
Supporting e-commerce systems formalization with
choreography languages

Mario Bravetti, Claudio Guidi, Roberto Lucchi, Gianluigi Zavattaro
Department of Computer Science, University of Bologna, Italy.

{bravetti,cguidi,lucchi,zavattar}@cs.unibo.it

ABSTRACT
E-commerce as well as B2B applications are essentially based on
interactions between different people and organizations (e.g. in-
dustry, banks, customers) that usually exploit the Internet as com-
munication media. Web Services provide a mean to deal with these
aspects. In this paper we show, via a case study, how choreography
and orchestration languages allow us to express behaviour poli-
cies between the involved entities (interactions modalities, inter-
dependencies, security requirements); in particular we consider that
they can be used not only for describing behavioural rules but also
for designing and testing whether the involved entities move ac-
cording with system specifications.

Categories and Subject Descriptors
J. [Internet Applications]: Middleware; D.3 [Programming Lan-
guages]: Miscellaneous; C.2 [Communication Technology]: Mis-
cellaneous

Keywords
Web Services, choreography, orchestration.

1. INTRODUCTION
In this paper we want to focus the attention on Web Services

as the technology which better matches e-commerce requirements
and which most software designers will have to cope with in the
following years. E-commerce applications and software in general
will exploit more and more the Web as the natural choice for ex-
changing information both user-friendly and machine-friendly. In-
tranet and Internet applications will be soon indistinguishable and
separated only by firewalls and access permissions. In this sce-
nario e-commerce applications will play one of the most important
role both governing world businesses among companies of differ-
ent countries and also local cost-limited trades among people. Find
a unique programming paradigm, which will unify both billion
euros/dollars affairs and regional barters, is now a big challenge.
Many are the aspects to take into consideration, in particular mod-
ularity and dynamic re-composition are needed in order to deal with
both the uncontrolled explosion of the Web and the unpredictable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05 March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

demands of commercial issues. Security and reliability are neces-
sary in order to guarantee safe business transactions and personal
information secrecy. Interoperability is needed in order to achieve
different participants interactions which have their own application
implemented on different platforms with different technologies.

Not only technical requirements must be taken into account, but
also social necessities will play a fundamental role. In particular,
commerce, and e-commerce consequently, is essentially based on
contracts between different people and organizations. In this sense
let us imagine a – not so distant – future scenario where companies
applications will interact re-designing themselves in an automatic
way; how will be possible to prove behavioural errors and mistakes
of commercial partners applications? What kind of documentation
will have to be presented in order to demonstrate that a software
will have not attended drawn up contracts? At the end, what kind
of contracts will be able to govern software behaviours?

Considering all these aspects we are confident that Web Ser-
vices will surely play a fundamental role. They were born from
the simple concept of the remote procedure call wrapped by a stan-
dardized interface in order to realize interoperability. Loosely cou-
pling, high level compositionality and service orientation are the
most important features they are characterized by. Constructed on
two basic specifications, WSDL[1] and SOAP[2], they are grow-
ing day by day with more specification layers which take into ac-
count different features. Recently, Web Services are one of the
most discussed topic and, sometimes, probably over-discussed too.
Nevertheless we believe that Web Services orchestration and Web
Services choreography in particular can be the key to promote this
technology as the de facto standard choice for e-commerce soft-
ware and middleware designing in the next years.

One of the reason that allows us to state this is the fact that they
are becoming the natural choice for programming Web Services
composition, thus permitting to design new Web Service systems
out of already available Web Services. Due to their nature indeed,
Web Services are modular and interoperable and they can also sup-
port security and reliability if we consider other specifications as
WS-Security[5], WS-SecureConversation[6], WS-Trust[3], WS-
Policy[4] but it is still difficult to manage the complexity of a great
number of Web Services. Orchestration engines go straithforward
in this direction and some languages yet exist, the most famous is
surely BPEL4WS[9]. They introduce invocation, concurrent and
synchronization primitives for flowing information among differ-
ent Web Services and carry out a main activity. But something is
still lacking, the point of view of orchestration languages indeed,
is always the orchestrator which is the center of the system and
through which all the information pass. Often, e-commerce scenar-
ios, due to their nature, require more than one orchestration engine
running in parallel, thus increasing the complexity of the system.
Therefore, a top view system description is necessary in order to

fulfill and program correctly the different engines involved.
WS-CDL[10] which is a draft document of W3C, responds to

these necessities introducing a description language which fixes the
rules of the interactions between the parts involved in the system.
We do not believe it is exhaustive but it has the potentiality on one
side to aid the design of applications via a refinement process start-
ing from the WS-CDL description, and on the other side to allow
the verification of the compatibility of already available services
willing to participate to a choreography described in WS-CDL.
Web Services choreography indeed, is born as a sort of contract be-
tween the parts (which could be companies but single applications
too) in order to rule their interactions. So, we can imagine that
each part will design their own application and then verify its cor-
rectness exploiting the sentences of the WS-CDL document drawn
up. In this sense, referring to what explained above, we could also
imagine that WS-CDL can become a sort of actual valid contract
which could be used to demonstrate other party mistakes and un-
compliances. This last topic is not the center of our paper but it
deserves to be investigated.

In this paper we discuss the validity of Web Services orchestra-
tion and choreography approach in order to deal with e-commerce
issues highlighting differences and limits too. In order to achieve
this goal we will exploit a case study where the involved partici-
pants are divided in buyers and vendors. We will study the case
of buyer groups which collect their purchase intentions and supply
them to an electronic auction where the vendors will compete to
win the order bidding the lowest cost. It is a particular scenario
where buyers sell something and vendors buy something. This pa-
per wants to be the starting point for investigating choreographies
and orchestration as the main candidates to deal with the design-
ing of dynamic systems based on components. In this sense Web
Services technology and e-commerce issues offer the straight work-
bench in order to develop formal models and executable tools. In
particular we see in service oriented architectures and in choreog-
raphy languages the key to govern the complex behaviour of the
future Web applications.

In Section 2 we will present the differences between BPEL4WS
and WS-CDL. In Section 3 we will present the case study, in Sec-
tion 4 we will show a choreography proposal for the case study and
in Section 5 the BPEL4WS implementation. In Section 6 conclu-
sions and future works will be presented.

2. CHOREOGRAPHY AND ORCHESTRA-
TION LANGUAGES

The terms choreography and orchestration are often considered
as synonymous of service composition/coordination; in reality, there
are essential differences as shown in [11]. Starting from the study
of Web Services documentation, in particular WS-CDL[10] and
BPEL4WS[9] specifications we will clarify their differences.

WS-CDL aims to constrict the behaviours of the Web Services
involved in the system ruling the exchange of their messages in-
stead of BPEL4WS that allows the design of a central entity which
carries out an activity invoking other services. For the sake of clar-
ity we will roughly present the two languages showing the most
important features without giving an exhaustive description. We
aim to highlight only the essential behaviours of choreography and
orchestration in order to understand the role they could play for
designing systems based on components.

In the following we list the features which we believe are essen-
tial in order to understand the main differences between orchestra-
tion (à la BPEL4WS) and choreography (à la WS-CDL):

• Executable processes: WS-CDL is a descriptive language
and does not provide specifications for its execution. In this

sense it is only a descriptive document without any direct
computational purpose. On the contrary BPEL4WS assumes
the existence of engines able to animate the specifications. A
so called orchestrator engine executes BPEL4WS code and
it is an essential part of the system which can invoke in-
teractions and respond to requests. It must be noticed that
BPEL4WS provides an abstract processes definition too. In
this case it can be used for system description as WS-CDL
even if, as it will be highlighted in the point below, Interac-
tions designing, it is centered on a unique entity: the orches-
trator engine.

• Interactions designing: WS-CDL provides a top view of
the system focussed on the interactions between the partici-
pants. It is a definition of the rules which govern messages
exchange among the parties involved in the choreographies.
All the interactions have to be fulfilled between two entities
and there is no notion of a central entity (e.g. a coordinator)
which carries out the activity. On the contrary BPEL4WS is
always centered on the orchestrator engine which drives all
the interactions allowing services synchronization too. In-
deed if there are two services which require to be synchro-
nized, the former has to send the synchronization message to
the orchestrator engine which will forward it to the latter.

• Activity State: In WS-CDL the state of the activity is dis-
tribuited among the entities. Indeed some internal variables
of the entities involved are fundamental for the progression
of the choreography. WS-CDL allows to express such vari-
ables as observable in order to change their value or explicitly
align them after an interaction. After a message exchange in-
deed, the choreography may require that two variables which
are located on the sender and on the receiver must be aligned.
BPEL4WS, as said before, is centered on the orchestrator
which is the entity which manages the communications and
which stores all the state of the activity it is carrying out.

So far, we have highlighted the differences of the two languages
but in the next sections we will present WS-CDL and BPEL4WS as
complementary tools for system design. To do this we will exploit
a case study presented in the section below.

Figure 1: The case study

3. THE CASE STUDY
The case study we are going to explain deals with electronic auc-

tions. It is a particular case where “the buyers sell something and
the vendors buy something”. At a first glance someone can argue
that it is a strange way to make business but let us consider the
case of a group of buyers that are intented to buy the same type of
a car and that have signed the following agreement: buying all or
no-one. In this case the car vendors have to compete for obtaining
the order: there is a lot of difference between selling ten cars or
selling nothing! So we can imagine a sort of auction where buy-
ers present their purchase intention and the vendors bid the lowest
price for obtaining it. In order to transfer this idea in a software
system we see the design of three main parts: buyers application,
auction management and vendors applications.

• Buyers applications: They can be seen as software inter-
faces through that human buyers can express their purchase
intentions. Moreover they also can be thought as intelligent
agents which formulate their purchase intentions following
their internal rules. For the sake of simplicity we highlight
three main tasks for buyers application: registering the buyer
on the Auction Service, sending a purchase intention to the
Auction Service, waiting for a commit or a failure from the
Auction Service. In Fig. 1 an arrow from a buyer application
to the Auction Service represents the request for a registra-
tion. Obviously this is a graphical simplification which does
not show all the messages exchange that a registration re-
quest implies. In this sense arrows must be understood as
main task representations which group all the information
flow between two entities.

• Auction management: This part of the system deals with
the management of the auction. It stores the registration data
of both the buyers and the vendors. It collects the purchase
intentions of the buyers and groups them according to the
goods to buy then starts an auction for each group of inten-
tions received. The vendors can compete for obtaining the
order sending to the Auction Service their bids. When the
auctions finish the Auction Service will send commit or fail-
ure messages both to the vendors and to the buyers. Summa-
rizing, the Auction Service have to manage the buyers reg-
istration data, manage the vendors registration data, collect
and group the intentions, managing the auctions.

• Vendors applications: As for the buyers they can be imag-
ined as both simple interface between human users and the
Auction Service and intelligent agents which automatically
choose an auction and formulate their bids according to their
goals and requirements. We highlight four main tasks: reg-
istering the vendor on the Auction Service, choosing an auc-
tion, bidding and waiting for a commit or a failure message
from the Auction Service.

In Fig. 1 we have depicted the three services and their inter-
relationships.

4. THE CHOREOGRAPHY OF THE CASE
STUDY

In Fig. 2 it is presented the WS-CDL choreography of the case
study. For the sake of brevity some tags and attributes are omit-
ted besides other elements that are not expanded and detailed. Our
aim is to briefly show how a WS-CDL document is highlighting
some important peculiarities. Inside the root tag <package>
there are a declarative part followed by the main choreography

<choreography name=‘‘GeneralChoreo’’>. The for-
mer declares the roles of the entities involved in the choreography
and their relationships whereas the latter expresses the variables
used inside the choreography and the activities to fulfill. Choreog-
raphy tags can be nested for obtaining a structured choreography.
Each choreography contains the variables, which are visible to the
enclosed choreographies too, and the activities to be performed.
Variables and activities deserve to be briefly discussed:

• Variables can be information exchange variables which means
that they will be parts of the messages exchanged by the enti-
ties and State Variables which express the observable state of
the entities. In this sense the choreography global state is the
set of all the state variables distribuited among the entities.
Here we mention also the silent-action attribute of the tag
<variable>; this means that it is not directly controlled
by the activities of the choreography. In other words they are
assumed to be the direct consequence of the internal actions
of the entities where the variable is located.

• Concerning the activities, here we cite the <interaction>
activity which implies the message exchange between the
participants, the <assign> activity which allows to copy
the value of a variable to another one and the <perform>
activity which allows to perform an enclosed choreography.
Furthermore, the activities can be both structured exploiting
<sequence>, <parallel>, and <choice> tags whose
meaning is easy to understand and constrained inside a
<workunit> which allows to perform the activities de-
pending on a guard condition.

Now we analyze the activity of the GeneralChoreo chore-
ography which describes the behaviour of the system. Looking
at the code of Fig. 2 there are six main activities included in a
<parallel> tag; thus they are performed concurrently. In the
following we briefly describe them:

• <perform choreographyName=‘‘BuyerRegChoreo’’>:
this is an enclosed choreography which deals with the regis-
tration of the buyers to the Auction Service. The tag is not
expanded but it is assumed to contain all the interactions be-
tween the role of the buyer and the role of the Auction Ser-
vice in order to achieve the registration.

• <perform choreographyName=‘‘VendorRegChoreo’’>:
this is an enclosed choreography which deals with the regis-
tration of the vendors to the Auction Service. Also in this
case the tag is not expanded and it has to be assumed that
it contains all the interaction between the role of the vendor
and the role of the Auction Service in order to achieve the
vendor registration.

• <workunit name=‘‘StartAuction’’>: this workunit is
responsible for starting an auction. The guard verifies if the
variable AuctionCreate is available, if this is the case
it means that a group of Purchase Intentions is available for
an auction. It has to be noticed that the AuctionCreate
variable is defined with the silent-action attribute set
to true and represents a state of the Auction Service. Verify
the availability of a silent-action variable means that it be-
comes observable. Referring to the code, if the guard is ver-
ified the contents of the workunit StartAuction, which
is the choreography AuctionChoreo, must be performed.
The AuctionChoreo is specified inside the
GeneralChoreo choreography and deals with the interac-
tions required to govern the vendor offers and the auction ter-
mination. In particular the workunit BiddingManagement,

which is not expanded, deals with the bidding interactions
between the Vendor and the Auction Service whereas the
workunit AuctionTerminate deals with the termination
of the auction. These two workunits are located inside a
<choice> tag which means that only the workunit match-
ing the guard condition can react. Furthermore, they are
inside the workunit AuctionManagement which is re-
peated until the variable Finished is equal to false. The
execution of the workunit AuctionTerminate can change
the value of the variable Finished which implies the skip-
ping of the next performation of the workunit
AuctionManagement. At this point the auction is ter-
minated and the workunit AuctionFinished can be per-
formed. It is assumed to contain all the interactions required
to signal the termination to the buyer and the vendor.

• <workunit name=‘‘SendAuctionList’’>: this element
is a workunit which manages the vendor request to obtain
the list of the active auctions in order to partecipate to one of
them. For the sake of simplicity the element is roughly ex-
panded. Here we show only the fact that it contains an inter-
action between the AuctionService role and the Vendor
role.

In particular the workunit should be guarded by a state vari-
able of the Vendor not explicited in Fig. 2 which express
the fact that the vendor wants to perform the request. If the
guard is verified the interaction inside the workunit can be
performed.

• <workunit name=‘‘SendPurchaseIntention’’>: this
workunit contains an interaction between the Buyer role
and the AuctionService role. As for the tags above, it is
not expanded in a detailed way but it is assumed to contain
the messages exchange between the buyer and the Auction
Service where the former sends its Purchase Intention to the
latter. Also this workunit should be guarded by a state vari-
able (not explicited in Fig. 2) of the Buyer which express the
fact that the buyer wants to send a Purchase Intention.

Summarizing five main activities must be performed concurrently:
The registration of the buyers, the registration of the vendors, the
creation and the management of an auction, the sending of the ac-
tive auction list and the sending of the Purchase Intentions. Obvi-
ously we have presented a simplified version of the choreography
which does not take into account other important interactions but
the goal of this paper is not to give a detailed WS-CDL documen-
tation. Indeed, we aim to show how WS-CDL and choreography
languages in general should be used as a first step of e-commerce
systems design. In the next section a BPEL4WS implementation of
the case study will be presented.

5. FROM THE CHOREOGRAPHY TO THE
ORCHESTRATION

The choreography shown in Fig. 2 gives a top view of the sys-
tem from which many implementations can be derived. In particu-
lar here we make the implementation choice to split the main entity
Auction Service into two different entities: the Purchase Intention
Service (PIS) and the Auction Management Service (AMS). Due to
space limitation we simply sketch the orchestration we consider as
an implementation of the choreography of Fig. 2. The full descrip-
tion can be found in [14].

The Purchase Intention Service deals with the collection and the
grouping of the Purchase Intentions from the buyers whereas the

<package>
<role name="Buyer"/>
<role name="AuctionService"/>
<role name="Vendor"/>
<relationship name="Buyer_AS">

<role type="Buyer"/>
<role type="AuctionService"/>

</relationship>
<relationship name="AS_Vendor">

<role type="AuctionService"/>
<role type="Vendor"/>

</relationship>
<channelType/>
<choreography name="GeneralChoreo">

<relationship type="AS_Vendor">
<relationship type="Buyer_AS">
<variableDefinitions>

<variable name="AuctionCreate"
silent-action="true"

role="AuctionService"/>
<variableDefinitions/>
<choreography name="BuyerRegChoreo"/>
<choreography name="VendorRegChoreo"/>

<!-- AuctionChoreo choreography -->
<choreography name="AuctionChoreo">

<relationship type="AS_Vendor">
<variable name="Finished"

mutable="false"/>
<variable name="Terminate"

silent-action="true">
<assign>

<!-- Finished="false" -->
</assign>
<workunit name="AuctionManagement"

guard="cdl:getVariable("Finished",
"AuctionService")=false" repeat="true">

<choice>
<workunit name="BiddingManagement"/>
<workunit name="AuctionTerminate"

guard="cdl:getVariable("Terminate",
"AuctionService")" block="true">

<assign>
<!-- Finished="true" -->
</assign>

</workunit>
</choice>

</workunit>
<workunit name="AuctionFinished"/>

</choreography>

<!-- GeneralChoreo activities -->
<parallel>

<perform choreographyName="BuyerRegChoreo"/>
<perform choreographyName="VendorRegChoreo"/>
<workunit name="StartAuction"

guard="cdl:getVariable("AuctionCreate",
"AuctionService")" block="true" repeat="true">
<perform choreographyName="AuctionChoreo"/>

</workunit>
<workunit name="SendAuctionList">

<interaction name="SendAuctionListInteraction">
<partecipate relationship="AS_Vendor"/>

</interaction>
</workunit>

<workunit name="SendPurchaseIntention">
<interaction name="SendPurchaseIntentionInteraction">

<partecipate relationship="Buyer_AS"/>
</interaction>

</workunit>
</parallel>

</choreography>
</package>

Figure 2: The WS-CDL choreography of the case study

Auction Management Service deals with the creation of the auc-
tions and the management of the interaction with the vendors. We
assumed that the PIS will send a request to the AMS for an auc-
tion when it has a collection of Purchase Intentions and after an
unspecified amount of time sends to the AMS an auction termina-
tion request too. Vendors and Buyers play the same tasks described
in section 2. At this point four different kinds of orchestrator can
be designed following the interactions constraints explicited into
the main choreography: the Buyer orchestrator, the Vendor orches-
trator, the Purchase Intention Service Orchestrator (PISO) and the
Auction Management Service Orchestrator (AMSO).

Now, let us consider choreography and orchestration languages
as complementary frameworks for designing e-commerce systems.

WS-CDL provides a system top view which allows both to fix the
interaction constraints among the entities and to manage the main
activity state which, in the actual implementation, is distributed
on local state variables. For this reason it could be seen as the
first system design step which could be followed by the imple-
mentation phase where BPEL4WS can be exploited. Referring
to the case study, here we briefly discuss how a top view vari-
able AuctionCreate of the GeneralChoreo choreography
is actually implemented in a distributed fashion, as its value should
reside on both the PISO and the AMSO orchestrators.

At the level of choreography, the AuctionCreate variable is
related to an internal state of the Auction Service and when it be-
comes observable an auction must be performed. The implemen-
tation we have chosen with two orchestrators (PISO and AMSO)
implies the splitting of that variable. Indeed, even if the Purchase
Intention Service Orchestrator is not described here, we assume it
uses an internal variable, which we name now ActivePISO, that
stores the corresponding boolean value of the Active variable we
have used in the description of the AMSO orchestrator.This vari-
able is exploited in order to be able to denote that an auction is
still running (the auction terminates when the value associated to
the variable is changed from true to false). The ActivePISO and
the Active variables must be aligned in order to be consistent
with the AuctionCreate choreography variable. To guarantee
the alignment, an aknowledgement reply is sent to the PISO from
the AMSO after that the auction creation request is received. Ob-
viously. this a very simple alignment protocol but other classical
protocols (e.g. a two phase commit protocol) could be used instead.

6. CONCLUSIONS AND FUTURE WORKS
In this paper we have considered choreography and orchestration

languages (namely, WS-CDL[10] and BPEL4WS[9]) and we have
discussed their exploitation within a new approach for the devel-
opment of e-commerce applications based on Web Services. Typ-
ically, choreography and orchestration are considered as two al-
ternative approches for supporting service composition: the former
based on an orchestration engine responsible for gluing together the
collaborating services, the latter based on a direct communication
among the services themselves. Our approach, on the other hand,
proposes to use choreography languages as high-level description
languages, while the orchestration languages are exploited for pro-
gramming the actual engines needed for implementing the collab-
oration described at the level of choreography. We have described
this approach via an auction service use case. The advantage of this
approach is twofold: on the one hand, it permits to achieve Web
Services composition in a top-down manner; on the other hand, it
could support the verification of the conformance of already avail-
able service to the constraint described at the choreography level.

As a future work we intend to develop a formal framework for
proving the conformance of orchestration services with respect to
the roles described at the choreography level. We intend to exploit

this framework also for proving the compatibility between two dif-
ferent orchestrations, one obtained as a refinement of the other one.
In this way, we have not only one phase of refinement from chore-
ography directly to orchestration, but we have also several chore-
ographies at different levels of abstraction obtained via a stepwise
refinement.

Clearly, this framework requires also the formal definition of the
semantics of the BPEL4WS and WS-CDL languages. In this sense
some works exist, in particular we cite here [12] and [13] which are
proposals of formalization for BPEL4WS.

7. REFERENCES
[1] Francisco Curbera et al. - Web Service Description Language

(WSDL) Version 1.1. W3C Note 15 March 2001
[http://www.w3.org/TR/wsdl].

[2] Martin Gudgin et al. - SOAP Specifications ver. 1.2. W3C
Recommendation 24 June, 2003[http://www.w3.org/TR/soap/].

[3] Steve Anderson et al. - Web Services Trust Language (WS-Trust).
[http://www-106.ibm.com/developerworks/library/specification/ws-
trust/].

[4] Siddharth Bajaj et al. - Web Services Policy Framework (WS-Policy)
[http://www-106.ibm.com/developerworks/library/specification/ws-
polfram/].

[5] Bob Atkinson et al. - Web Services Security (WS-Security).
[http://www-106.ibm.com/developerworks/webservices/library/ws-
secure/].

[6] Steve Anderson et al. - Web Services Security Conversation
(WS-SecureConversation). [http://www-
106.ibm.com/developerworks/library/specification/ws-secon/].

[7] Luis Felipe Cabrera et al. - Web Services Coordination
[http://www-106.ibm.com/developerworks/library/ws-coor/].

[8] Felipe Cabrera et al. - Web Services Transactions [http://www-
106.ibm.com/developerworks/webservices/library/ws-transpec/].

[9] Tony Andrews et al. - Business Process Execution Language for Web
Services Version 1.1.
[http://www-106.ibm.com/developerworks/library/ws-bpel/].

[10] N. Kavantzas, d. Burdett, G. Ritzinger - Web Services Choreography
Description Language Version 1.0. Working draft 27 April 2004,
[http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/].

[11] C. Peltz - Web Services Orchestration and Choreography. Web
Services Journal, [http://www.sys-con.com/webservices]

[12] Manuel Mazzara, Roberto Lucchi - A Framework for Generic Error
Handling in Business Processes. In Proc. of 1st International
Workshop on Web Services and Formal Methods (WS-FM’04), Mario
Bravetti and Gianluigi Zavattaro, editors, Electronic Notes in
Theoretical Computer Science, Elsevier.

[13] Mirko Viroli - Towards a Formal Foundation to Orchestration
Languages. In Proc. of 1st International Workshop on Web Services
and Formal Methods (WS-FM’04), Mario Bravetti and Gianluigi
Zavattaro, editors, Electronic Notes in Theoretical Computer Science,
Elsevier.

[14] M.Bravetti, C.Guidi, R.Lucchi,G.Zavattaro - Supporting e-commerce
systems formalization with choreography languages. Full version
available at [http://www.cs.unibo.it/people/phd-
students/cguidi/Publications/2004-17.pdf]

