laddaga in a DARPA
announcement as:

“...software that evaluates its own behavior and changes
when the evaluation indicates that it is not accomplishing
what the software is intended to do...”

3

Self-adaptive software

Self adaptive software can modify its own
development artifacts and configuration
attributes in response to changes in

The self, that is, the whole body of the software, usually
implemented in several layers

The context, that is, everything in the operating environment that
affects the system’s properties and behavior

The development lifecycle of an adaptive
software system continues after its deployment
and initial setup

4

Self-* properties

5

Self-adaptiveness

Self-healingSelf-configuring

Self-protectingSelf-optimizing

Self-awareness Context-awareness

general
level

major
level

primitive
level

M. Salehie and L. Tahvildari. Self-adaptive software:
Landscape and research challenges. TAAS 4(2): (2009)

Open vs. closed systems

Closed systems

Fixed set of elements

Adaptation can only act on them to keep the system on track

Open systems

Elements can appear and disappear

Adaptation must both “discover” existing elements and act on
them to keep the system on track

6

Anticipated vs. un-anticipated

Anticipated adaption (closed adaptive)

Situations to be accommodated at run-time are known at
design-time

Un-anticipated adaption (open adaptive)

Possibilities are recognized and computed at run-time

Decisions are computed by using self-awareness and
environmental context information

Externalized adaptation

• One or more models of the system are
maintained at runtime

• They are used to identify and resolve problems

• Changes are described as operations on the
model

• Changes to the model affect changes onto
the underlying system

Different needs

Topology

• Different interactions among the same elements

• New elements enter the system

Behavior

• Same elements start behaving differently

• New elements are injected in the system

Control

• MAPE elements must be added

• Reliability and robustness must be enforced
9

Adaptability

Components

• Give each component a single, clearly defined purpose

• Minimize component interdependencies

• Avoid burdening components with interaction
responsibilities

• Separate processing from data

• Separate data from meta-data

10
Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor,
Nenad Medvidovic, and Eric M. Dashofy; 2008 John Wiley & Sons

Adaptability

Connectors

• Give each connector a clearly defined responsibility

• Make the connector flexible

• Support connector composability

• Be aware of differences between direct and indirect dependencies

Configurations

• Leverage explicit connectors

• Try to make distribution transparent

• Use appropriate architectural styles

11

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor,
Nenad Medvidovic, and Eric M. Dashofy; 2008 John Wiley & Sons

Why Autonomic Computing?

Current software systems attributes

• Inherent complexity

• Computational distribution

• A set of different behaviors (variability)

• Interaction among different “components”

• Software

• Hardware (in general, sensors and effectors)

• Humans

• Run-time adaptivity to unpredicted circumstances

12

Autonomic Computing and self-* properties

• Autonomic Computing: systems that can manage
themselves given high-level objectives from
administrators [Hor01]

• Self-* properties

• Self-(re)configuration

• Self-healing

• Self-optimization

• Self-protection

• Self-reconfiguration and self-*

• Is self-reconfiguration the mechanism to enact the other self-*
properties?

13

The MAPE-K paradigm

Autonomic Computing systems are made up of several autonomic
elements [Kep03]

MAPE-K cycle:

• Monitor

What changed/happened?
• Analyze

How to face the change
• Plan

Define the actions to perform
• Execute

Perform actions in response to the change

+ Knowledge (an high-level representation of the observed system)

Self-reconfiguration is tightly linked to MAPE-K
14

Key ingredients to
autonomic software

1. Architecture

• (Web)-Services or Agents to support distribution

• Adapt established infrastructures

• Guarantee reuse, extensibility, and scalability

2. Algorithms and reconfiguration mechanisms

• The following questions should be answered:

 When reconfiguring?

 Why reconfiguring?

 Which behavior should be selected?

 How to enact compensation if something fails?

3. Integration with a sw development methodology
15

A look at research

• Phase 1: 1991-1999

Software Architecture as a Design-time tool for Systems that
Need to be Adaptive

• Phase 2: 2000-2007

Software Architecture for Self-Adaptive Systems

• Phase 3: 2008-today

Ongoing Research on Software Architecture for Self-Adaptive
Systems

A look at research
Phase 1: 1991-1999

1991 – Gorlick et al.
“Using Weaves for Software
Construction and Analysis”

1995 – Taylor et al.
“A Component- and Message-Based
Architectural Style for GUI Software”

Software Architecture as a Design-time tool for
Systems that Need to be Adaptive

1994-1995 - Magee et al.
“Specifying Distributed
Software Architectures”
&
“Regis: A Constructive Development
Environment for Distributed Programs”

1
9

9
1

1
9

9
9

1999 – Oreizy et al.
“An Architecture-Based Approach
to Self-Adaptive Software”

17

1.1 - Weaves

• Architectural style with accompanying notation

• Pipe and Filter with three differences:

1. Tool fragments process object streams (NO byte streams)

2. Connectors are explicitly sized queues

3. Tool fragments can have multiple inputs and outputs

Gorlick and Razouk,“Using Weaves for Software Construction and Analysis”,
ICSE ’91, Proceedings of the 13th International Conference on Software Engineering

Telemetry
Reader

Telemetry
Filter

LinkQ
Telemetry
Processor

Telemetry
Switch

Satellite
Status

Processor

Star
Sensor

Processor

Focal
Plane

Processor

99 59

99 00 99 00

99 00 99 22

99 12

18

1.1 - Weaves

• Ports and queues are blind, type-indifferent, two-layer transport services

 Increases the flexibility of interconnectivity

 Allows for Location transparency

 Specialized ports help solve output -> input incompatibilities

 A full queue sends an error to the sender, which waits and tries again

• Tool fragments

 Lifecycle management: start, suspend, resume, sleep, abort

• Analysis

 Self-metric tool fragments

 Instruments (specialized tool fragments) inserted in the weaving

 Observers (separation between data capture and analysis)
Gorlick and Razouk,“Using Weaves for Software Construction and Analysis”,
ICSE ’91, Proceedings of the 13th International Conference on Software Engineering 19

1.2 - C2

• Obtain the benefits of MVC in a
distributed and heterogeneous setting

• Layered network of concurrent
components hooked together by
explicit message-based connectors

Stack
Manipulator

Stack
ADT

Cafeteria Stack Artisti
& Abstract Graphics

Rendering Agent and
X Server

Sound Server

I/O Devices I/O Devices

Internal
Object

Dialog
&

Constraints

Wrapper

Domain
Translator

Taylor, Medvidovic, Anderson, Whitehead, and Robbins,“A Component- and Message-Based Architectural
Style for GUI Software”, ICSE ‘95 Proceedings of the 17th International Conference on Software Engineering20

1.2 - C2

• Obtain the benefits
of MVC in a
distributed and
heterogeneous
setting

• Layered network of
concurrent
components hooked
together by explicit
message-based
connectors

Taylor, Medvidovic, Anderson, Whitehead, and Robbins,“A Component- and Message-Based Architectural
Style for GUI Software”, ICSE ‘95 Proceedings of the 17th International Conference on Software Engineering21

1.2 - C2

• C2 composes systems as a hierarchy of concurrent
components bound together by connectors (message-
routing devices)

• a component is only aware of components “above” it, and
is completely unaware of components residing at the same
level or “beneath” it.

• a component explicitly utilizes the services of components
above it by sending request message.

Taylor, Medvidovic, Anderson, Whitehead, and Robbins,“A Component- and Message-Based Architectural Style for
GUI Software”, ICSE ‘95 Proceedings of the 17th International Conference on Software Engineering 22

1.2 - C2

Benefits:

• Substrate independence

• Accommodating heterogeneity

• Can easily support for component substitution

• Design in a MVC style

• Support for concurrent components

• Support for network-distributed systems

• Smart connectors can support filtering policies

Taylor, Medvidovic, Anderson, Whitehead, and Robbins,“A Component- and Message-Based Architectural Style for
GUI Software”, ICSE ‘95 Proceedings of the 17th International Conference on Software Engineering 23

1.3 - Darwin and Regis

• Configuration Programming

 Separate the description of the program structure from the programming of
the functional components

 Manage growing complexity

• Based on the notion of provided and required interfaces

P(0)
Poller

output

input

P(1)
Poller

P(n-1)
Poller

input
M: mux

output
D: demux

sensout

sensin

Component sensornet (int n){
provide sensin <port smsg>;
require sensout <port smsg>;

array P[n]:poller;
inst
M:mux;
D: demux;

forall i:0..n-1 {
inst P[i] @i+1;
bind

P[i].output -- M.input[i];
D.output[i] – P[i].input;

}

bind
M.output – sensout;
sensin – D.input;

}

24
Magee, Dulay, and Kramer, “Regis: a Constructive Development Environment for Distributed Programs”,
Distributed Systems Engineering, Volume 1,Number 5, 1994

1.3 - Darwin and Regis

• Hierarchical configuration allows for a scalable solution

• Regis provides C++ automatically generated templates for
implementing communication and processing components

• Can be modeled in pi-calculus for checking internal
consistency

• Allows for Dynamic Configuration meaning the system’s
structure can change over time

 Dynamic instantiation

 Lazy instantiation

Magee, Dulay, and Kramer, “Regis: a Constructive Development Environment for Distributed Programs”,
Distributed Systems Engineering, Volume 1,Number 5, 1994 25

1.4 - The need for Self-Adaptation

• Unmanned Aerial Vehicles (UAVs) are used to disable an
enemy airfield

 Midway, intelligence finds that Surface-to-Air Missile (SAMs) are defending
the airspace

 Autonomous re-planning leads to two groups of UAVs (a SAM-suppression
unit and a airfield suppression unit)

 This leads to the automatic deploy of new SAM recognition algorithms

• Components are added to fielded and heterogeneous systems
with no downtime

• Required assurances: consistency, correctness, and
distributed change coordination

Oreizy, Gorlick, Taylor, Heimbinger, Johnson, Medvidovic, Quilici, Rosenblum, and Wolf, “An Architecture-
Based Approach to Self-Adaptive Software”, IEEE Intelligent Systems, Volume 14 Issue 3, May 1999 26

1.4. - A Methodology

27

Observers, Architecture Editor,
Modification Interpreter

Architecture Evolution
Manager

Observation and
Adaptation Patterns

Observation AnalyzersDeployment Agents

Oreizy, Gorlick, Taylor, Heimbinger, Johnson, Medvidovic, Quilici, Rosenblum, and Wolf, “An Architecture-
Based Approach to Self-Adaptive Software”, IEEE Intelligent Systems, Volume 14 Issue 3, May 1999

• What conditions?
• Open- or closed-adaptation?
• Type of autonomy?
• Frequencies?
• Cost-effectiveness?
• Information type and accuracy?

Approaches near the bottom
select among predetermined
alternatives, support localized
change, and lack separation of concerns.

Approaches near the top support unprecedented
changes and provide a clearer separation of software-adaptation concerns.

1.4 - Reasoning on
Self-Adaptive Software

Evolutionary Programming

(algorithm generation, genetic algorithms,

AI-based learning)

Algorithm selection

Generic or parameterized algorithms

Online algorithms

(deterministic, randomized,

or probabilistic)

Conditional expressions

28
Oreizy, Gorlick, Taylor, Heimbinger, Johnson, Medvidovic, Quilici, Rosenblum, and Wolf, “An Architecture-
Based Approach to Self-Adaptive Software”, IEEE Intelligent Systems, Volume 14 Issue 3, May 1999

Phase 2

2001– Dowling et al.
“The K-Component
Architecture
Meta-Model for
Self-Adaptive Systems”

Software Architecture for Self-Adaptive Systems

2003 – Gomaa et al.
“Dynamic Software
Reconfiguration
in Software Product
Families”

2
0

0
1

2
0

0
7

2003-2004 – Garlan et al.
“Increasing System Dependability
through Architecture-based
Self-repair”
&
“Rainbow: Architecture-Based
Self-Adaptation with
Reusable Infrastructure

2004-2005 – Hawthorne et al.
“Exploiting Architectural Prescriptions
for Self-Managing, Self-Adaptive Systems:
A Position Paper”
&
“Architectural Styles for Adaptable
Self-Healing Dependable Systems”

2007– Kramer and Magee
“Self-Managed Systems:
An Architectural Challenge”

29

2.1 - Software Product Families

• Software Product Family

 A Software Architecture that characterizes the similarities and
variations that are allowed among the members of a product “family”.

• Software Configuration

 Process of adapting the architecture of the product family to create the
architecture of a specific product member

• Dynamic System Reconfiguration

 No interference with the parts that are not affected

 Components should complete their activities prior to reconfiguration

 Separation of Reconfiguration and Application concerns

Gomaa and Hussein, “Dynamic Software Reconfiguration in Software Product Families”, Software Product-
Family Engineering, 5th International Workshop, 2003 30

2.1 - Reconfigurable Evolutionary
Product Family Life Cycle

Product Family
Engineering

Product Family
Reuse Library

Target System
Configuration

Target System
Reconfiguration

Product Family
Requirements

Software Patterns

Reconfigurable Product Family Specification,
Reconfigurable Product Family Architecture,
Reconfigurable Component Types,
Reconfiguration Patterns

Reconfigurable Component Types,
Reconfiguration Patterns

Reconfiguration Requirements

Executable Target System
Reconfigured Executable
Target System

Target System
Requirement

Unsatisfied Requirements,
Errors, Adaptationa

31
Gomaa and Hussein, “Dynamic Software Reconfiguration in Software Product Families”, Software Product-
Family Engineering, 5th International Workshop, 2003

2.1 - Reconfiguration Patterns

• How do components cooperate to change their configuration using
reconfiguration commands?

• Each component has

• An operating statechart

• operational transactions

• A main reconfiguration statechart

• explains how the component passes through active, passivating, passive, and
quiescent states during reconfiguration

• One or more operating with reconfiguration statecharts

• For handling reconfiguration events in the operating statechart

• One or more neighbor component state tracking statecharts

• Everything is brought together by a Change Management Model

32
Gomaa and Hussein, “Dynamic Software Reconfiguration in Software Product Families”, Software Product-
Family Engineering, 5th International Workshop, 2003

2.1 - Change Management Model

• Change Rules

 A component can only be removed if quiescent

 Interconnections can be unlinked if the component is quiescent with
respect to those links

 Etc.

• Change Transaction Model

 Impacted Sets (of components)

 Components that must be brought to quiescence

• Reconfiguration Commands

 Passivate, checkpoint, unlink, remove, create, link, activate, restore,
reactivate

33
Gomaa and Hussein, “Dynamic Software Reconfiguration in Software Product Families”, Software Product-
Family Engineering, 5th International Workshop, 2003

2.2 - Architecture-based
Self-Repair

• Provides a generalization of architecture-based self-adaptation

• The architectural style becomes a first-class run-time entity

• The style determines

 What needs to be monitored

 What constraints need to be evaluated

 What to do when there is a violation

 How to perform the repair

• Augment the style with

 Style-specific architectural operators

 Collection of repair strategies

Repair Handler Analyzer

Style API
Interpreter

Arch Model

A
P

I

Architectural Style

Translator

Runtime Manager
Executing
System

Monitoring
Mechanisms
(off the shelf)

34
Gomaa and Hussein, “Dynamic Software Reconfiguration in Software Product Families”, Software Product-
Family Engineering, 5th International Workshop, 2003

2.2 - Architecture-based
Self-Repair

• The generic model comprises Components and Connectors with explicit interfaces

• Ports are component interfaces

• Roles are connector interfaces

• Components can be further refined through representations

• Semantic properties are described through graph annotation

• Style types are defined using Acme, a generic ADL

• Style constraints are defined in Armani, first-order predicate logic

• A repair strategy determines a problem’s cause and how to fix it

• Defined as a transactional sequence of tactics

• plus a policy for solving tactic conflict

• A tactic has a pre-condition and a repair script
Garlan, Cheng, and Schmerl, “Increasing System Dependability through Architecture-based Self-repair”,
Architecting dependable systems 35

2.2 - A Web-based
Server-Client System

Client 1 Client 2 Client 3 Client 4 Client 5 Client 6

ServerGrp 1 ServerGrp 2 ServerGrp 3

Server 1 Server 2 Server 3

Family PerformanceClientServerFam extends ClientServerFam with {
Component Type PAClientT extends ClientT with {

Properties {
Requests : sequence <any>;
ResponseTime : float;
ServiceTime : float;
};

};

ComponentType PAServerT extends ServerT with {…}

Connector Type PALinkT extends LinkT with {
Properties {

DelayTime : float; };
};

Component Type PAServerGroupT extends ServerGroupT with {
Properties {

Replication : int <<default : int = 1;>>;
Requests : sequence <any>;
ResponseTime : float;
ServiceTime : float;
AvgLoad : float;

};
Invariant AvgLoad > minLoad; };

Role Type PAClientRoleT extends ClientRoleT with {
Property averageLatency : float;
Invariant averageLatency < maxLatency;

};

Property maxLatency : float;
Property minLoad : float;

};

Family ClientServerFam = {
Component Type ClientT = {...};
Component Type ServerT = {...};
Component Type ServerGroupT = {...};

Role Type ClientRoleT = {...};
Role Type ServerRoleT = {...};

Connector Type LinkT = {
invariant size(select r : role in Self.Roles | declaresType(r, ServerRoleT)) == 1;
invariant size(select r : role in Self.Roles | declaresType(r, ClientRoleT)) >= 1;
Role ClientRole1 : ClientRoleT;
Role ServerRole : ServerRoleT;

};

};

36
Garlan, Cheng, and Schmerl, “Increasing System Dependability through Architecture-based Self-repair”,
Architecting dependable systems

2.2 - Operations and Strategies

• Adaptation Operations

 addServer()

 move(to:serverGrouptT)

 remove()

 findGoodSGroup(cl:ClientT, bw:float)

• Strategies

 fixLatency

 Pre-condition: averageLatency is NOT less or equal to maxLatency

 Tactic 1: server group is overloaded -> create a new server in the group

 Tactic 2: there is communication delay -> find the best server group and move the
client-server connector to that group

37
Garlan, Cheng, and Schmerl, “Increasing System Dependability through Architecture-based Self-repair”,
Architecting dependable systems

2.3 - From Requirements to
Architectures

Hawthorne and Perry, “Exploiting Architectural Prescriptions for Self-Managing, Self-Adaptive Systems: A
Position Paper”, Proceedings of the 1st ACM SIGSOFT workshop on Self-managed systems, 2004

• The goal is to bridge the gap between requirements engineering and software
architecture
• Activities - what must be done to satisfy a functional goal
• Roles - abstractions of the roles the objects play to reach a goal
• Intents - capture the essence of an object’s purpose and functionality

• They provide a behavioral abstraction (state change model)

Requirement

Functional
Goal

Constraint

Activity Role

Context Monitor

Intent

Impl. Object
Type

Problem Domain
(Requirements Spec)

Solution Domain
(Impl. Architecture)

partition into
sub-activities

partition into
sub-roles

refine
define in
terms of

Application Domain
(Funcional Spec)

38

2.3 - Distributed
Configuration Routing

D

C

39
Hawthorne and Perry, “Exploiting Architectural Prescriptions for Self-Managing, Self-Adaptive Systems: A
Position Paper", Proceedings of the 1st ACM SIGSOFT workshop on Self-managed systems, 2004

2.4 - An Architectural Challenge

• Architecture provides the required level abstraction and generality
to deal with Self-management

 Can help with scalability

 Build on existing work

 Potential for an integrated approach

• The goal is to minimize the degree of explicit management
necessary for construction and subsequent evolution whilst
preserving the architectural properties implied by its
specification

• They propose a three-layer architecture based on Gat’s three layer
architecture for self-managing robots

Kramer and Magee, “Self-Managed Systems: an Architectural Challenge”, Future of Software Engineering 2007

40

2.4 - An Architectural Challenge

• Component Control

 How can we preserve safe application
operation during change?

 How can we ensure safety properties are
never violated?

• Change Management

 How can we deal with distribution and
decentralization?

 How can we preserve global consistency
and guarantee local autonomy?

G

G' G''

P1 P2

C1 C2
Status

Plan
Request

Change
Plans

Change
Actions

Component Control

Goal Management

Change Management

mode mode

• Goal Management
 How can we achieve goal specification that is both comprehensible and machine

readable?
 How can we decompose goals and generate operationalized plans?

41
Kramer and Magee, “Self-Managed Systems: an Architectural Challenge”, Future of Software Engineering 2007

Phase 3

2009– Weyns et al.
“An Architectural Strategy
for Self-Adapting Systems”

&
“Patterns of Delegate MAS”

Ongoing Research on Software Architecture
for Self-Adaptive Systems

2
0

0
7

2
0

1
2

2009– Georgas et al.
“Using Architectural Models to
Manage and Visualize Runtime Adaptation”

2012 – Cheng et al.
“Stitch: A Language for
Architecture-Based Self-Adaptation”

2011-2012 – Baresi et al.
“A-3: an Architectural Style for
Coordinating Distributed Components”
&
“Coordination of Distributed Systems
through Self-Organizing Group Topologies

42

3.1 - Situated Multi-Agent
Systems

The system is structured as interacting autonomous entities that are situated in
an environment

• They employ the environment to share information and coordinate their behavior

• Control is decentralized

• Self-management is the system’s capability to manage dynamism and change
autonomously

Weyns and Holvoet, “An Architectural Strategy for Self-Adapting Systems”, Software Engineering for
Adaptive and Self-Managing Systems, 2007 43

3.1 - Situated Multi-Agent
Systems

• Perception – a filtered sensing of the
environment

• Decision Making – action selection
through the influence-reaction model

• Communication – communicative
interaction with other agents

• Communication and decision making
are kept separate
• Clear separation of concerns
• Both functions can act in parallel

and proceed at different paces

44
Weyns and Holvoet, “An Architectural Strategy for Self-Adapting Systems”, Software Engineering for
Adaptive and Self-Managing Systems, 2007

3.1 - Situated Multi-Agent
Systems

Horizontal Decomposition

• Representation Generator

• Interaction

• Communication Mediation

Vertical Decomposition

• Observation and Data Processing

• Low-level Control

• Communication Service

• Synchronization and Data Processing

45
Weyns and Holvoet, “An Architectural Strategy for Self-Adapting Systems", Software Engineering for
Adaptive and Self-Managing Systems, 2007

3.1 - Patterns for Delegate MAS

Three bio-inspired, light-weight, ant-like agents that assist domain agents in their coordination

The underlying communication environment is a dynamic graph topology

Problems:

• Global-to-local and local-to-global information dissemination

Information is needed for decision making

• Stability

Decisions need continuous revision due to new possibilities or problems

Solutions:

• Smart Messages

Information retrieval is delegated to smart messages

• Inertia Managemnt

• Inertia Management

46
Weyns and Holvoet, “An Architectural Strategy for Self-Adapting Systems”, Software Engineering for
Adaptive and Self-Managing Systems, 2007

3.1 - Solutions

Smart messages mix state and behavior

• Behavior is executed at every node to determine:

 How it interacts with the node

 How it will “move” from there

 If message cloning is required

Delegate MAS

• About effectively using a conglomerate of smart messages to solve the
problem of repeated interactions

 Specification of interactions, frequency of interactions, and aggregation and processing of the
interaction results

• It is a behavior module that includes

 A policy for creating smart messages with their own parameterised behaviors and initial states

47
Weyns and Holvoet, “An Architectural Strategy for Self-Adapting Systems”, Software Engineering for
Adaptive and Self-Managing Systems, 2007

3.2 - Management and
Visualization

An Operations Control Center to

• Contextualize current and past behavior with respect to the system
configurations that resulted in these behaviors

• Support retroactive analyses of historical information about a system’s
composition and behavior

Georgas, van der Hoek, and Taylor, “Using Architectural Models to Manage and visualize Runtime Adaptation”,
IEEE Computer, 2009

Architectural Model
An explicit model of the system's

architectural elements

Evolution Management
Runtime evolution based on
architectural model changes

Policy-based Adaptation Management
Runime policies processes

governing self-adaptive behavior

Architectural Runtime
Configuration Management

Adaptation visibility, reflection, and
human-in-the-loop management operations

Receive changes

Update runtime

Adaptation responses

Observations

Adaptation changes Operator-driven changes

49

• Connect to operator-driven proactive
management of the system

3.2 - Management and
Visualization

The main result is a historical graph of architectural configurations

• Visibility – to see what happened

• Understandability – to improve adaptation

• Management – to rollback or push the system into an existing configuration

• Directed cyclic graph G=(N, E)
• N is a set of nodes
• E is a set of unidirectional edges

between nodes
• Each n in N defines a specific

architectural configuration

• The tool provides bidirectional
diffs for each edge in the graph

50
Georgas, van der Hoek, and Taylor, “Using Architectural Models to Manage and visualize Runtime Adaptation”,
IEEE Computer, 2009

3.3 - Stitch

• A language for defining and automating the execution of adaptation strategies in
an architecture-based self-adaptation framework (see slides 55-58)

• Requirements for Stitch

• Adaptation decision processes should be able to choose the next action depending on
the outcome of previous ones

• When evaluating the result of an adaptation action the language should take into
account that effects could be susceptible to delay

• Strategies should be “guarded” by activation conditions

• Should be possible to determine the best strategy to execute if there is more than one –
this must depend on the context of execution

• Past successes or failures to adapt should contribute to the overall process

• Stitch defines repair decision trees, together with business objectives to guide the
strategy selection

Cheng, Garlan, and Schmerl, “Stitch: A Language for Architectural-based Self-Adaptation”, Journal of Systems
and Software, Special Issue on State of the Art in Self-Adaptive Systems, 2012 51

3.3 - Stitch

Operator - primitive unit of adaptation

• The operators are determined by the architectural style

Tactic – an abstraction that packages operators into larger units of change. A tactic
contains:

tactic switchToTextualMode () {
condition {

exists c:T.ClientT in M.components | c.expRspTime >M.MAX_RSPTIME;
}
action {

svrs = { select s : T. ServerT | ! s . isTextualMode };
for (T.ServerT s : svrs) { Sys.setTextualMode(s, true); }

}
effect {

forall c:T.ClientT in M.components | c.expRspTime ≤ M.MAX_RSPTIME;
forall s:T.ServerT in M.components | s.isTextualMode ;

}
}

• A sequence of operator calls
• Activation pre-conditions
• A definition of the effects that it is

attempting to achieve
• An impact vector that specifies

how it will impact the system’s
quality dimensions

52
Cheng, Garlan, and Schmerl, “Stitch: A Language for Architectural-based Self-Adaptation”, Journal of Systems
and Software, Special Issue on State of the Art in Self-Adaptive Systems, 2012

3.3 - Stitch

Strategy – each step is the condition execution of a tactic

• It is a tree of condition-action-delay decision nodes

• Each strategy has a context-based activation condition

• Allows for the calculation of an aggregate utility function

define boolean styleApplies = Model.hasType(M,"ClientT")//.."ServerT";
define boolean cViolation = exists c:T.ClientT in M.components | c.expRspTime >M.MAX_RSPTIME;

strategy SimpleReduceResponseTime [styleApplies && cViolation] {
define boolean hiLatency = exists k:T.HttpConnT in M. connectors | k. latency > M.MAX_LATENCY;
define boolean hiLoad = exists s :T. ServerT in M. components | s . load > M.MAX_UTIL;

t1: (#[Pr{t1}] hiLatency) −> switchToTextualMode() @[1000/∗ms∗/] {
t1a: (success) −> done ;

}

t2: (#[Pr{t2}] hiLoad) −> enlistServer(1) @[2000/∗ms∗/] {
t2a: (!hiLoad) −> done ;
t2b: (!success) −> do [1] t1 ;

}

t 3 : (d e f a u l t) −> f a i l ;

}

53
Cheng, Garlan, and Schmerl, “Stitch: A Language for Architectural-based Self-Adaptation”, Journal of Systems
and Software, Special Issue on State of the Art in Self-Adaptive Systems, 2012

3. Stitch

Strategy Selection – chooses the strategy with the highest utility. This is achieved
through the definition of:

• Quality dimensions

• Identifier, label, description, mapping to architectural property, utility function definition

• Utility preferences

• Used to define business priorities over quality dimensions

• Impact vectors

• Costs and benefits that a tactic has on each quality dimension, defined as deltas

• Branch probabilities

• Captures the fact that a tactic could not achieve its effect, or that a tactic’s activation condition
might not be met

54
Cheng, Garlan, and Schmerl, “Stitch: A Language for Architectural-based Self-Adaptation”, Journal of Systems
and Software, Special Issue on State of the Art in Self-Adaptive Systems, 2012

Reasoning on adaptive systems

Our department has an ongoing collaboration with
CeSIA, the center responsible for the whole IT
infrastructure of the University of Bologna

We cooperate with an ongoing effort to model the
complexity of the CeSIA systems and reason about the
models at run-time

• we are developing an adaptation engine based on
semantic models for the management of this vast
infrastructure

Case Study

Enterprise: UniBo IT infrastructure @CeSIA

• 510 Km optical fiber, 160 centers

• ~500 servers (90% virtual) - 264 Cores, 1408 GB Ram, 450 TB data)

• 480 websites (12.400.000 visitors/year, 137.000.000 page hits)

• 100.000 students

• 6.200 employees (teaching/administrative/technical staff)

• HelpDesk: 50.000 tickets/year

Research Challenges

 CH1 - heterogeneity management

 each component of legacy systems uses different
programming languages, technologies, architectural
styles, etc.

 which general framework for managing this variability
and supporting dynamic adjustments?

 CH2 - need for runtime queryable models

 model-based adaptation approaches should guarantee
easy and uniform mechanisms to interrogate the
information about the observed systems

 how can we provide up-to-date queryable models,
ready to be processed by both humans and adaptation
engines?

Approach

 CH1 - heterogeneity management

each component of legacy systems uses different
programming languages, technologies, architectural styles,
etc.

which general framework for managing this variability and
supporting dynamic adjustments?

 CH2 - need for runtime queryable models

model-based adaptation approaches should guarantee easy
and uniform mechanisms to interrogate the information
about the observed systems

how can we provide up-to-date queryable models, ready to
be processed by both humans and adaptation engines?

(for providing a shared and unified representation
of complex and heterogeneous domains of interest)

ONTOLOGIES

+

REASONERS (for driving complex systems’ adaptation)

(for providing standard access mechanisms to
semantic models at runtime)

TRIPLESTORES

System Architecture:
the MAPE-K Paradigm

• For developing the adaptation logic, we used an external
approach.

• The engine has been implemented as a feedback loop
following the MAPE-K paradigm .

System Architecture
The Shared Knowledge

• The shared knowledge is refined to the following set of semantic models:

• Reflection Models: which reflect the adaptable software and its environment,
mapping system-level observations to an higher level of abstraction. Reflection
Models accommodate both static and dynamic information;

• Monitoring Models: for mapping the system-level observations to the
abstraction level of the Reflection Models;

• Requirement Models: define the system expected behavior;

• Evaluation Models: specify the reasoning, e.g., by defining constraints that are
checked on the Reflection Models;

• Change Models: devise the most appropriate reconfiguration plans if
adaptation needs have been identified;

• Execution Models: define mappings between reconfigurations and system-
level adaptations.

System Architecture:
the Observed system

• CMDBuild: structural
(static) information
(i.e. servers,
applications, services
& their relationships)

• Nagios: the CeSIA
monitoring
infrastructure
(dynamic behaviors)

• Ticketing system:
collects detailed
descriptions of the
reconfiguration
policies that need to
be carried out

System Architecture:
the 4 MAPE Phases

• Concurrent Java
components
implement the 4
MAPE-K phases

• They coordinate by
passing a control
token through shared
queues

• An external thread
supervises their
activities, intervening
when needed (e.g.
anomalous
behaviors, excessive
delays, etc.)

System Architecture:
the Shared Knowledge

• A set of semantic
models refines the
shared knowledge, with
all the information
required to implement
any adaptation activities

• These models are
implemented as OWL
ontologies, stored in an
external triplestore

• The 4 phases
communicate by means
of the the triplestore
(through standard
SPARQL queries)

Monitor and Analyze Phases

1
.M

O
N

IT
O

R

1. Monitor

● Static information

● Dynamic information

Goal: provide an updated
view of the system state:

Monitor and Analyze Phases

1
.M

O
N

IT
O

R

2
.A

N
A

L
Y

Z
E

1. Monitor

● Static information

● Dynamic information

2. Analyze

Goal: provide an updated
view of the system state:

Goal: recognize and
characterize all the critical
situations that should be
resolved by a system
reconfiguration. E.g.:

Slow application:
response time > 10 sec.

Overloaded application server:
#queued requests > 20

3. Plan

Plan and Execute Phases

3
.P

L
A

N

Goal: devise, if needed,
a reconfiguration plan for
reacting to the actual
issues, by select the most
suitable reconfiguration
policies for the selected
components

3. Plan

4. Execute

Plan and Execute Phases

3
.P

L
A

N

4
.E

X
E

C
U

T
E

Goal: devise, if needed,
a reconfiguration plan for
reacting to the actual
issues, by select the most
suitable reconfiguration
policies for the selected
components

Goal: convert the model-
level adaption into the
system level, and re-
synchronize the Reflection
Model (in the KB) with the
system state

Another Example

1
.M

O
N

IT
O

R

2
.A

N
A

L
Y

Z
E

In this case the delays in
the portal of the School
of Law are caused by an
overloaded cluster node:

Overloaded cluster node:

CPU Load > 95%

Another Example

3
.P

L
A

N

4
.E

X
E

C
U

T
E

The selected
reconfiguration
policy is to add
a new node to
the cluster.

Queryable Models

● Our approach traces information about
● system states
● behaviors
● adaptation strategies

● that can also be used for other - maybe
unexpected at design time - purposes.

● SPARQL provides a single interface to:
● query the CeSIA model
● integrate with external datasources

– e.g. can be joined with UniBo and CeSIA calendars to
improve the adaptation strategies

Experimental Results

● Artificial load generator:
raising number of
connections;

● With the autonomic
manager turned off, the
CeSIA system doesn’t
meet the SLAs

● e.g. responseTime < 1.2 sec.)

Experimental Results

● Autonomic manager
turned on

● responseTime threshold
set to 600 ms

● Two reconfiguration
strategies:

● adding new processes

● adding new nodes

● ResponseTime is kept
around 600 ms (even
when the load increases)

77

Conclusions

78

Software Architecture

• Software Architecture provides a level of abstraction that allows us to

• Scale our understanding of complex systems, and

• Manage adaptation (and the self-* properties of our systems)

• Programming in the large vs. programming in the small

• A plethora of styles for many different system requirements

• Yet, it is still possible to generalize and understand what helps make a
system adaptable, or self-adaptable

79

Research in
Adaptive Software Architecture

• Software Architecture as a Design-
time tool for Systems that Need to be
Adaptive

• Software Architecture for Self-
Adaptive Systems

• Architecture as a living entity
supporting adaptation frameworks

Model Manager

Adaptation
Manager

Architecture
Evaluator

Strategy
Executor

Translation Infrastructure

Effectors Probes
Resource
Discovery

Target System

Architecture Layer

System Layer

